IdScan Performance and Validation

Janice Drohan
University College London

Overview

- ATLAS Trigger
- IDSCAN algorithms
- **■** Software Environments
- Validation with single μ events
- Validation with single *e* events
- Latest Results for Trigger version
- Summary
- Future Work

| ATLAS Trigger

- 40MHz bunch-crossing rate
 - □ 23 interactions per bunch-crossing
- Must reduce this to ~200Hz
- Based on 3 levels of event selection:

- LVL1: Reduced granularity data from calorimeter and muon trigger chambers (latency 2μs, reduction to 100kHz)
- □ LVL2: Full-granularity, full-precision data in Regions of Interest (ROI) identified by LVL1 (latency 1ms, reduction to 2kHz)
- □ LVL3: Full event data, calibration and alignment information (1s)

LVL2

- LVL2 uses a combination of:
 - □ Feature Extraction algorithms
 - These reconstruct objects representing candidate electrons, muons, jets etc
 - Hypothesis Algorithms
 - These evaluate formed objects, creating a signature for the event if certain selection criteria are fulfilled.
 - Signatures for which an event can be selected are contained in a Trigger Menu

• e/γ selection:

- □ Take LVL1 EM ROI seed
- □ Use LVL2 clustering algorithm
- Perform selection cuts on shape variables
- Reconstruct tracks in the Inner Detector inside the RoI
- Perform track/cluster matching
- □ Use the refined ROI to seed the Event Filter (LVL3)

IDSCAN Algorithms

IDSCAN is a LVL2 Inner Detector Track reconstruction algorithm

INPUT: space-points

ZFinder Group Cleaner HitFilter **Fitter** Find z position Select only Remove noise Standard of interesting groups of spacespace-points kalman-type from the groups points consistent interaction fitter with the z value

OUTPUT: Track parameters and space-points

IDSCAN Algorithms - ZFinder

Utilises track properties:

- Tracks are straight lines in \mathbf{r} -z. Using simple linear extrapolation, the \mathbf{z}_0 of a track can be determined from the \mathbf{r} , z values of a pair of spacepoints.
- \Box High-p_T tracks are almost straight lines in **r** $-\phi$.

Steps:

- \Box Make very thin slices in φ (0.2-0.3 degrees)
- □ In each slice:
 - Combine all pairs of space-points from different layers
 - Calculate z_0 by linear extrapolation
 - Fill a 1D histogram
- \Box The bin with the max. number of entries corresponds to the z_0 value of the high- p_T track.

IDSCAN Algorithms - HitFilter

■ All space-points from a track originating at this z_0 will have the same η

Steps:

- \Box Put all space-points in a 2D histogram in (η, ϕ)
- □ Accept all space-points in a bin if this bin contains space-points in at least 5 (out of 7) different layers
- □ Reject all other space-points
- Returns groups of space-points

IDSCAN Algorithms –Group Cleaner

 Split groups into tracks and remove noise spacepoints from group.

Steps:

- □ Each triplet of space-points forms a potential track calculate P_T , $φ_0$, d_0 .
- □ Put accepted triplets (certain cuts on parameters) into 2D histogram in ϕ_0 and $1/P_T$.
- □ If in a bin there are enough space-points in different layers, accept as good track candidate.

Software Environments

OFFLINE

- □ Runs directly in ATHENA control framework
- Retrieves space-points from Event Data Store
- Constructs ROI from truth data, and accepts space-points within this
- □ Run only one per event

ONLINE

- ATHENA is used by LVL2
 in the modified form supplied
 by the PESA Steering
 Controller
- Can be executed several times per event, once for each ROI
- Space-points created by different method to offline

Validation with Single µ Events

- 3, 10, 100GeV events used without pile-up
- Problems:
 - \Box Reconstructed p_T value offset from the true μ p_T by 5% of the true value
 - \Box Large tail overestimating the p_T

Validation with Single μ Events

- Overestimation in end-caps
- Due to improved detector model DC1. Magnetic field drops from B=2T at η=0, to B=0.4T at η=2.5

- Fitting package assumes constant magnetic field
- Carried out event by event comparison between Offline version and old CTRIG version for electron events (no µ events available)
- 5% underestimation is a feature of the fitting package used

Validation with Single Electron Events

- □ 1000 Low Luminosity events (4.6 minimum bias events)
- □ 200 High Luminosity events (23 minimum bias events)

ZFinder Efficiency

■ Calculated using cut $|z_0-z_{0true}| < 0.5$ cm

	Low Lun	ninosity	High Luminosity		
	20GeV	30GeV	20GeV	30GeV	
Efficiency (%)	96.9	98.3	89	95.5	
Resolution (µm)	190	170	220	210	

Problems:

- □ Small sample size
- Changes to Detector Model
 - Increased material in Inner Detector
 - B-layer of pixel detector moved to 5.0cm instead of 4.3cm from beam-pipe

Efficiency of HitFilter and Fitter

Using Z_{true} instead of ZFinder Step

Track Selection

- Matching in η and φ used to select tracks for IdScan and xKalman
- Selecting track with minimum

Calculating Efficiency

- □ xKalman track must satisfy:
 - $\Delta r < 0.1$
 - $\Delta z < 0.5$
- □ If xKalman track ok, IdScan track must pass same cuts

| Efficiency of HitFilter and Fitter

	Low Lumi (Out of 1000 events)			High Lumi (Out of 200 Events)		
	15GeV	20GeV	30GeV	20GeV	30Gev	
IdScan Events	819	800	810	159	160	
xKalman Events	847	829	834	162	165	
Efficiency	96.5%	96.5%	97.1%	98.1%	97.9%	

- Slight increase in efficiency at high luminosity
 - □ Pile-up adding extra space-points to tracks that would fail requirement of space-points in 5 out of 7 layers
- Remaining 3% events:
 - □ Few space-points in event from electron candidate
 - □ Track at high η (η >2)

20GeV Electron Low Luminosity

20GeV Electron Low Luminosity

| Trigger Version – Latest Results

- Online version performing poorly until June (15%)
- Problems with online space-points

| Trigger Version – Latest Results

	20GeV Electron		30GeV Electron		
	No Pile-Up	Low Luminosity	No Pile-Up	High Luminosity	
Online	95.7%	90.3%	96.4%	83.3%	
Offline	95.4%	95.6%	95.2%	93.3%	

- Major issues with space-points have been resolved
- Still problems with efficiency at high luminosity
 - □ A few small differences with offline space-points still remain
 - □ Possible problem with ZFinder (modified form used in online)
 - Z resolution from fitter is 195μm for online and 153μm for offline

Summary

■ Offline version:

- □ Efficiency 93.3% at high luminosity
- □ Not performing as well as CTRIG version updated detector model
- □ Needs a new track fitting package

■ Online version:

- □ Efficiency 83.3% at high luminosity
- □ Need to understand problems at present thought to be issues with the ZFinder stage.

Future Work

IDSCAN

- □ Understand and Improve efficiencies for TDR review (Sept.)
- Trigger Test Beam next year

Atlantis

- □ Writing Design Document (next 4 Months)
- Adding RoI to Atlantis

■ ttH, H→bb Channel

- □ Important channel for low mass Higgs Boson
- Will provide half significance for discovery
- 94% of background after analysis from ttjj
- □ Aim to study this background