CDF Run II W + Jets Analysis

Ben Cooper University College London

The Tevatron Collider

- $p\bar{p}$ collider, operating at $\sqrt{s} = 1.96$ TeV.
- Bunch crossing rate = 7.6 MHz.
- Average luminosity of $2.3 \times 10^{31} \text{cm}^{-2} \text{s}^{-1}$ since Run II began in March 2001.
- Thus far delivered an integrated luminosity of $194 \mathrm{pb^{-1}}$ in Run II. 50% more than entire Run I.

The Collider Detector at Fermilab (i)

- One of two multipurpose detectors at the Tevatron.
- Tracking: Silicon vertex detector, open cell drift chamber.
- Calorimetry: Separate electromagnetic and hadronic scintillator-based sampling calorimeters.
- Muon Detection: Four systems of scintillators and proportional chambers.
- Hermetic in ϕ .
- Good rapidity coverage:
 - Tracking: Drift Chamber $|\eta| \le 1.0$, Silicon $|\eta| \le 2.0$.
 - Calorimetry: Central $|\eta| \le 1.1$, Plug $|\eta| \le 3.64$.
 - Muon Chambers: $|\eta| \leq 2.0$.

The Collider Detector at Fermilab (ii)

The W + Jets Process at CDF Run II

- Inclusive $q\overline{q} \rightarrow W$ cross-section = 29.77nb according to recent NNLO calculation
- Thus expect 4.6 million direct W events produced with 2fb^{-1} data, or 502000 direct W($\rightarrow ev$) events.
- Large enough sample to study $q\overline{q} \to W(\to ev) +$ n Jets up to large n.

d, s

Motivation for W + Jets Study (i)

Motivation for W + Jets Study (ii)

- The process is a major background to two of the most important processes in CDF Run II:
 TOP quark production and light HIGGS production in association with a W boson.
- Accurate background prediction via the latest Monte Carlo tools is crucial to both studies.
- To have confidence in these background predictions one must compare them in detail to real data: σ and kinematics.
- Such comparisons are important in their own right as they test the very latest QCD predictions and hence our current understanding of this aspect of the standard model.

Run II W + Jets Monte Carlo Status(i)

• Enhanced Leading Order (ELO) approach is adopted: Leading order (LO) W + n parton generator combined with a parton-showering programme to provide some higher order corrections and hadronisation.

Run II W + Jets Monte Carlo Status(ii)

- In Run I ELO VECBOS was the LO generator used, with HERWIG providing the p/s and hadronisation.
- In Run II ELO ALPGEN has replaced VECBOS.
- Problems with ELO:
 - Higher order corrections provided by HERWIG, although well-motivated by theory, do not involve explicit matrix element calculations.
 - "Double Counting": Overlap of phase space between ELO W + 1 parton and leading order W + 2 parton. Data has to be compared inclusively e.g. W + ≥ 1 jets data compared to ELO W + 1 parton generated events.

Overview of Preliminary Run II W + Jets Study

- Used $89.9pb^{-1}$ of data collected using high P_T ($\geq 18 \text{ GeV}$) electron trigger.
- Comparison of event numbers and jet kinematic distributions between Run I and Run II made.
- Agreement between Run II data and ALPGEN + HERWIG Monte Carlo ELO predictions also tested.
- Important to note that background corrections have not yet been made.

Selection of W + Jets Sample

"Exactly" the same selection procedure as Run I.

Electron Cut	Requirement	
P_{T}	$\geq 13 \; \mathrm{GeV}$	
$\mid \eta \mid$	≤ 1.1	
E/P	$\geq 0.5 \text{ and } \leq 2$	
Had/Em	$1/Em$ $\leq 0.055 + .0045*E$	
Frac. Isolation	≤ 0.1	

$$\begin{array}{l} \textbf{Electron} \,\, E_T \, \geq \, \textbf{20} \,\, \textbf{GeV} \\ \textbf{Missing} \,\, E_T \, \geq \, \textbf{30} \,\, \textbf{GeV} \end{array}$$

Jets defined using a seeded cone algorithm ($R_{cone} = 0.4$) with the following cuts:

$$\begin{array}{c} \mathbf{Jet} \,\, \mathrm{E_{T}} \, \geq \, \mathbf{15} \,\, \mathbf{GeV} \\ |\eta| \, \leq \, \mathbf{2.4.} \end{array}$$

Comparison of Event Numbers Run I \rightarrow Run II

- Scale Run I event numbers by luminosity ratio $(L_{\rm RII}/L_{\rm RI}=0.83)$ and the increased cross-section of Run II to give a predicted number of events in Run II.
- Errors shown are statistical only.
- Neither Run I or Run II event numbers are corrected for background.

No. Jets	Scaled Run I	Observed Run II	% Diff.
≥ 0	47092	44836	-5 ± 0.5
1	8112	7153	-12 ±1
2	1980	1873	-5 ±2
3	468	441	-6 ±4
4	104	123	$+15 \pm 11$

Comparison of Event Numbers Run I \rightarrow Run II

- Comparison of scaled Run I with Run II event numbers reveals deficit in Run II?
- However, doesn't account for large systematic errors:
 - Error on Run II luminosity measurement of 6% will effect all bins
 - Error on Run II jet energy scale of 5% will effect only events containing a jet.
- The recent Run II inclusive $W(\to ev)$ cross-section measurement is 2% lower than Run I (this is background corrected).
- More work is required to understand this.

Jet Multiplicity Distribution $R_I \rightarrow R_{II}$

- Run I Errors \simeq Run II Errors (statistical only).
- Lower multiplicity bins agree well.
- Run II displays a larger fraction of high multiplicity events?

Jet E_T **Distribution** $R_I \rightarrow R_{II}$

• Shown is the leading jet in $W + \ge 1$ jet events, the second jet in $W + \ge 2$ jet events etc.

One Jet Fraction Vs First Jet $E_T R_I \rightarrow R_{II}$

- Highlights the relationship between the jet energy and jet multiplicity of an event.
- Run I and Run II agree reasonably well Expected?

Dijet M_{jj} **Distributions** $R_I \rightarrow R_{II}$

- Shown is the invariant mass of the two leading jets (M_{jj}) for $W+\geq 2$ Jets and $W+\geq 3$ Jets events.
- Discrepancy at high M_{jj}:
 - Related to harder jet E_T spectrum in Run II?
 - Systematic uncertainty in jet energy scale.

Jet E_T Distribution $ELO \rightarrow R_{II}$ (i)

• Run II W $+ \ge 1$ Jet compared to ALPGEN + HERWIG (A+H) 1 parton, Run II W $+ \ge 2$ Jets compared to A+H 2 parton etc.

Jet E_T Distribution $ELO \rightarrow R_{II}$ (ii)

• Theoretical predictions show a deficit in the high and low $E_{\rm T}$ regions - exactly as was observed in Run I.

One Jet Fraction Vs First Jet $E_T \ ELO \rightarrow R_{II}$

- $\frac{N=1}{N>1}$ One Jet Fraction vs First Jet E_T .
- Run II compared to various ELO Monte Carlo samples.

Jet ΔR Distributions $ELO \rightarrow R_{II}$

Conclusions

- Possible deficiency in the number of events observed in Run II of Run I.
- Run II Jet E_T distribution harder than in Run I; possibly due to the increased \sqrt{s} . More data needed.
- Harder Jet E_T spectrum results in greater fraction of high jet multiplicity events cf Run I?
- Limitations of ELO QCD predictions are evident in certain distributions as was the case in Run I.
- ELO Limitations not so evident in the ΔR_{jj} ; not so sensitive to higher order corrections?

Short Term Plan

- Explain the discrepancy between Run I and Run II event numbers.
- Investigate the possibility that a harder Run II jet energy spectrum is due to an increase in centre-of-mass energy via examination of Monte Carlo samples of varying \sqrt{s} .
- Fully correct the sample to account for contamination from background processes.
- Estimate and incorporate systematic errors.

Long Term Plan

- Compare data to NLO QCD predictions using Monte Carlo generators such as MCFM. Will these reduce the sensitivity to higher order corrections?
- Investigate in detail the effect of varying renormalisation/factorisation and fragmentation scales within these Monte Carlos.
- Examine other event shapes which could also display the limitations of ELO and the need for higher order corrections, such as thrust.
- Move to a more theoretically sound jet algorithm such as the K_T clustering or Midpoint algorithms. These could make a considerable difference to NLO comparisons.
- Do the full inclusive cross-section measurement for the W + Jets process using the increased statistics of Run II.