

Shiva King UCL 27th June 2005

Introduction

- o Main aims of the NEMO 3 experiment
 - Search for $0\nu\beta\beta$ decay for several different isotopes
 - Is the neutrino a Dirac or Majorana particle?
 - Absolute mass scale of the neutrino <m₂>
 - Lepton number violation
- Also possible to study $2\nu\beta\beta$ decay for different transitions of different isotopes

NEMO 3 Detector

SOURCE DISTRIBUTION in NEMO 3

- Tracking-calorimeter technique
- Cylindrical design, divided into 20 equal sectors
- o Four main parts
 - Tracking chamber
 - Calorimeter
 - Source foils
 - Shielding

NEMO 3 Backgrounds

- Internal backgrounds:
 - ²¹⁴Bi and ²⁰⁸TI (uranium and thorium decay chains) from the source foils
- External backgrounds:
 - From components of the detector
 - Radon and thoron present inside the tracking chamber
 - Thermal neutrons and photons, and cosmic rays
 - Magnet, iron shield, water shield...
- New anti-radon shield for the suppression of radon, installed and shows a factor of 6-8 improvement.

- The measurement of $2\nu\beta\beta$ (0⁺₁) nuclear matrix element (NME) is a good test of the nuclear model used to calculate the $0\nu\beta\beta$ NME.
- The model used in this case is the quasi particle random phase approximation...or QRPA for short.
- The NME depend on the particle strength parameter g_{pp} which is different for ground state transitions and excited state transitions.
- So the study of $2\nu\beta\beta$ (0⁺₁) allows us to probe different parts of the QRPA.

• Rare nuclear process, which occurs spontaneously between two nuclei with the same mass number

$$(A,Z) \to (A,Z+2) + e_1^- + e_2^- + \bar{\nu}_{e_1} + \bar{\nu}_{e_1} \qquad (A,Z) \to (A,Z+2) + e_1^- + e_2^-$$

o General equations for half-life for $\beta\beta$ decay

$$(T_{1/2}^{2\nu})^{-1} = G^{2\nu} \mid M_{2\nu} \mid^2$$

 $(T_{1/2}^{2\nu}(0^+, 2^+)) = G^{2\nu}(0^+, 2^+) \mid M_{2\nu}(0^+, 2^+) \mid^2$

 $(T_{1/2}^{0\nu})^{-1} = G^{0\nu} \mid M_{0\nu} \mid^2 \langle m_{\nu} \rangle^2$

$$N = N_0 e^{-\lambda t} \qquad \qquad T_{1/2}^{2\nu} = \frac{W N_A}{N_{dec}} ln2t$$

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study

- **o** Two different versions of NEMO software:
 - Version 6.2 (v6.2)
 - Version 7.0 (v7.0)
 - Released April this year
 - Differences in tracking (local track fit)
- o Study of reconstructed raw data file
 - x, y, and z vertices of the reconstructed track
 - The number of scintillators hit
 - The number of assigned tracks to a scintillator
 - The number of tracks
 - The energy deposit in each scintillator
 - Number of geiger cell hits

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study

27/06/05

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study

- Analysis can be carried out in two different ways:
 - Estimate the background using MC simulations of all known backgrounds
 - Simulate background in the non-Mo sectors of the detector
 - This is the main estimator of the background for the detector
- Background estimation:
 - $2\nu\beta\beta$ decay of ¹⁰⁰Mo (g.s to g.s)
 - Internal and external background from ²¹⁴Bi and ²⁰⁸TI
 - Radon inside the helium gas in the geiger wire chamber

Half-life ($\times 10^{20}$ yrs)	events	bg events	S/B
$4.23^{+0.95}_{-0.65}$ (stat) ± 1.0 (syst)	55	10.7	4.1
$4.7^{\pm 1.0}_{-0.7}(\text{stat})\pm 0.5(\text{syst})$	74	8.2	2.9

• • • • 2 $\nu\beta\beta$ Excited states Analysis of ¹⁰⁰Mo, Comparison Study

• Three different analyses:

- Analysis 1: J. Thomas and V. Vasiliev with v6.2
- Analysis 2: V. Kovalenko (cuts) with v6.2
- Analysis 3: S. King (analysis 1 cuts) with v7.0

Half-life ($\times 10^{20}$ yrs)	events	bg events	S/B	Eff.	Analysis
7.29 + 1.74 - 1.18	176	118.27	0.41	0.0016	Analysis 1
6.12 + 2.34 - 1.33	75	49.29	0.52	0.0006	Analysis 2

Half-life ($\times 10^{20}$ yrs)	events	bg events	S/B	Eff.	Ref.
4.85 + 0.97 - 0.69	49	8.71	4.63	0.0007	Analysis 1
7.26 + 3.51 - 1.83	50	30.99	0.61	0.0005	Analysis 2

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

- **o** Topology of the 0^+_1 state:
 - 2 e-
 - 2 γ (590 Kev and 540 Kev)

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

- o Two tracks associated with different scintillator hits
- Energy deposited > 200 Kev
- Both particles must have a -ve charge
- Two tracks must have a common vertex in the source foils
- Internal hypothesis: probability the two e- leave source foil at a common point, go through geiger wire chamber and detected by different scintillators > 1%
- External hypothesis: probability a 'crossing' particle enters tracking volume by one scintillator, crosses through the source foil and detected by one scintillator <0.1%

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

o Also should take into account photons, and α -particles (in the background)

	Analysis 1	Analysis 2
probeut $\gamma\gamma$ min	0.01	0.04
probeut $\gamma\gamma$ max	0.01	0.001
E_{γ} min	0.22 Mev	$0.125 { m Mev}$
$E_{\gamma} \max$	0.55 Mev	2.0 Mev
$E_e \min$	0.22 Mev	0.2 Mev
$E_e \max$	1.5 Mev	2.0 Mev
$E_{\gamma\gamma}$ min	0.6	0.5 Mev
$E_{\gamma\gamma} \max$	1.2	1.5 Mev
$E_e e \min$	0.2 Mev	0.4 Mev
$E_e e \max$	1.4 Mev	1.5 Mev
xy vertex	; 4.0 cm	$1.5 \mathrm{~cm}$
z vertex	; 4.0 cm	4.0 cm

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 1: before energy cuts

$2\nu\beta\beta$ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 2: before energy cuts

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 3: before energy cuts

$2\nu\beta\beta$ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 1: after energy cuts

$2\nu\beta\beta$ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 2: after energy cuts

2νββ Excited states Analysis of ¹⁰⁰Mo, Comparison Study: Selection Criteria

Analysis 3: after energy cuts

Half Life and Nuclear Matrix Element Results

$$T_{1/2}^{2\nu} = \eta \frac{WN_A}{N_{dec}} ln2t$$

After all cuts

$$T_{1/2} = 4.63 + - 0.8 \times 10^{20} \text{ yr}$$

 $M^{2v}(0_{1}^{+}) = 0.114$

Conclusions

- The reconstructed raw data file study was not conclusive.
- The energy cuts of the non-Mo MC are not well understood, more work is needed in understanding the background. Are all backgrounds considered?
- The differences in definitions of γ -clusters should also be considered

• • • Further Work

- Carry on with the comparison study, looking at backgrounds and γ -clustering.
- More analysis:
 - Excited states analysis with radon free data
 - $0\nu\beta\beta$ decay analysis with new radon free data
 - $2\nu\beta\beta$ decay analysis of ⁸²Se and ¹³⁰Te
- o SuperNEMO
 - MC
 - General detector development

Isotope	Q value (Mev)
¹⁰⁰ Mo	3.03
^{82}Se	3.00
¹¹⁶ Cd	2.81
¹³⁰ Te	2.53
^{96}Zr	3.35
¹⁵⁰ Nd	3.37
⁴⁸ Ca	4.27