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Abstract

The total cross section for heavy quark hadroproduction receives
large corrections from NLO and higher-order terms in the limit of
either a) the parton center-of-mass energy near threshold or b) the
parton center-of-mass energy much larger than threshold. This re-
search is directed towards understanding the resummation of both
types of corrections and incorporating both types of correction into a
single framework.

Introduction

Heavy flavour physics provides an excellent testing ground for perturbative
QCD, due to the smallness of the coupling constant αS at the heavy quark
mass M . The LHC will rapidly accumulate very high statistics of tt̄ and bb̄
pairs (Figure 1). Comparison with precise theoretical predictions for heavy
quark production rates may reveal signals for new physics, as heavy flavours
are copious sources of leptons [13]. However, this will require further progress
in precisely determining corrections to the heavy quark cross sections. Ad-
ditionally, some recent attention has been directed towards the suitability of
the top-pair total cross section as a ‘standard candle’ process for the LHC
[12] (that is, a process which is known so precisely that it may be used to
determine beam luminosity), though this will require further improvements
constraining both theoretical and experimental uncertainties. This paper will
consider some aspects of the theoretical uncertainties associated with heavy
quark production at the LHC.
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Figure 1: Standard model cross sections at the Tevatron and LHC. From
Campbell et al [4].
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Leading Order (LO) Heavy Flavour Production

The total hadronic cross section is given by ([6], Ch. 10)

σ(P1, P2) =
∑

i,j

∫

dx1 dx2 fi(x1, µ
2)fj(x2, µ

2) σ̂ij(s, m
2µ2) (1)

where fi(x1, µ2) is the parton distribution function for the ith parton species,
evaluated at renormalisation scale µ. σ̂ij is called the partonic cross section.
The leading-order contributions to for production of a heavy quark Q are
quark-antiquark annihilation (Fig 2a) and gluon fusion (Fig 2b), and there
is no gluon-quark contribution at this order. At the LHC, bb̄ quark pairs are
produced at low Bjorken-x, and owing to the large gluon densities at low x,
gluon fusion will be the dominant contribution to the cross section. On the
other hand, tt̄ quark pairs are produced nearer to threshold (and hence at
fairly large x), and the larger valence quark densities at high x drive a larger
contribution from qq̄ annihilation.

The matrix elements squared for the leading order diagrams are computed
using the Feynman rules and summing (averaging) over initial (final) colours
and spins, and are shown in Table 1. An abbreviated notation for the ratios
of scalar products has been used:

τ1 =
2p1 · p3

ŝ
, τ2 =

2p2 · p3

ŝ
, ŝ = (p1 + p2)

2, ρ =
4M2

ŝ
. (2)

ρ is the (square) ratio of 2M , the energy required to create the QQ̄ pair, to the
invariant mass ŝ of the incoming partons. Consequently, ρ ∼ 1 corresponds
to a QQ̄ pair produced near threshold, and ρ → 0 describes the high energy
limit. The minimum value for ρ depends on the ratio of the heavy quark
mass to the collider energy, though in practice ŝ is less than about 10% of
the collider energy S since parton densities above x ∼ 0.3 are small.

The partonic cross section is obtained from the matrix element using

dσ̂ij =
1

2ŝ

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4 δ4(p1 + p2 − p3 − p4)

∑

|Mij |2. (3)

The integration can be performed explicitly and the leading order contribu-
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Table 1: Matrix elements squared at leading order.

∑

|Mij |2/g4

qq̄ → QQ̄
4

9

(

τ 2
1 + τ 2

2 +
ρ

2

)

gg → QQ̄

(

1

6τ1τ2
−

3

8

) (

τ 2
1 + τ 2

2 + ρ−
ρ2

4τ1τ2

)

(a)

(b)

Q

Q̄ Q̄ Q̄

Q Q

q Q

Q̄q̄

Figure 2: a. qq̄ → QQ̄. b. gḡ → QQ̄ in t, u, s channels.

tions to the partonic cross sections are [6]

F (0)
qq̄ (ρ) =

πβρ

27
(2 + ρ)

F (0)
gg (ρ) =

πβρ

192

(

1

β
(ρ2 + 16ρ+ 16) ln

(

1 + β

1 − β

)

− 28 − 31ρ

)

F (0)
gq (ρ) = F (0)

gq̄ (ρ) = 0

(4)

where the partonic cross sections are related to the with dimensionless func-
tions Fij by

dσ̂ij =
α2

S(µ2)

m2
Fij

(

ρ, µ2/m2
)

(5)
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Figure 3: Gluon-gluon cross section σ̂gg. (1) LO contribution. (2-4) NLO
contributions. (From Beenakker et al [3].)

and β =
√

1 − ρ is the velocity of the QQ̄ pair. The LO contribution to the
gluon-gluon cross section σ̂gg is the curve labelled (1) in Fig 3. For tt̄ pairs at
the LHC (S = 14TeV), the kinematic range of ρ−1 is from 1 to about 160, so
only the left hand side of of Fig 3 is relevant. At the Tevatron (S = 2TeV),
top pairs are restricted to an even smaller kinematic range in the threshold
region. For bb̄ pairs at the LHC, ρ−1 ranges from 1 up to about 2 × 105, so
the full range of the plot is relevant in this case.

Next-to-leading Order (NLO) Heavy Flavour Produc-
tion

The order α3
S corrections to the total partonic cross-section were computed

numerically by Nason et al. [13] and analytically Beenakker et al. [3]. The
curves (2-4) in Figure 3 are different NLO contributions to σ̂gg. The figure
shows that NLO processes provide large corrections over the whole kinematic
range. Indeed, NLO contributions dominate in both the threshold region ρ ∼
1 and in the high-energy limit ρ ' 1, since the LO contribution (the curve (1)
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in Figure 3) vanishes in either of these limits. This is a striking illustration
of the importance of higher-order corrections to theoretical predictions, and
becomes evident in predictions for the total QQ̄ cross section: the NLO
prediction for bb̄ production at the LHC is larger than the LO prediction by
more than 100%.

Corrections in the threshold region ρ ∼ 1 are called threshold correc-
tions, may be handled using the technique of threshold resummation [9].
Corrections in the high-energy limit ρ ' 1 are analysed using high-energy
(low-x) resummation [2]. For top quark production at the LHC or Tevatron,
threshold corrections provide a large contribution to the cross section, but
high-energy resummation corrections can be neglected. For bottom quark
production at the LHC, both threshold corrections and high-energy correc-
tions must be included.

Prospects for NNLO Heavy Flavour Production

Only a few processes have been computed exactly to NNLO. The first ex-
amples were W± and Z production; these processes are more amenable to
analysis because at tree level they couple only to quark-antiquark external
legs and not to gluons. Vogt et al [14] have recently computed parton split-
ting functions to NNLO. Higgs production has been computed to NNLO
under the simplifying approximation that the Higgs mass is much less than
twice the top mass [1]. In comparison to these processes, heavy flavour
hadroproduction faces significant challenges owing to the gluon legs, which
are analytically much more demanding than quark/antiquark legs. As a re-
sult, it is likely to be at least several years before NNLO analysis of heavy
flavour hadroproduction is completed.

However, significant progress towards a NNLO result can be made by
extending NLO results in various simplifying limits. Figure 4 shows the
result of Vogt et al [14] for the NNLO parton splitting function Pps(x) (a
mathematical expression one-and-a-half pages long!), compared to earlier
estimates based on different extensions of NLO results. The agreement is
excellent over the full range of x. This is encouraging for the problem of
heavy flavour production, because in the absence of exact NNLO results
similar analyses extending NLO results may also be able to give good results.
The immediate aim of my PhD is to understand the methods of analysis by
which NLO results for heavy flavour hadroproduction might be improved.
The remainder of this paper will give a brief introduction to some of the
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Figure 4: (a) The NNLO pure singlet splitting function (solid line) compared
to earlier estimates (dashed line) based on NLO arguments. (b) The same
as (a), at low x. (From Vogt et al. [14].)

main tools that are currently employed in the literature.

BFKL and High-Energy Resummation

Heavy flavour hadroproduction is the production of heavy quark pairs in
hadron collisions (Figure 5). A recent result by Ball & Ellis [2] resums the
leading logarithmic terms at high energy to provide estimates on the high
energy corrections. The analysis is closely related to the BFKL equation,
which will be described in this section.

Asymptotic freedom of QCD at high energy S means that the coupling
constant αS is small at the scale of the quark mass M . However, successive
terms in the order-by-order expansion generally involve coefficients of the
form lnm S/M2 [5]; the leading logarithmic terms at successive orders in αS

involve successive powers of αS ln S/M2. In the high energy limit S ' M2,

αS ln S/M2 ∼ 1 (6)
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Figure 5: QQ̄ hadroproduction. The shaded circle represents the three gg-
processes in Figure 2b.

and NLO, NNLO and higher order terms of the perturbative series may
therefore contribute large corrections to the amplitude. This is evident from
the discussion of bottom quark hadroproduction, where the NLO prediction
for the total cross section is larger than the LO prediction by 100%.

However, in the limit of high energy and small x, it is precisely the leading
logarithmic terms which provide the dominant contribution to the amplitude
at each order of the pertubative series. The Balitsky-Fadin-Kuraev-Lipatov
(BFKL) [10] equation in its simplest form accounts for the leading logarith-
mic terms to all orders (a process referred to as resummation), and neglects
all terms of subleading order in ln S/M2. The schematic diagram in Figure 6
illustrates all contributions to an amplitude as coefficients of αm

S lnn S/M2.
The leading logarithmic (LL) terms which are resummed in the BFKL equa-
tion are indicated. Next-to-leading logarithmic (NLL) terms, which are the
major subleading contribution to the amplitude, are also indicated.

In the centre-of-mass frame of the incoming protons,

p1 = 1
2

√
S(1, 0, 0, 1), p2 = 1

2

√
S(1, 0, 0,−1). (7)

where in the high energy limit the proton mass can be neglected. Following
e.g., [8], p.29, the Sudakov parametrisation for the momenta of the exchanged
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Figure 6: QCD contributions to an amplitude are of the form αm
S lnn S/M2.

Leading logarithms (LL) and next-to-leading logarithms (NLL) are indicated.

gluon partons k1, k2 is

k1 = z̄1p1 + z1p2 + k1⊥, k2 = z̄2p1 + z2p2 + k2⊥. (8)

The Sudakov parametrisation separates the parton momenta into compo-
nents collinear with the proton momenta p1, p2, and a transverse compo-
nent k1,2⊥ perpendicular to p1 and p2. k1,2⊥ are conventionally denoted by
2-vectors k1, k2. z1, z2, z̄1 and z̄2 are called the Sudakov parameters or lon-
gitudinal momentum fractions. They have Lorentz invariant expressions

z1 =
2p1k1

S
, z2 =

2p1k2

S
, z̄1 =

2p2k1

S
, z̄2 =

2p2k2

S
(9)

This analysis will focus on the case where the heavy quark pair is pro-
duced in the central rapidity region, for which the parameters z̄1, z2 are small.
In this regime, s ' t. At high energy, the cross section is dominated by
t-channel gluon exchange, because multiple s-channel gluon processes are
suppressed by powers of αS(M2) (they are ‘higher twist corrections’). This
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Figure 7: Factorisation of the partonic cross section σ.

leads to the factorisation [5]

σ =
1

2S

∫

d4k1

(2π)4

∫

d4k2

(2π)4
Aµ1ν1,µ2ν2

(k1, k2)G
µ1ν1(p1, k1)G

µ2ν2(p2, k2) (10)

where Aµν is the absorptive amplitude for two off-shell gluons k1, k2 and Gµν

is the gluon-gluon amplitude. This factorisation is illustrated in Fig 7. Fig
7 is called a ‘cut’ diagram and uses the optical theorem to evaluate the total
inclusive cross section.

z̄1 and z2 are small, and it can be shown that this leads to the simplifica-
tion of (10) to a convolution in z̄1 and z2,

σ(ρ) =
1

4M2

∫

d2k1

∫

dz̄1

z̄1

∫

d2k2

∫

dz2

z2

F(z̄1,k1) F(z2,k2)σ̂gg(ρ/z̄1z2,k1/M,k2/M).
(11)

F(z, k; Q2
0) is called the unintegrated gluon structure function, and it obeys
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the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation [10].

F(x,k) =
1

π
δ(1 − x)δ(k2 − Q2

0)

+ ᾱS

∫

d2q

πq2

∫

dz

z

(

F
(x

z
,k + q

)

−Θ(k − q)F
(x

z
,k + q

))

(12)

where Q2
0 is the virtuality of the gluon emitted directly from the proton, and

is therefore low (of the order of ΛQCD). k2 is the virtuality of the gluon
at the top of the ladder (the gluon which is absorbed at the heavy quark).
The first term of (12) (the delta functions) correspond to the lowest order
process, where the gluon is emitted and absorbed without radiating. The
second term of (12) (the integral) gives the effect of the initial gluon at Q2

0

radiating further gluons.
The BFKL equation (12) determines F , and an explicit solution can be

obtained by using a Mellin transform in the variable x. The Mellin transform
of F(x,k) is defined to be

FN(k) =

∫ 1

0

dx xN−1F(x,k) (13)

for all N ≥ 0. Applying the Mellin transform to (12) ‘undoes’ the z-integral in
a similar fashion to how the Laplace transform undoes a convolution integral.
Averaging over the angular dependence of q, and noting that the Mellin
transform of δ(1 − x) is identically 1, (12) can be written in the form.

FN(k2) =
1

π
δ(k2 − Q2

0) +
ᾱS

N

∫ 1

0

dλ

1 − λ

(

FN(λk2) +
1

λ
FN(

k2

λ
) − 2FN(k2)

)

(14)

Eigenfunctions of the integral term on the right-hand side of (14) are

FN(k2) = (k2)γ−1 (15)

for all complex γ; the corresponding eigenvalues are

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) (16)

(the Lipatov characteristic function). A plot of χ(γ) is shown in Figure 8.
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Figure 8: The Lipatov characteristic function.

The eigenfunctions (15) form a complete set for γ = 1/2 + it, with t real,
and it is possible to solve (14) and obtain

FN(k2) =
1

πk2

∫ 1/2+i∞

1/2−i∞

dγ

2πi

(

1 −
ᾱS

N
χ(γ)

)−1
(

k2

Q2
0

)γ

(17)

In (17), the denominator of the integrand vanishes at points γN in the com-
plex plane for which

χ(γ) =
N

ᾱS
. (18)

The solution γN of (18) becomes a simple pole for the contour integral in
the inverse Mellin transformation (17). Because it appears as the exponent
of k2 in the gluon structure function FN in (17), γN is called the anomalous
dimension. For N ' ᾱS, perturbative solution of (18) gives

γN =
ᾱS

N
+ 2ζ(3)

(ᾱS

N

)4

+ . . . (19)

where ζ is the Riemann zeta-function. γN may not exceed 0.5 (this corre-
sponds to the minimum value of the Lipatov characteristic function in Fig
8); it becomes a ‘pomeron’ beyond this point.

Inserting γN into (17) provides the dominant contribution to the uninte-
grated structure function F , and includes all the high-energy leading loga-
rithms. Ball & Ellis [2] convolve this with the (off-shell) heavy-quark hard
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cross section σ̂gg to provide the resummed heavy quark hadroproduction cross
section. In the the near future, I intend to investigate their analysis further.

Threshold corrections

Threshold large logarithms are of the form α3
S ln(s − 4m2

b) and diverge in
the limit that (s − 4m2

b) is small, that is, when s is just above threshold for
production of the bb̄ pair. For this reason, these terms dominate the cross
section near threshold and can be used to estimate the total cross section in
this regime. Kidonakis et al [9] have developed a method of resumming these
logarithms, which is perhaps analogous to the resummation of high-energy
leading logarithms discussed in the previous section. This is also a topic I
intend to study soon.

Outlook

High-energy corrections, following Ball & Ellis, and threshold corrections,
following Kidonakis et al, provide estimates on the major corrections to the
heavy quark inclusive cross section at both kinematic limits accessible at the
LHC. It may be possible to incorporate both sets of results into a single
framework, to provide estimates on corrections over the full kinematic range.
This is an approach that in the past has been successful in the context of
parton splitting functions.
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