Background Shape Study for the ttH⁰, H⁰→bb Channel

Catrin Bernius First year talk 15th June 2007

Outline

- LHC & ATLAS Detector
- ttH⁰ Channel and Backgrounds
- Motivation of Background Shape Study
- Background Shape Study
 - Tight Selection
 - Background Fit
 - Estimation of Signal Contribution
 - Sideband Fit
 - Combined Fit
- Summary & Outlook

LHC & ATLAS Detector

A Toroidial Lhc ApparatuS (ATLAS):

- width: 44m, diameter: 22m, 7000t
- cylindrical, multilayer structure
 - Inner Detector
 - Calorimeter (EM & HAD)
 - Muon Detectors

Large Hadron Collider (LHC):

- 27 km circumference ring
- collide two counter-rotating 7TeV proton beams at four collision points
- design luminostiy: 10³⁴cm⁻²s⁻¹

tt H, H⁰ \rightarrow b b Channel

۲

- H → b둸 main decay mode for m_H<135 GeV
- H → bb̄ almost impossible to detect in direct production gg → H
- use lepton as trigger: WH, ZH, <u>ttH</u>
- final state: 4 b-jets, 2 light jets, 1 isolated lepton, Missing E_T

Backgrounds to tīH, H⁰→bb

- reducible backgrounds: tītjj
 - light jets misidentified as b-jets
 - suppression when requiring 4 b-jets
- irreducible background: ttbb (QCD & EW)
 - same final states as signal

combinatorial background: mis-pairing of b-jets in signal events

Process	σ (pb)
tīH (m _H =120GeV)	0.52
tījj	474
gg→tībb	8.1
qq→tī̄bb̄	0.5
gg→Z/g/W→tītbb	0.9

5

Motivation for Background Shape Study

- broad mass peak of signal events
- signal shape mimics
 tt̄bb̄ shape

- signal extraction very difficult
- need to know background shape well to constrain background contribution and
 estimate signal contribution
 - study ttbb background shape in invariant Higgs mass system

 more significant difference between shapes of signal and background in reconstructed m_{bb} spectrum

"tight selection"

describe background shape

- Fit
- possible approaches for signal estimation and extraction

sideband fit

Idea: apply the developed methods in data, when LHC starts taking data

Signal reconstruction is done as in TDR & J. Drohan:

- select events with > 1 isolated lepton (electron, muon)
- require >2 jets and >4 b-tagged jets
 - p_t>15GeV, |η|<5
- Reconstruction from final state particles

Signal reconstruction is done as in TDR & J. Drohan:

- select events with > 1 isolated lepton (electron, muon)
- require >2 jets and >4 b-tagged jets
 - p_t>15GeV, |η|<5
- Reconstruction from final state particles

- $W \rightarrow |v|$ and $W \rightarrow jj$ candidates

simultaneous reconstruction of two tops by minimizing

$$\Delta^2 = (m_{lvb} - m_t)^2 + (m_{jjb} - m_t)^2$$

 accept only solutions where |m_t^{reco}-m_t|<20GeV

Signal reconstruction is done as in TDR & J. Drohan:

- select events with > 1 isolated lepton (electron, muon)
- require >2 jets and >4 b-tagged jets
 - p_t>15GeV, |η|<5
- Reconstruction from final state particles

- $W \rightarrow I_V$ and $W \rightarrow jj$ candidates
- simultaneous reconstruction of two tops by minimizing

 $\Delta^2 = (m_{lvb} - m_t)^2 + (m_{jjb} - m_t)^2$

- accept only solutions where |m^{reco}-m_t|<20GeV
- with remaining two b jets reconstruct Higgs decay

Tight Selection

- Intention: more distinctive difference between background and signal shapes
- several kinematic cuts of analysis were varied
- p_t distribution of the two b-jets from reconstructed Higgs candidates

1M tībb (AcerMC), 38950 tīH (Pythia)

Shape Comparison

Tight Selection

Standard Selection

- number of selected signal & background events normalized to 30 fb⁻¹("combined sample")
- there is a significant change in shape:
 - more distinct peak in tight selection
 - greater difference in shape between ttbb & ttH events in tight selection

Fitting the Background Shape

- Description of background shape
- Fit with Landau distribution:

Sideband Fit

- Assume: no signal contribution in combined sample in sideband region 150GeV<m_{bb}<300GeV
- Plan: fit landau distribution in sideband region, use parameters from background fit to fix the mpv and sigma, leave only normalization free, draw function over whole range
- more distinct contribution of non background events in tight selection

But careful: in sideband also small signal contribution
 → underestimating signal events

Combined Fit (1)

 Fit Landau now over whole range with fixed mpv and sigma from background fit

selection	$\chi^2/{\rm n.d.f.}$
standard	41.89/24
tight	54.12/24

- with tight selection: worse fit result
- greater disagreement of shapes of background only and combined sample compared to standard selection

Combined Fit (2)

- Consider now also signal events
- Fit signal distribution with Gaussian and Landau distribution

selection	μ	σ	n_{gauss}	m	s	$n_{\rm Landau}$	$\chi^2/{ m n.d.f.}$]
standard	105.6 ± 3.5	$15.6 {\pm} 3.7$	$17.6 {\pm} 4.6$	$84.8 {\pm} 2.9$	$23.4{\pm}1.9$	220.7 ± 23.2	30.9/19	16
tight	105.7 ± 2.7	13.3 ± 2.5	$17.6 {\pm} 3.9$	101.1 ± 2.6	$26.9 \bot 2.5$	$134.7 \bot 16.6$	28.9/19	

Combined Fit (3)

• Combine background and signal fit:

combined fit = a \times signal fit + b \times background fit

- Evaluate goodness of fit with Kolmogorov-Smirnov test:
 - sensitive to differences in shapes
 - takes max. distance between cumulative distributions of sample and fit function

selection	fit applied	P(d)	$P(\chi^2,n.d.f.)$
standard	background	0.3972	0.0133
standard	combined	1	0.7038
tight	background	0.1487	0.0004
tight	combined	0.9998	0.3899

Summary & Outlook

- Good starting point in order to apply developed techniques in data
- More to do:
 - Include other backgrounds (esp. ttjj)
 - Further development of sideband/combined fit method and of tight selection
- Level 2 trigger work
- Continue work with ATLAS distributed analysis
 - Basically try to make jobs work on Grid
 - TWiki page:

https://www.hep.ucl.ac.uk/twiki/bin/view/Main/AtlasGanga

Signal reconstruction is done as in TDR & J. Drohan:

- select events with > 1 isolated lepton (electron, muon)
- require >2 jets and >4 b-tagged jets
 - p_t>15GeV, |η|<5
- Reconstruction from final state particles

- $W \rightarrow I_V$ and $W \rightarrow jj$ candidates
- simultaneous reconstruction of two tops by minimizing

 $\Delta^2 = (m_{lvb} - m_t)^2 + (m_{jjb} - m_t)^2$

- with remaining two b jets reconstruct Higgs decay
- only accept events where |m_H^{reco}-m_H|<30GeV (m_H=120GeV)