

Summer Talk - Slide 1

Vector Boson Fusion Analysis

Inner Detector

- Forward Jet Trigger
- Future Plans

Chris Taylor

Summer Talk - Slide 2

Vector Boson Fusion (VBF)

• VBF channel has unique topology.

End Cap Toroid

- Higgs produced via bosons from quarks in the protons.
- Quarks then hadronise into 'tagging' jets.
- One decay channel is: $H \rightarrow \tau \tau \rightarrow 2(e/\mu + v_{e/\mu} + v_{\tau})$
- Fully leptonic no QCD production from signal.

Summer Talk - Slide 3

Channel Motivation:

Chris Taylor

Summer Talk - Slide 4

Bectromagnetic Calorimeters Backgrounds Forward Calorimeters

• Backgrounds are:

7

End Cap Toroid

W Soluu 5	Channel	cross-section(fb): e	vents expected at 30 fb-
$-w \rightarrow eel \mu \mu$,	H(M=120GeV)->tau tau->leptons:	22	660
-Z/W+iets.	ttbar:	461160	13834800
	Z->ee+2p:	5990	179700
-tt,	Z->tautau + np:	817	24510
- diboson Barrel Toroid	etector Hadronic Calori		Shieldi

Chris Taylor

Summer Talk - Slide 5

Cuts: Tagging Jets

No. jets with $\eta > 3.2$

Chris Taylor

Summer Talk - Slide 6

06/06/08

η iets

Cuts: Tagging Jets

Chris Taylor

Summer Talk - Slide 8

Higgs Mass Reconstruction: Collinear

Approximation

- A good approx. when parent particle is heavily boosted
- Assume tau decay products are collinear with tau direction:

$$p_{T,\tau ll} + p_{T,\tau l2} = p_{T,ll} + p_{T,l2} + p_{T}^{MISS}$$

 $\vec{p}_{\tau} = \vec{p}_l / x_l$

• Where x is the fraction of tau momentum carried away by visible daughter

End Cap Toroid

- Assuming conservation of momentum constraint, can solve for x, as we have two unknowns and two simultaneous equations.
- So mass can be reconstructed:

$$M_{\tau\tau} = M_{ll} / \sqrt{x_{\tau l1}} x_{\tau l2}$$

Shielding

Chris Taylor

Muon Detectors Electromagnetic Calorimeters

Cuts: Tau System

End Cap Toroid

- Trigger (e25i, mu20i)
- Dilepton selection with opp. charge
- Missing Energy (MET > 40 GeV)
- 0 < x < 0.75 (x from last slide)
- Others:
 - B-jet veto
 Jet \$\phi\$ separation

Barrel Toroid

Inner Detecto

adronic Calorimeters

Shielding

Chris Taylor

Summer Talk - Slide 10

Muon Detectors Cut Factorisation Method (CFM) • Cut rejection rate O(10^8)

End Cap Toroid

- Background datasets generated have O(10^5), ~fb^-1
- No statistics!
- Need to estimate background after all cuts:
 - Group cuts by their correlations (jets, taus, both)
 - Calculate efficiencies of the categories
 - Take product

Chris Taylor

Summer Talk - Slide 11

Cut Flow

	Higgs->tautau	Z->tautau+njets	ttbar	Z->ee+2p
Total events	660	24510	13834674	179768
Trigger (Passed_EF_e25i==1)	659.98	24510.06	13834674	179700.04
Lepton (thisElectron==1)	184.32	6214.26	2948493.96	142649.98
Trigger lepton (trigLepPt > 25GeV)	150.73	4825.63	2475353.32	127867.96
Dilepton (thisDilepton == 1)	71.4	2830.92	323144.04	64275.06
Opposite charge leptons (thisOppositeSign				
== 1)	71.09	2818.45	313317.96	63761.05
Missing energy (MET_RefFinal_et > 40GeV)	49.51	1918.16	272152.64	45328.98
Collinear approx. (tauDau1X > 0.0)	49.51	1918.16	272152.64	45328.98
Collinear approx. (tauDau1X < 0.75)	33.48	1072.08	211186.28	634.32
Collinear approx. (tauDau2X > 0.0)	33.02	1051.61	143445.88	582.37
Collinear approx. (tauDau2X < 0.75)	27.79	888.72	89476.88	131.24
Collinear approx. (tauDauCosdphi > -0.9)	27.17	852.71	57244.36	113.47
Collinear approx. (dPhill < 2.2)	23.85	707.06	46971.64	58.78
N jets ≥ 2 (jet1Pt > 40GeV)	23.1	690.8	25458.48	31.44
N jets ≥ 2 (jet2Pt > 20GeV)	19.31	400.06	11910.4	15.04
Forward jet (thisForwardJet == 1)	17.91	218.48	4764.16	8.2
Centrality (thisCentrality == 1)	16.56	6 187	4094.2	4.1
B-jet veto (thisBjetVeto)	15.81	180.53	2828.72	1.37
Delta eta of jets (deltaEtajj > 4.4)	13.51	148.89	1116.6	1.37
Delta phi of jets (dPhijj < 2.6)	8.66	31.64	372.2	1.37
Inv. Mass of jets (Mjj > 700GeV)	7.39	18.37	372.2	0
Central Jet Veto (thisCentralJetVeto == 1)	6.28	8.9	7.07	0.00402

Barrel Toroid

(CFM in italics) Inner Detector

Chris Taylor

Summer Talk - Slide 12

- Use mass window (105-135 GeV) to count signal and background events
- Naive significance (have <10 events): $s/\sqrt{s+b}=2.1$ for 30 fb⁻¹

• Proper stat. treatment gives 2.9 (CSC note)

Chris Taylor

Summer Talk - Slide 13

Electromagnetic Calorimeters

Trigger: Forward Jets End Cap Toroid

- Until recently, no forward jet available at L2 or Event Filter
- Forward η granularity useful for VBF and diffractive physics
- New algorithm encoded: necessary to validate

Barrel Toroid

nner Detector

Muon Detectors

adronic Calorimeter:

Shielding

Summer Talk - Slide 14

Validation: η Distribution

L1 - End Cap Toroid
L2 EF Truth -

• Jets compared at different levels using Region of Interest (RoI)'words'

• L1 assigns a unique string to area of detector that may contain something interesting that can be accessed at higher trigger levels

Barrel Toroid

Inner Detecto

ladronic Calorimeter

Shielding

Summer Talk - Slide 15

Barrel Toroid

Hadronic Ca

Shielding

Validation: Resolution

Chris Taylor

Summer Talk - Slide 17

Validation: Timing

Chris Taylor

Summer Talk - Slide 18

Muon Detectors **Electromagnetic Calorimeters** Forward Calorimeters Future Plans End Cap Toroid • Extend the VBF Analysis Trigger: Determine best cuts • Build a VBF Trigger – test on early data

Chris Taylor

Summer Talk - Slide 19

Inner Detector

Chris Taylor

Summer Talk - Slide 20

Bayesian Errors:

• Bayesian method: $P(\epsilon|k, N, I) = \frac{P(k|\epsilon, N, I)P(\epsilon|N, I)}{P(\epsilon|N, I)}$

- Where ε is true efficiency, k is events that pass cut, N is total number of events, I is prior information of binomial distribution and Z is normalisation constant.
- Binomial signal probability: $P(k|\epsilon, N, I) = \frac{N!}{k!(N-k)!} \epsilon^k (1-\epsilon)^{N-k}$
- Sensible to say that $P(\epsilon|N,I)=1$ if $0 \le \epsilon \le 1, 0$ elsewhere as ϵ is an efficiency.
- Just need normalisation constant (by integration).

Shielding

Bayesian Errors:

• Graphical result shows probability distributions for for the cut efficiency ϵ for N=5, k=0 - 5

Barrel Toroid

Chris Taylor

Summer Talk - Slide 22

Bayesian Errors:

- Uncertainty in efficiency: take 68.3% integral of previous distribution (1 σ Gaussian error)
- To find 0.683 probability content in the shortest interval is not trivial
- Computer program to solve problem numerically, written by M. Paterno
 - http://home.fnal.gov/~paterno/images/effic.pdf

Barrel Toroid

Inner Detector

adronic Calorimeters

Shielding

Chris Taylor

Summer Talk - Slide 23

Electromagnetic Calorimeters

Pseudorapidity

Forward Calorimeters

End Cap Toroid

• In hadron collider physics, the rapidity (or pseudorapidity) is preferred over the polar angle because, loosely speaking, particle production is constant as a function of rapidity. One speaks of the forward direction in a hadron collider experiment, which refers to regions of the detector that are close to the beam axis, at high |\eta|\,. $\eta = -\ln[\tan(\frac{\theta}{2})]$

• The difference in the rapidity of two particles is independent of Lorentz boosts along the beam axis.

Shielding