R-parity conserving SUSY studies with jets and E_T^{Miss}

Outline

- Motivation
- R-Parity
- Analysis Aims
- Discriminating SUSY variables
 - E_{T}^{Miss}
 - $-S_{T}^{T}$
 - M_{eff}
- $\delta \phi$ plots
- QCD background rejection
- $W \rightarrow ev \& Z \rightarrow vv$ backgrounds
- Future Studies

Motivation

- In SUSY we expect lots of:
 - Jets
 - Leptons
 - E_T^{Miss} (R-parity conserving)
- Generic Jets + E_T^{Miss} search is sensitive to most SUSY models
- Low multiplicity jets + E_T^{Miss} not really studied
- Most ATLAS SUSY use $N_{jets} \ge 4$

R-Parity

- SM particles have R = 1
- SUSY sparticles have R = -1
- Multiplicative

QCD jet background

Analysis Aim

• Detect production and decay of squarks and gluinos

 Look for and optimise variable cuts that help discriminate SM backgrounds

• Analysis focused mainly on QCD jet background at the moment.

Discriminating Variables

Jet Cuts:

- $N_{jets} \ge 3$
- E_T^{jet1,2,3} = 180 GeV, 110GeV, 100GeV
- $|\eta^{jet1}| < 1.7$
- $|\eta^{\text{jet2,3}}| < 3$

In addition to these jet cuts, 3 SUSY variables investigated:

- E_TMiss
- S_T
- $\bullet M_{eff}$

Missing Transverse Energy, E_T^{Miss}

- •R-parity conserving SUSY ->LSP stable
- SUSY signals have large E_T^{Miss}
- Highly Discriminating variable for SUSY searches

Missing Transverse Energy, E_T^{Miss}

- •R-parity conserving SUSY ->LSP stable
- SUSY signals have large E_T^{Miss}
- Highly Discriminating variable for SUSY searches

Transverse Sphericity, S_T

- A measure of the isotropy of the event perpendicular to beam axis.
- $0 \le S_T \le 1$

Transverse Sphericity, S_T

 S_{T} is defined as:

 $S_{T} = \frac{2\lambda_{2}}{(\lambda_{1} + \lambda_{2})}$

Sphericity Tensor:

$$S_{ij} = \Sigma_k p_{ki} p^{kj}$$

Transverse Sphericity, S_T

 S_{T} is defined as:

 $S_{T} = \frac{2\lambda_{2}}{(\lambda_{1} + \lambda_{2})}$

Sphericity Tensor:

$$S_{ij} = \Sigma_k p_{ki} p^{kj}$$

Effective Mass, M_{eff}

Alexander Richards, UCL

Effective Mass, M_{eff}

δφ plots

where:

$$\begin{split} \delta \phi_1 &= |\phi_{jet1} - \phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{Miss}})| \\ \delta \phi_2 &= |\phi_{jet2} - \phi(\mathsf{E}_{\mathsf{T}}^{\mathsf{Miss}})| \end{split}$$

Jet Cuts:

- $N_{jets} \ge 3$
- E_T^{jet1,2,3} > 180GeV, 110GeV, 100GeV
- $|\eta^{jet1}| < 1.7$
- $|\eta^{\text{jet2,3}}| < 3$

$\delta \phi$ plots

 $\delta \phi$ cuts:

Cuts Summary

Jet Cuts
N _{jets} ≥ 3
E _T ^{jet1,2,3} > 180GeV, 110GeV, 100GeV
η ^{jet1,2,3} < 1.7, 3, 3
SUSY Variable Cuts
E _T ^{Miss} > 200GeV
S _T > 0.2
M _{eff} > 500GeV
<u>δφ Cuts</u>
R ₁ > 0.5 radians
$R_2 > 0.5$ radians

QCD Background Rejection Meff QCD and SUSY

QCD Background Rejection

$W \rightarrow ev \& Z \rightarrow vv backgrounds$

Alexander Richards, UCL

$W \rightarrow ev \& Z \rightarrow vv backgrounds$

Future Study

- More statistics
- Include additional backgrounds (ttbar etc.)
- Optimise cuts
- Look at 2 jets inclusive
- Trigger study

Summary

- jets + E_T^{Miss} looks promising for R-parity conserving SUSY search
- Low multiplicity ->more statistics->better for early discovery?