A Beam Profile Monitor for a Future Linear Collider

Steve Malton, UCL

1st Year Transfer Report 11th June 2004

Overview

- Future Linear Collider
- Petra Laserwire
 - Expected Signal
 - Scan Results Dec '03
- Laser Imaging
 - Current
 - Future?
- CCD Resolution
- Future Plans

Future Linear Collider

- Next generation physics machine
- ~ 10¹⁰ particles per bunch
- 0.5 1.5 TeV
- Luminosity ~ 10³⁴ cm⁻² s⁻¹
- Beam profile monitor
 - Wire scanners destroyed!

	CLIC	NLC/JLC	TESLA
BDS $\sigma_x(\mu m)$	3.4 to 15	7 to 50	$20\ {\rm to}\ 150$
$\sigma_y(\mu m)$	0.35 to 2.6	1 to 5	1 to 25
IP $\sigma_x^*(\mu m)$	196	355	535
$\sigma_y^*(\mu m)$	4.5	4.5	5

Laserwire

Compton scattering

 $e^- + \gamma \rightarrow e^- + \gamma$

 High energy – small angular spread

 α_{c} ~ 1 / γ

- Non-invasive
- Indestructible

$$\mathsf{N}_{\mathsf{C}} = \mathsf{N}_{\mathsf{b}} \frac{\mathsf{P}_{\mathsf{L}} \sigma_{\mathsf{C}} \lambda}{\mathsf{c}^2 \mathsf{h}} \frac{1}{\sqrt{2\pi} \sigma_{\mathsf{s}}} \exp\left(\frac{-\mathsf{y}^2}{2\sigma_{\mathsf{s}}^2}\right)$$

Signal - Simple

- Assumes particle density functions of the electron and laser beams to be gaussian about the beams' axes and constant in beam direction
- Number of Compton photons is a gaussian function of the beam separation, with width $\sigma_{\rm s}$

		P = 2 MW			
		Beam Energy [GeV]			
		4.5	7	12	
آي	500/50	115/689	257/664	685/619	
σ _y [μ	300/30	185/1111	416/1070	1056/998	
σ×/	100/10	415/2485	930/2393	2362/2231	
	$E_{tot}[GeV]/N_{\gamma}$				

Laser Propagation

- Divergent
 - Light spreads as it propagates

$$w^{2} = w_{0}^{2} \left[1 + \left(\frac{M^{2} \boldsymbol{l} z}{\boldsymbol{p} w_{0}^{2}} \right)^{2} \right]$$

 Diffraction Limited

 Does not focus to a point

$$w \propto \frac{M^2 l f}{w_0}$$

Signal - Detailed

1500

1000

500

 $\mathbf{x}\mathbf{0}$

- Allow for laser beam radius to vary
 - Integral is not analytical
 - Solve numerically

Energy deposited in calorimeter

- x0 : Offset of laser waist from IP
- y0 : Offset of laser axis from electron beam

Steve Malton, 1st Year Transfer Report 15

vΟ

10

December '03

- High current scan
 - Beam current 40.5mA
 - First bunch 22.3nC

- Low current scan
 - Beam current 7.1mA
 - First bunch 3.9nC

Report

Setup at PETRA

11.06.04

Steve Malton, 1st Year Transfer Report 9

Detector

- PbWO₄ crystals
 18 x 18 x 150 mm
 - 3 x 3 matrix

- Contains 90% shower energy at 350 GeV
- Single PMT

Radiation length	[mm]	8.90
Molière Radius	[mm]	22
Density	[g/cm ³]	8.28
Avg. #Photoelectrons/MeV		16
Decay time	[ns]	5-15

Laser

- Q-switched Nd:YAG with second harmonic generator
- Transverse mode quality poor
- Imaged on CCDs
 - Basler A302fs
 - 8.3µm pixel size
 - 780 x 582

1064/532
250/90
10
up to 30
= 1 mm

11.06.04

Optical Transport

Optical Transport

Beam Scanning

- Mirror on piezoelectric stack
- Apply 0 10V, amplified x10
- Angular range
 5mrad
- ~kHz scan rate

Imaging Optics

- 4f relay
 - Single lens : PAC076
 - 125mm EFL
 - 1:1 imaging
 - Place by hand ± 10mm?
- 2 lenses
 - Collimate beam
 - Can test! ± 0.1mm
 - 2nd lens location irrelevant
 - f_1 ? f_2 → magnification

Scan Travel Range

Image spot translation at CCD (mm) vs. Lens offset from ideal position (mm)

4f relay

 +10mm → ± 8%

2 lens system

 $-\pm 0.1\text{mm} \rightarrow \pm < 0.1\%$

Beam Spot Size

Image beam spot size vs. Lens offset (mm)

CCD DAQ

- VC++ MFC
- Arbitrary number of cameras
- Statistics
 - Camera properties
- TCP/IP
 - control program

CCD Resolution

- Current setup at RHUL
- (Mirror CCD) distance matched to (mirror knife edge)
- Measure different beam sizes by moving focussing lens
 - Compare w_{ccd} against w_{knife}

Knife-Edge Scans

- Measure total intensity at photodiode
- 3 translation stages
 - Crossed x-y stages, coarse
 - Picomotor stage, fine
- x-position
 - Picomotor steps
 - Interferometer to calibrate stage step size

Example of knife edge

- Knife edge is stepped through the laser by the picomotor stage
- Intensity measured by photodiode
- Fit to error function for beam radius w_{beam}

Stage calibration

- Fitted w_{beam} at points along laser axis
- Measurement with interferometer calibrates stage step size

Future Plans

- Compare new imaging optics
- Compare w_{ccd} and w_{knife}
- Second axis
- Fast scanning
- Nanometre beam sizes?
 - Interferometric techniques