GEANT 4 and UCL Fast Simulation Comparison for CDF Run IIb W Mass Measurement 1st Year PhD Talk Tom Riddick Supervisor: Dr. David Waters

Testing GEANT 4 simulations against UCL Fast Simulation's detector model for electrons/gammas passing through the silicon vertex detector, using a virtual test beam

Why Measure W Mass?

- Test of Standard Model
- Can combine W mass and top mass to make an prediction of Higgs mass
 - \rightarrow W mass inaccuracy is main limit on accuracy of this
- If the LHC finds the Higgs, then we can compare direct and indirect Higgs mass estimates, any difference might indicate physics beyond the Standard Model

W Mass Measurement at CDF II

- Aims to be most accurate W mass measurement to date
- Aims to achieve total error on W mass of about 25 MeV
 - \rightarrow Same error on a single measurement as current world average!
 - \rightarrow ATLAS may not be able to surpass this for a decade or more!
- Considers $W \rightarrow ev$ and $W \rightarrow \mu v$
- Uses about 2.3 /fb of data taken in CDF Run IIb \rightarrow 10 times data of first measurement at CDF II

Template Likelihood Fits

• Use template likelihood fits of transverse mass

• Red is best fit Monte-Carlo template

 \rightarrow This is our value of W mass

E/p Calibration

- Use E/p fit to transfer precise tracker calibration to calorimeter
 - \rightarrow Want to determine the energy scale, S
 - \rightarrow Simulate E/p distributions for a range of S values
 - \rightarrow Best fit template gives us are value of S

• Then validate/calibrate energy scale using fit to Z mass

UCL Fast Simulation

- Templates generated using the UCL Fast Simulation
- Advantages over GEANT-based CDF Simulation
 - \rightarrow Faster \rightarrow Many orders of magnitude more events/second
 - \rightarrow More Flexible \rightarrow Easier to tinker with parameters of the model
- Disadvantages
 - \rightarrow Not as well tested
 - \rightarrow Less sophisticated detector level physics models

Testing of Physics Model for Silicon Vertex Detector

- Electrons passing through silicon vertex detector can undergo
 - → Bremsstrahlung
 - \rightarrow Ionization
- Photons can undergo
 - \rightarrow Pair Production
 - → Compton Scattering
- Plan to validate UCL Fast Simulation of these against GEANT4
- Then make any necessary improvements to the simulation

Virtual Test Beam Set-up

- Easier to test each process individually using a virtual test beam
- We set-up a virtual test beam experiment in GEANT 4 with electrons incident on a 1 mm thick silicon plate
- A similar set-up was used in UCL Fast Simulation

Electron Bremsstrahlung

- Most important process is **Bremsstrahlung**
 - \rightarrow Affects simulated E/p distribution, hence fitted energy scale
- Key quantity is y, the fraction of the electron's energy transferred to the radiated photons
- Compare differential cross section vs. y
- GEANT 4 and UCL Fast Simulation with only Bremsstrahlung process active.

- Difficult to interpret this plot...
- So plot

$$R = \frac{Histogram}{Theory}$$

- Which Theory?
 - Could use basic from $\frac{d\sigma}{dy} \propto \frac{1}{y} \left(\frac{4}{3} \frac{4}{3} \cdot y + y^2 \right)$ PDG review
 - Instead use the "theory implemented in GEANT"

First Ratio Plot

- UCL Fast Simulation just uses basic y spectrum given in PDG review, as seen on page 10, along with LPM suppression at low y
- This doesn't account for incomplete screening at high y
- This doesn't account for dielectric suppression at low y
- Blue line is LPM cut-off

GEANT vs. Theory

- Note even GEANT histogram isn't flat
 - \rightarrow Discrepancy at very low-y
 - \rightarrow Slope is due to the possibility of the emission of multiple photons
- Can see that this last point is true by plotting the ratio of UCL Fast Simulation to the basic theory curve from the PDG review that it follows...

... with multiple photon emission, i.e. normal case

... without multiple photon emission

Second Ratio Plot

• Try using "GEANT 4 theory" in UCL Fast Simulation

•
$$\frac{d\sigma}{dy} \propto \frac{1}{y} \cdot \left((1 - a \cdot y) \cdot F_1(y) + b \cdot y^2 \cdot F_2(y) \right)$$

- •This solves the problem at high-y
- Still need to deal with low-y

Solving the Discrepancy at Low-y

- UCL Fast Simulation implements LPM suppression at low y
- GEANT 4 has both LPM suppression and dielectric suppression at low y, combining of these effects in a non-trivial manner
- Try implementing GEANT's parameterisation of dielectric suppression in UCL Fast Simulation

• i.e. for
$$\frac{V < \frac{E}{E_{LPM}}}{E_{LPM}}$$
 we suppress the cross section by $\frac{S}{S_{P}}$

• S is a complicated function of
$$S_P = \frac{k^2}{k^2 + C_p \cdot E^2}$$

• ...And $S_{LPM} = \sqrt{\frac{kE_{LPM}}{E^2}}$

Third Ratio Plot

- This correct discrepancy at low-y down to y = 5.5*10E-5
- So model is accurate down to about 2 MeV
- •Don't know why we get deviation below this

Is this good enough?

- Hopefully yes ...
- Ultimately all that matters is if mismodelling of Bremsstrahlung will affect the measured W-mass
- Can perform fit templates to pseudo-data generate by slightly varied model to test this

 \rightarrow Haven't got high enough statistics for this yet, work is in progress

 \rightarrow Initial calculations put the error from this on W mass at about 100 KeV

• Also think about this in terms of physics...

How many events are at very low-y?

•Although differential cross section at small y is large

•Actual number of events at very low y is small

•Hence a 2 MeV effect can give a 100 KeV error on the measured W mass Tom Riddick 06/05/08

Conclusions and Future Plans

- Bremsstrahlung spectrum in now in very good agreement with GEANT 4 down to 2 MeV
- Still not perfect below 2 MeV
- However an initial calculation shows this only produces order of 100 KeV error on W – mass measurement

→ Negligible! Problem Solved!

- New implementation of Bremsstrahlung doesn't slow down UCL Fast Simulation
- Plan to conduct a more through Bremsstrahlung error analysis
- Then to proceed to validate pair production, ionisation and Compton scattering
 Tom Riddick 06/05/08

Figure 12

Figure 13

Figure 18

Figure 19

Figure 7