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Top Threshold at the ILC

The top quark at the ILC offers a unique QCD system to study :
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Large top quark mass allows precise perturbative
QCD calculations of its properties.

Large top width Γt acts as infrared cutoff
preventing hadronization effects.

With main decay to bb̄W +W− top quark spin
information are preserved in its decay products

Can measure αs to high precision, together with measurements of
the top-Yukawa coupling

Clean lepton environment provides unprecetended precision potential
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Need for Top Quark Precision
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Top Mass provides constraints on
Higgs mass

Also is important parameter for
selecting between the different
flavours of SUSY

Current best measurement at
172.5± 2.3 GeV

The LHC can achieve ±1 GeV

The ILC claims it can achieve ±50− 100 MeV.
The aim of my PhD is to determine if the claimed precision can be achieved
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Top Threshold and the Luminosity Spectrum
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The top will be measured at the ILC by a
threshold scan at

√
s ≈ 2Mt

One of the main uncertainties in this
measurement will come from knowledge of
the machine’s luminosity spectrum

Various energy loss mechanisms give a
complicated luminosity spectrum at the
ILC

Hence the top threshold observables will be smeared by the
luminosity spectrum effects
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For precise threshold physics, a good knowledge of the luminosity
spectrum and its inclusion in event generation is fundamental
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Top Threshold Theory Status
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Precision measurement depends on precise
knowledge of threshold lineshape

Current theoretical tools fail to describe
the top threshold

Over the last 10-15 years, theoretical
physicists have performed a wealth of
precision calculations for top pair
production at threshold.

However, no event generator exists (yet) that uses these calculations
so that precise physics studies can be performed

The luminosity spectrum is an important factor in describing the top
threshold, and thus a precise description must be incoperated in
event generation

This is what we are trying to do !!
(in collaboration with T.Teubner and S.Boogert)
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Precision Calculations - Nomenclature

Top quarks at threshold are non relativistic ν � c

Also due to Coulomb singularities, usual perturbative expansion in
αs not possible

Hence top threshold requires different than usual theoretical
treatment

Use of Non Relativistic QCD (NRQCD) and employment of Effective
Field Theories (EFTs) to describe threshold

Solving the Lippmann-Schwinger eq. exactly in momentum space
with the Green function technique

⇓
NNLO calculations from TOPPIK (A.Hoang & T.Teubner)
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topMC in a Nutshell

Top threshold Event Generator

NNLO Cross section +

differential quantities

d!/dp , AFB etc

NLO rescattering

corrections

NNLL

renormalization

group improved total

Cross section (only)

Event Generator

Top quark pair 4-momenta

Give decay products to Pythia / Herwig for

further decays and hadronization

Modify Green’s
functions

Scale total Cross section

reduces theoretical uncertainty

Include Beam Effects !!

Decay top quarks
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Fast Generator

Main problem with TOPPIK is that it is very slow !!
(> 1.5sec per calculation)

Forbids direct use in event generation

Solution is fast access to the Green functions

This is done by fast 5-dimensional interpolation on Green functions
in (Mt , Γt , αs ,

√
s) parameter space

The rest of the calculation can be performed on the interpolated
Green functions
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Fast Multidimensional Interpolation

Calculate with TOPPIK once and store interpolation grid in
(Mt , Γt , αs ,

√
s)

Transform Re\Im Green functions in ’simpler’ Magnitude\Phase
distributions
Perform fast piecewise linear interpolations in required parameters
All parameter interpolation is ×5 faster than TOPPIK
Interpolations only in

√
s are ×106 faster !!
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Stewart Takashi Boogert (UCL)

9
LCWS, Top and QCD, Paris (Tuesday, 20th April 2004)

Cross section interpolation (2)

! Interpolation algorithm
• Determine nearest 

neighbours (NN)

• Linearly interpolate cross 
section function !("s)

!Problem due to maximum 
in cross section 
• Translate cross section so 

that maxima at same "s

• Linearly interpolate and 
translate back

!Apply same algorithm for 
smeared cross section 
!’("s)

#mt

#$t

Interpolation 

grid node (!("s))

1st

2nd

No

problem
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Reproducing Calculations

Implement full calculations in OO framework
Reproduce Gauss-Legenrde integration grid

∫
f (x)dx ≈

n∑
i=1

wi f (xi )

S-wave differential momentum distribution
Total cross sections
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Reproducing Calculations

Implement full calculations in OO framework
Reproduce Gauss-Legenrde integration grid

∫
f (x)dx ≈

n∑
i=1

wi f (xi )

S-wave differential momentum distribution
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Reproducing Calculations

Implement full calculations in OO framework
Reproduce Gauss-Legenrde integration grid

∫
f (x)dx ≈

n∑
i=1

wi f (xi )
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We are (almost) there !!

Major problem solved: Demonstrated that interpolation works !

Can reproduce all ’observable’ quantities implemented in TOPPIK

Next step is to feed these quantities in a MC Integrator
(Foam,Vegas) and start generating simple events

Then decay the top quarks and interface to multipurpose generator
for further decays and hadronization

Start thinking about implementation of beam effects
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The Beam Energy Spectrometer

By precise measurements of the deflection of the beam by a known
magnetic field, the absolute beam energy can be measured

Dipole magnet

BPM triplet

For top measurements precision better than 30 ppm is required

To reach required performance, precision Beam Position Monitors
(BPM) and magnetic field measurements are required

The UCL group is developing a spectrometer specific BPM design

Also, careful understanding and monitoring of systematic effects
influencing stability of the measurement (temperature variations,
ground motion, beam conditions etc)

An intensive programme of test beam experiments is taking place at
SLAC’s ESA to test performance and stability of this concept
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End Station A : Experimental Setup
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BPM Analysis in 1 slide

As a bunch of particles traverses through a BPM, it excites
electromagnetic waves in the cavity
Amount of EM power stored in dipole eigenmode of cavity is linearly
proportional to beam position inside the cavity
Careful extraction and processing of signal required
BPM calibrations needed to extract useful information from cavities
(mover or corrector magnet scans)
Resolution is width of distribution of residuals between expected and
measured beam position in BPM
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BPM Analysis in 1 slide

As a bunch of particles traverses through a BPM, it excites
electromagnetic waves in the cavity
Amount of EM power stored in dipole eigenmode of cavity is linearly
proportional to beam position inside the cavity
Careful extraction and processing of signal required
BPM calibrations needed to extract useful information from cavities
(mover or corrector magnet scans)
Resolution is width of distribution of residuals between expected and
measured beam position in BPM
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BPM Analysis in 1 slide

As a bunch of particles traverses through a BPM, it excites
electromagnetic waves in the cavity
Amount of EM power stored in dipole eigenmode of cavity is linearly
proportional to beam position inside the cavity
Careful extraction and processing of signal required
BPM calibrations needed to extract useful information from cavities
(mover or corrector magnet scans)
Resolution is width of distribution of residuals between expected and
measured beam position in BPM
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The Future

Completion of top threshold MC event generator

Studies of luminosity spectrum and extraction of the different
components

Study effects of luminosity spectrum in a realistic top threshold (i.e.
differential quantities)

Continued participation in running and analysis of Energy
Spectrometer test beam experiments at SLAC

Possibly (time permitting) studies of detector effects in top
threshold measurements

Any other interesting thing that might come up . . .
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UCL team at SLAC
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