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Abstract

The ANtarctic Impulsive Transient Antenna (ANITA) experiment is a balloon-borne

array of radio antennas designed to search for ultra-high energy neutrinos by observing

the Antarctic ice sheet for radio emission that is expected to arise as a result of the

neutrinos’ interaction. ANITA is further able to detect radio emission that arises when

ultra-high energy cosmic-rays interact in the Earth’s atmosphere. The second flight of

the experiment, ANITA-2, took place in 2008-09 over 31 days.

This thesis describes an analysis of the ANITA-2 dataset and presents results from

searches for ultra-high energy neutrinos and cosmic-rays. No statistical evidence of

emission from neutrino interactions is observed, with two candidate events discov-

ered on a background of 1.13 ± 0.27. A limit on the diffuse flux of ultra-high energy

neutrinos is presented, further model-independent and model-dependent flux limits on

selected active galactic nuclei are calculated.

Four isolated and one non-isolated cosmic-ray candidates are discovered. The

identity of the isolated candidates as cosmic-ray-induced radio emission is confirmed

through correlation between observed and expected emission polarisation.
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Chapter 1

Introduction

The high energy Universe remains mysterious. cosmic-rays have been observed at

ultra-high energies (UHE, E > 1018 eV) for half a century, yet the mechanisms of ac-

celeration of such particles are poorly understood. At the highest energies traditional

astrophysical messengers (cosmic-rays and photons) suffer horizon effects that limit

their use. Protons and heavier nuclei interact with cosmic microwave background ra-

diation respectively via photo-pion production and photo-disintegration, while photons

pair-produce with the far infra-red background and cosmic microwave background.

Neutrinos provide a potential solution to this UHE observation horizon. As they

only interact weakly, UHE neutrinos are expected to traverse cosmic distances virtu-

ally uninhibited. Unlike cosmic-rays, whose paths will be affected by the presence of

Galactic and extra-galactic magnetic fields, neutrinos suffer no such deviations in tran-

sit. Observation of UHE neutrinos therefore provides a possible window on the highest

energy processes in the Universe. Meanwhile, the very mechanism that is expected to

result in the UHE cosmic-ray horizon will also give rise to a neutrino flux, through the

pion decay chain. Given the observational evidence for UHE cosmic-rays, an expected

(so called ‘guaranteed’) UHE neutrino flux exists.

Due to the neutrino’s small cross section and low flux in the UHE regime, the

collection of a statistically significant sample of UHE neutrinos is a considerable chal-

lenge. Novel detection techniques and concepts have been developed and tested over

the last two decades but, as yet, the observation of UHE neutrinos remains an un-

achieved goal of both astrophysics and particle physics. The ANtarctic Impulsive

Transient Antenna (ANITA) hopes to detect UHE neutrinos through coherent radio

Cherenkov emission from particle showers in dense media. This coherent Cherenkov
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emission process, known as Askaryan radiation, has been experimentally confirmed

through a number of accelerator experiments. Supported by a giant helium balloon,

ANITA observes the radio transmissive Antarctic ice sheet at an altitude of ∼ 35 km.

ANITA is the most sensitive UHE neutrino experiment at E > 1019 eV.

Two science flights of the ANITA experiment have taken place. Analysis of data

from the first flight, hereafter ANITA-1, observed no evidence of neutrino emission.

Analysis of the second flight, hereafter ANITA-2, is ongoing. The first published results

from ANITA-2 set the most stringent limit on the UHE neutrino flux in the energy

interval 1019 < Eν < 1021 eV to date.

The work described in this thesis includes an analysis of the ANITA-2 data, in-

cluding searches for both UHE neutrinos and UHE cosmic-rays. An introduction to

UHE neutrino and cosmic-ray physics, along with detection techniques, is given in

Chapter 3. A detailed description of the ANITA-2 experiment is given in Chapter 4.

Chapter 5 covers an ANITA-2 instrument simulation developed for use with the anal-

ysis code that is described in Chapter 6. Finally, Chapters 7 and 8 describe further

analysis of candidate cosmic-ray and neutrino events respectively, with Chapter 8 pro-

viding constraints on the diffuse UHE neutrino flux, as well as constraints on the flux

from selected sources.
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Chapter 2

Particle Physics and the Neutrino

2.1 Introduction to particle physics
The Standard Model of particle physics has been incredibly successful at describing

fundamental particles and their interactions. The Standard Model is an SU(3) ⊗

SU(2) ⊗ U(1) gauge theory that consists of fermions (quarks and leptons) and fun-

damental forces (electromagnetic, weak nuclear and strong nuclear) that are mediated

by force carrying particles, bosons.

2.1.1 Quarks

There are six different types (or flavours) of quarks which are divided into three gener-

ations:

u
d

 ,

c
s

 ,

t
b

 (2.1.1)

Where u, c, t have charge +2
3

and d, s, b have charge−1
3
. The generations are grouped

by mass, with u, d being the least and t, b the most massive. Quarks are fermions and

have 1
2
–integer spin. Quarks also possess one of three colour charges, a property of

quantum chromodynamics that relates to the strong-nuclear force interactions.

2.1.2 Leptons

As with quarks, leptons are divided into three generations, which are defined by their

flavour:

 e

νe

 ,

 µ

νµ

 ,

 τ

ντ

 (2.1.2)
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The upper particle in each flavour set is a lepton with charge −1, the lower particle, νi,

is a chargeless neutrino of the corresponding flavour. The charged leptons above are

ordered by mass, with e being the least and τ the most massive. For a description of

neutrino masses, see section 2.2. Leptons are fermions, with 1
2
–integer spin. Leptons

are colourless and as such do not interact via the strong force.

2.1.3 Bosons

The four fundamental forces are mediated via force carriers which have integer spin,

called bosons. The electromagnetic force is mediated via the massless photon, γ. The

electromagnetic force will only couple to those particles that carry charge. The strong

nuclear force is mediated via gluons, g, and couples to particles with colour charge.

The strength of the strong force increases with separation, resulting in confinement of

quarks in colourless groupings known as hadrons. The weak nuclear force, transmitted

via three bosons W± and Z, couples to particles with weak isospin. All quarks and

leptons carry weak isospin. Although the fundamental strength of the weak force is

of the same order as the electromagnetic force, the massive nature of the W± and Z,

80.4 GeV and 91.2 GeV respectively, makes the force appear weak and short ranged.

Gravity is the weakest force and, although it is not included in the Standard Model, is

thought to be mediated by a spin 2 boson known as a graviton.

Quarks, therefore, couple to all fundamental forces. Charged leptons do not feel

the strong force. Neutrinos in the Standard Model, meanwhile, feel only the weak

force.

2.2 The neutrino
The existence of the neutrino was first predicted by Wolfgang Pauli in 1930 to explain

the apparent discrepancy between initial and final energy and momenta in beta decays.

The particle, initially dubbed the neutron by Pauli, was named neutrino (little neutral

one) by Enrico Fermi in 1934, after the discovery and naming of the heavier particle

we know as the neutron.

Neutrinos are known to exist in three flavour states (νe, νµ & ντ ) as partners to

the three, heavier, charged leptons (e, µ & τ ). Much of the neutrino’s nature is yet

to be established; investigation into the neutrino is seen as one of the most promising
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τ,µe,ν τ,µe,ν

−e −e
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eν −e

−e eν

+W

Figure 2.1: Feynman diagrams of neutral current (left) and charged current (right)

neutrino interactions with electrons.

τ,µe,ν τ,µe,ν

N

Shower

0Z

τ, µe, ν τ,µe,

N

Shower

±W

Figure 2.2: Feynman diagrams of neutral current (left) and charged current (right)

neutrino interactions with nucleons.
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avenues for beyond Standard Model physics.

As neutrinos interact only weakly, they are only able to exchange one of the three

weak force bosons,W± and Z0, with these interactions known as charged-current (CC)

and neutral current (NC) respectively. It is these interactions that enable experiments

to observe neutrinos, with observations of secondary leptons or through the search for

hadronic recoil. Feynman diagrams of neutrino interactions are given in figures 2.1 and

2.2.

2.2.1 Neutrino oscillations

The three neutrino flavour states are themselves superpositions of three mass states,

m1, m2 & m3, with the relation between the flavour (α) and mass (i) states given by:

|να〉 =
∑
i

Uαi|νi〉 (2.2.1)

Here, U is the PMNS mixing matrix (named for Pontecorvo, Maki, Nakagawa and

Sakata), which defines neutrino mixing and oscillations:

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23 c12c13 − s12s23s13e
iδ s23c13

s12s23 − c12c23s13e
iδ c12s13 − s12c23s13e

iδ c23c13




1 0 0

0 eiα 0

0 0 eiβ


(2.2.2)

Where sij = sin(θij), cij = cos(θij) and eiδ is a CP violating term with phase δ. The

terms α and β are Majorana CP violating phases. The matrix can be factorised as

follows:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s23e
−iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1




1 0 0

0 eiα 0

0 0 eiβ


(2.2.3)

Equations 2.2.2 and 2.2.3 demonstrate that the three states of neutrinos will mix

with one another. After creation in a flavour state, the neutrino will then propagate as a

superposition of the mass eigenstates. Any subsequent interaction will then take place

as a flavour state, with the interacting flavour dependent on the mixing parameters. This

gives rise to the concept of neutrino flavour oscillation.

It is useful to consider a two flavour system to see how this mass propagation

effects the flavour state measured by an observer. In this simplified case, a mixing
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matrix would be given by:να
νβ

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

ν1

ν2

 (2.2.4)

A neutrino created in weak eigenstate να is therefore a combination of the two mass

states ν1 and ν2, as defined by the mixing angle θ:

|να〉 = cos(θ)|ν1〉+ sin(θ)|ν2〉 (2.2.5)

After propagating distance L, this neutrino will be in the following state:

|νx=L〉 = cos(θ)eiE1t|ν1〉+ sin(θ)eiE2t|ν2〉 (2.2.6)

where E1, E2 are the energies of the two mass eigenstates and eiE1t, eiE2t are their

propagation as a function of time. The probability of an oscillation into the other flavour

eigenstate when measured is thus:

Pνα→νβ = |〈νβ|να(t)〉|2

=
∣∣(− sin(θ)〈ν1|+ cos(θ)〈|ν2|)

(
cos(θ)eiE1tν1〉+ sin(θ)eiE2t|ν2〉

)∣∣2
=
∣∣(− sin(θ) cos(θ)eiE1t + cos(θ) sin(θ)eiE2t

)∣∣2
=
∣∣cos(θ) sin(θ)

(
eiE1t − eiE2t

)∣∣2
= sin2(2θ) sin2

(
E2 − E1

2
t

)
(2.2.7)

Assuming Ei � mi, Ei =
√
m2
i + p2, the probability of an oscillation becomes:

Pνα→νβ = sin2(2θ) sin2

(
1.27∆(m2

12)L

E

)
(2.2.8)

Where ∆ (m2
12) is the difference in mass between the two mass eigenstates in eV, L is

the distance travelled in km and E is the neutrino energy in GeV.

2.2.2 Measurement of mixing parameters

It was the observation of a flux deficit of Solar νe, first observed by the Homestake Mine

experiments in the 1960s and 1970s [1], that led to the realisation of neutrino flavour

oscillation. Further experiments such as the Sudbury Neutrino Observatory (SNO) [2]

were designed to measure the solar neutrino flux. This led to the determination of the

so called ‘Solar’ neutrino oscillation parameters (νe → νµ,τ for θ12 and ∆ (m2
12)).
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Table 2.1: Neutrino oscillation parameters, taken from [8] unless stated otherwise. θij

and ∆
(
m2
ij

)
are the mixing angles and the squared mass splittings respectively.

Parameter Value

sin2(2θ12) 0.861+0.026
−0.022

∆ (m2
12) (7.59± 0.21)× 10−5 eV2

sin2(2θ23) > 0.92

∆ (m2
23) (2.32+0.12

−0.08)× 10−3 eV2 [9]

sin2(2θ13) < 0.15

Other experiments, such as Kamiokande [3] and Super-Kamiokande [4], use

cosmic-ray-induced K± and π± decay chains (equation 2.2.9) to measure the ‘atmo-

spheric’ oscillation parameters (νµ → ντ for θ23 and ∆ (m2
23)):

π+
(
π−
)
→ µ+νµ

(
µ−ν̄µ

)
(2.2.9)

K± will decay to produce the same end state, but may also decay to produce final

states containing π0µ±
(−)
ν µ or π0e±

(−)
ν e . Any µ± produced will decay (although while

the meson decay will occur in the atmosphere, the resultant µ may penetrate into the

Earth).

Equation 2.2.8 demonstrates that, for two flavour neutrino oscillations, there will

be an optimal L/E value at which mixing will be maximal. In the last decade a number

of experiments, e.g [5, 6, 7], have taken advantage of this, using neutrinos produced at

accelerators to make precision measurements of both atmospheric and solar neutrino

oscillation parameters, as well as place limits on the remaining oscillation parameters,

θ13 and ∆ (m2
13) (see table 2.1).

2.2.3 Neutrino mass

Neutrinos are known to have finite mass, otherwise flavour oscillation would not be

possible. While neutrino oscillation measurements provide the absolute difference in

mass between the neutrino mass eigenstates, the ordering of these masses is not known.

This is known as the neutrino mass hierarchy problem.

Limits on the mass eigenstates have been obtained through neutrino oscillation
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Table 2.2: Constraints on the neutrino mass.

Parameter Mass Limit Source

mi,heaviest > 0.05 eV Oscillation (∆m2
23) [8]

Σmi < 2 eV Cosmology [8]

mβ < 2.0 eV β-decay [11]

experiments and cosmological1 measurements. Experimental measurements of the en-

ergy spectrum endpoint of β decay provides a further constraint on the electron neutrino

mass, mνe . These values are summarised in table 2.2.

As the neutrino has mass, it is possible for the neutrino to be its own anti-particle,

known as a Majorana particle. In this scenario ν are purely left-handed particles and

ν̄ are purely right-handed (i.e. ν viewed in a frame in which its helicity is flipped).

It is possible to determine whether the neutrino is a Majorana particle through mea-

surements of double β-decay, specifically searching for neutrinoless double β-decay.

Through these experiments, combined with further cosmological measurements and

single β-decay measurements, it is hoped that constraints on neutrino mass, neutrino

mass hierarchy and the Majorana/Dirac nature of the neutrino, will be found.

1Galaxy surveys and anisotropy analysis in the CMB both place limits of Σmi < 2 eV, combinations

of multiple cosmological probes place a limit of Σmi < 0.17 eV at the 95% CL [10].
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Chapter 3

Ultra-High Energy Astro-Particle

Physics

Understanding the high energy Universe has been a long standing goal of astro-particle

physics. Physicists have been striving to make measurements of high energy particles

of astrophysical origin for the best part of a century. Particles with energies well beyond

EeV have been observed for half a century [12]. However, knowledge of the identity of

their sources and acceleration mechanisms is lacking. Moreover, the ability to observe

such high energy particles in a reliable manner could provide tests of fundamental

physics at energies far beyond those attainable by terrestrial accelerators.

Developments in astronomy have played a key role in these astro-particle physics

experiments. While, at the beginning of the 20th Century, almost all astronomy was

conducted via visible light, swift progress meant that by the 1960s complementary ob-

servations were being made from radio through to gamma-ray frequencies. Sensitivity

at the highest energy end of this spectrum has been extended recently via the HESS

[13] and VERITAS [14] observatories. These are arrays of telescopes, operating in the

100 GeV – 100 TeV range, that observe Cherenkov radiation produced by air-showers

that arise when gamma-rays interact in the atmosphere. Further improvements in en-

ergy range and sensitivity will be provided in the future with the construction of the

Cherenkov Telescope Array [15].

Astronomy, however, is no longer confined to the detection of photons. Even

while progress was being made in the broadening of the observed range of the elec-

tromagnetic (EM) spectrum, true multi-messenger astronomy had been born through

the efforts of Victor Hess [16]. Hess’s observation in 1912 of ionising radiation whose
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origin was extra-terrestrial led to the birth of cosmic-ray (CR) physics and, thus, astro-

particle physics. Although astro-particle physics grew quickly as a scientific discipline,

the nature of the high energy Universe is still poorly understood. Exactly how charged

particles can be accelerated to E > EeV is not yet known, although numerous mecha-

nisms have been proposed.

As astro-particle physics reaches out to higher and higher energies, problems are

encountered that limit the use of photons and CRs as astrophysical messengers. The

increasing rarity of such high energy sources necessitates observations of increasingly

distant objects and leads to a flux that decreases rapidly with energy. It is here that

one of the biggest hurdles in astro-particle physics lies. As will be discussed later in

this chapter (section 3.1.5), both photon and charged messengers encounter a horizon

effect at ultra-high energies. Photons pair produce e+e− off far infra-red (FIR) back-

ground and cosmic microwave background (CMB) radiation1 while protons photo-pion

produce with the CMB. These combined processes necessitate a new type of astrophys-

ical messenger if the highest energy regions of the Universe, and the processes driving

them, are ever to be fully understood.

The neutrino may provide physicists with a solution to this problem. As an as-

trophysical particle, neutrinos have only been observed in Solar emission [1] and from

a single supernova explosion [17]. As purely weakly interacting particles, neutrinos

could traverse cosmic distances with a negligible chance of interaction or energy loss.

Furthermore, Galactic and extra-Galactic magnetic fields will not affect the paths of

neutrinos. However, the weakly interacting nature of the neutrino – a virtue for high

energy particles traversing the Universe – provides a challenge to observations. Vast

detector volumes and novel detection methods are necessary if the observation of UHE

neutrinos is ever to be realised.

3.1 cosmic-rays
The, as yet unobserved, UHE neutrino flux is closely linked with the production and

propagation of cosmic-rays. UHE neutrinos and cosmic-rays are expected to be pro-

duced together at source. Furthermore, a significant flux of neutrinos is expected to

arise from cosmic-ray interactions with the CMB as they propagate. This section cov-

1γγ → e+e− will begin to limit the photon horizon at 1014 eV.
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ers cosmic-ray production mechanisms, potential sources and detection methods.

The cosmic-ray energy spectrum follows a power-law dN/dE ∝ E−γ with rel-

atively few features over many decades of energy, as shown in figure 3.1. At en-

ergies below 1019 eV the spectrum has been fairly well determined. In the interval

109eV ≤ E ≤ 1015eV the spectrum power law follows γ ∼ 2.7. At the high end of

this range we encounter the cosmic-ray ‘knee’, above which the power-law steepens to

γ ∼ 3.1. There are two popular explanations for this feature: PeV energies are possibly

the energy upper limit of supernovae shock acceleration; Galactic magnetic fields no

longer confine cosmic-rays above PeV energies. A further steepening in the cosmic-ray

spectrum is observed at∼ 4×1017 eV, while a flattening feature (the ‘ankle’) is present

at ∼ 4 × 1018 eV. The ankle is commonly seen as the point at which the cosmic-ray

flux is no longer dominated by Galactic sources, with a more diffuse, but harder, extra-

Galactic flux being observed. Results from the Pierre Auger Observatory (see section

3.1.3) have helped constrain the flux and composition of cosmic-rays at energies above

1019 eV, over which there was much uncertainty previously.

3.1.1 Acceleration mechanism

Acceleration through magnetic turbulence was first proposed as a mechanism for

cosmic-ray acceleration by Fermi [19]. His initial proposal, known as second-order

Fermi acceleration, involved clouds of dense material within the Galaxy with stronger

magnetic fields than the surrounding interstellar medium. The clouds act as magnetic

mirrors, a charged particle encountering an approaching cloud would be reflected and

accelerated, while a charged particle encountering a receding cloud would be decel-

erated. Second-order Fermi acceleration was modified using the idea of shock front

acceleration, with the resulting mechanism known as first-order Fermi acceleration.

In the scenario of a supersonic shock front, the shock can be viewed as a discon-

tinuity between two regions of material: ‘downstream’ undisturbed gas and ‘upstream’

shocked, compressed, gas. In the upstream frame of reference, downstream matter will

be flowing toward the upstream side, while in the downstream frame of reference, up-

stream matter will be flowing toward the downstream side. Therefore, matter scattered

across the shock from one side is likely to scatter back across the shock. Each time the

particle scatters across the shock it is accelerated in a collisionless manner by turbulent
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Figure 1
Overview of the cosmic ray spectrum. Approximate energies of the breaks in the spectrum commonly
referred to as the knee and the ankle are indicated by arrows. Data are from LEAP (4), Proton (5), AKENO
(6), KASCADE (7), Auger surface detector (SD) (8), Auger hybrid (9), AGASA (10), HiRes-I monocular
(11), and HiRes-II monocular (11). Scaling of LEAP proton-only data to the all-particle spectrum follows
(12).
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Figure 3.1: The cosmic-ray flux from GeV to ZeV. Figure from [18].
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magnetic fields. Material is therefore accelerated repeatedly in a stochastic manner.

For each such acceleration cycle, there is a possibility that the particle will escape on

the downstream side of the shock, resulting in an expected power law energy spectrum

for such an acceleration mechanism of E ∝ E−2. First-order Fermi acceleration mech-

anisms via supernovae shock fronts have shown to naturally give rise to a power-law

energy spectrum that could replicate the observed γ ∼ 2.7 [20, 21, 22].2 First-order

Fermi acceleration by supernovae remnants is now widely accepted as the means by

which cosmic-rays are accelerated to energies of 1015 eV.

The confinement and transit of cosmic-rays is defined by their rigidity R:

R =
pc

Z
= rLB (3.1.1)

Where pc is the momentum of a particle with charge Z, while rL is the gyro-radius of

the cosmic-ray in a magnetic field, B. The maximum energy attainable by a cosmic-

ray in a source is dependent on the source’s magnetic field, as shown by equation 3.1.2

[23].

Emax ∼ βZBR (3.1.2)

Where β is the shock velocity in terms of c and Z is the cosmic-ray’s charge.

While supernovae are commonly believed to accelerate cosmic-rays to 1015 eV

they are not believed to be able to accelerate cosmic-rays to UHE levels. Equation

3.1.2 shows that some combination of even larger source size and higher B strength are

necessary if first-order Fermi acceleration is to provide observed flux of higher energy

cosmic-rays. Figure 3.2 displays the size and magnetic field strengths of potential

UHECR sources.

3.1.2 UHECR acceleration

In the last two decades there has been dispute as to whether first-order Fermi accel-

eration is sufficient to provide the observed UHE cosmic-ray (UHECR) flux. In the

1990s, the AGASA experiment observed a surplus of cosmic-rays with E > 1020 eV

over a power law fit to the flux at lower energies [25]. This lead to the development

of a number of so-called ‘top-down’ theories which proposed the decay of topological

2The energy spectrum produced by supernovae shock fronts is γ ∼ 2. However, when combined

with the confinement time in the Galaxy, a spectrum of γ ∼ 2.6 is produced.
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developed in the case of a pulsar wind by Buckley (1977) and by Contopoulos & Kazanas (2002).
A detailed discussion of magnetar winds is also made by Arons (2003).

Other acceleration mechanisms have been proposed and may contribute to the acceleration of
cosmic rays in the Galaxy. These include a variety of second-order processes and many of them can
be observed to operate in solar physics. However, they are believed to be too slow to be relevant
to the acceleration of UHECRs.

6. CANDIDATE SOURCES AND THEIR SIGNATURES
The requirements for astrophysical objects to be sources of UHECRs are quite stringent. After
reviewing some of the basic requirements in Section 6.1, we briefly discuss plausible sources
such as accretion shocks in large-scale structures (Section 6.1.1), AGN (Section 6.1.2), GRBs
(Section 6.1.3), and neutron stars or magnetars (in Section 6.1.4). For these different classes of
candidate sources, we discuss the possibility of locating the sources with UHECR observations
in Section 6.2 and review possible ways of discovering the sources with secondary photons and
neutrinos in Section 6.3.

6.1. Candidate Source Requirements
The Larmor radius, rL = E/Ze B ∼ 110 kpc Z−1(µG/B)(E/100 EeV), of UHECRs in Galactic
magnetic fields is much larger than the thickness of the Galactic disk. Thus, confinement in the
Galaxy is not maintained at the highest energies, motivating the search for extragalactic sources.
Requiring that candidate sources be capable of confining particles up to Emax translates into a
simple selection criterium for candidate sources with magnetic field strength B and extension
R (Hillas 1984): rL ≤ R, i.e., E ≤ Emax ∼ 1 EeV Z (B/1 µG)(R/1 kpc). Figure 8 presents the
so-called Hillas diagram, where candidate sources are placed in a B−R phase-space, taking into
account the uncertainties on these parameters. Most astrophysical objects do not even reach
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Figure 8
Updated Hillas
(1984) diagram.
Above the dark blue
lines, protons can be
confined to energies
above Emax =
1021 eV. Above the
red line, iron nuclei
can be confined
to energies above
Emax = 1020 eV.
The most powerful
candidate sources
are shown with
the uncertainties
in their parameters.
Abbreviations:
AGN, active
galactic nuclei; GRB,
gamma-ray burst;
IGM, intergalactic
medium; SNR,
supernova remnant.
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Figure 3.2: A Hillas plot (named after [23] first proposed sources of UHECR from

first-order Fermi acceleration). Sources above the red and blue lines are able to confine

(and thus accelerate) iron nuclei to 1020 eV and protons to 1021 eV respectively. Figure

from [24].
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defects or super-heavy dark matter (e.g. [26] and [27]) as a means of producing UHE

cosmic-rays. The resulting flux would appear disjointed from the shock-front accelera-

tion driving cosmic-ray production at lower energies. More recent data from the Auger

[28] and HiRes experiments [29] have not displayed this UHECR excess. Meanwhile,

limits on the UHE neutrino flux (see section 3.2) also contradict top-down cosmic-ray

production mechanisms. As such, these models are disfavoured.

A ‘bottom-up’ approach to cosmic-ray production, which utilises first-order Fermi

acceleration is the current favoured model for UHECR acceleration (e.g. [30]). Of

the numerous sources that have been proposed as UHECR sources, two of the most

commonly suggested are shocks created by gamma-ray bursts [31] and active galactic

nuclei [32], discussed below.

Gamma-ray bursts

Gamma-ray bursts (GRBs) are explosions of energy that, for their duration, are the

most energetic events in the observable Universe, with a total energy output of up to

1051 erg.3 They are observed in gamma-rays as short (from sub-second to several min-

utes) cosmically distant events, with afterglows often detected in X-rays. GRBs are

classified as either short duration (< 2 s) or long duration (> 2 s). The mechanism

driving the GRB is thought to differ between the two classes, with the coalescence of

neutron-star or black-hole binary systems believed to result in short duration GRBs

while massive star collapse leads to long duration GRBs.

Active galactic nuclei

The term Active Galactic Nuclei (AGN) refers to galaxies with energetic phenomena

at their cores that cannot be explained by stellar activity. Instead, the only way of

powering the energetic processes observed is via an inferred supermassive black hole

(107 − 109 M�). There are a number of subclasses of AGN, including quasars, Seyfert

Galaxies and BL Lacertea objects. This classification depends on factors including

absolute luminosity and emission features, which are interpreted as differences in ob-

servation angles relative to the source and accretion rates of the central black hole.

Many AGN are observed to emit jets perpendicular to the plane of the galaxy

and many kpc in extent. Within these jets, observations in X-ray and radio inform us

31 erg = 10−7 J
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that shock fronts form, it is these regions that are posited as UHECR sources. It is

also possible that large magnetic fields close to AGN cores could accelerate cosmic-

rays, however, these regions are thought to be optically thick and not the source of the

observed UHECR flux.

Coincidence surveys

Due to their limited horizon (discussed in section 3.1.5), it is possible to conduct coin-

cidence surveys of UHECRs with potential sources. Recent coincidence results from

Auger which test the correlation of UHECR arrival directions with AGN do suggest

non-isotropic arrival directions of UHECRs, however, the evidence of coincidence with

AGN is tentative [33, 34]. It is possible that, while UHECR observed at Earth are pro-

duced within the expected horizon, both Galactic and inter-galactic magnetic fields are

sufficient to cause larger than expected deviations in flight. Alternatively, a cosmic-ray

flux at the relevant energies composed largely of heavy nuclei (as is favoured by recent

Auger data [35]) would also lead to larger deflections compared to those from proton

primaries.

3.1.3 Detection methods

The flux of UHECRs is too low for direct observations to be feasible. Instead, sec-

ondary detection techniques are used that allow for larger, cost effective detectors. A

cosmic-ray impinging on the Earth’s atmosphere at a sufficiently high energy will cause

a cascade of particles, with hadronic and electromagnetic components of the shower de-

pending on the cosmic-ray primary. These are known as extensive air-showers (EAS),

with the maximum number of particles produced proportional to the total energy of the

shower.

From the 1940s to the current day, progressively larger detectors have been con-

structed to detect cosmic-ray-induced EAS. By the early 1960s events in the UHE

regime had been observed, with the Volcano Ranch experiment detecting a cosmic-

ray with E ∼ 1020 eV in 1962 [12]. Since then a number of cosmic-ray detector

arrays have been constructed, with most experiments based on detection of Cherenkov

radiation produced by air-shower secondaries or on observation of fluorescence light.

The largest of the current generation of detectors is the Pierre-Auger observatory in

Argentina [36] which combines the Cherenkov and fluorescence techniques. Auger
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consists of 1600 water Cherenkov detectors, spaced 1.5 km apart over a ∼ 3000 km2

area. Four fluorescence observatories surround the perimeter of the water Cherenkov

detector footprint, each equipped with 6 optical telescopes to cover a 180◦ field of view.

3.1.4 cosmic-ray-induced radio emission

It has been known for a number of decades that EASs produce radio emission [37].

Although a number of mechanisms contribute to the overall emission, the dominant

effect is that of geosynchrotron emission [38]. As the EM component of the shower

develops, e+e− pairs will be produced, with the number of pairs proportional to the

energy of the shower. These charges will experience a Lorentz force (~F ) caused by

their motion (~v) through the Earth’s magnetic field ( ~B):

~F = ~v × ~B (3.1.3)

The force on e+ will be equal and opposite to that on e−, resulting in the separation and

gyration of charges, giving rise to synchrotron radiation.

Geosynchrotron radiation will be coherent over wavelengths larger than the par-

ticle separation distances (the transverse shower size). For UHECR-induced EASs,

emission will be fully coherent for frequencies below about 100 MHz. However, par-

tial coherence of emission is still maintained in emission at higher frequencies; in fact

some of the earliest observations of UHECR geosynchrotron emission were made at

500 − 550 MHz in the 1960s and 1970s [39, 40]. It is at the lower, coherent, frequen-

cies that modern experimental efforts are being developed. Two European-based arrays

of radio receivers lead the current generation of radio UHECR experiments; LOPES

(operating in a 40 − 80 MHz band [41]) and CODALEMA (operating in an approxi-

mate 1− 100 MHz band [42]).

3.1.5 The GZK effect

Shortly after the Volcano Ranch UHECR observations in the 1960s, Greissen [43] and

Zatsepin and Kuzmin [44] independently proposed that cosmic-rays at energies above

∼ 1019.5 eV would interact with CMB photons via a ∆+ resonance to photo-produce

pions (equation 3.1.4). This so-called GZK effect is expected to limit the path length

of UHECRs to < 100 Mpc and would lead to a noticeable steepening of the cosmic-ray

energy spectrum above 1019.5 eV, known as the GZK cut-off.
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FIG. 3: 〈Xmax〉 and RMS(Xmax) compared with air shower simulations [20] using different hadronic interaction models[21].

ergy. If the properties of hadronic interactions do not
change significantly over less than two orders of magni-
tude in primary energy (< factor 10 in center of mass
energy), this change of ∆D10 =(82+35

−21) g/cm
2/decade

would imply a change in the energy dependence of the
composition around the ankle, supporting the hypothe-
sis of a transition from galactic to extragalactic cosmic
rays in this region.

The 〈Xmax〉 result of this analysis is compared to the
HiRes data [10] in Fig. 2. Both data-sets agree well
within the quoted systematic uncertainties. The χ2/Ndf
of the HiRes data with respect to the broken-line fit de-
scribed above is 20.5/14. This value reduces to 16.8/14
if a relative energy shift of 15% is applied, such as sug-
gested by a comparison of the Auger and HiRes energy
spectra [2].

The shower-to-shower fluctuations, RMS(Xmax), are
obtained by subtracting the detector resolution in
quadrature from the width of the observed Xmax dis-
tributions resulting in a correction of ≤6 g/cm2. As can
be seen in the right panel of Fig. 3, we observe a de-
crease in the fluctuations with energy from about 55 to
26 g/cm2 as the energy increases. Assuming again that
the hadronic interaction properties do not change much
within the observed energy range, these decreasing fluc-
tuations are an independent signature of an increasing
average mass of the primary particles.

For the interpretation of the absolute values of 〈Xmax〉
and RMS(Xmax) a comparison to air shower simulations
is needed. As can be seen in Fig. 3, there are considerable
differences between the results of calculations using dif-
ferent hadronic interaction models. These differences are
not necessarily exhaustive, since the hadronic interaction
models do not cover the full range of possible extrapola-
tions of low energy accelerator data. If, however, these
models provide a realistic description of hadronic inter-
actions at ultra high energies, the comparison of the data
and simulations leads to the same conclusions as above,

namely a gradual increase of the average mass of cosmic
rays with energy up to 59 EeV.
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Figure 3.4: The UHECR flux as measured by Auger. Both Auger and HiRes data [46]

are shown, the “ankle” and UHECR cutoff are both clear at E ∼ 4 × 1018 eV and

E ∼ 3× 1019 eV respectively. Figure from [45].
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If the UHECR composition were shifted to heavier nuclei, the same horizon issue

would exist (albeit with a larger UHECR path length) due to photo-disintegration of

the nuclei (equation 3.1.5). Currently the UHECR composition is a disputed matter

[47, 45], although recent Auger data, shown in figure 3.3, indicates a mass compo-

sition that increases with energy above 1018 eV. Given sufficient energy, the photo-

disintegrated nucleons could still undergo the GZK effect. However, as the average en-

ergy per nucleon is Enucleus/A, where A is nucleon number, a higher average UHECR

mass would result in the GZK cut-off shifting to higher energies. Meanwhile, a cut-

off due to photo-disintegration would be apparent in the UHECR spectrum at a similar

energy to the proton dominated GZK cut-off scenario.

In both proton and heavy nuclei dominated cases, the spectral steepening depends

on the assumption that, at these energies, cosmic-ray sources are extragalactic. Al-

though the most recent Auger data, along with HiRes observations, strongly support an

UHECR flux cutoff at ∼ 1019.5 eV (figure 3.4), the previously mentioned composition

studies suggest that this is due to photo-disintegration rather than an observation of the

GZK effect.4

p(E > 1019.5eV ) + γCMB → ∆+ → π+n/π0p (3.1.4)

A+ γCMB → (A− 1) +N (3.1.5)

3.2 UHE neutrinos
The neutrino provides a potential solution to the horizon issues of γ-rays and cosmic-

rays as astrophysical messengers. Interacting only via the weak nuclear force, neutrinos

should be able to travel distances far beyond the ∼ 100 Mpc of UHECRs.

3.2.1 BZ neutrinos

Regardless of the composition of UHECRs, it is well established that a flux beyond

1020 eV exists, the GZK effect is therefore expected to take place. Beresinsky and

Zatsepin were the first to realise that the pions arising from the GZK process would

produce UHE neutrinos via their decay chain [48], resulting in a ‘guaranteed’ flux of

cosmogenic, or ‘BZ’, neutrinos (equation 3.2.1). The flux of BZ neutrinos is expected

4It is also possible that the observed high energy cut-off is caused by the end of the energy spectrum

that UHECR sources are able to generate.
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to be significant, dominating over other sources in the UHE regime if the UHECR

composition is predominantly protons. Figure 3.5 shows one such prediction of the

UHE neutrino flux.

In the case of a UHECR flux comprising more massive nuclei, photo-

disintegration will also result in UHE neutrinos being generated via neutron decay

(equation 3.2.2). This heavy mass UHECR composition, which is supported by data

from Auger, would significantly reduce the BZ neutrino flux in the UHE regime, as

shown in figure 3.6.

π+ → µ+ + νµ

↪→ e+ + νe + ν̄µ
(3.2.1)

n→ p+ + e− + ν̄e (3.2.2)

Note that the neutrino flux produced via the GZK effect seen in equation 3.2.1 would

consist of a ratio of flavour states νe : νµ : ντ of 1
3

: 2
3

: 0, with both νµ and ν̄µ produced.

Meanwhile, the flux produced via photo-disintegration and neutron decay would give

rise only to ν̄e.

Even with a pure proton UHECR composition, high energy neutrons will be pro-

duced via the GZK process (equation 3.1.4). The BZ neutrino flux is therefore expected

to combine neutrinos from both equations 3.2.1 and 3.2.2.

3.2.2 The Waxman-Bahcall limit

Using the first-order Fermi shock-front production mechanism of UHECR production

within extra-Galactic sources, Waxman and Bahcall postulated a model independent

flux limit on UHE neutrinos produced within these sources [49, 50]. Waxman and

Bahcall argued that to produce the observed UHECR flux, the mean free path of protons

in the source must be low enough to allow the cosmic-rays’ escape. However, some

fraction of the UHECR will photo-pion produce within the source, imparting a fraction

of their energy onto the neutrinos from the resulting pion decay. Using the observed

UHECR flux, it is therefore possible to calculate a limit on the direct neutrino flux from

UHECR sources.

The value of the Waxmax-Bahcall limit is E2
νΦν < 2× 10−8 GeV/cm2 s sr. This

relies on the first-order Fermi acceleration mechanisms being applicable to the energy

range being considered. Waxman and Bahcall note that, in the case of an UHE source
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photoproduction is altered in favor of photoproduction, and

so we make a modest overestimate of the !̄e flux around
1016 eV. At high energies, the sum of !̄e and !e fluxes re-
mains unchanged, but the flavor distribution may be altered.

The source proton luminosity L0 is parametrized as

L0"Ep
s #!P0! "

Emin

Emax

Ep
s
dNp

dEp
s
dEp

s # "1

Ep
s
dNp

dEp
s
, "7#

with dNp /dEp
s given by Eq. "1# and P0 denoting the injec-

tion power per unit volume.

The injection power of cosmic rays with energy above

Emin!10
19 eV can be roughly estimated using the local cos-

mic ray energy density $23%. The cosmic ray flux

dN/(dEd&dAdt) at 10 19 eV is about 2.5

#10"28 cm"2 s"1 sr"1 GeV"1. Assuming that "1# all cos-
mic rays at that energy are extragalactic; "2# 1019 eV cosmic
ray flux is as at injection; and "3# the differential proton

spectrum at injection is a power law with spectral index '
!2, one obtains a cosmic ray energy density

(e!
4)

c
" E

dN

dEd&dAdt
dE "8#

of 1.1#1054 erg/Mpc3 per decade of energy. To calculate the
injection power required to maintain this energy density one

needs to make an assumption about the lifetime *CR of these
cosmic rays. A conservative approach would be to use a life-

time close to the Hubble time. Using *CR!1010 yr gives a
power of 1.1#1044 erg/Mpc3/yr per decade of energy. Of
course, the total power for E$1019 eV depends on the maxi-
mum energy at acceleration.

The correct way of calculating the injection power for a

model of cosmic ray source distribution and injection "accel-
eration# spectra is to propagate the accelerated spectra from
the sources to us and fit the locally observed spectrum. We

do not perform this procedure because it involves assump-

tions on the cosmic ray source distribution and the structure

and strength of the extragalactic magnetic fields which are

beyond the scope of this paper. We use instead the cosmic

ray injection power obtained in a similar, somewhat simpli-

fied way by Waxman $24%, who derived P0!4.5%1.5
#1044 erg/Mpc3/yr between 1019 and 1021 eV for power law
cosmic ray injection spectra with ' between 1.8 and 2.7. We

will use this value of P0 for the energy spectrum of Eq. "1#
integrated between 1019 and 1022 eV. The higher Emax ap-

proximately compensates for the factor of exp("E/Ec) as

compared to Waxman’s result.

Finally, we have to specify the cosmological evolution of

the cosmic ray sources, H(z). We use the parametrization of
Ref. $24%, i.e.

H"z #!$ "1&z #n, z'1.9,

"1&1.9#n, 1.9'z'2.7,

"1&1.9#n exp+"2.7"z #/2.7,, z$2.7,

"9#

where n!3 describes the source evolution up to moderate
redshifts. We also briefly consider a stronger evolution model

with n!4 up to z!1.9 and flat at higher redshifts.
Figure 4 shows electron and muon neutrino fluxes ob-

tained with our nominal choice of astrophysical and cosmo-

logical parameters, and carrying out the integration to a red-

shift of zmax!8. Integrating to infinity increases the neutrino
fluxes by only about 5%.

Figure 4 also shows the limits on neutrino production in

cosmic ray sources derived by Waxman and Bahcall $25,26%
"WB#. As those calculations were carried out for the same
source evolution model, similar spectra, and the same injec-

tion power P0, they serve to compare the expectations for

‘‘source’’ versus ‘‘propagation’’ neutrinos associated with

UHECR’s of astrophysical origin. Our propagation flux is

slightly below the WB limit for the muon neutrino and an-

tineutrino flux for energies between 1018 and 1019 eV. The

differences lie in the assumed neutrino yield per proton. For

their limit, WB assume a maximal thin source, i.e., an energy

equal to that of the injected proton is deposited into neutri-

FIG. 4. Fluxes of electron neutrinos "dashed lines# and an-
tineutrinos "dotted lines# generated in propagation of protons are
shown in the upper panel. The lower panel shows the fluxes of

muon neutrinos and antineutrinos. Solid lines show the sum of neu-

trinos and antineutrinos. The shaded band shows the Waxman and

Bahcall "Refs. $25,26%# limit for neutrino production in cosmic ray
sources with the same injection power. The lower edge of the band

is calculated without accounting for the cosmological evolution and

the upper one with the evolution of Eq. "9#.

RALPH ENGEL, DAVID SECKEL, AND TODOR STANEV PHYSICAL REVIEW D 64 093010

093010-4

Figure 3.5: Fluxes of νe (top) and νµ (bottom) neutrinos predicted by [51]. Neutrino

fluxes are denoted by dashed lines, anti-neutrinos by dotted lines, sum total by solid

lines. The Waxman-Bahcall limit for neutrino production within cosmic-ray sources is

shown by the shaded band in each case. The double peak displayed by the νe spectra

is caused by neutrinos from pion decay (higher energies) and neutron decay (lower

energies).
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The same is not true for neutrinos produced in
neutron decays. As heavy nuclei propagate and
undergo photo-disintegration, both protons and
neutrons are removed and the neutrons decay pro-
ducing neutrinos as described earlier. Thus for
each heavy nucleus, it is possible to generate up
to 3 neutrinos per neutron (A ! Z), e.g. up to 90
neutrinos for each iron nucleus. In practice, many
nuclei do not fully disintegrate, however, and thus
generate fewer neutrinos than might be expected
through this process.

The rate at which heavy nuclei photo-disinte-
grate depends strongly on the density of CIB pho-
tons. Given the large observational uncertainties in
the CIB fluxes, this can lead to ambiguities regard-
ing the propagation of heavy nuclei. In particular,
it is difficult to predict the shape of the propagated
cosmic ray spectrum at Earth for heavy nuclei
primaries with much confidence. This introduces
some uncertainty in the normalization of the
primary spectrum.

As described earlier, the neutrino spectrum in
Fig. 1 is produced by two mechanisms—charged
pion and neutron decay, corresponding to the
higher and lower energy peaks, respectively. For
UHE heavy nuclei to produce neutrinos in the
higher energy peak, the protons created by their
photo-disintegration must have energies above
the GZK cutoff. This requires a nucleus with an
energy of roughly A · 4 · 1019 eV (alternatively, a
Lorentz factor of a few times 1010). For such ener-
getic nuclei, interactions with the CMB, and not
the CIB, dominate [33]. Only at lower energies,
where interactions produce sub-GZK protons,
does the CIB provide the main target.

Thus the neutrino flux populating the higher en-
ergy peak does not depend directly on the assumed
CIB spectrum although there is an indirect effect
because the propagated cosmic ray spectrum has
to be correctly normalized. The lower energy peak
does, however, depend directly on the intensity of
the CIB. Heavy nuclei with energy around
A · 1019 eV or lower begin to photo-disintegrate
due to interactions with CIB photons, producing
neutrons which decay generating neutrinos in the
lower energy peak. However this lower energy
population of neutrinos is considerably more diffi-
cult to detect experimentally due to the much lar-

ger backgrounds. For this reason, we will focus
our attention primarily on the neutrinos generated
in the decay of charged pions and will not be
overly concerned with the debates regarding the
intensity of the CIB. We adopt the spectrum pro-
posed in Ref. [37], which is broadly consistent with
TeV c-ray observations of active galactic nuclei. If
we use instead the compilation of direct measure-
ments of the CIB [38], the neutrino fluxes in both
peaks increase by a factor of "2. Given that some
of these CIB measurements may be contaminated
and thus represent upper bounds to the cosmic
flux, we do not pursue this issue further.

4. Results

The cosmogenic neutrino fluxes for iron, oxy-
gen and helium primaries are shown in Fig. 2,
along with the result for protons for comparison.
The curves have been normalized by matching
the proton plus heavy nuclei flux to the observed
cosmic ray spectrum at 3 · 1019 eV [1]; this ensures
that at higher energies, the energy spectrum at

Fig. 2. The neutrino spectrum produced in the propagation of
the UHE heavy nuclei—4He (green, dashed), 16O (red, dot-
dashed) and 56Fe (blue, dots)—compared to the result for
protons (black, solid line). (For interpretation of the references
in colour in this figure legend, the reader is referred to the web
version of this article.)

14 D. Hooper et al. / Astroparticle Physics 23 (2005) 11–17

Figure 3.6: Expected fluxes of BZ neutrinos for protons (black, solid), 4He (green,

dashed), 16O (red, dotted) and 56Fe (blue, dots). Figure from [52].
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that is optically thick to protons such as the regions close to an AGN core, it would

be possible for the neutrino flux to exceed the Waxman-Bahcall limit. However, they

argue that such sources cannot explain the observed UHECR flux.

3.2.3 Particle physics with UHE neutrinos

Measurements of the UHE neutrino flux (or placing limits on it) will provide evidence

as to whether the GZK effect takes place, as well as providing insight on UHECR accel-

eration mechanisms. UHE neutrino experiments are further motivated from a particle

physics perspective. For instance, the centre of mass energy of a 1019 eV neutrino inter-

action with a non-relativistic proton is ∼ 137 TeV; an order of magnitude higher than

the collision energy at the LHC.

If a flux of UHE neutrinos were established, measurements of flavour composition

could allow for tests of particle physics models of neutrino mixing. While a one- or

two-flavour flux is expected to arise from the two possible production mechanisms

(equations 3.2.2 and 3.2.1 respectively), on observation at Earth the flux is expected to

be maximally mixed (νe : νµ : ντ of close to 1 : 1 : 1). Both the oscillation baseline

(∼100s Mpc) and neutrino energies (EeV − ZeV) being considered are far in excess

of current neutrino oscillation experiments. Such observations would allow for tests of

the current oscillation model, as well as providing a probe of beyond Standard Model

physics, for example Lorentz and CPT violation, which would lead to modifications of

oscillations only detectable at the highest energies and cosmic distances [53].

Finally, measuring the UHE neutrino cross section provides a test for extra-

dimensions. At 1019 eV, the neutrino cross section is expected to be approximately

0.3 × 10−31 cm2, leading to an interaction length of O(100) km in rock [54, 55, 56].

UHE neutrinos will therefore be absorbed by the Earth, allowing for a measurement of

the cross section via analysis of UHE neutrino arrival directions in detectors.

Of course, tests of oscillation parameters, neutrino cross-sections and exotic

physics with UHE neutrinos would require a statistically significant sample of events,

which is currently a far off goal.

3.2.4 Detection of UHE neutrinos

Despite suggestions that there is a ‘guaranteed’ flux of the particles, no detection of

UHE neutrinos have been made to date. A number of experiments designed for this



3.2. UHE neutrinos 38

purpose have been constructed, utilising a range of detection concepts.

cosmic-ray air-shower detectors are sensitive not only to cosmic-ray-induced

EASs, but also those initiated by UHE neutrinos. By assuming any UHE particle other

than a neutrino would interact within the Earth’s atmosphere well before reaching the

Earth’s surface, experiments such as Auger can differentiate neutrinos from other pri-

maries by searching for highly inclined, or very deep, showers. The progenitor particle

will have traversed many more km of atmosphere than would be possible for any pri-

mary other than a neutrino. Auger has produced a limit on UHE ντ [57] by searching

for Earth skimming air-showers (i.e. showers with an inferred direction of development

that is either slightly inclined from below the detector or that points towards nearby

mountain ranges). These showers are a signature of ντ that have interacted in the Earth

via charged–current processes, producing a collinear τ particle that decays in flight,

resulting in an EAS.

Large scale (km3) optical detectors aim to observe the Cherenkov emission of a

secondary lepton from neutrino interactions. The only such detector currently operating

is IceCube, situated at the South Pole [58]. A further experiment, km3Net, is planned

for construction in the Mediterranean [59]. Both IceCube and km3Net are based on or

around smaller concept experiments, with the IceCube array surrounding its predeces-

sor, AMANDA [60], and km3Net intended as the successor to the ANTARES exper-

iment [61]. These experiments primarily search for lower energy cosmic neutrinos in

the TeV–PeV range. In order to remove cosmic-ray-induced µ backgrounds, IceCube

and AMANDA search for neutrinos passing through the Earth (‘up-going’ neutrinos).

Optical Cherenkov experiments are also sensitive to > PeV neutrinos when searching

for above horizon (‘down-going’) neutrinos. However, size constraints severely limit

exposure at Eν > 1018 eV, as the optical attenuation length in ice and water mean that

any significant increase in the volume of optical detectors would require many more

detector modules and, as such, would be prohibitively expensive.

UHE neutrino interactions in sufficiently dense media are expected to cause rapid

thermal expansion that could be detected acoustically. Given a sufficiently large at-

tenuation length, acoustic experiments could be constructed in arrays of many km3.

However, currently only proof-of-concept experiments have been constructed. Acous-

tic detection of neutrinos has been investigated using ice and water as interaction me-
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dia, through the ACoRNE [62], AMADEUS [63], Lake Baikal [64], SAUND [65] and

SPATS [66] experiments.

The most promising detection technique for UHE neutrino detection is that of

coherent radio emission from neutrino-induced shower secondaries, described in the

following section.

3.2.5 Radio detection of UHE neutrinos

Gurgen Askaryan proposed in the 1960s that an ultra high energy neutrino interaction in

a dielectric medium would give rise to coherent Cherenkov radiation in the radio regime

[67, 68]. Consider an UHE neutrino traversing some suitable interaction medium. This

neutrino is able to interact via either charged– or neutral–current processes, both of

which will cause hadronic showers through nuclear recoil which, in turn, will give rise

to an EM particle shower. In the case of a νie− interaction, the interacting electron

will also initiate an EM shower. Over the development of this EM cascade, a charge

imbalance will develop. Electrons will be up-scattered into the shower via the inverse

Compton effect, while positrons annihilate out of the shower. Askaryan predicted that

the total charge imbalance of the shower would be around 20%.

This EM shower will have a transverse dimension that is characterised by the

Moliére radius, RM , that is dependent on the interaction medium:

RM = X021.MeV/Ec (3.2.3)

Where X0 is the radiation length5 and Ec is the critical energy6 of the interaction

medium. For ice, X0 ∼ 40 cm and Ec ∼ 56 MeV, leading to RM = O(10) cm.

The shower will develop over several metres within the ice, though the instanta-

neous longitudinal dimension of the particle bunch (that is, the dimension along the

shower axis) will be O(1) cm. The total energy, Wtot, produced by a single-charged

particle emitting Cherenkov radiation in a frequency range νmin − νmax over a track

length L is:
5The radiation length is the length over which a particle will lose all but 1/e of its energy.
6The critical energy is the energy at which an electron’s rate of energy loss due to ionisation is equal

to the rate of energy loss due to bremsstrahlung radiation. Ionisation interactions do not create any new

particles, while bremsstrahlung energy losses result in a photon, which may proceed to pair produce,

thus adding to the total number of particles in the shower. Therefore, at E < Ec, particles will not be

added to the shower.
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interference over the width of the shower only (lateral decoher-
ence) determines the spectral shape when the shower is viewed
near hC , while far from hC , interference over the shower length
(longitudinal decoherence) dominates [16]. The radiated spectrum
~EðmÞ can then be described as a fully coherent amplitude A –
increasing linearly with frequency – multiplied by lateral and lon-
gitudinal decoherence factors dR and dL, defined such that dR;L 6 1
with dR;L ! 1 as m! 0. Also, dL # 1 at the Cherenkov angle h ¼ hC .
In general, A; dL and dR will be dependent upon the shower energy
E0, frequency m, and viewing angle h with respect to the shower
axis, leading us to the following functional form:

rj~EðE0; h; mÞj ¼ AðE0; h; mÞ % dLðE0; h; mÞ % dRðE0; h; mÞ ð5Þ

where r is the (far-field) observation distance. In this paper, we al-
ways include both decoherence terms, although only for a small
range of angles will both be relevant at the same time. We use
the forms of Alvarez-Muñiz et al. [16] – given in Eq. (6) – for the
decoherence factors, which have been shown to provide a good fit
to the spectrum for showers with primary energies below ELPM:

dR½L' ¼
1

1þ ðm=mR½L'Þ
!a½ !b'

: ð6Þ

Here, mR and mL are characteristic frequencies at which lateral and
longitudinal decoherence become important, while !a and !b give
the strength of the decoherence. The frequencies mL and mR will be
inversely proportional to the time delays dtL and dtR, which are in
turn functions of L and R. The amplitude A of the fully coherent

(low-frequency) component will be proportional to the total excess
tracklength T. The proportionalities of L;R, and T with properties of
the interaction medium are well-established theoretical results
[17,20,29,30]. We use the formalism of Alvarez-Muñiz et al. [16]:

mLðhÞ )
c
L

1
j1* n cos hj

¼ q
!kLX0

c
j1* n cos hj

ð7Þ

mRðh ¼ hCÞ )
c=n
R

¼ q
!kRRM

cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 * 1

p ð8Þ

AðE0; h; mÞ ¼ !kEmT sin h ) !kE
E0

EC

X0

q m sin h ð9Þ

where the medium properties X0; n;q;RM and EC are respectively
the radiation length (g cm*2), refractive index, density (g cm*3),
Moliere radius (g cm*2), and critical energy (MeV). !kL; !kR, and !kE
are proportionality constants. Throughout, we use the approxima-
tion mRðhÞ ¼ mRðhCÞ, since lateral decoherence is only important near
the Cherenkov angle. Simulations by Alvarez-Muñiz et al. [16] in
ice, salt, and the regolith have shown that variation in !kL and !kR be-
tween these media for showers at sub-LPM energies is of the order
of 10%, while for !kE it is of order 30%. Also, and as we have previ-
ously mentioned, L is dependent upon the shower energy E0, so that
the ‘‘constant” !kL is in fact energy-dependent. For sufficiently low-
energy showers, the dependence of L on E0 is small, while at ener-
gies where LPM-elongation is significant (typically for E0 J ELPM), L
increases rapidly with E0 [27,29,31,32]. Thus we expect !kL to be fit
well by the following relation:

10-9

10-8

10-7

10-6

10-5

10-4

100 101 102 103 104

r |
E(

θ,
ν)

|  
[V

 M
H

z-1
]

Frequency ν  [MHz]

ice θc

salt θc

ice (θc-10o)

salt (θc-10o)

Full simulation

Thinned simulation

Fig. 3. Frequency distributions of coherent Cherenkov radiation calculated for electron-induced showers in ice and salt at 100 TeV primary energy at the Cherenkov angle ðhcÞ
and at 10! away from the Cherenkov angle. Solid line: full simulations; dashed line: thinned simulation with optimal parameters fL ¼ 10 and Emin ¼ 100 MeV as given by Eq.
(4).
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Figure 3.7: Askaryan emission from two simulations for a 100 TeV primary neutrino

interacting in either ice or salt. As the angle of observation moves away from the

Cherenkov angle, both the amplitude of the electric field and the high frequency cut-off

decrease. Figure from [69].

Wtot =
παh

c

(
1− 1

n2β2

)
L
(
ν2
max − ν2

min

)
(3.2.4)

Where α ∼ 1/137 is the fine structure constant, h is Planck’s constant, c is the speed

of light, n is the index of refraction of the medium and β is the particle’s velocity in

terms of c. At wavelengths larger than the transverse shower size, Cherenkov radiation

emitted by particles in the shower will become coherent in nature. Once in the coherent

regime, the power of the Cherenkov emission from a shower scales as P ∝ N2, or

equivalently Wtot ∝ N2, where N is the number of super-luminal charges. Figure 3.7

shows the expected frequency spectrum for Askaryan radiation in ice and salt.

The Askaryan effect was experimentally confirmed at SLAC in 2001 by sending

picosecond pulses of GeV photons into a sand target, resulting in EM showers that

developed over a number of metres [70]. This initial measurement was followed by
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a comparable measurement using salt [71]. A further measurement was conducted

using an ice target and picosecond bunches of GeV electrons [72]. Figure 3.8 shows

the dependence of emission strength on frequency and shower energy from the ice-

target experiment. This last observation of the Askaryan effect was conducted using

the ANITA payload as the experimental radio detector.

Figure 3.9 demonstrates that the Askaryan emission measurements made by

[70, 71, 72] are consistent with a bimodal signal that is sub-ns in duration. However, the

expected signal arising from an UHE neutrino-induced cascade may differ significantly

from those caused by bunches of lower energy particles due to an expected longer longi-

tudinal shower profile. With bremsstrahlung and pair production interaction distances

on a comparable scale to the inter-atomic spacing of the media in which the shower

develops, the Landau-Pomeranchuk-Migdal (LPM) effect [73, 74, 75] can result in an

increase of mean free path of photons and electrons in an UHE-induced shower. This,

in turn, increases the longitudinal length of a shower and resulting Askaryan signals ap-

pear less impulsive in nature, with higher energy primaries leading to longer duration

signals [76].

A number of experiments were beginning to utilise radio techniques in UHE neu-

trino searches around the same time as the initial experimental confirmations of the

Askaryan effect. The FORTE satellite was launched in 1997 with the intention of test-

ing nuclear detonation detection. Data from FORTE has also been used to set a limit

on the UHE neutrino flux using radio observations of the Greenland ice-sheet over a

30-300MHz bandwidth [77].

The Goldstone Lunar UHE Neutrino Experiment (GLUE) made use of the

JPL/NASA Deep Space Network antennas at Goldstone, California, to observe the lu-

nar regolith for signs of Askaryan radiation [78]. The experiment searched for radio

pulses from the moon that were ≤ 10 ns in duration, requiring coincidence in observa-

tions between two antennas, separated by 22 km, to reject backgrounds.

The Radio Ice Cherenkov Experiment (RICE) is an embedded experiment at the

South Pole [79] that searches for Askaryan emission from neutrino interactions in the

ice surrounding the detector. RICE consists of 18 radio receivers operating in a fre-

quency range of 100 MHz – 1 GHz. The antennas are deployed in a 800 m3 cube-

shaped volume, at a depth of 100−300 m. RICE is situated 600 m above the AMANDA



3.2. UHE neutrinos 42
3

!20 !15 !10 !5 0 5 10 15 20 25 30

!3

!2

!1

0

1

2

time, ns

re
fe

re
n
c
e
 v

o
lt
s

 

 

!20 !15 !10 !5 0 5 10 15 20 25 30

!60

!40

!20

0

20

40

time, ns

fi
e
ld

 s
tr

e
n
g
th

, 
V

/m
/M

H
z

 

 

raw RF Cherenkov

partially deconvolved

raw impulse response

partially deconvolved

FIG. 3: Top: Raw, and partially-deconvolved impulse response of

the ANITA receiver system. Bottom: Pulse received during the T486

experiment in an upper-ring antenna near the peak of the Cherenkov

cone, also showing the raw pulse, and partially partially-deconvolved

response. The apparent “ringing” artifact of the raw impulses is due

to group delay variation of the passband edges of the bandpass filters

employed.

The ice was contained in a 10 cm thick insulating foam-lined

box, and a 10 cm foam lid was used during operation, along

with a freezer unit, to maintain temperatures of between -5

to -20 C. Such temperatures are adequate to avoid significant

RF absorption over the several m pathlengths of the radiation

through the ice [9].

The ANITA payload, consisting of an array of 32 dual-

polarization quad-ridged horn antennas was used to receive

the emission at a location about 15 m away from the center of

the target, as shown in Fig. 2. The antenna frequency range

is from 200-1200 MHz, which covers the majority of the fre-

quency range over which the RF transmissivity of ice is at its

highest [9]. Eight additional vertically polarized broadband

monitor antennas (four bicones and four discones) are used

to complement the suite of horn antennas. The ANITA horn

antennas are arranged so that adjacent antennas in both the

lower and upper payload sections respond well even to a sig-

nal directed along their nearest neighbors’ boresights. This

allows multiple antennas (typically 4 to 6 horns and 3 to 4 of

the bicone/discones) to sample the arriving wavefront. The

signals are digitized by custom compact-PCI-based 8-channel

digitizer modules [22], 9 of which are used to record all 72

antenna signals simultaneously at 2.6 Gsamples/sec.

Figure 3 shows an example of the impulse response of the

system (top), and one of the measured waveforms near the

peak of the Cherenkov cone. The apparent “ringing” of the re-

ceiving system is due to the group delay of the edge response

of the bandpass filters, but most of the energy arrives within a

fraction of a nanosecond, as determined in previous measure-

ments of the Askaryan effect [7]. In the measured T486 wave-

form of Fig. 3 (bottom), later-time reflections from shielding

and railing near the target, as well as the payload structure,

introduce some additional power into the pulse tail.

FIG. 4: Left: Field strength vs. frequency of radio Cherenkov radia-

tion in the T486 experiment. The curve is the theoretical expectation

for a shower in ice at this energy. Right: Quadratic dependence of

the pulse power of the radiation detected in T486, indicating the co-

herence of the Cherenkov emission.

In Figure 4 (left) we display measurements of the abso-

lute field strength in several different antennas, both upper

and lower quad-ridged horns, bicone, and discone antennas.

The discone and bicone antennas have a nearly omnidirec-

tional response and complement the highly directive horns

by providing pulse-phase interferometry. The uncertainty in

these data are dominated by systematic, rather than statistical

errors, and are about ±40% in field strength (±3 dB). These
are dominated by a combination of the 1-2dB uncertainty in

the gain calibration of the antennas, and by comparable un-

certainties in removing secondary reflections from the mea-

sured impulse power. The field strengths are compared to a

parameterization based on shower+electrodynamics simula-

tions for ice [10, 11], and the agreement is well within our

experimental errors. Figure 4(right) shows results of the scal-

ing of the pulse power with shower energy. The dependence is

completely consistent with quadratic scaling over the energy

range we probed, indicating that the radiation is coherent over

the 200-1200 MHz frequency window.

Figure 5 shows the measured and predicted angular depen-

dence of the radiation. The Cherenkov cone refracts into the

forward direction out of the ice, and is clearly delineated by

the data. Here we show statistical+systematic errors within

a measurement run; the overall normalization (with separate

systematic error) is taken from Fig. 4. We scale these data

within the overall systematic errors to match the peak of the

field strength. The radiation frequency limit where full coher-

ence obtains is given approximately by the requirement that

kL ! 1, where the wavenumber k = 2!n"/c for frequency

Figure 3.8: Left: Askaryan pulse field strength as measured in ice as a function of

frequency. Right: Demonstration of the quadratic dependence of emission strength on

shower energy. Figure from [72].

largest antenna dimension, ! angle of incidence with re-
spect to the normal (broadside) of the antenna, and f is the
highest frequency for which far-field conditions are met.
For the antenna as a receiving component, with R !
38 cm, L ! 20 cm, and ! ! 25" at the Čerenkov angle
the antenna far-field conditions are satisfied for frequencies
below 2 GHz, the highest usable frequency for the bowtie
antennas.

While the shower is in the far-field of the antenna, the
converse is not the case, since the radiation develops over a
region comparable in size to the entire shower with a length
of about 80 cm for full-width-at-half-maximum near the
peak of cascade particle development. In practice this
means that while the far-field antenna beam patterns may
be used to determine the bowtie amplitude response with
angle, they receive radiation only from approximately that
portion of the shower that is projected onto the antenna
effective area at the Čerenkov angle (about 66"). This
behavior was observed in Ref. [18], and provides the
possibility of tracing out the longitudinal charge evolution
of the shower by measuring the change in radiation ampli-
tude along the shower axis, as was done in Ref. [18] (see

also Fig. 14 below). In determining the absolute field
strength one must therefore account for the fact that the
shower is effectively resolved into these individual
sections.

Figure 10 (top) shows a plot of the summed field
strengths from all of the bowtie antennas, corrected for
known cable attenuation but not for other frequency de-
pendent effects. The pulse shape is typical of the impulse
response for bowtie antennas, and no attempt at deconvo-
lution of the intrinsic pulse has been made for these anten-
nas, since the exact phase vs.. frequency was not known. In
the bottom portion of the figure, a Fourier amplitude
spectrum of the field strength is shown, including now
corrections for the gain of the bowtie antennas, which
can be done independent of the phase uncertainty. The
solid histogram shows the power spectrum of the pulse,
and the points are averages over 250 MHz sections of the
spectrum, with the error bars based on the spectral variance
within each section. It is evident that there are some near-
nulls in the bowtie response, but the overall trend is for a
rise at the higher frequencies, consistent with Čerenkov
radiation.

In Fig. 11 (top), we show the results of deconvolution of
the data obtained using the full bandwidth (0.8–18 GHz) of
the log-periodic dipole array antenna. Here we have cor-
rected for the measured amplitude and phase response of
both the antenna and cable. The nearly antisymmetric

FIG. 10 (color online). Top: Summed-in-phase pulse profile
from all bowtie antennas, with only cable attenuation amplitude
corrections applied. Antenna angular response corrections are
not applied here due to unknown phase corrections. The antenna
is also in the near-field of the shower, and thus only receives a
portion of the total shower radiation. Bottom: Power spectrum of
the bowtie data, corrected for cable attenuation as in the time
domain case above, and also amplitude-corrected for antenna
angular response. No correction is applied here for the near-field
effects of the shower. Points are averages over 250 MHz portions
of the spectrum, with standard errors from the bin variance.

−2 −1 0 1 2 3 4 5 6

−100

−50

0

50

100

150

time, ns

E
 (

V
/m

) 
at

 1
 m

1000 10000

−2

−1.5

−1

−0.5

0

frequency, MHz

lo
g 10

(E
⋅ν

 /8
00

),
 V

/m
/M

H
z 

at
 1

 m
 

lo
g 1

0
ν

 (
   

E
) 

V
/m

/M
H

z 
at

 1
m

FIG. 11 (color online). Top: The intrinsic Askaryan pulse
shape derived for the frequency range from 0.8 to 12 GHz, based
on deconvolution of the LPDA data. The full-width at half-
maximum of the initial pulse is about 60 ps. Bottom: Electric-
field amplitude spectrum of the deconvolved pulse shown in the
top pane, multiplied by frequency " which accounts for first-
order near-field effects. Horizontal bars indicate the range of the
frequency bins used; vertical bars indicate the standard deviation
of the spectral data within a bin. The curve shows a comparison
to a standard model for the spectrum [22–24].
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Figure 3.9: Askaryan pulse field strength as measured in salt. Figure from [71].
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optical neutrino telescope.

The exposure of each of the mentioned experiments is limited in some manner,

through exposure time (GLUE), observable ice volume (RICE) or detector sensitivity

(FORTE). As a result, none of the experiments has been able to place limits on the

neutrino flux that are able to constrain non-exotic flux models. The ANITA experiment

is ideally placed to improve significantly on the limits of each of the three experiments,

covering the energy range of all three by combining dedicated sensitive observations

with a vast interaction volume. In the future, the Askaryan Radio Array (ARA) will

provide a radio extension to the IceCube experiment [80], with the potential to improve

on the sensitivity of ANITA.
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Chapter 4

The Antarctic Impulsive Transient

Antenna

The ANtarctic Impulsive Transient Antenna (ANITA) was conceived to be the most

sensitive instrument for the detection of UHE neutrinos (Eν > 1018 eV) to date. A

balloon-borne array of radio antennas, ANITA observes the Antarctic ice sheet and

searches for the impulsive radio emission expected to arise when an UHE neutrino

interacts in the ice.

Figure 4.1 gives a schematic view of the ANITA concept. A neutrino interacting

in the ice will give rise to coherent Cherenkov radio emission. For certain shower di-

rections, some of this emission may pass through the ice-air boundary, and be observed

by ANITA. The signature of this emission will be a short duration (impulsive) signal.

Antarctica provides an ideal environment for the ANITA experiment, with a vast

volume of radio transparent interaction material and relatively few sources of radio

frequency (RF) backgrounds. Long duration balloon (LDB) flights have typical alti-

tudes of 36 km. The resulting horizon distances of up to 700 km provide ANITA with

∼ 1.5× 106 km2 of viewable Antarctic ice at any one time. With attenuation lengths at

radio frequencies in Antarctic ice measured at O(1000) m [81], this means that ANITA

observes an interaction volume of > 106 km3.

The ANITA experiment has completed two science flights, with some modifica-

tions made between the first and second flight. Where there are differences between the

two flights, the terms ANITA-1 and ANITA-2 will be used to remove ambiguity, where

ANITA appears, it refers to features present in both flights. A detailed description of

the ANITA-1 instrument appears in [82].
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Figure 4.1: The ANITA detection concept; Earth-skimming neutrinos interact in the

Antarctica ice sheet producing downward-pointing (in the instrument’s reference view)

vertically polarised event signatures, while extensive air showers result in horizontally

polarised signals, with observations of either direct or reflected emission possible.

4.1 Results from ANITA-1

The analysis of ANITA-1 data returned 16 candidate EAS geosynchrotron events [83].

Figure 4.2 shows the results of an analysis that compared the observed radio emis-

sion polarisation with the inclination of the magnetic field at the projected location of

the shower maximum. The correlation observed between these two parameters con-

firmed that the radio emission observed did arise from UHECR interactions. Current

understanding of geosynchrotron emission and air-shower dynamics results in larger

uncertainties in the calculation of primary UHECR energy from ANITA data compared

with data from fluorescence and optical Cherenkov experiments such as Auger and

HiRes. However, best estimates of the energy of the 16 isolated events observed by

ANITA place the energy of each of the primary cosmic-rays at ECR > 1018 eV. This

represents a significant advance in the sample of UHECR events observed through ra-

dio techniques and demonstrates a promising avenue of research for a possible future

ANITA flight.

ANITA-1 observed no statistical evidence of emission arising from UHE neutrino

interactions. Results from the first flight placed a limit on cosmic neutrino flux [83, 85],

shown in figure 4.3. This limit was the most stringent in its energy range, until analysis
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Figure 4.2: UHECR identified events from ANITA-1. Left: measured vs. expected

Vpeak−peak in the vertical polarisation, right: measured event polarisation vs. ~B-Field

inclination at the projected UHECR interaction location. Note that the green lines are

expected values, not fits. Figure from [84].

of data from the second flight further constrained the flux [86, 87].

4.2 Experiment overview
Figure 4.4 shows the ANITA-2 payload prior to flight. ANITA-2 detects RF signals

with an omni-directional array of 40 dual-polarised antennas. The instrument’s systems

are optimised to operate over a 200 − 1200 MHz band. The instrument is designed to

detect electric fields of O(1 mV/m), meaning the introduction of thermal noise must

be minimised.

4.2.1 Expected signals

UHE neutrinos

As described in section 3.2.5, UHE neutrino interactions are expected to give rise to ra-

dio emission that is brief in duration (O(1 ns)) and broadband in nature. Although UHE

neutrinos are expected to traverse distances � 103 Mpc of the intergalactic medium

(IGM) uninterrupted, the Earth is expected to be opaque to them. Extrapolated Stan-

dard Model neutrino cross-sections scale with energy, such that at Eν ≥ EeV neutrino

interaction lengths are expected to be O(100) km water-equivalent [55, 93]. The result

of this interaction length is that any ‘up-going’ neutrino (impinging on the opposite
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FIG. 2: Left: Plot of all reconstructed events, in both horizontal and vertical polarization; major Antarctic stations are indicated on the map.

Right: events remaining after cuts to remove anthropogenic interference. 6 events remain in the horizontally polarized group, but these are

non-candidates for neutrino events, as discussed in the text.

randomly into the data stream, and the final energy-averaged

efficiency of all cuts is estimated to be 81%.

In Figure 2 we show the before-and-after maps of recon-

structed ANITA-1 events superposed on the Antarctic conti-

nent. The strong correlation to a small number of stations is

evident. The 6 surviving Hpol events are by contrast widely

distributed across the continent, with no known camps or

bases, either current or former, anywhere in their locale. We

have investigated the possibility of impulsive signals from

earth-orbiting satellites seen in reflection off the ice surface

as a source for these events. This hypothesis is ruled out be-

cause the waveforms for these events do not show any evi-

dence of differential group delay from ionospheric dispersion

which is several ns per MHz in the 200-400 MHz frequency

range where these events have most of their spectral power. In

fact the signals are all of durations less than 10 ns. We know

of no other anthropogenic sources for these events.

With regard to possible physics sources, our simulations

of the high-frequency tail of impulsive geo-synchrotron ra-

dio emission [13, 14, 15] from ultra-high energy cosmic ray

extensive air showers (EAS) suggest that these signals may

be EAS events seen in reflection off the ice surface [9]. Such

events are expected to be predominantly Hpol because of the

strong Fresnel reflectivity in the region near Brewster’s an-

gle, and the overall initial preference for Hpol because of the

more vertical polar magnetic fields. Our simulations predict a

handful of such events for the flight, all of which arise from

UHECR EAS with energies above 1019 eV; however, the un-

certainties are large [9]. While these events do not constitute

a background for our neutrino search because of their incor-

rect polarization, they are a potentially interesting signal in

their own right. Further analysis, including a search for simi-

lar events from above the horizon, is in progress.

FIG. 3: ANITA-1 limits based on no surviving candidates for 18

days of livetime. Other limits are from AMANDA [16], RICE [17],

ANITA-lite [8], Auger [18], HiRes [20], FORTE [19]. The BZ

(GZK) neutrino model range is determined by a variety of mod-

els [11, 21, 23, 25, 26, 27, 29].

Based on the approach described in Refs. [19, 24], the re-

sulting model-independent 90% CL limit on neutrino fluxes

with Standard Model cross-sections [22] is shown in Fig. 3.

Here we have included the net livetime and 81% analysis ef-

ficiency. Exclusion of the volume of ice near all camps and

events reduces the net effective volume by a few percent. We

Figure 4.3: Limit on the UHEν flux from the first flight of ANITA. Other limits are

plotted for AMANDA [88], ANITA-lite [89], Auger [90], FORTE [77], HiRes [91] &

RICE [92]. Figure from [83].
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Figure 4.4: The ANITA-2 payload suspended from the launch vehicle prior to flight.
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(a) (b)

Figure 4.5: (a): Schematic of Askaryan radiation from a neutrino interacting in the ice,

with the top portion of the Cherenkov cone escaping the ice. (b): The top portion of the

Cherenkov cone that escapes the ice will be predominantly vertically polarised.

side of the Earth, but traveling towards a detector) will be absorbed well before it is

able to be detected. Meanwhile, the majority of ‘down-going’ interacting neutrinos

will emit radiation away from the instrument.1 ANITA is therefore optimally sensitive

to ‘Earth-skimming’ neutrinos that are incident at highly inclined angles with respect

to the Earth’s local zenith angle.

The Cherenkov emission angle is given by cos(θC) = 1
nβ

, where n is the refrac-

tive index of the medium and β is the particle velocity in terms of the speed of light.

For Antarctic ice (nice ∼ 1.758 in the RF regime) this gives θC ∼ 55.8◦. For Earth-

skimming showers, only the top portion of the resultant Cherenkov emission cone will

be incident on the ice-air boundary at angles below the critical angle. Figure 4.5 shows

that neutrino-induced Askaryan emission observable by ANITA will therefore be pre-

dominantly vertically polarised.

Cosmic-Rays

As discussed in section 3.1.4, ANITA-1 observed a number of UHE cosmic-rays (UHE-

CRs) through geosynchrotron emission. When an UHECR is incident on the Earth’s

atmosphere it will interact, the resulting extensive air-showers (EASs) will develop

1There is the possibility that interactions of some down-going neutrinos may be observable by ANITA

through reflected signals, particularly if the interactions take place within one of the two large ice-shelfs

in Antarctica where the coefficient of reflection from the ice-sea-water boundary is very high and the ice

thickness is < 1 km [94].
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over kilometre scales. A Lorentz force, caused by the Earth’s magnetic field, results in

the separation and gyration of electrons and positrons which then produce radio emis-

sion (geosynchrotron). This emission at very southerly latitudes will be predominantly

horizontally polarised, due to the local magnetic field orientation.

The ANITA-1 observations showed that ANITA is able to detect both direct and

reflected UHECR geosynchrotron emission, as displayed in figure 4.1. UHECRs will

interact below the altitude at which ANITA flies. For emission to be observed directly,

the EAS must develop in a manner that the emission never reaches the ground, leading

to an angular acceptance of∼ 1◦. Meanwhile, reflected events have no such constraint.

The aperture for reflected events is therefore significantly greater than that for direct

events.

4.2.2 Design Obstacles

A number of compromises, discussed throughout this chapter, were necessary for

ANITA to meet dimension, weight, budget and power constraints. To utilise the max-

imum volume of observable ice, ANITA required full azimuthal coverage, along with

maximal coverage over the zenith angles in which the Antarctic ice-sheet is in view.

However, size constraints were placed on the total detector size by the balloon launch-

ing process; the antenna array had to fit within a diameter of < 10 m, while the total

height of the instrument was limited to a similar size.

ANITA must be able to record radio waveform data for every event it records

to allow analysis of events to reconstruct the source locations of radio emission. This

waveform data must be digitised for storage during flight. However, power and memory

limitations meant that commercially available digitising chips were not viable at the

time of ANITA’s design, therefore the ANITA data acquisition hardware was based on a

specifically designed application-specific integrated circuit (ASIC) known as the Large

Analogue Bandwidth Recorder And Digitizer with Ordered Readout (LABRADOR)

chip [95].

4.2.3 Gondola Design and Power Systems

The structure of the ANITA-2 payload, whose dimensions were at the limit imposed

by the Columbia Scientific Balloon Facility (CSBF) Long Duration Balloon (LDB)

constraints, was designed to be both lightweight and easily constructed and dismantled
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to facilitate ease of transportation. The gondola itself (figure 4.4) was made of hollow

aircraft-grade aluminium alloy tubing connected via a range of joints, with no single

part larger than a couple of metres in length.

Power was provided by an omnidirectional array of photovoltaic (PV) cells. The

PV cell outputs led into a charge controller, which distributed power to the payload at

a steady 24-V, with DC-DC converters implemented to provide the range of voltages

(+5 V,+12 V,−12 V,+3.3 V,+1.5 V) required by the various ANITA-2 systems.

A farm of lead-acid batteries, housed on the payload deck, were also connected to

the charge controller. The charge controller allowed ANITA-2’s subsystems to draw

additional power from the battery farm when required, or, in times of high power output

from the PV cells, allowed the battery farm to recharge with the excess power being

produced.

4.2.4 CSBF support

All CSBF LDB flights carry a science instrumentation package (SIP) that is powered

and operated independently from the experiment hardware being flown. The SIP is

used for all telemetry and flight control (e.g. ballast control and flight termination),

as well as providing separate navigational information from that used by the scientific

instrument.

The SIP was situated on the main deck of ANITA-2, on the opposite side of the

payload to the ANITA instrument box. As it is vital that local electromagnetic inter-

ference (EMI) is kept at the minimum achievable level, the CSBF SIP was placed in

Faraday housing, as with all other ANITA electronics.

The telemetry link served two vital purposes during operation. The first was a

data-linkup, with line-of-sight (LoS) transmission used when available and Tracking

and Data Relay Satellite System (TDRSS) at other times. This data-link allowed for

monitoring of instrument health (temperatures, battery health etc), as well as provid-

ing the ANITA collaboration with access to a small sample of data shortly after it

was taken. The data linkup bandwidth was significantly smaller than ANITA’s data-

acquisition rate, with LoS and TDRSS providing maximum rates of 300 kbs and 6 kbs

respectively (a compressed and stored ANITA-2 event is ∼ 30 kB and trigger rates

during flight were typically 10 Hz). It was therefore impossible to transmit more than
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a small percentage of data, a prioritisation system ensured that the most scientifically

interesting events, along with a small minimum bias sample, were relayed to ground. In

the event of a failure in flight that rendered the payload unretrievable, the prioritisation

system should have ensured that any neutrino candidates were already stored on the

ground (see section 4.5).

The second service provided to science missions by the CSBF telemetry package

is the ability to send basic commands to the payload during flight (via LoS, TDRSS

and IRIDIUM satellite systems). This commanding was used, for example, to provide

or deny power to certain system and in the setting of trigger thresholds. Aside from

periods when the payload was within LoS, the availability of commanding was limited

to brief periods once per hour.

4.2.5 Position and orientation information

A mission critical requirement of the ANITA experiment was the access to accurate

payload position and orientation information for each event taken during flight. For

data analysis to successfully distinguish isolated (candidate physics) events from an-

thropogenic events, the orientation data must be accurate to sub-degree levels and ide-

ally have no effect on the overall angular resolution of the experiment. ANITA-2 tack-

led this issue by carrying a suite of GPS antennas, with redundant back-up systems also

flown.

Two square GPS antenna arrays, each consisting of four Magellan ADU5 GPS

antennas, were situated at the top of the gondola. These provided heading information

accurate to < 0.2◦ and pitch and roll information accurate to < 0.5◦ [96] (in practice,

static pitch and roll values were used). A Thales G12 GPS antenna was also flown,

also placed at the top of the gondola. The CSBF support package contained further

GPS systems, with their data stored in the SIP and not recorded by ANITA-2. Four

sun-sensors, a magnetometer and an accelerometer on the main ANITA-2 deck, with a

further accelerometer at the top of the payload, provided back-up to GPS systems. Data

from these systems and the CSBF data proved useful, as ANITA-2 experienced a loss

of GPS information for ∼ 5% of its flight.

Further to providing position and orientation information, both the G12 and ADU5

GPS systems were used for pulse-per-second (PPS) triggering of ANITA-2. The PPS
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RF Power Monitoring and Calibration Constants for Flight
McMurdo Calibration Test Results

K. Belov, A. Goodhue, P. Gorham, M. Mottram, R. Nichol, A. Romero-Wolf and G. Varner

in McMurdo (Willy Field) – Payload Bay 2, LDB
—–

December 11, 2008

During flight a useful average measure of the EMI environment is the RF power measured in each
antenna and polarization channel. Using 3 calibration temperatures: 50Ω input termination (room
temperature) and noise sources of 5.15dB, 15.2dB; and measured gains and noise figures for all RF
channels, a set of calibration constants are determined.

I. INTRODUCTION

Analysis of the RF power observed on a channel-by-
channel basis is possible using the waveform data [1].
However the very small subset of instantaneous live-
time observed (∼ 5 × 10−5) by this method, bias due
to being dominantly triggered events, as well as the
processing power required to obtain a meaningful av-
erage power number, led to the adoption [2] of loga-
rithmic amplifiers and slow digitization as part of the
“housekeeping” data recorded from each SURF. In or-
der make meaningful use of this data during flight,
a reasonable set of calibration constants needs to be
provided.

II. RF POWER DETECTION

Fig. 1 sketches the ANITA instrument configura-
tion of 160 channels of RF trigger and 80 channels of
RF waveform recording. Each RF channel has a 13dB
coupler [3] at the input to the SURF card to pick off
a small fraction of the RF signal. An RF logarith-
mic amplifier [4] is used to convert this monitored RF
signal into a voltage proportional to the instanteous
RF power. The voltage values are round-robin analog
multiplexed and digitized to 12 bits resolution by a
common ADC on each SURF, where a new value is
available roughly every 30ms. These values are then
available as part of the SURF housekeeping data [5].
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FIG. 1: ANITA-2 RF recording system layout shown
schematically.

III. REFERENCE INPUT SIGNALS

Baseline “300 Kelvin” measurements for each chan-
nel were measured with 50Ω terminators attached. To
lessen sensitivity to temperature drifts with ambient
changes of temperature in payload bay 2, runs just
before the noise calibration runs were used.

Two “hot” values were measured using a “5dB”
and a “15dB” noise source. The former is an Agilent
346A (S/N MY44420911) and the latter is a Micro-
netics Wireless (S/N 10965 0418) noise source, with
manufacturer provided calibration numbers plotted in
Fig. 2.
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FIG. 2: Noise source calibration values versus frequency,
as provided by the manufacturers.

Based upon these reported calibration tag values,
for the “5dB” noise value, a band-averaged value of

NS[dB]Agilent = 5.15 dB (1)

was adopted, and for the “15dB” noise source, a
corresponding value of

NS[dB]Micronetics = 15.2 dB (2)

was estimated.
Figure 4.6: The ANITA-2 signal chain. Figure from [97].

signals were used to synchronise triggers with signals from two calibration transmission

systems based at Williams Field (see section 4.6.1). PPS was also used to generate a

minimum bias data sample. The G12 antenna also provided timing information for the

ANITA-2 flight computer’s network time protocol (NTP) internal clock.

4.3 Radio frequency signal chain
Radio frequency (RF) signals observed by each of ANITA-2’s eighty channels were

filtered, amplified and digitised before being stored on board during flight as uncal-

ibrated ADC counts. A summary of the RF signal path, from front-end antennas

through to digitisation and storage is shown in figure 4.6. Electric fields at the pay-

load O(0.1) mV/m were detectable by ANITA-2, as a result of efforts to minimise

thermal noise introduction in the signal chain.

4.3.1 Front end antennas

ANITA-2 used 40 custom designed Seavey Engineering Inc. quad ridge horn antennas.

The antennas were arranged over three physical ‘rings’: upper (two sub-layers, eight

antennas in each), lower (16 antennas in one layer) and nadir (eight antennas in one

layer). The face of each antenna was 0.8 m and two perpendicular feeds at the base

of the antennas allowed them to operate in two linear polarisations, with ANITA-2
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recording data from all antennas in both horizontal and vertical polarisations (H- and

VPOL), resulting in 80 RF channels in total.

The antennas were highly directional, with an on-axis gain of 10dBi, allowing

for reconstruction of observed signal directions. To maximise efficiency on neutrino

signals and reject as much thermal noise as possible, ANITA’s triggering systems had to

operate in tight timing coincidence windows (O(10) ns, see section 4.4). The antennas

had an impulse response, shown in figure 4.7, that managed to retain much of the power

from impulsive signals within the first few ns [72].

Figure 4.8 shows that the antennas operated with a fairly flat response over a broad

frequency range, with a 3dB bandwidth of 200− 1200 MHz. The antennas had a beam

width of 30◦ at the 3 dB point, as shown in figure 4.9. Each antenna ring had full 360◦

azimuthal coverage and was split into sixteen azimuthal ‘φ-sectors’. The upper and

lower rings contained sixteen antennas each, one antenna in every φ-sector, the result-

ing 22.5◦ spacing providing redundant azimuthal coverage. The nadir ring contained

only eight antennas, with an azimuthal spacing of 45◦. Antennas were arranged with a

downward cant of 10◦, placing the majority of viewable ice within 5◦ zenith of antenna

bore-sight direction and over 99% of viewable ice within the antennas’ 3dB point.

The three antenna rings were arranged with a ∼ 3.7 m (∼ 2.7 m) separation

between top (bottom) sub-layer of the upper ring and the lower ring and a∼ 1.8 m sep-

aration between lower and nadir rings. The larger vertical baseline between antennas

(compared to ∼ 1 m horizontal antenna separation) resulted in a better elevation than

azimuth pointing resolution in event analysis.

Due to size constraints on the ANITA-2 payload, it was not possible for the nadir

ring of antennas to be in their flight positions during launch. To resolve this, the nadir

antennas were attached to the main gondola frame via hinged aluminium struts which

could be retracted prior to launch. A telemetry controlled actuator released the antennas

after launch, with a locking system fixing nadir antenna positions during flight.

The antenna responses of figures 4.8 – 4.7 were measured prior to the flight of

ANITA-1 in an anechoic chamber [98]. These measurements were not repeated prior

to the flight of ANITA-2, however, the uniformity and quality of all the antenna re-

sponses were checked by performing S11 (reflection) measurement using a network

analyser. Figure 4.10 displays the results of these checks, with the response fairly uni-
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The average full-width-at-half-maximum (FWHM) beamwidth of the antennas is about 45◦ with a corresponding
directivity gain (the ratio of 4! to the main beam solid angle) of approximately 10 dBi average across the band. Fig. 4

illustrates this for nine different ANITA antennas, showing the frequency-averaged response relative to peak response

along the principal antenna planes (E-plane and H-plane for both polarizations) as a function of angle. The choice of

beam pattern for these antennas also determined the 22.5◦ angular offsets in azimuth, as this was chosen to provide
good overlap between the response of adjacent antennas, but still maintaining reasonable directivity for determination

of source locations.

By arranging an azimuthally symmetric array of 2 cluster groups of 8+8 (upper) and 16 (lower) antennas, each with a

downward cant of about 10◦, we achieve complete coverage of the horizon down to within 40◦ of the nadir, virtually all
of the observable ice area. The antenna beams in this configuration overlap within their 3 dB points, giving redundant

coverage in the horizontal plane. The ∼ 3 m separation between the upper and lower clusters of 16 antennas provides
a vertical baseline for establishing pulse direction in elevation angle. Because the pulse from a cascade is known to

be highly linearly-polarized, we convert the two linear polarizations of the antenna into dual circular polarizations

using standard 90◦ hybrid phase-shifting combiners. This is done for two reasons: first, a linearly polarized pulse will
produce equal amplitudes in both circular polarizations, and thus some background rejection is gained by accepting

only linearly-polarized signals; and second, the use of circular polarizations removes any bias in the trigger toward

horizontal or vertically polarized impulses.
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FIG. 5: Left: Antenna impulse response as measured for nine ANITA antennas, here in units that also give the instantaneous

effective height [20]. Right: ANITA impulse response as it appears various stages of the signal chain.

Because ANITA’s sensitivity to neutrino events depends crucially on its ability to trigger on impulses that rise above

the intrinsically impulsive thermal noise floor, ANITA’s antennas and receiving system must preserve the narrow

impulsive nature of any signal that arrives at the antenna. Fig. 5 shows the measured behavior of the system impulse

response at various stages. On the left, we show details of the measured impulse response of nine of the flight

antennas, in units that give the instantaneous effective height he f f (t). The actual voltage time response V (t) at the
antenna terminals, assuming they are attached to a matched load, is then just the convolution of this function with the

incident field E (t):

V (t) =
1

2
E (t)⊗he f f (t)

where the convolution operator is indicated by the symbol ⊗. This equation can also be expressed as an equivalent
frequency domain form, though in that case the quantities are in general complex.

On the right, we show the evolution of an Askaryan impulse through the ANITA system. The initial Askaryan

impulse (a) is completely unresolved by the ANITA system, since its intrinsic width is of order 100 ps (reference [20]

Figure 4.7: Antenna impulse response for HPOL (top) and VPOL (bottom) for nine

ANITA antennas. Plots from [82].
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(AD590) glued to the back of cells. PV array circuit components
(diodes) also introduce losses in the output voltage and power.
The actual measured PV voltage input to the charge controller dur-
ing the flight ranged from 42.5 to 47 V (in good agreement with
estimates using the cell temperature and temperature coefficient)
and the current was about 9 A giving a total power of 400 W.

The omni-directional array is inherently an unbalanced system;
i.e., the irradiance incident on each panel differs. For a given orienta-
tion of the gondola, some panels are directly irradiated by sunlight
plus solar albedo from the ice and others are irradiated only indi-
rectly fromsolar albedo. Additionally, for those that are directly irra-
diated, the solar incidence angle is different. This results in
individual panels that generate very different currents at any given
time. Because of the differing temperatures, the individual panels
also have significantly different output voltages (the voltage differ-
ences are small compared to the current differences) that feed into
the charge controller. As mentioned above, the blocking diodes pre-
vent cross-charging of panels generating different voltages.

When using an unbalanced array, to achieve the maximum
power output, it is important to use a charge controller that senses
and operates at the actual MPP as opposed to one that operates at a
constant offset voltage from the array open-circuit voltage. We
used an Outback MX-60 charge controller to supply power to the
ANITA instrument. Conductive heat sinks were installed on
the power FETs and transistors and the heat was conducted to
the instrument radiator plate. We operated in the 24 V mode and
flew nine pairs of 12 V Panasonic LC-X1220P (20 AH) lead acid bat-
teries that were charged by the charge controller and would have
provided 12 h of power in case of PV array failure.

The Instrument Power box consisted of the MX-60 charge con-
troller, solid-state power relays, and Vicor DC/DC converters for the
external radio-frequency conditional module (RFCM) amplifiers.
The main power relays for the cPCI crate were controlled by dis-
crete commands from the SIP. All other solid-state relays were con-
trolled by the CPU, either under software control or by commands
from the ground. The DC/DC box consisted of Vicor DC/DC convert-
ers which provided the +5, +12, !12, +3.3, +1.5, and 5 V voltages
required by the cPCI crate and peripherals. All voltages and cur-
rents were read by the housekeeping system.

3.6. Radio-frequency subsystem

3.6.1. Antennas
Fig. 2 shows the ANITA payload configuration just prior to

launch in late 2006 at Williams Field, Antarctica. The individual

horns are a custom design produced for ANITA by Seavey Engineer-
ing Inc., now a subsidiary of Antenna Research Associates Inc.
These horns are the primary ANITA antennas, and may be thought
of as a flared quad-ridged waveguide section; the back of the horn
does in fact terminate in a short section of waveguide. The dimen-
sion of the mouth is of order 0.8 m across, and the horns can be
close-packed with minimal disturbance of the beam response since
the fringing fields outside the mouth of the horn are small. Fig. 3
shows an individual antenna prior to painting, and a corresponding
typical transmission curve indicating the efficiency for coupling
power into the antenna, as a function of radio frequency.

The average full-width-at-half-maximum (FWHM) beamwidth
of the antennas is about 45! with a corresponding directivity gain
(the ratio of 4p to the main beam solid angle) of approximately
10 dBi average across the band. Fig. 4 illustrates this for nine differ-
ent ANITA antennas, showing the frequency-averaged response
relative to peak response along the principal antenna planes (E-
plane and H-plane for both polarizations) as a function of angle.
The choice of beam pattern for these antennas also determined
the 22.5! angular offsets in azimuth, as this was chosen to provide
good overlap between the response of adjacent antennas, but still
maintaining reasonable directivity for determination of source
locations.

The data in Figs. 4 and 5 were taken using a source and receiv-
ing antenna located inside an anechoic chamber. The receiving
antennas are the actual flight antennas. The source antenna is iden-
tical to the receiver. Measurements were taken at multiple angles
and configurations and we correct for the signal having passed
through two antennas rather than one. Further description of the
data taken is available in Ref. [25].

By arranging an azimuthally symmetric array of two cluster
groups of 8+8 (upper) and 16 (lower) antennas, each with a
downward cant of about 10!, we achieve complete coverage of
the horizon down to within 40! of the nadir, virtually all of the
observable ice area. The antenna beams in this configuration
overlap within their 3 dB points, giving redundant coverage in
the horizontal plane. The " 3 m separation between the upper
and lower clusters of 16 antennas provides a vertical baseline
for establishing pulse direction in elevation angle. Because the
pulse from a cascade is known to be highly linearly-polarized,
we convert the two linear polarizations of the antenna into dual
circular-polarizations using standard 90! hybrid phase-shifting
combiners. This is done for two reasons: first, a linearly-polarized
pulse will produce equal amplitudes in both circular polariza-
tions, and thus some background rejection is gained by accepting
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Fig. 3. Left: a photograph of an ANITA quad-ridged dual-polarization horn. Right: typical transmission coefficient for signals into the quad-ridged horn as a function of radio
frequency.
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Figure 4.8: Frequency response of an ANITA antenna, figure from [82].
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into the quad-ridged horn as a function of radio frequency.

mouth is of order 0.8 m across, and the horns can be close-packedwith minimal disturbance of the beam response since

the fringing fields outside the mouth of the horn are small. Figure 3 shows an individual antenna prior to painting, and

a corresponding typical transmission curve indicating the efficiency for coupling power into the antenna, as a function

of radio frequency.
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Figure 4.9: Antenna beam patterns in dB for VPOL (left) and HPOL (right) for 9

different antennas. Upper plots show response for HPOL radiation, lower plots show

response for VPOL radiation. Plots from [82].
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Figure 4.10: Results of the antenna S11 testing for HPOL (left) and VPOL (right), cen-

tral green is the average response, upper and lower red are the maximum and minimum

response respectively.

form between antennas.

4.3.2 Analogue processing

Signals received by the ANITA-2 antennas were amplified and filtered close to the an-

tenna output. By amplifying signals close to the antenna, thermal noise contamination

and transfer losses in cables are vastly reduced.

Amplification, via low-noise amplifiers (LNAs) and 200 − 1200 MHz filtering of

HPOL channels took place in Radio Frequency Conditioning Modules (RFCMS). The

RFCMs contained all modules in Faraday housing to ensure no exterior interference

and were situated close to the antennas, with∼ 1 m of LMR-600 coaxial cable between

antenna output and RFCM.

For VPOL channels, LNAs were situated in separate Faraday housing, con-

nected directly onto the antenna outputs, these are the Antenna-Mounted Pre-Amplifier

(AMPA) units. The output of the VPOL AMPAs were led, via ∼ 1 m of LMR-600

coaxial cable into RFCMs, with each RFCM processing two VPOL and two HPOL

channels.

In ANITA-1, LNAs and filtering units for all channels were housed in the RFCMs.

By removing the short stretch of cable between antenna output and amplification in

VPOL channels, the system noise was reduced by ∼20%. As neutrino signals are ex-

pected to be predominantly VPOL, and all triggering was conducted using the VPOL

channels only, this provided a significant improvement to the hardware trigger sensitiv-
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Figure 4.11: The linearity of the amplifier response demonstrated with output pulse

amplitude (taken at the instrument output) as a function of signal amplitude injected

at the antenna inputs. Solid lines indicate the average amplifier response, dashed lines

are linear fits to data with input / reference amplitude < 2.5. The non-linear region

is almost entirely due to gain suppression from the amplifier.

ity to neutrino-like signals.

After the front-end amplification and filtering, signals from all channels passed

through a number of metres of LMR-600 cable (with length dependent on antenna

location) into the main ANITA-2 instrument box.

Effect of analogue processing on signals

The amplifiers used on ANITA-2 were known to have a response which would begin

to saturate for a significant fraction of events recorded in flight. Figure 4.11 illustrates

that the amplifiers have a fairly linear response up to an output of ∼ 300 mV, with the

response non-linear afterwards. This demonstrates that the amplifiers begin to saturate

well before the maximum voltage that ANITA-2’s data acquisition units were able to

record (∼ 1 V).

The gains and noise of the entire signal chain, from antenna output through to

instrument box bulkhead, are shown in figures 4.12 and 4.13. The impulse response of

signal path through to instrument output is shown in figure 4.14. Note the differences
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Figure 4.12: ANITA-2 signal chain gains for HPOL and VPOL from antenna output to

instrument box bulkhead.

between VPOL and HPOL channels, caused by the difference in location of the front

end LNAs, and, for figure 4.14, the fact that the VPOL channels are split before data

acquisition.

4.3.3 Data acquisition

Aside from the first stage filtering and amplification described in section 4.3.2, all signal

processing and acquisition took place in the ANITA-2 instrument box, situated on the

deck above the lower ring of antennas in Faraday housing.

All data had to be stored on board ANITA-2, placing limits on the amount of data

that could be stored. Meanwhile, the total power budget of an LDB flight is < 1 kW.

These combined factors meant that ANITA could not continuously digitise and record

data (which would have consumed O(10) W per channel, almost the entire power bud-

get). Instead, a data acquisition architecture was developed prior to ANITA-1, known
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as the LABRADOR chip, whereby ANITA could continuously sample waveform data

but only digitise upon the issue of a trigger command [95]. This consumed O(1) W per

channel and included a four-deep buffer to minimise experiment dead-time.

Upon reaching the ANITA instrument box, signals underwent a second stage of

bandpass filtering (200− 1200 MHz). VPOL signals were then passed through a 3 dB

splitter, with one output becoming the trigger path (section 4.4) while the other was

connected to the data acquisition units (DAQ). As triggering was entirely VPOL based,

no splitting was applied to the HPOL channels, with all HPOL paths leading to the

DAQ.

In the DAQ signal path, the signal was fed into Sampling Unit for Radio Frequency

(SURF) boards. Each SURF allowed for eight input RF channels (four HPOL and four

VPOL). Ten SURF boards in total provided data acquisition for all eighty RF channels,

with no two adjacent antenna signals fed into the same SURF to reduce cable cross-talk

between physically close channels (although signals from upper and lower antennas in

the same φ-sector were processed on one SURF).

The signals for each channel were split and fed into four parallel LABRADOR

chips, mounted on the SURF. In addition to the eight RF channels, the LABRADOR

had a ninth channel for a common 125 MHz clock.

The LABRADOR chips contained a two hundred and sixty element switched ca-

pacitor array (SCA) for each of the nine input channels. The SCAs on all LABRADOR

chips continuously sampled waveform data at a rate of ∼ 2.6 Gsa/s until the issue of a

trigger command, at which time sampling on the one set of SCAs was frozen and read

out into a digitizer. This involved reading out analogue data corresponding to wave-

form amplitude and converting to digital information using nine bits of dynamic range.

As each channel was sampled by four LABRADOR chips (a buffer depth of four), in

the instance of the first trigger the remaining three chips would continue to sample.

This significantly reduced the dead time that would be introduced by using only one

LABRADOR chip for each channel, with digitisation of the frozen channels requiring

∼ 30 ms.
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4.4 Triggering
The trigger system used by ANITA-2 was developed to ride thermal noise levels, allow-

ing the experiment to be highly sensitive to neutrino signals. The trigger system used

was multi-level and placed requirements on both the broadband nature and the direc-

tional coherence of observed signals. The trigger operated purely on VPOL signals, as

radio emission from any neutrino interaction in the ice is expected to be predominantly

vertically polarised if observed by ANITA. As described in section 4.3.3, the trigger

had to operate on analogue signals to circumvent power-hungry constant digitisation.

4.4.1 Level 1

After splitting, the trigger path of the VPOL channels were led into SURF High Occu-

pancy RF Trigger (SHORT) units. Here, the VPOL signals were further split into four

separate paths, with each signal path filtered into one of four bands, shown in figure

4.15:

• Low: 200− 350 MHz

• Mid: 350− 700 MHz

• High: 600− 1150 MHz

• Full: 150− 1250 MHz

The filtered sub-band channel signals were then passed through a tunnel diode, also

situated in the SHORT. The tunnel diode effectively acted as a square law detector and

output a unipolar pulse that tracked the power passed through the diode.

The SHORT outputs were then fed into a field-programmable gate array (FPGA),

mounted on the relevant SURF board for the channel in question. Within the FPGA,

signals passed through a discriminator; any signal exceeding the discriminator’s thresh-

old resulted in a positive trigger logic output which remained high for ∼ 10 ns. Impor-

tantly, the FPGA thresholds were variable, allowing them to ride the thermal noise floor

levels. The thresholds were set using a servo loop, operated by the flight software (see

section 4.5), that regularly compared user-defined sub-band target trigger rates with

the actual trigger rates in each sub-band. The software would then adjust the trigger

thresholds accordingly. An example of the trigger thresholds riding thermal noise lev-

els is given in figure 4.16. Typical sub-band trigger rates for antennas in the upper and
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lower rings were 10 MHz, 10 MHz, 6 MHz, 1 MHz for the low, mid, high and full

band thresholds respectively. Nadir ring channels had typical thresholds of 200 kHz,

200 kHz, 200 kHz, 40 kHz for the low, mid, high and full band thresholds respectively.

The level 1 (L1) trigger, still within the SURF mounted FPGA, can be thought of as

an antenna wide trigger. Any signal triggering 2 of 3 sub-bands (low, mid, high) as well

as the full band within a 10 ns window in a single channel caused an L1 trigger. This

requirement of multiple sub-bands and the full band being above threshold meant that

there must be some broadband aspect to the incident radiation (or thermal fluctuation)

for it to have passed the L1 trigger. The full band was not present in ANITA-1, which

used four sub-bands (low, mid1, mid2 and high) in two circular polarisations (eight

bands total), a 3 of 8 sub-band condition met the L1 requirement.

4.4.2 Level 2

The SURF based FPGAs constantly passed out trigger logic high or low output to the

Trigger Unit for Radio Frequencies (TURF). This unit housed level 2 (L2) and level 3

(L3) triggering for all channels within another FPGA. On detecting an L1 trigger, the

SURF based FPGA output immediately changed to high, this trigger output remained

high for ∼ 10 ns.

The L2 was an antenna ring based trigger. For either upper or lower antenna rings

to trigger at L2, two of three adjacent channels on a given ring must have passed L1

trigger conditions within a∼ 10 ns window. The resulting L2 trigger was issued for the

φ-sector corresponding to the central of the three antennas (see figure 4.17). For nadir

antennas, which only occupied every other φ-sector, a channel passing L1 conditions

automatically passed L2, which is why the sub-band trigger rate targets were set at

lower levels for nadir channels.

4.4.3 Level 3

The L3, or global, trigger was the final trigger stage. Upon passing L3, an event was

digitized and stored on board ANITA-2. This trigger stage required a L2 trigger com-

mand in any two of three rings within the same φ-sector in a∼ 10 ns window (see figure

4.18). Both the L2 and L3 trigger requirements meant that a signal reaching these trig-

ger stages, already required to be broadband in nature, had some geometric coincidence

– as would be the case for any directional (i.e. non-thermal) event. Global trigger rates
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Figure 4.16: Temperature in φ-sector 9 (measured at the PV array) and trigger thresh-

olds for channel 4V (also in φ-sector 9) as a function of time. The trigger thresholds in-

crease in periods when the channel experiences higher temperatures to maintain steady

trigger rates. Anomalous trigger thresholds at 10-09h, 10-12h and 10-15h are the result

of new data runs beginning.

Figure 4.17: Schematics showing three possible combinations of L1 triggers leading

to an L2 trigger in the upper and lower rings of antennas. Blue crosses indicate L1

triggers, green shaded regions indicate L2 triggers. Note that only three antennas (from

a ring of 16) are shown, all other antennas are assumed to have not been triggered.
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Figure 4.18: Schematics showing two possible combinations of L1 and L2 triggers

leading to a payload (L3) trigger. Blue crosses indicate L1 triggers, green shaded re-

gions indicate L2 triggers, red dashes indicate the φ-sector for which an L3 trigger is

assigned. Note that an L1 trigger in a nadir antenna automatically results in an L2

trigger for that sector and the two neighbouring sectors. Note that only five φ-sectors

of antennas (from a total of 16) are shown, all other antennas are assumed to have not

been triggered.

were typically 10 Hz, though rates of up to 25 Hz were observed for periods of the

flight.

4.4.4 Trigger masking

A further aspect of ANITA-2 that marked a great improvement over ANITA-1 was the

introduction of directional trigger masking. The ANITA-1 flight experienced signifi-

cant periods of flight time close to human bases and associated narrow-band contin-

uous wave (CW) signals. Such emission could constantly trigger the payload, filling

the buffers of the DAQ and increasing the experiment dead-time. Furthermore, these

CW signals pushed sub-band trigger thresholds of channels pointing towards the CW

source to very high levels, reducing instrument sensitivity. A manually operated trigger

mask could be used to turn off the affected sub-band triggers; however, even with this

masking, human bases caused a significant proportion of triggers when in view and

reduced ANITA-1’s overall sensitivity.



4.4. Triggering 68

Atten (dB)

−40 −35 −30 −25 −20

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1
SURF 1 −− Chan 1

Low
Mid
High
Full
L1

Atten (dB)

−40 −35 −30 −25 −20

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1
SURF 1 −− Chan 2

Low
Mid
High
Full
L1

Atten (dB)

−40 −35 −30 −25 −20

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1
SURF 1 −− Chan 3

Low
Mid
High
Full
L1

Atten (dB)

−40 −35 −30 −25 −20

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1
SURF 1 −− Chan 4

Low
Mid
High
Full
L1

SURF 1 −− Chan 4

Figure 4.19: Trigger efficiency at the sub-band and L1 level for all VPOL channels on

SURF 1.

For ANITA-2, an automated φ-sector masking system, controlled by the Acqd

software (see section 4.5), monitored the location and rates of L3 triggers. If the soft-

ware deemed that too high a rate or proportion of global triggers were originating from

a specific φ-sector, global triggers from that sector would be masked off. This reduced

the number of triggers from noisy sources and allowed thresholds from sectors of the

payload unaffected by the CW source to remain sensitive to physics signals.

4.4.5 Trigger testing

Prior to flight, the efficiency and uniformity of the L1 and L3 triggers were tested.

Impulsive signals of variable strength were injected into a number of channels simulta-

neously, with the fraction of impulses causing a trigger recorded.

Examples of the sub-band and L1 trigger response, typical for all channels, are

given in figure 4.19. These appear to show the low-band trigger being less efficient

than the other three frequency bands. However, it should be noted that the signal being

used for triggering in this instance did not pass through any signal chain, rather being

injected directly into the SURF input.

For the L3 efficiency measurement, the picosecond impulse generator sent signals
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Figure 4.20: ANITA-2 global trigger efficiency.

into the amplification units of eight VPOL channels from three adjacent φ-sectors. The

central φ-sector contained an upper and lower channel. The two outer φ-sectors con-

tained upper, lower and nadir channels. An extra 3dB of attenuation was applied to the

outer channels to compensate for the lack of antenna off-axis response.

The results of the trigger testing are shown in figure 4.20. It was found that,

for the picosecond pulser used, ANITA had a hardware trigger efficiency of 50% at

in input pulse SNR of 3.23. This marked a significant improvement over ANITA-1,

which displayed a 50% hardware trigger efficiency at an input pulse SNR of ∼ 5.5 for

a similar test setup [82].

The effect of removing each ring of antennas from contributing to a trigger was

investigated, results are shown in figure 4.21. It was found that masking the upper

and lower rings of antennas was more detrimental to triggering efficiency than masking

the nadir ring of antennas. However, even with entire rings of antennas inactive, the

payload remained sensitive to signals with SNR values < 4.

This hardware efficiency must be taken with consideration of the fact that the

frequency content of the pulser may differ from that of an Askaryan signal. Also,

although the hardware trigger rate was approximately equal to that during flight (10 Hz

when triggered by thermal events), trigger rate targets for each sub-band differed during
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flight.

4.5 Flight software and data storage
The ANITA-2 flight computer, a cPCI single-board computer, was housed within the

main instrument box. Flight software was split into a number of autonomous pro-

grammes, with the overall hierarchy shown in figure 4.22.

All RF data received by the ANITA-2 antennas was processed via the acquisition

daemon (Acqd). This included acquiring waveform and housekeeping data from the

SURFs and trigger and associated timing information via the TURFIO. As mentioned

previously, Acqd was also responsible for setting the trigger thresholds and φ-sector

masking.

After being processed via Acqd, event data was written to disk by the event dae-

mon (Eventd), prioritizer daemon (Prioritizerd) and archive daemon (Archived). Prior-

itizerd additionally assigned the event a relative significance on a 1− 9 integer scale (1

being the most neutrino like). This was achieved by ‘box-car’ smoothing of the event

(removing thermal noise fluctuations) and performing a quick cross-correlation, then

comparing the locations and significance of signal peaks. Events with a sufficiently
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3.8. Navigation, attitude, and timing

3.8.1. Absolute orientation
In order to geometrically reconstruct neutrino events, accurate

position, altitude, absolute time, and pointing information are re-
quired. To provide such data on an event-by-event basis, a pair
of Global Positioning System (GPS) units was used. They provide
more than sufficient accuracy to fulfill the science requirements,
see Table 2. In addition these units provide the ability to synchro-
nously trigger and read out the system on an absolute timing mark
(such as the nearest second), a feature which is essential to the
ground-to-flight calibration sequence, where a ground transmitter
needs to be globally synchronized to the system during flight,
including a propagation delay offset.

ANITA had a mission-critical requirement for accurate payload
orientation knowledge, to ensure that the free-rotation of the pay-
load would not preclude reconstruction of directions for events at
the sub-degree level of accuracy. Such measurements were accom-
plished with a redundant system of four sun-sensors, a magnetom-
eter, and a differential GPS attitude measurement system (Thales
Navigation/Magellan ADU5). These systems performed well in
flight and met the mission design goals. In calibration done just
prior to ANITA’s 2006 launch, we measured a total ðD/ÞRMS ¼
0:071$, very close to the limit of the ADU5 sensor specification,
and well within our allocated error budget.

The ADU5 is connected to the flight computer with a pair of RS-
232 interfaces; one carries the attitude information packets for the
housekeeping readout, and the second provides readout when dur-
ing the UTC second a digital trigger line was set at the ADU5. The
second GPS unit, a G12 sensor from Thales, is used to get a second
trigger timing piece of information over one serial line and timing
information for the flight computer’s NTP (Network Time Protocol)

internal clock. Position and attitude information is updated every
second. Also every second the NTP server gets an update to keep
good overall clock time at the computer. The trigger is also con-
nected directly to GPS time: GPS second from the 1-s readout
and fraction of a second from the phototiming data block. Addi-
tional pointing information is derived from the sun sensors and a
tip-tilt sensor mounted near the experiment’s center of mass. They
provide a simple crosscheck to the attitude data with very different
systematics and also offer a measure of redundancy.

4. Flight software and data acquisition

The ANITA flight computer was a standard c-PCI single board
computer, based on the Intel Mobile Pentium III CPU. The operating
system was Red Hat 9 Linux, which was selected due to driver
availability.

The design philosophy behind the ANITA flight software was to
create, as far as possible, autonomous software processes. Inter-
process data transfer consists of FIFO queues of data files and links
on the system ramdisk, these queues are managed using standard
Linux filesystem calls. Process control is achieved using configura-
tion files and a small set of POSIX signals (corresponding to: re-
read config files, restart, stop, and kill). A schematic overview of
the flight software processes is shown in Fig. 11.

The flight software processes break down into three main areas,
which will be discussed in the following sections. These areas are:

1. Data acquisition – processes which control specific hardware
and through which all data from that hardware is obtained.

2. Event processing – processes which augment or analyze the
waveform data in the on-line environment.

3. Control and telemetry – processes which control the telemetry
hardware and those which are responsible for process control.

4.1. Data acquisition

The bulk of the data, around 98%, acquired during the flight is
in the form of digitized waveform data from the SURF boards. The
remaining 2% consists of auxiliary information necessary to pro-
cess and interpret the waveform data (payload position, trigger
thresholds, etc.) and data that is used to monitor the health of
the instrument during flight (temperatures, voltages, disk spaces,
etc.). Each SURF has only eight input channels. Each SURF con-
tains 4 LAB3 ASICs, each of which have nine channels. The ninth

Table 2
Navigation, attitude, and timing sensor requirements and provided accuracy.

Parameter Determination
method

Required accuracy System accuracy

Position/
Altitude

Ordinary GPS 10 m horizontal/
20 m vertical

5 m horizontal/
10 m vertical

UTC GPS phototiming
pulse

20 ns <10 ns

Pointing Short-baseline
differential GPS

0.3! rotation/0.3! tip <0.07!/<0.14!

Pointing sun-
sensor

Tip-tilt sensor 0.3! rotation/0.3! tip 1!/1!

Fig. 11. A schematic overview of the flight software processes. The open arrows show software interaction with hardware components, and closed arrows indicate data
transfer between processes. The telemetry data flow across the ramdisk is indicated by the dot-dashed (purple) line, and permanent data storage to the on-board drives is
shown by the dotted (red) lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

22 P.W. Gorham et al. / Astroparticle Physics 32 (2009) 10–41

Figure 4.22: A schematic of the ANITA-2 flight software architecture, figure from [82].

high priority were then queued and relayed to ground via LOSd or SIPd (line of sight

daemon and SIP daemon respectively).

The data processed by Acqd represented 98% of stored data. The remaining 2%

consisted of housekeeping data, with voltages and currents of all the main power sub-

systems, on-board temperatures and various other data. Trigger rates, GPS data and the

status of disk drives were also recorded.

Three sets of data storage devices were flown on board the ANITA-2 instrument.

Two arrays of eight 1TB MTRON solid state drives were used along with a spinning

hard-drive that was housed in a shock mounted pressure vessel called the ‘neobrick’.

Each of these three storage devices held an independent set of flight data.

4.6 ANITA-2 flight

ANITA-2 launched from Williams Field, close to McMurdo station, on 21st December

2008 and was aloft for a total of 31 days, with 28.5 days of live-time. The flight path,

shown in figure 4.23, included two passes over the deep ice of east Antarctica. The

average ice depth in ANITA-2’s field of view was 1.5 km. The flight was terminated on

21st January 2009, with the payload landing at 83.34◦S, 162.22◦W, close to Siple Dome

base. During flight, ANITA-2 recorded 26.7 million triggers, of which approximately

21 million were RF-induced.
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Figure 4.24: ANITA-2 dead time and trigger rates during flight. Plots by R. Nichol.

4.6.1 Ground calibration pulses

Ground calibration pulsing systems were used during the ANITA-2 flight to send im-

pulsive signals to the payload. These systems were used to monitor instrument response

during flight, calculate trigger efficiencies and inform analysis techniques. Calibration

signals were transmitted from two locations: Taylor Dome, a field camp location ap-

proximately 200 km west of McMurdo station; and Williams Field, the balloon launch

location.

The Taylor Dome site consisted of a dipole antenna transmitting impulsive signals

from a 90 m deep borehole. The system was powered by PV cells and, after being

set-up and tested by a team from UCLA, was left to run automatically at a rate of 1 Hz

throughout the ANITA-2 flight. Signals from the Taylor Dome calibration antenna were

observed by ANITA-2 on three separate passes.

At the Williams Field site, another dipole antenna was placed in a 25 m deep

borehole, while a Seavey antenna identical to the flight antennas was used to transmit

signals in horizontal, vertical and 45◦ polarisations. Unlike the Taylor Dome system,

which was fully automated with events only recorded by ANITA-2 if they caused a

global trigger, the Williams field systems were synchronised to ANITA-2’s GPS con-

trolled PPS triggering system. Calibration signals were sent from the Williams Field

borehole on four separate passes and from the surface antenna on three passes (one of

which was immediately after launch); pulsing activities ceased on 8th January 2009.
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4.6.2 Performance

ANITA-2 had a successful flight when compared with ANITA-1, which suffered large

amounts of dead-time due to necessary rebooting of the flight computer and high buffer

occupancy when close to human bases. The fractional dead time and event rate over

the course of the ANITA-2 flight are shown in figure 4.24. A few minor issues did

result in a reduction in instrument sensitivity. Shortly after launch of the payload, one

VPOL channels from the upper ring of antennas (channel 2V) failed, with an apparent

lack of power reaching the channel’s LNA. Although power returned intermittently,

channel 2V was removed from all analysis of the flight data. Issues with the charge

controller resulted in concern for ANITA-2’s battery health during periods of the flight.

To assuage fears that the instrument might lose power completely, power to the RFCMS

(and hence, amplification) on the nadir ring of antennas was cut off for ∼ 5% of the

flight, with ANITA-2 operating with 32 antennas during such times. Loss of GPS data

for ∼ 5% of the flight necessitated the use of sun-sensor and CSBF GPS data. The

sun-sensor data is less accurate than the ADU5 orientation information. Finally, the

MTRON solid state drives were rendered unusable after 22 days of flight, though no

data on the drives themselves was corrupted. The neobrick drive provided reliable

data-storage throughout flight, resulting in no loss of data.

Figure 4.25 shows the ANITA-2 payload after the termination of its flight. A

full recovery of the instrument was possible, each mission critical piece of hardware

was recovered and transported off the Antarctic continent. Only a small number of

antennas and associated gondola parts were not shipped from Antarctica by the end of

the Austral Summer. All three sets of data, the two arrays of MTRON solid state disks

and the Neobrick, were undamaged during landing.
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Figure 4.25: Photograph taken by Brian Hill shortly after arriving at the ANITA landing

site.
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Chapter 5

Event Simulation

The default UHE neutrino Monte-Carlo simulation used by ANITA is icemc, written

by Amy Connolly and others [99]. This simulation generates neutrinos from a given

energy spectrum and propagates them through the Earth. Upon a simulated neutrino in-

teracting in ice (or other desired medium), icemc generates and propagates the resultant

Askaryan radiation. Icemc also simulates the ANITA-2 payload, with the response to

radio signals, a trigger simulation and thermal noise generation. Finally, icemc contains

an array of editable options, providing control over a range of aspects from the UHE

neutrino energy spectrum through to ANITA trigger banding and logic. A schematic of

the steps required for a simulation that will inform us of ANITA’s sensitivity to UHE

neutrinos is given in figure 5.1.

Waveform outputs from icemc are not of the same format as ANITA-2 data, mean-

ing that an assessment of analysis techniques on simulated neutrinos for ANITA-2 was

not possible. Problems with low signal-to-noise (SNR) simulated signals resulting in

a simulated trigger were discovered when investigating analysis sensitivity to icemc

events (see chapter 6).

Because of these issues, an icemc add-on, called icemcEventMaker, was developed

with the help of Ryan Nichol to simulate the response of ANITA-2 to RF signals. This

instrument simulation takes the electric field produced by an icemc neutrino and ap-

plies antenna and signal chain responses before outputting waveform data in the same

format as real ANITA-2 events. A number of the features of the icemcEventMaker

code were adapted from Stephen Hoover’s ANITA-1 simulation code [85]. The sim-

ulation includes a trigger, based on the icemc power-integrating time-domain model

[100]. IcemcEventMaker was constructed to replicate flight conditions (e.g. unique
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Figure 5.1: Schematic of the processes required for ANITA UHE neutrino simulations.

noise levels in each channel) such that tools used for ANITA-2 analysis can be tested

and provide outputs as close to those of the real data outputs as possible.

5.1 Approach to instrument response simulation
IcemcEventMaker takes neutrino induced E-fields from icemc and creates ANITA-2

format output data. The responses of both the signal and trigger paths are included,

allowing tests of both analysis and hardware efficiencies to neutrino signals.

5.1.1 Signal path

For each event, the E-field at payload from icemc is convolved with a measured instru-

ment response. The signal is first convolved with antenna responses (see figure 4.7),

which accounts for the angle of incidence of a signal at each antenna. The output of

the antenna is then convolved with the remaining signal chain (see figure 4.14). This

provides waveform information as it would appear at the SURF output, after the entire

signal chain. Thus far signals are purely from the expected Askaryan emission, with

no noise included. Noise for each event is generated at the SURF output, as described

below, and superimposed on the pure Askaryan signal. An example of a simulated

Askaryan signal being received by the ANITA-2 payload is shown in figure 5.2.

5.1.2 Thermal noise generation

IcemcEventMaker generates thermal noise for every channel in every simulated event.

The noise created is based on real flight thermal levels, with noise levels unique to each

channel. In the frequency domain, the amplitude of thermal noise in a given frequency

band at the SURF output will follow a Rayleigh distribution (assuming no noise source

other than thermal):
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Figure 5.2: A simulated Askaryan signal at the payload (top), the signal as it appears

out of the antenna (upper middle), the signal at the SURF stage before (lower middle

and after noise is superimposed (bottom). High frequency and acausal features in the

top two panels are an artefact of the simulation and removed through filtering in the

instrument output.
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assume the data follow Rayleigh distributions.

Rayleigh p.d.f =
A

σ2
e

−A2

2σ2 (5.1.1)

Where A is the amplitude of the power spectrum at a frequency f . The phase of the

noise, meanwhile, will be random. It is therefore possible to characterise thermal noise

for a range of frequencies in each channel using real flight data.

To generate these noise distributions, data were selected from runs when ANITA-2

was far from any radio-loud human bases, runs 190–192 inclusive were used. Every

event from the selected data was considered, using both RF induced and minimum

bias triggers. Events failing basic quality checks (e.g. corrupt data, see section 6.2.3),

and any channels within or neighbouring a φ-sector with an L1, L2 or L3 trigger were

removed from the sample.

Power spectra of the remaining events were created. Amplitude data as a function

of frequency were then obtained for each channel, with Rayleigh fits created for each

distribution of amplitudes. Examples of this are shown in figure 5.3. As channels

pointing towards the Sun for a given event will have higher thermal noise levels than

those that point away from the Sun, these amplitude distributions for each frequency

and channel are further divided into 10◦ bins as a function of angle to the Sun.
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Figure 5.4: SURF gain as a function of frequency. Simulated signals at the SURF

output have the SURF gain removed before passing through the trigger chain (no phase

adjustment is applied).

Finally, as satellite noise contaminates all ANITA-2 events in a narrow (∼40 MHz)

range around 260 MHz, amplitudes in the 200− 300 MHz range are taken by extrapo-

lating noise data from a quiet band (350 MHz) based on amplitude vs frequency distri-

butions from thermal data taken during ANITA-2 integration prior to flight.

Noise is generated on an event by event basis in the frequency domain, then trans-

formed to a time domain waveform and superimposed on the neutrino signal before the

event is passed through the trigger or recorded.

5.1.3 Trigger path

As figure 4.6 shows, signals passed through the trigger were separated prior to the

SURF from those that were recorded and stored by ANITA-2. To obtain the signal for

the trigger chain, a copy of the simulated output data has the SURF gains (figure 5.4)

removed. Gain data from the ANITA-2 SHORTs (figure 4.15) are then applied to one

of four copies of the signal, representing the four sub-bands used in triggering. Trigger

responses for each band, taken from a model developed for icemc [100], are convolved

with the data to provide the trigger chain outputs.

The triggering system in ANITA used tunnel diodes with variable thresholds. The
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Figure 5.5: Tunnel diode (power integrating trigger) responses for the four trigger

bands from the model used in [100].

diode model developed for icemc is based on two requirements:

• The diode output should average to zero

• The diode function should closely match the diode output when given a delta

function input

Using measured diode outputs from systems testing, along with the above requirements,

resulted in diode functions that can be approximated by gaussian functions followed by

an exponential drop off. Trigger responses for each of the four bands are shown in

figure 5.5.

5.1.4 Threshold setting

As described in section 4.4, ANITA-2’s absolute trigger thresholds at the sub-band

level, which monitor power, were variable. The thresholds can be thought of as a value

relative to 〈P 〉, the average power. By maintaining thresholds as a constant function

of 〈P 〉 they were able to ride thermal noise levels, allowing trigger rates to remain rel-

atively constant. IcemcEventMaker uses a relationship between the trigger thresholds

and trigger rates (trigger rates were set manually during flight) shown in figure 5.6.
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Figure 5.6: The dependence of the ANITA-2 L0 and L1 trigger rates on the trigger

thresholds. Figure by R. Nichol.

To set trigger thresholds, IcemcEventMaker processes a number of noise events

(typically 500) prior to running over any further data. After passing these thermal

events through the trigger, a value of 〈P 〉 is calculated. Taking the trigger rate targets

used during flight, the trigger threshold for each sub-band and each channel can be set.

5.2 Simulated hardware efficiency
The trigger efficiency of ANITA-2 was measured prior to flight during the ANITA-2

integration at Palestine, Texas. Here, the output of a picosecond pulser was injected into

the ANITA-2 signal chain between the antenna and amplification stage, as discussed in

section 4.4.5. The hardware efficiency was measured to be 50% for an input pulse SNR

of 3.23 (figure 4.20). The icemcEventMaker trigger simulation can be compared to the

real trigger efficiency using characterised picosecond pulses, based on data from the

ANITA-2 integration.

Noise was characterised in much the same way as the in flight simulated noise,

using untriggered channel noise from runs immediately following the efficiency testing.

Signals, meanwhile, were characterised by taking a number of runs when the input

pulse SNR was high enough to provide a near 100% trigger efficiency. Averaging

over all the pulses in the run, noise was averaged out of the waveform and the input

pulse with no noise was obtained. The pulse strength was then plotted as a function of
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Figure 4.6: Extrapolation of pulse peak voltage vs SNR to low SNR values where the

pulses could not be characterised. Plot shows results for 3 φ sectors (outer 2 sectors

have additional 3dB of attenuation applied).

(b)

Figure 5.7: (a): A characterised signal from the Palestine integration trigger testing,

with inserted signal SNR of 9.92 in the central φ-sector (red, solid) and adjacent φ-

sectors (blue,dashed). Signals are shown before noise is overlaid. (b): Extrapolation of

the signal peak voltage versus SNR to signal strengths that could not be characterised.

Plot shown for central φ-sector, lower ring, only.

attenuation and extrapolated to attenuation settings where trigger efficiency and input

SNR were low, as shown in figure 5.7.

Signals used for the efficiency testing during the integration were then replicated

and passed through the simulated instrument response. Running icemcEventMaker

with trigger thresholds set by passing noise through the trigger, the simulated trig-

ger was found to be slightly (∼16%) less efficient than the real trigger. The trigger

efficiency for simulated neutrino events was also calculated, the overall efficiency for

neutrinos was found to be about 2 times lower than the efficiency for the picosecond

pulser due to differing frequency content of Askaryan radiation and the picosecond

pulser.

5.2.1 Implications for exposure

The reduced trigger efficiency on Askaryan-like pulses when compared to the pi-

cosecond pulser used in the Palestine integration suggests an over-optimistic trigger

efficiency having been taken from the integration. By passing neutrinos of set en-
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ergy through the icemc and icemcEventMaker simulation code, the effective area of

ANITA-2 can be calculated.

The effective volume of the ANITA-2 experiment is calculated via equation 5.2.1.

VeffΩ = 4πV0
Ndet

Nint

(5.2.1)

Here, Veff is the effective volume, Ω is solid angle, V0 is the volume of Antarctic Ice,

Ndet is the number of neutrinos detected and Nint is the number of neutrinos which

interact. From this, an effective area can also be defined as:

AeffΩ =
VeffΩ

Lint

(5.2.2)

Where Lint is the energy dependent interaction length of the neutrino. Values for this

are calculated using neutrino cross sections given in [56].

The results of this unofficial exposure calculation are shown in figure 5.10.

The icemcEventMaker code has a reduced exposure compared to icemc at energies

Eν ≥ 1020 eV, meanwhile the icemcEventMaker has an enhanced exposure compared

to icemc at energiesEν ≤ 1019.5 eV. The frequency content of the E-field at the payload

is dependent on neutrino energy. At higher energies, ANITA-2 is able to observe emis-

sion from deeper interactions as well as emission from interactions where ANITA-2

is situated further off the Cherenkov cone. Both of these effects result in a reduced

high-frequency cut-off in the E-field at the payload. As the instrument response differs

between icemc and icemcEventMaker, this change in frequency content with energy

results in the difference between exposure from the two ANITA-2 simulations being

dependent on neutrino energy.

5.3 Summary
This chapter has demonstrated the development and use of an instrument simulation

code, icemcEventMaker, for use with a Monte Carlo, icemc, which generates signals

from UHE neutrino interactions in the Antarctic ice sheet. The instrument simulation

developed underestimates ANITA’s hardware efficiency by approximately 16%, pos-

sibly due to the estimated, rather than known, tunnel diode response used within the

simulated trigger.
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A trigger efficiency and experiment exposure to UHE neutrinos has been calcu-

lated. This will be used in conjunction with the efficiency of any analysis to calculate

any constraints on the UHE neutrino flux.

Finally, the output of the instrument simulation is in the same format as the

recorded ANITA-2 data. This allows for simulated noise and simulated neutrino events

to be passed through analysis codes that operate on standard ANITA-2 ROOT data

formats.
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Chapter 6

ANITA-2 Data Analysis

During its flight ANITA-2 recorded ∼ 21.4 million RF triggered events. Simulations

of ANITA-2 inform us that the experiment was likely to see very few neutrino-induced

signals, with typical estimates in the range O(0.01− 1) events, depending on the neu-

trino flux model used. Meanwhile, the number of cosmic-rays that triggered ANITA-2

is expected to be lower than the 16 observed by ANITA-1 due to modifications in the

trigger scheme used (see section 4.4).

It is clear from these figures that the vast majority of the ANITA-2 data con-

tains background (non-physics) events. The ANITA-2 payload design and ANITA-1

analysis inform us that most of these events were triggered by thermal noise fluctua-

tions, with the remainder being caused by anthropogenic noise. For any cosmic-ray or

neutrino-induced RF signal to be detected with statistical significance, an analysis of

the ANITA-2 data must reliably remove background signals to the level of one event.

6.1 Analysis approach
The two key backgrounds in the ANITA-2 data, thermal fluctuations and anthropogenic

noise, have different characteristics. As such, analysis of the ANITA-2 data is per-

formed in two stages. First, thermally-induced triggers, which make up the bulk of

the data, are removed by requiring directional coherence of the signals in multiple an-

tennas. After applying cuts on thermal events, a dataset of purely directional events

should remain. Anthropogenic events can be identified within this sample by assum-

ing that their source locations will be associated spatially with known bases or with

repeated emission from that location.

ANITA-2 recorded waveform information in both vertical and horizontal polar-
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isations (VPOL and HPOL respectively). The two polarisations are treated entirely

separately by the ANITA-2 hardware. Furthermore, the hardware trigger only acted

upon VPOL signals and the signal chains for each polarisation differ, leading to differ-

ent noise levels between the two. Each event is therefore analysed separately in VPOL

and HPOL and the thermal cuts are developed separately for each polarisation.

6.1.1 Blinding

A blind analysis is implemented in the most simple of manners. Any signal-like events,

that is, events that contain directional information that are not coincident with any

known base or other event, are hidden from the analysis until confidence in the tech-

niques used has been demonstrated. Further to this, an unknown number of weak events

from the Taylor Dome calibration antenna were inserted in the data sample at random,

replacing real events (from minimum bias triggers), providing us with a measure of

analysis sensitivity.

The analysis methods are trained using both noise and signal-like events. For both

of these event types, real and simulated data are used in analysis training. Real data

is only used if it can be removed from the main analysis data with confidence that

the exposure of ANITA-2 to UHECRs or neutrinos is not being reduced, for example,

minimum bias events and events containing calibration signals.

6.1.2 ANITA data and calibration

ANITA-2 events, once transferred from the flight storage, were converted from binary

data to ROOT files that are used by all ANITA-2 analyses. The converted ROOT files

included event calibration, with ADC to voltage conversion and LABRADOR chip

sample number to nanosecond times made using calibration data taken in McMurdo

prior to launch [101]. Channel to channel timing offsets (relating to antenna position

and channel timing offsets) are also included. These offsets were calculated by Simon

Bevan using a minimisation on Taylor Dome calibration pulses to fit antenna boresight

locations relative to the payload GPS system along with further inter-channel timing

offsets not already calibrated in [101]. Photogrammetry data that I took in Antarctica

prior to flight was used by Kurt Liewer to calculate antenna positions and orientations

to assist with this minimisation. Event header and housekeeping data is also included in

the ROOT files, which were read into the analysis code via Ryan Nichol’s eventRead-
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erRoot libraries.

6.2 Data samples
Analysis techniques were trained to maximise selection efficiency of RF-induced

events while rejecting an appropriate level of thermal noise, with a target of half an

event from thermal noise being allowed to pass analysis cuts. To achieve this, the

ANITA-2 data and simulated data were subdivided into a number of data samples, with

a separate, untouched, analysis sample on which the methods could be applied.

6.2.1 Noise training sample

Three different samples were used for training of thermal noise rejection.

First, ANITA-2 ran a 1 Hz minimum bias trigger throughout its flight, resulting

in ∼ 2.5 million events. The majority of the events recorded were largely thermal

in nature, with exceptions being periods when the payload was close to human bases.

The events are only ‘largely thermal’ as they are all contaminated with ever-present

narrowband RF from satellites (see section 6.3.1). These minimum-bias events do not

include a thermal excess coincident in time between multiple channels that would have

led to the triggered events that need to be rejected.

Second, as any detectable signal arising from a neutrino interaction would origi-

nate in the Antarctic ice-sheet and any cosmic-ray-induced air-shower would develop

below the balloon flight altitude, it is possible to inspect any event that reconstructs

during analysis in an upward direction. A sub-set of the ANITA-2 data, using only

events recorded when major bases were beyond the viewable horizon, was taken and

analysed. Any event that reconstructed pointing upwards from this sample was added

to a set of upward-pointing noise events, with the final noise-like sample including

approximately 2 million events in each polarisation. Again, these events include the

narrowband continuous wave (CW) noise from satellites. As triggered events, they do

include the coincident signal excess between channels that lead to a global payload

trigger.

Finally, simulated noise events were generated using the simulation outlined in

the previous chapter. Over 25 million events were generated and analysed, allowing

for cuts to be trained on an event sample larger than the actual ANITA-2 data. These
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events did not include the thermal excess, coincident in time between channels, that

would lead to a global trigger and were generated without the satellite noise excess

present in the real data.

6.2.2 Signal training sample

The Taylor Dome and Williams Field ground-calibration antennas provided over

500,000 recorded events during flight, from which signal selection efficiency could

be tested. The Taylor Dome borehole antenna proved by far the most useful of these

due to its more isolated location. Signals from both the Williams Field Seavey antenna

and borehole antenna were observed by ANITA using the GPS PPS triggers, but the

strength of background noise from McMurdo caused difficulty in analysis of the events

and in calculating reliable analysis efficiency levels. Further to this, there were peri-

ods when the PPS trigger and signal transmission fell out of synchronisation, causing

problems in event selection. The Taylor Dome borehole antenna, meanwhile, produced

signals that allowed for both tests of analysis and trigger efficiency (as no PPS synchro-

nisation was possible), with the events recorded by ANITA-2 containing much lower

levels of CW contamination.

Neutrino signals were simulated using the icemc and instrument simulation code,

as described in chapter 5. The efficiency of the simulated trigger was not as high as that

of the ANITA-2 trigger, so a number of events that did not pass the simulated trigger,

but had a signal to noise ratio of > 0.5, were also passed through event analysis. Any

simulated event causing an L2 trigger was also passed through the analysis. The simu-

lated neutrinos were created using the ANITA-2 flight path and timing information. A

number of analysis features depend on either the payload location (e.g. event filtering)

or payload status (e.g. number of antennas used). By inserting simulated neutrinos into

the flight path, it was possible to analyse the event while taking into account the condi-

tions at the simulated event time. This results in a more realistic efficiency calculation

than would have been possible by assuming ideal conditions for every simulated event.

6.2.3 Analysis sample

The entire ANITA-2 dataset is considered for analysis after first removing a number of

known event classes that can confidently be assumed not to contain any desired physics

signal.
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Calibration events

The analysis first reject events if they are from the set of minimum bias, other forced

trigger, or calibration signals. The number of events falling into each of these samples

is given in table 6.1, with event selection outlined below.

Taylor Dome event: A simple timing cut is used when the Taylor Dome borehole

antenna is within, or close to, the balloon’s field of view. The time of flight for a signal

to travel between the Taylor Dome antenna and the balloon is calculated. An event is

classed as a Taylor Dome event if the nanosecond trigger time (number of nanoseconds

after the internal clock’s second mark) minus the time of flight is−40700 < ∆t (ns) <

−39900. A set of events where the signals from the Taylor Dome signal generator

were reflected from the antenna up and back down the borehole cable connecting the

antenna to the signal generator were also observed and selected with a cut of−39400 <

∆t (ns) < −39100.

Williams Field event: The majority of the events from the Williams Field Seavey

and borehole antennas were synchronised to the forced PPS trigger. A fraction of the

Williams Field calibration signals did not coincide with the PPS trigger, some of these

events can be selected using a timing cut when the calibration antennas were within the

payload’s field of view.

Forced trigger event: Any event that was caused by a software trigger (the mini-

mum bias events) or a PPS trigger (that is not a Williams Field event) is removed from

the final data sample, regardless of whether the forced trigger coincides with a hardware

trigger.

Calibration pulser event: ANITA-2 flew a number of bicone antennas which

sent out strong RF calibration pulses. These were transmitted in an O(100) ns window

at 1 Hz, typically near the start of each data run. Events are removed by applying a

100 ns timing cut and removing any event within this window with either a data flag

indicating that the calibration pulser relay was on, or any events that correlated highly

with a preselected sample of calibration pulses.

Event quality cuts

Further events are rejected based on a number of quality cuts that deem whether the

instrument was operating in a satisfactory condition and whether the data was recorded
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Table 6.1: Summary of the number of calibration events and the remaining number of

events to be used in the main ANITA-2 analysis.

Event sample Number of events % of total

All events 26655876 100%

Taylor Dome events 116151 0.44%

Williams Field borehole events 384993 1.44%

Williams Field Seavey events (VPOL) 8500 0.032%

Williams Field Seavey events (HPOL) 5586 0.021%

Williams Field Seavey events (XPOL) 162070 0.61%

Forced trigger events 4589303 17.2%

Calibration pulser events 9040 0.034%

Analysis sample 21380233 80.2%

without corruption, these are summarised in table 6.2.

Saturated SURF: The SURF ADCs flown on ANITA-2 would saturate for signals

above |V | ∼ 1 V. Any event with a saturated ADC value is removed from analysis.

RFCM power off: For periods of ANITA-2’s flight there were concerns about the

battery status. During these times, power was turned off to the RFCMs, though data

acquisition continued. Events recorded during these periods are removed either by a

flag in the housekeeping data or if VRMS < 20 mV in more than ten channels.

Sync slip: On a number of occasions, ANITA-2 would experience a hardware

trigger, but would record waveform data corresponding to another period of time. These

events are identified by the discrepancy between TURF recorded and SURF recorded

time and are removed by a flag in the event header data.

Mean Offset: Waveform data recorded by ANITA-2 should have a mean voltage

close to 0 V. Events with any channel recording a mean voltage of > 150 mV are

removed from the analysis.

Short trace: Events with channels producing waveform data < 240 samples long

are removed.

No GPS: About 5% of events were recorded when the GPS data was corrupted.

Although sun sensor, magnetometer and accelerometer data were used to provide pay-
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Table 6.2: Summary of events failing the quality cuts. Percentages relate to the fraction

of events cut from the analysis sample in table 6.1 (21380233 events total).

Cut description Events cut Events remaining % cut

RFCM off 1641 21378592 0.0077%

Saturated SURF 57364 21321228 0.27%

Self triggered blast 73722 21247506 0.34%

Sync slip 18156 21229350 0.085%

Mean offset 252 21229098 0.0012%

Short trace 5 21229093 2×10−5%

No GPS 1305 21227788 0.0061%

PPS+RF 8201 21219587 0.038%

All quality cuts 160646 21219587 0.75%

load position and orientation for most of this data, there remain a few events with no

such data within 30 seconds of event time. These events are removed from analysis.

Self-triggered blasts: The ANITA-2 data included a number of events that were

triggered by some on-payload source. This class of event was the most troublesome

to remove en masse through quality cuts. The majority of these events are similar to

each other in appearance, with strong, broadband signals being measured by the lower

and nadir antennas, while a much lower amplitude is measured in the upper antennas.

A large portion of the self-triggered blasts can be removed using cut on signal to noise

ratio (SNR) difference between the nadir or lower rings and the upper ring. Events are

cut if the SNR in the lower or nadir rings is at least four times that of the upper ring

SNR in the same φ-sector of antennas. The self-triggered blasts are usually collected

together in time. Further events are removed by correlating a sample of template events

with every ANITA-2 event. Any event correlating particularly well that fell within

a minute of an event which has been removed using the SNR ratio cut is excluded

from the analysis sample. Finally, as the events originate on board, the plane wave

assumption used for event analysis no longer applies, meaning that the interferometric

image will not observe an isolated peak even for strong self-triggered blasts. A cut

from the interferometric image is also implemented – see section 6.4.
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6.3 Analysis tools
This analysis uses a small toolset with which to assess whether to retain or discard each

event. These tools are designed to be able to run quickly on an event-by-event basis,

with tests on how coherent the event is between channels. No major assumptions are

made about the signal shape at this stage, given that that no UHE neutrino interactions

have been observed. However, the first flight of ANITA and subsequent data-analysis

have provided information about the nature of signals that we wish to reject.

6.3.1 Event filtering

The frequency range in which ANITA operates contains a number of bands used

for communications around Antarctica. Transmission in these bands was observed

throughout the ANITA-2 data, particularly when a major base such as McMurdo was

within the visible horizon. Figure 6.1 shows power received by ANITA-2 as a function

of frequency and time during such a period. In addition to noise from bases, satel-

lite noise, discovered to be a nuisance in previous ANITA-1 analysis [83], is observed

throughout the flight. As such, the ANITA-2 data is never free of anthropogenic CW

background.

The presence of CW can be problematic, often causing a triggered, impulsive event

to reconstruct towards the source of underlying CW instead. In some cases CW will

cause an RF-induced event to be misreconstructed completely, pointing to neither event

source nor CW source. To tackle this issue an adaptive filter is implemented to remove

as much CW contamination as possible, while retaining as much original waveform

information as possible.

Prior to analysis of any event, a thermal noise baseline was defined using data

from the ANITA-2 flight when the balloon was far from bases. Using all minimum bias

triggers from three data runs (runs 190–192, corresponding to ∼ 9 hours of instrument

operation), distributions of noise amplitude levels were created for each channel and

frequency band in a similar manner to that outlined in section 5.1.1. Using Rayleigh

distributions (equation 6.3.1), a width (σ) is fitted to the amplitudes at each frequency

for each channel.

Rayleigh c.d.f. = 1− e
−x2
2σ2 (6.3.1)
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Two filtering stages are employed that ensure the removal of both low level, long

duration background noise and stronger, brief duration noise that contaminates only a

small number of events. The first filtering method averages the power in each band and

channel for 10 seconds of flight data, up to and including the event being analysed. The

second method averages power from 3 φ-sectors of channels for the event in question.

The filtering first takes these averaged powers as a function of frequency (< Pf >)

and scales them so that the 200 − 1200 MHz integrated power matches that of the

thermal distributions:

〈Pf,scaled〉 = 〈Pf〉

f≤1200 MHz∑
f≥200 MHz

Pf,thermal

f≤1200 MHz∑
f≥200 MHz

< Pf >

(6.3.2)

To test whether a channel requires filtering in a given frequency band, the scaled power

in this band (< Pf,scaled >) is compared to the thermal power (Pf,thermal):

fP = exp

(
− < Pf,ch,10s,scaled >

2

2× P 2
f,ch,thermal

)
(6.3.3)

Where fP is some measure of the probability that observed emission in a given band

is thermal or broadband in nature. If fP falls below a preset level, then the frequency

band contains too much power and is filtered.

Using an optimisation on Taylor Dome calibration signals and minimum-bias

events, specific details of the filtering algorithm were chosen. Thresholds were set

for the analysis of fP < 0.1 for the 10 s averaged filter and fP < 0.02 for the φ-sector

averaged filter. The filtering algorithm will also filter neighbouring frequency bands

until a local maximum of fP is found, or fP rises to twice the filter threshold. If any

frequency band of a given channel is filtered, the filter is also applied to channels within

the same and neighbouring φ-sectors.

In addition to the filtering described above, a 200 − 1200 MHz bandpass filter is

applied to each recorded waveform, in line with ANITA-2’s hardware filters. Filtered

bands within the 200 − 1200 MHz range are then whitened. For this, scaled thermal

noise amplitudes with a random phase are inserted into each filtered band. An exam-

ple of filtering is shown for an event recorded when the payload was within view of

McMurdo is shown in figure 6.2.
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Figure 6.1: Average power received by channel 1V as a function of time and frequency

during a three hour period when the payload was close to McMurdo. The antenna sees

CW from McMurdo in a number of bands, the strength as a function of time is caused

by rotation of the payload, bringing the base in and out of view.

6.3.2 Interferometric imaging

The key tool used in the ANITA-2 analysis, particularly for thermal noise rejection, is

the interferometric image. Using data from all active channels in a given polarisation,

the interferometric image provides information both on signal strength and the direction

from which a signal originates as a function of payload coordinates.

By taking the cross correlation of waveforms from antenna pairs, it is possible to

map out how well matched two waveforms are for a given time shift. The correlation

coefficient returned here will be proportional to the amplitude of the two waveforms

being processed, using normalised waveforms will provide a normalised correlation

coefficient (equation 6.3.4).

C1,2 =
ψ1 ? ψ2

σψ,1σψ,2
(6.3.4)

Here, C1,2 is the normalised cross correlation between waveforms ψ1 and ψ2, while the

normalisation of ψi is given by its RMS, σψ,i.

If we treat RF signals reaching the ANITA-2 payload as plane waves then, for

a given direction of incidence, there will be an offset between the time of arrival of

the signal between any two given antennas. This timing difference varies as a func-
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Figure 6.2: Example of the filtering algorithm used on a minimum bias event contam-

inated with CW. The left panel shows the event averaged (top) and φ-sector averaged

(bottom) fP calculations, red stars indicate filtered bands and dashed lines indicate fil-

ter thresholds. The right panel shows the power spectrum in an antenna facing the CW

direction before (top) and after (middle) filtering, then with white noise inserted in the

filtered bands (bottom).
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tion angle of incidence on the payload; as such the analysis calculates the correlation

coefficient between two antennas as a function of azimuth (φ) and elevation (θ).

A global interferometric map can be constructed over all angles by summing and

normalising correlation coefficients from all antenna pairs, as shown in equation 6.3.5.

C(θ, φ) =
1

n

∑
i 6=j

ψi ? ψj[τij(θ, φ)]

σψ,iσψ,j
(6.3.5)

Here, n is the number of channels used for a given direction, while τij is the difference

in arrival time of a plane wave between channels i and j incident at payload angle θ and

φ. Each antenna will only contribute to a map if it is within 45◦ of the azimuthal point-

ing direction, and antenna pairs are only correlated if they are≤ 2 φ-sectors apart. This

allows for five φ-sectors worth of antennas to contribute to any one point on the map,

while retaining only those antennas with a reasonable response to a given direction.

For the main analysis, the global payload coordinate interferometric image is con-

structed using 2◦ binning, as shown in figure 6.3. A refined 12◦ × 6◦ image, using 0.1◦

binning, is constructed for the direction of the peak of the coarse map for each event.

Interpolation is used to extract a peak correlation coefficient, P1, as well as relevant

azimuth and elevation pointing angles, φ1 and θ1 respectively. From the global (coarse-

binned) map, the correlation coefficient of the second largest peak, P2, is taken from

outside of a 10◦ × 10◦ exclusion region around P1.

6.3.3 Coherently-summed waveform

If the direction of an incident RF signal is known, then a coherently-summed (that

is, summing in phase) waveform from multiple channels will provide significant in-

crease in signal strength compared to the waveform from a single channel. Meanwhile,

summed waveforms for thermal events, for which there is no incident direction, will

not sum coherently. This method, also known as beamforming, is used to provide a

second discriminator between thermal noise and RF signals.

Using the event pointing angles from the interferometric image, θ1 and φ1, the

coherently-summed waveform is created for every event. Appropriate timing shifts

are applied to each channel within two φ-sectors of the event direction, with the shifted

waveforms then added together and normalised by the number of channels used. Figure

6.4 shows coherent waveforms and their envelopes for an example calibration signal
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Figure 6.3: Interferometric images for an event from the Taylor Dome calibration an-

tenna (top) and a minimum bias trigger (bottom). Directionally coherent events, such

as signals from the Taylor Dome calibration antenna, will display a unique peak in the

interferometric image corresponding to the signals direction of incidence on the pay-

load. Thermal events do not display this feature. The z-axes are on normalised scales;

stronger or more coherent events will display higher peak correlation coefficients, with

a value of one indicating perfect correlation between all channels.
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and a minimum bias event. A coherently-summed waveform is also constructed for

each event using waveforms that have had the instrument response (see figures 4.7 and

4.14) removed via deconvolution. This waveform is not used in the main thermal cuts.

The Hilbert envelope (Ψ(t)) of the coherently-summed waveform (ψ(t)) is found

using equation 6.3.6.

Ψ(t) =
√
ψ2(t) +H2(t) (6.3.6)

where the Hilbert transform H(t) is the Fourier transform of h(f), which is given by

equations 6.3.7 and 6.3.8.

h(f)(real) = −ψ(f)(im) (6.3.7)

h(f)(im) = ψ(f)(real) (6.3.8)

Equivalently, given the analytic signal, a complex function whose real compo-

nent is ψ(t), the Hilbert envelope Ψ(t), is the amplitude of the analytic signal and so

traces the envelope of this signal. For the analysis, two parameters are taken from

the coherently-summed waveform’s Hilbert envelope; these are the peak value of the

envelope (HP ) and the time of this peak (Ht). Additionally, the coherently-summed

waveform can be useful in detecting low level CW that is not apparent in single chan-

nel waveforms.

6.4 Thermal cuts
The analysis described here aims to reject thermal noise via a small number of cuts,

all of which are taken from either the interferometric image or the Hilbert envelope

of the coherently-summed waveform. Because the expected number of signal events

is very low, with even the most optimistic fluxes (ignoring exotic models) providing

O(1) neutrino event per flight, it is reasoned that the analysis should aim to remove all

thermal background with confidence. As such, when setting thermal cuts the analysis

will have a target thermal background rate of half of one event from the entire data set

passing thermal cuts for each polarisation.

The three thermal noise samples are each useful in training thermal rejection cuts.

Real thermal noise events, from the minimum bias trigger and upward-pointing event

sample, would require extrapolation of cut values in order to provide the thermal noise
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Figure 6.4: Aligned VPOL waveforms for the channels in the five φ-sectors closest

to the direction of incidence (top) and the resultant coherently-summed waveforms for

an event from the Taylor Dome calibration antenna (middle). The coherently-summed

waveform for a minimum bias trigger is also shown (bottom). The coherently-summed

waveforms are shown with a black line, the Hilbert envelopes of the waveforms are

shown with a red line.
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rejection level required. As such, the final thermal rejection cuts in this analysis are

trained on simulated noise events when possible, after it has been shown that the distri-

butions of simulated events follow those of real noise events in the chosen cut parame-

ters.

The coherent Sun

It was noticed during the process of choosing thermal cuts that the P1 values taken

from the ANITA-2 noise samples were not in agreement with the those taken from

simulated noise. Even after filtering and removal of self-triggered blast type events, the

discrepancy remained. Figure 6.5 demonstrates that P1 in the real data was dependent

on angular separation between the position of the Sun and the event pointing. The

same effect was observed in ANITA-1 data analysis [85]. From this we can conclude

that ANITA observes, and can resolve, coherent radio emission from the Sun. Figure

6.6 shows summed and averaged interferometric images with the Sun clearly resolved,

with a reflection from the ice also visible in the HPOL image.

This effect prompted the division of the ANITA-2 analysis dataset into two sepa-

rate samples for each polarisation before developing the final thermal noise cut, events

pointing towards the Sun and events pointing away from the Sun. A conservative ap-

proach is taken when deciding whether an event points towards the Sun or not to remove

the chance of any solar event leaking into the post cuts sample. Using figure 6.5, it was

decided that any event with ∆φS = |φ1 − φSun| < 20◦ would be defined as pointing

towards the Sun.

As the simulated noise does not include the coherent Sun, the final thermal cut

for the ∆φS < 20◦ data is developed using real data. The final thermal cut for the

∆φS > 20◦ data is trained using simulated data. The same thermal noise rejection level

is used for both samples.

Peak correlation

The interferometric image is constructed with a normalised correlation coefficient

scale, meaning the P1 and P2 values of any two events can be directly compared. For

directional events, P1 should have a large significance over the correlation coefficients

elsewhere in the interferometric image. For thermal events, the significance of P1 is

expected to be much lower. Figure 6.3 demonstrates the difference in P1 between an
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Figure 6.5: Average peak correlation coefficient for minimum bias events as a function

of azimuthal angular separation between event pointing and Solar position. Dashed

lines indicate the |∆φS| < 20◦ definition of whether an event points towards or not

towards the Sun.

incoherent thermal noise event and a coherent calibration signal.

Simulated noise events display a peak correlation coefficient that is on average

slightly lower than that of the minimum-bias and upward-pointing noise events with

∆φS > 20◦. The peak correlation values from simulated noise are scaled by 1.025 in

order to best match the real ANITA-2 data. The scaling value for this was found using

a χ2 minimisation, with the same scaling value used for both VPOL and HPOL events

(figure 6.7).

A cut of P1 > 0.070 is used. This removes a large fraction of thermal noise events,

but would have been set lower were it not for the leakage of self-triggered blast events

past the event quality cuts, described in section 6.2. The cut was chosen such that no

self-triggered blast in the upward-pointing noise sample passed all thermal cuts.

Ratio of correlation peaks

A coherent event should display a clear and unique peak in an interferometric image,

indicating that event’s direction of incidence. While the absolute peak of the image,

P1, provides us with a measure of how coherent the event is in the given direction,
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Figure 6.6: Summed and averaged interferometric images for HPOL (top) and VPOL

(bottom). Each image is constructed from 104 events, with the Sun clearly resolved in

each.
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noise and simulated noise events for HPOL (top) and VPOL (bottom). Data for VPOL

signal-like events are also displayed for Taylor Dome calibration signals and simulated

neutrinos. The peak correlation coefficients of simulated noise multiplied but 1.025 for

the best match to real data, with tail distributions in VPOL caused by unfiltered CW

contamination.
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the ratio of second to first peak correlation coefficient, P2/P1, allows for a test of how

uniquely the event points. P2/P1 provides good discriminating power against thermal

noise events, as shown in figure 6.8, and can also be used as a test of whether an event

has been misreconstructed, as these events will typically have a high P2/P1 value.

The P2/P1 cut is chosen on the basis that it retains all Taylor Dome events that are

not misreconstructions and pass P1 > 0.07. The chosen cut of P2/P1 < 0.8 satisfies

both these criteria.

Event elevation

The Seavey antennas used in ANITA-2 were highly directional, with a beamwidth of

∼ 60◦. The antennas were positioned with a downward cant of 10◦, resulting in ele-

vations of < −40◦ being outside of all antennas’ 3 dB point. The analysis accounts

for off-boresight effects in antenna responses, however, any event reconstructing with

θ1 < −35◦ is cut from the analysis. Simulations show that this removes less than 1%

of ANITA-2’s effective volume.

The upward noise events come from a sample with θ1 > 0◦, these events are

automatically excluded from analysis as they have been used to train analysis cuts.

Therefore, all events reconstructing with −35◦ ≤ θ1 ≤ 0◦ may pass thermal cuts, even

though, with the horizon typically at θ1 ∼ 6◦, some portion of these events will not

reconstruct to ground. See section 6.5.1 for discussion of events that reconstruct above

horizon.

Trigger timing

The L3 trigger window is only ∼ 10 ns in duration, while waveforms (and hence the

coherent waveform) are ∼ 100 ns long. The architecture of ANITA-2 means that when

the TURF issues a trigger, the signal which resulted in the trigger command will be in

the central region of the waveform data stored. A requirement is made that the section

of the coherent waveform providing HP is in rough agreement with the L3 trigger

window. This ensures that the analysis is selecting signals that passed the hardware

trigger.

To achieve this a cut is applied on the time of HP , Ht, chosen such that all Taylor

Dome impulsive events passing P1 > 0.07 and P2/P2 < 0.8 also pass the Ht cut.

The value chosen is 15 ns < Ht < 70 ns, with a signal and noise comparison of the cut
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Figure 6.8: 2nd/1st peak correlation coefficients from the interferometric image for real

(minimum bias and upward-pointing) noise and simulated noise events for HPOL (top)

and VPOL (bottom). Data for VPOL signal-like events are also displayed for Taylor

Dome calibration signals and simulated neutrinos.
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Figure 6.9: tenv shown for upward-pointing RF–triggers and Taylor Dome Events (that

do not misreconstruct). The bin contents of the RF–trigger histogram have been divided

by 10.

shown in figure 6.9.

Trigger direction

To have agreement between analysis and hardware results, a cut is made on any events

that reconstruct in a direction that does not agree with either a hardware trigger or

software issued φ-mask. Any event with φ1 in a direction that is not in, or adjacent to,

a triggered or masked φ-sector is cut from the analysis. This corresponds to a ∼ 22.5◦

cut on discrepancy between hardware and analysis directional information. A number

of RF triggered events display no L3 trigger,1 as such, the analysis allows the trigger

direction cut to use L2 triggers.

As mentioned previously, a decision was made to set thermal cuts such that 0.5

thermally-induced events would pass the analysis in the full data sample (2.1 × 107

events). This would provide us with confidence that events passing to the next stage of

analysis contain coherent signals while also allowing for a sensitive analysis that would

still select the majority of weak directional events.

To achieve this goal, it is necessary to apply all thermal cuts in sequence to a test

1RF triggered events that display no L3 trigger were, in fact, L3 triggered events, but a rare condition

in the FPGA trigger latching resulted in the L3 trigger information being recorded as negative in all

φ-sectors.
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(thermal-like) sample, such that an estimation of our expected thermal background can

be made. As simulated thermal events are used for the training of final analysis cuts, the

effect of each cut must be tested on, and a comparison made between, the simulated and

real data samples. However, it is impractical to simulate enough thermal data to be able

to test a trigger coincidence condition. Not including this cut in our final background

estimate will both introduce additional uncertainty in the value obtained and result in

more stringent values for other cuts, both of which are undesirable.

To remedy this, the trigger coincidence cut is tested on real data. Figure 6.10

demonstrates that, for incoherent events, the trigger coincidence cut removes 75% of

upwards-pointing thermal events, regardless of their peak correlation coefficient value.

Only the non-thermal tail (primarily of satellite origin) of the upward-pointing triggers

does not follow this trend. Therefore, a rejection value of 75% is assumed for the trig-

ger coincidence cut when training thermal cut values with the simulated (untriggered)

noise.

Combination Cut

The final cut applied to remove thermal noise events is a combination of HP and P1

in the form HP + apP1. This was a method first developed by Stephen Hoover for

an analysis of the ANITA-1 data [85] and provides significantly more discriminatory

power between thermal and directional events than two separate cuts. Comparisons

between signal and noise, and between simulated and real noise, for P1 and HP are

given in figures 6.7 and 6.11 respectively. A comparison between HP and P1 is given

in figure 6.12.

As the analysis data set has been divided according to where the event points in

relation to the Sun, a different combination cut is chosen for each sample. For each

data sample each of the previous cuts is applied initially. Simulated noise and Taylor

Dome signals were tested with various values of ap to find the value that maximised

efficiency on Taylor Dome events for a given level of noise rejection. From these tests,

the value of aP was set to 270. The final combination cut was chosen by requiring a

noise rejection that would allow 2.5 events in 108 to pass all thermal cuts, corresponding

to 0.5 events for the ∼ 21× 106 RF events recorded by ANITA-2.

For events with ∆φS ≥ 20◦, simulated thermal noise is used to train the com-
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Figure 6.10: Fraction of events passing the trigger coincidence cut as a function of peak

correlation coefficient, top: for VPOL events pointing ∆φS < 20◦, bottom: for events

pointing ∆φS > 20◦.
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Figure 6.11: Peak of the coherently-summed waveform Hilbert envelope for real (min-

imum bias and upward-pointing) noise and simulated noise events for HPOL (top) and

VPOL (bottom). Data for VPOL signal-like events are also displayed for Taylor Dome

calibration signals and simulated neutrinos. Excess in VPOL upward-pointing events

over the other forced and simulated noise is caused by non-thermal events.
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Figure 6.12: Comparison of Hilbert envelope peak (HP ) and peak correlation coeffi-

cient (P1) for VPOL events from Taylor Dome calibration signals (colour histogram)

and upward-pointing thermal noise (grey contours). Note that no requirement is placed

on pointing angle from the Sun for the either set of events in this figure.

bination cut, for events with ∆φS < 20◦, the upward-pointing noise sample is used.

As the upward-pointing noise events only represent a fraction of the ANITA-2 analysis

data sample, the final cut is extrapolated by assuming a power law fit to the fraction of

thermal events passing this final cut value.

Final cut values of Hp + 270P1 for the VPOL analysis are 41.40 for events with

∆φS ≥ 20◦ and 61.36 for events with ∆φS < 20◦. Final cut values of HP + 270P1

for the HPOL analysis are 64.81 for events with ∆φS ≥ 20◦ and 81.17 for events with

∆φS < 20◦.

An error on the expected background of thermal events is calculated using the

error in the fits to the fraction of simulated and thermal noise passing the combination

cut from figures 6.13 and 6.14. The fits shown are of the form A.eb(x−x0). Fixing

all parameters other than b, the expected thermal background passing thermal cuts is

0.50+0.27
−0.18 HPOL and 0.50+0.29

−0.18 VPOL.
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Figure 6.13: The linear combination cut for HPOL (left) and VPOL (right) for simu-

lated noise events pointing > 20◦ from the Sun.
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Figure 6.14: The linear combination cut for HPOL (left) and VPOL (right) for upward-

pointing noise events pointing < 20◦ from the Sun.
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6.4.1 Thermal cut results

A summary of the results of the thermal cuts on the analysis dataset is given in table 6.3

for HPOL and table 6.4 for VPOL events. The sample passing thermal cuts contains

267,272 events, with 66.67 % of the events being VPOL dominated.

A number of events passed thermal cuts in both VPOL and HPOL. Events which

passed the thermal analysis in both polarisations but with the direction of reconstruc-

tion differing by > 3σ of the pointing resolution (see section 6.5.1) between the two

polarisations were cut from the analysis (labelled as “point differently” in tables 6.3

and 6.4). Only one polarisation was used for all other events which passed the thermal

analysis in both polarisations, with the polarisation selected as that which had the high-

est P1 coefficient (labelled as “point better” in tables 6.3 and 6.4). Finally, any event

passing either polarisation may not reconstruct below 0◦ in elevation but above the

horizon. Section 6.5.1 describes which events from this sample are labelled as “doesn’t

reconstruct to ground” in tables 6.3 and 6.4 and cut from the analysis.

6.5 Anthropogenic cuts
The majority of the 267,272 events that passed thermal analysis cuts will have been

caused by anthropogenic noise. Such events will usually be associated spatially with

either a known site of human activity, or with other events of a similar origin. To

reject these events, a clustering algorithm is developed that considers all events pass-

ing thermal cuts and groups associated signals together. For clustering to be reliable

the algorithm will require knowledge of ANITA-2’s pointing resolution along with a

comprehensive set of data on human activity in Antarctica during ANITA-2’s flight.

6.5.1 Pointing resolution

The pointing resolution of the analysis was tested using Taylor Dome calibration sig-

nals. As the Taylor Dome calibration antenna was vertically polarised, the pointing

resolution is only assessed for VPOL event analysis. Although calibration pulses from

the Williams Field Seavey antenna were transmitted in HPOL, the event sample is small

(< 10000 events), is heavily contaminated with CW and does not cover a suitable range

of signal strengths to allow us to assess ANITA-2’s HPOL pointing resolution. We

therefore assume that the HPOL pointing resolution is similar to that in VPOL.
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Table 6.3: HPOL cuts summary. *The combination cut 270P1 + HP depends on the

angle to the Sun.

Cut Fails In seq If last Pass without

P2/P1 < 0.8 19275570 19272586 2818 213303

P1 > 0.07 20837426 1604424 773 211258

270P1 +HP* 20930699 68653 19959 230444

θ < 0◦ 10390446 42 15 210500

θ > −35◦ 3354611 56724 55647 266132

15 ns < Ht < 70 ns 7473923 6395 6366 216851

|φ-trigger/mask| < 2 14313518 278 278 210763

Cut Remaining

210485

Point differently V 15 210470

Point better V 121431 89039

Doesn’t reconstruct to ground 2 89037

Events to cluster 89037
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Table 6.4: VPOL cuts summary. *The combination cut 270P1 + HP depends on the

angle to the Sun.

Cut Fails In seq If last Pass without

P2/P1 < 0.8 19021767 19019369 1448 261890

P1 > 0.07 20626758 1701693 345 260787

270P1 +HP* 20789328 145236 20089 280531

θ < 0◦ 10530819 1184 106 260548

θ > −35◦ 3086198 61927 60181 320623

15 ns < Ht < 70 ns 7101849 29074 28787 289229

|φ-trigger/mask| < 2 14315471 662 662 261104

Cut Remaining

260442

Point differently H 15 260427

Point better H 82098 178329

Doesn’t reconstruct to ground 94 178235

Events to cluster 178235
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Figure 6.15 shows the VPOL pointing resolution as a function of peak correlation

coefficient, calculated using every Taylor Dome calibration signal that passed thermal

analysis cuts. The resolution, σ, is calculated for an angle, i, using the root-mean-

square (RMS):

σi =
1

n

n∑
i=0

(
∆(i2)− (∆(i))2) (6.5.1)

Where ∆(x) is the difference between the true and measured value of x. Both azimuthal

and elevation pointing resolutions are sub-degree for peak correlation coefficients of

> 0.1. Elevation resolution is roughly a factor of two better than azimuthal resolution

due to the vertical antenna separation being larger than the horizontal one.

Using the pointing resolution, a directional uncertainty is assigned to every event

passing thermal cuts for use in event clustering. There exist a small number of events

that pass thermal cuts, but reconstruct above horizon. For these events we allow the

elevation pointing angle to be moved downward until the event reconstructs to ground.

If the change in elevation required for reconstruction is ≤ 0.5◦ or ≤ 2σθ then the event

is passed into the event clustering algorithm, otherwise the event is cut.

6.5.2 Base and flight lists

A list of human bases (both active and inactive) and automated weather stations was

compiled for the ANITA-2 analysis [102]. This list is not assumed to be either complete

or exhaustive. Further human bases are inferred from a radio coherence map, created

by projecting the peak correlation coefficient of every event passing the quality cuts to

ground and normalising over the number of events pointing to each location, results

are shown in figure 6.16. For the construction of this map event filtering was turned

off. The results can be compared with similar maps created with filtering implemented,

shown in figure 6.17. Any location with an averaged correlation value of > 0.070 was

assumed to be associated with anthropogenic noise. A peak finding algorithm searched

these areas and placed a ‘pseudo-base’ at the location of a local maximum correlation

value, these pseudo-bases were included in event clustering and treated as normal bases.

During the 2008-09 austral Summer, a number of scientific programs made use

of aircraft with on-board radar transmitters and receivers. Information on these flights,

with relevant GPS and timing information, was obtained for use in the ANITA-2 anal-
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Figure 6.15: Pointing resolution in azimuth (φ) and elevation (θ) as a function of peak

correlation coefficient for VPOL signals from the Taylor Dome calibration antenna.

Resolution is found via the RMS, given by equation 6.5.1.
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Figure 6.16: Maps of the average correlation value of every event passing quality cuts

for HPOL (top) and VPOL (bottom) with no event filtering.
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Figure 6.17: Maps of the average correlation value of every event passing quality cuts

for HPOL (top) and VPOL (bottom) with event filtering used.
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ysis [102]. Further to this, three traverses across the Antarctic continent were made

for which position and timing information were also obtained. While static bases and

pseudo-bases are used in anthropogenic noise rejection for the entire non-thermal data,

flight GPS position information is only used if the GPS timing and ANITA-2 event

timing coincide to within half an hour. For the traverses, the positional data is used for

anthropogenic rejection if it was recorded within one day of a given ANITA-2 event.

6.5.3 Clustering algorithm

Two clustering cuts are used in the analysis that complement each other. A simple

distance cut groups events and bases together if they are separated by < 40 km. This

cut is useful at smaller balloon-to-source separations, while at large balloon-to-source

separations an angular error will translate to a larger separation error. To account for

this, a log-likelihood metric is used to cluster events with one another using the event

pointing resolution:

− 2LL =

(
θAa − θAb

σθa

)2

+

(
φAa − φAb

σφa

)2

+

(
θBa − θBb

σθb

)2

+

(
φBa − φBb

σφb

)2

(6.5.2)

Here the A and B subscripts indicate the balloon location, a and b indicate the location

of the associated reconstruced events and σαj is the resolution in angle α for event j.

So, θIi is the measured elevation angle for event i, while θIj is the projected elevation

angle for event j onto the balloon’s location and orientation when recording event i.

For the case of event to base clustering, there is only one relevant balloon position and

associated event, so the expression simplifies to:

− 2LL =

(
θevent − θbase

σθ

)2

+

(
φevent − φbase

σφ

)2

(6.5.3)

Using both the Williams Field and Taylor Dome borehole antennas, the fraction of

events being associated with the relevant base location is plotted in figure 6.18. A cut

on the likelihood value of −2LL = 30, corresponding to a pointing σ ∼ 5.5, is used

for event clustering.

An analysis by Abigail Vieregg of the ANITA-2 data, summarised in [86], returned

a significantly larger number of events than this analysis after the thermal cut stage.

On comparing events failing thermal cuts from this analysis that passed thermal cuts
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Figure 6.18: Left: The fraction of calibration signal events as a function of pointing

error, σ =
√

(2LL). Right: the cumulative fraction of events being clustered as a

function of pointing error. Note that at σ > 5 events are heavily contaminated with

CW.

in [86], it was noticed that the filtering used in this analysis was considerably stronger,

removing much weaker CW contamination. While this is useful when analysing impul-

sive events, as potential contamination is removed more successfully, it is also possible

that there are CW sources not included in the base list or the coherence map analysis

that [86] did include. It was decided that the locations of events from [86] that failed

thermal cuts in this analysis should be included in the clustering stage and removed

before unblinding. The net effect of this is to reduce our neutrino efficiency, but it also

reduces the risk of impulsive events associated with weak CW sources being claimed

as signal events.

The clustering algorithm first tests all events for association to flights and tra-

verses. Any event with a separation < 40 km or likelihood −2LL < 30 to a flight or

traverse location is removed from the analysis, these events are not included in further

clustering. Clustering then compares all events to every base as well as to every other

event. It is possible for an event to be clustered with both, one of, or neither base or

event. It is also possible for an event to be clustered to more than one base or other

event. The algorithm finally sorts all the discovered associations, such that the analy-

sis returns clusters of variable sizes that fall into one of two types: clusters associated

with one or more bases (base clusters) and clusters not associated with a base (event

clusters).
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Figure 6.19: Map of all events passing thermal cuts but failing clustering cuts. Events

marked in green are associated with one or more bases, events marked in red were in

event only clusters, bases are indicated with black markers.

6.5.4 Clustering results

A summary of the event clustering is shown in table 6.5. All events passing thermal

analysis cuts that cluster to either bases or other events are displayed in figure 6.19.

By far the largest concentration of events originate from the region around McMurdo,

reflecting both the level of human activity in this region and the fact the ANITA-2 made

three separate passes directly over the area.

6.6 Efficiency and Background
The efficiency of the analysis is calculated as a function of primary neutrino energy

using simulated events. The results of event clustering are used to estimate the anthro-

pogenic background. This is then combined with a post-clustering thermal background

to provide the expected number of non-physics events that will appear as isolated sig-

nals after all analysis cuts.
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Table 6.5: A summary of the number of events clustered to flights/traverses and bases.

Clusters are named with the largest single partner base. Exact sizes of clusters of less

than 100 events were not inspected prior to unblinding in order to hide the final analysis

results. Note that the very large cluster assigned to McMurdo includes a number of

clusters from nearby bases that were associated by the clustering algorithm.

Cluster type Cluster size From this analysis

Flight/traverse 527

Base cluster - McMurdo 348322 168619

Base cluster - unknown pseudo base 175 5

Base cluster - AGO 1 66 3

Base cluster - AGAP South 161 161

Base cluster - Davis-Ward 28639 28406

Base cluster - Beardmore Camp 2 2

Base cluster - South Pole 117 117

Base cluster - Dome C 1765 54

Base cluster - Vostok 2941 2821

Base cluster - AGAP North 18 18

Base cluster - AGO 3 7785 897

Base cluster - Dome F 81 1

Base cluster - AWS Baldrick 2045 13

Base cluster - AGO 2 194 26

Base cluster - Patriot Hills 19327 18949

Base cluster - Mt. Takahe 1 1

Base cluster - AGO 5 155 155

Base cluster - Berkner Island 45028 44752

Base cluster - Belgrano II 1 1

Base cluster - unknown pseudo base 1690 1649

Base cluster - Camp Neptune 6 6

Base cluster - Cordiner Peak 6 6
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6.6.1 Analysis efficiency

The overall sensitivity of the analysis as a function of primary neutrino energy is shown

in figure 6.20. The calculation of the overall efficiency includes three separate consid-

erations: would the event pass event quality cuts, would the event pass thermal cuts and

would the event pass clustering cuts.

It is found that simulated neutrinos passing the hardware trigger will only fail one

of the quality cuts: digitiser (SURF) saturation. As would be expected, the proportion

of events failing this cut increases with neutrino energy. As the non-linearity of the

amplifiers has not been taken into account for strong signals, the values shown in figure

6.20 provide a conservative estimate on the fraction of simulated neutrino events that

would result in digitiser saturation.

It has already been shown that the simulated hardware efficiency is slightly lower

than the actual instrument sensitivity. As the thermal analysis efficiency is excellent for

all but the weakest signals, the thermal analysis is very efficient for simulated neutrinos

passing the hardware trigger. A decrease in thermal analysis efficiency with increasing

energy is displayed in figure 6.20. Simulated neutrinos failing the thermal analysis

contain a much larger fraction of their power at low frequencies, with the spectrum

showing a steep peak in the 200−350 MHz region, as shown in figure 6.21. The filtering

algorithm for these events is unable to distinguish the radiation from narrowband noise,

the event is filtered and then fails thermal cuts.

The clustering efficiency is the real limiting factor in analysis sensitivity to neu-

trino signals. At the time of the ANITA-2 flight a number of scientific programs were

running at bases situated on some of the deepest ice in Antarctica. This resulted in a

significant reduction in ANITA-2’s detector volume through clustering cuts when com-

pared with ANITA-1, though the experiment as a whole remained more sensitive to

neutrinos.

6.6.2 Background Calculation

An expected background of thermal events has been set through the level of stringency

chosen for the thermal cuts. Further background may arise from misreconstruction of

coherent event locations. However, checks with the Taylor Dome calibration signals

display a negligible misreconstruction rate for even weak impulsive events. Mean-
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Figure 6.21: The electric field at the payload for simulated neutrinos failing (dashed)

and those passing (solid) thermal cuts at two different energies. Events are normalised

and averaged, with > 1000 events used for each spectrum. The events failing thermal

cuts display a stronger peak at low frequencies, which resulted in much of their power

being filtered.
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while, any misreconstructed CW event, while undesirable, should be easily identified

and removed after unblinding. By far the most significant background for ANITA-2

data analysis is that of single anthropogenic events that do not originate from a known

or pseudo base. While human activity in Antarctica is limited and usually well doc-

umented, it is very possible that there exist small bases which are not included in the

ANITA-2 base list. Additionally, not all aircraft activity over the continent is included

in the flight lists used for event clustering.

To calculate the expected isolated event background from human activity, a key

assumption is made that the distribution of signal strengths from small, known, bases

is the same as the distribution of signal strengths from small, unknown, bases. Using

this assumption, and defining small bases as those with < 100 events originating from

them, the expected anthropogenic background (Nsingle,non−base) can be estimated:

Nsingle,non−base

Nsmall cluster,non−base
=

Nsingle,base

Nsmall cluster,base

(6.6.1)

Using the fraction of events from each polarisation that make up the events provid-

ing the background calculation, we can then produce a separate background estimate

for each polarisation. The number of small clusters, both from bases and non-base

clusters, along with the number of base singles, are low. This leads to a relatively large

uncertainty in the background calculation given in equation 6.6.1. Two treatments of

the event sample are used, providing independent estimates of the anthropogenic back-

ground, with results shown in table 6.6. The resultant expected anthropogenic back-

ground is 1.13± 0.32 VPOL and 0.09± 0.01 HPOL. The expected VPOL background

is significantly higher due to all triggering being VPOL based, the vast majority of

signals from small clusters are classed as VPOL by the analysis.

The clustering of simulated neutrinos, averaged over all energies, results in∼ 57%

of events being rejected as members of base or event clusters. The thermal background

estimate of 0.50 events in each polarisation was made without considering this cluster-

ing efficiency. Applying the same level of efficiency to thermal background leaves an

expected thermal background of 0.29+0.16
−0.11HPOL and 0.29+0.17

−0.11 VPOL events. Combin-

ing this with the expected anthropogenic background, the overall background expecta-

tion for the analysis is 0.38+0.16
−0.12 HPOL events and 1.42+0.36

−0.34 VPOL events.
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Table 6.6: Anthropogenic background estimates. Events from [86] that fail the thermal

cuts of this analysis are treated in two different manners in event clustering, providing

two separate background estimates.

Events from [86] Base Base Event Expected

clusters singles clusters singles

Treated as bases 10 3 3 0.90

9.4% HPOL, 90.6% VPOL 0.08 H, 0.82 V

Removed from sample 13 5 4 1.54

5.9% HPOL, 94.1% VPOL 0.09 H, 1.45 V

6.7 Events passing thermal and anthropogenic cuts
With an expected combined background calculation predicting of order 1 event in each

polarisation (consistent with the initial aim of this analysis), the analysis signal region

is unblinded. In this section, the analysis outcomes of the inserted Taylor Dome cali-

bration signals are summarised and isolated singles passing thermal cuts are inspected.

6.7.1 Inserted Taylor Dome events

A total of twelve Taylor Dome events were inserted into the ANITA-2 flight data. Only

eleven of these events are unique, as one Taylor Dome event was inserted twice into

the data. The outcome of the analysis in processing the inserted events is given in table

6.7.

Of the eleven unique events to be inserted, seven passed thermal cuts. One of

these was the duplicated event, so a total of eight events were passed in to the clustering

algorithm. Of these eight events, three passed clustering cuts.

The measured efficiency on the inserted Taylor Dome events is consistent with

both the thermal analysis efficiency from the cut training stage and with the clustering

efficiency. Efficiency would have been improved slightly with a weakened combination

cut on events pointing towards the Sun, or a tighter region from which events had the

“towards Sun” cut applied. One of the inserted Taylor Dome events were assigned as

pointing towards the Sun (event # 24699044). This event failed thermal cuts, but would

have passed cuts had it pointed away from the Sun.
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Table 6.7: Outcomes of analysis on the inserted Taylor Dome events. *Events 9362397

and 13662401 are the same Taylor Dome event, inserted twice into the data.

Event # Thermal cuts Anthropogenic cuts

4586631 Fail –

8381355 Pass Fail

9362397* Pass Pass

10345208 Fail –

11207106 Pass Pass

12943715 Pass Pass

13662401* Pass Fail

15406954 Pass Fail

19480638 Fail –

20564174 Pass Fail

24699044 Fail –

25887362 Pass Fail
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Table 6.8: A list of events passing all analysis cuts.

Event # Polarisation Comment

3182655 HPOL Strong CW

3478716 VPOL Associated CW

14496361 HPOL

14577785 HPOL

14917312 VPOL

15636066 VPOL

16014510 VPOL

21970905 VPOL Payload Blast

22807894 VPOL

23056816 VPOL

26507672 VPOL Payload Blast

27146983 HPOL

6.7.2 Isolated Signals

After unblinding a total of twelve events were found to pass all thermal and anthro-

pogenic cuts, these events are listed in table 6.8.

A number of these events are of a type that should have been removed by event

quality or CW misreconstruction cuts. Looking at each of the isolated events in turn,

events are removed if it is possible to provide a convincing reason as to their unsuit-

ability as a physics candidate event.

Table 6.8 shows that four events in total are removed by hand due to easily recog-

nisable poor event quality. One of these is removed due to strong CW in all HPOL

channels that resulted in event misreconstruction. One event is well reconstructed,

however, there is a strong CW signal in the few seconds before and after the event trig-

gered the same φ-sector and appears to reconstruct to the same source location. Two

events have signatures of self-triggered blasts, but were not removed by event quality

cuts.
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6.8 Impulsive signal cut
It was noticed after unblinding that a number of events passing the thermal cuts, while

reconstructable, had no impulsive nature to the coherent waveform. The approach of the

analysis until this point was to place no constraints on overall signal shape, as predic-

tions of Askaryan signals from UHE neutrino interaction remain uncertain. However,

we do expect there to be some impulsive signal that should be resolvable to some ex-

tent in a waveform that does not contain the instrument response, regardless of features

that, for example, the LPM effect could introduce. Using the signal chain and antenna

response (see figures 4.14 and 4.7), an instrument-response-deconvolved, coherently-

summed, waveform can be constructed for each event using the same method described

in section 6.3.3.

It was decided to produce a final physics candidate sample by applying a test of

impulsive signals using the instrument deconvolved coherent waveform. In order to

remove as much bias as possible, the impulsivity test was trained using the Taylor

Dome calibration signals and simulated neutrinos as signal samples and non-impulsive

reconstructed events as the background sample. The background sample was created by

removing filtering from the analysis and selecting upward-pointing events from three

runs of data when ANITA-2 was far from radio-loud human bases. All upward-pointing

events that pass all other thermal cuts were used and should originate from satellite

noise. The sample of anthropogenic events that passed the analysis outlined in [86]

but failed this analysis (largely due to filtering) were also tested, with an unfiltered,

coherently-summed, waveform constructed using pointing coordinates from [86].

Impulsiveness was tested by passing a 5 ns window across the coherently-summed,

instrument-response-deconvolved, waveform and averaging the power within the win-

dow. A peak value of the 5 ns averaged power was forced to come from between 23 ns

and 63 ns of the trigger time. Average power values were calculated for the periods

prior to the earlier and after the latter timing cut. The significance of the peak was then

taken as the larger of peak/average using either pre- or post- window averages. The

timing cuts were selected by running an optimisation of the Taylor Dome and satellite

signals that passed all thermal cuts.

It was found that a cut of peak/average > 3 retained all Taylor Dome signals

passing thermal cuts, while removing 66% of both background samples. One simulated
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Figure 6.22: The result of the impulsive signal requirement cut on satellite CW, base

CW, Taylor Dome calibration signals and simulated neutrino signals. Taylor Dome

and simulated neutrino events are assessed with regular analysis filtering and are only

considered if they pass all previous thermal cuts. Satellite and base CW events are

assessed with filtering turned off, only satellite CW events passing all previous thermal

cuts are included in the plot. The vertical line denotes the cut value selected for use in

analysis.

neutrino, from a total sample of >40,000, failed this cut. Figure 6.22 summarises the

effect of the cut on the four data samples tested.

6.8.1 Effect of cut

The impulsive signal cut was applied to all events passing thermal cuts that had not

already been removed by the flight/traverse clustering cut. It was found that 1367

events failed the cut, the effect on the clustering samples is given in table 6.9.

The background calculation was updated with the new cut. The background con-

tributions from both thermal and anthropogenic sources were performed in the same

manner as described previously. The introduced cut should not increase the thermal

background estimate, however, as figures 6.23 and 6.24 show, the fraction of ther-
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Table 6.9: Event sample sizes prior to and after the impulsive signal cut.

Total HPOL VPOL

# Prior to cut 267272 89037 178235

# Removed by flight/traverse 527 148 379

# Removed by impulsive signal cut 1367 132 1235

# Remaining 265378 88757 176621

mal noise expected to pass the thermal and impulsive signal cuts now differs from the

2.5× 10−8 predicted previously. The tails of the distributions of upward-pointing noise

events passing the thermal cuts differ very little between figure 6.24 and figure 6.14.

The variation in the fraction of events expected to pass thermal cuts pre- and post- im-

pulsive signal cut can therefore be accounted for by the uncertainty in the original ther-

mal background calculation. Combining the estimates for the number of events passing

thermal cuts in table 6.10, the final thermal background estimates are 0.42±0.24 HPOL

and 0.67 ± 0.28 VPOL events. These represent a slight decrease in the HPOL back-

ground and a slight increase in the VPOL background. Both estimates are consistent

with thermal backgrounds prior to the anthropogenic cut. After event clustering (57%

efficiency, as described previously), these estimates are reduced to 0.24 ± 0.14 HPOL

and 0.38± 0.16 VPOL events.

The anthropogenic background is calculated using clustering methods that treat

events passing all thermal cuts except the requirement on the impulsive nature of sig-

nals in two manners; these events can either be left in the clustering sample, but treated

as bases, or they can be removed entirely from the clustering sample. By including,

or removing, events failing this analysis that passed the analysis in [86], this provides

four separate estimates on the updated anthropogenic background. The expected an-

thropogenic background is 0.07± 0.06 HPOL and 0.75± 0.22 VPOL (table 6.11).

The combined background estimate is therefore 0.34 ± 0.15 HPOL events and

1.13± 0.27 VPOL events.

The final events passing all thermal cuts, the impulsive signal cut and clustering

cuts that were not already removed in the previous section by post unblinding quality

cuts are summarised in table 6.12. Three of the five VPOL candidates passing the anal-
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Figure 6.23: The linear combination cut for HPOL (left) and VPOL (right) for simu-

lated noise events pointing > 20◦ from the Sun, after impulsive signal cut. Note that

the final data points for both plots represent > 1 event passing the cut.
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Figure 6.24: The linear combination cut for HPOL (left) and VPOL (right) for upward-

pointing noise events pointing < 20◦ from the Sun, after impulsive signal cut.
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Table 6.10: Updated thermal background estimates. Combinations of these for the final

thermal estimate take into account 2
3

of events have ∆φSun > 20◦.

Sample HPOL VPOL

∆φSun > 20◦, before impulsive signal cut 0.5 0.5

∆φSun < 20◦, before impulsive signal cut 0.5 0.5

∆φSun > 20◦, after impulsive signal cut 0.105 1.08

∆φSun < 20◦, after impulsive signal cut 0.792 0.346

Table 6.11: Updated background estimates using four different treatments of the sample

of events to cluster.

Event sample Events failing Base Base Event Expected

impulsive cut clusters singles clusters singles

All Treated as bases 7 1 4 0.571

2.9% HPOL, 97.1% VPOL 0.02 H, 0.56 V

All Removed 7 1 4 0.571

2.9% HPOL, 97.1% VPOL 0.02 H, 0.56 V

Passing this Treated as bases 13 4 4 1.23

analysis 10.6% HPOL, 89.4% VPOL 0.13 H, 1.10 V

Passing this Removed 16 5 3 0.938

analysis 14.6% HPOL, 85.4% VPOL 0.14 H, 0.80 V

Table 6.12: A list of events passing all analysis cuts, including the impulsive signal cut.

Event # Polarisation

14496361 HPOL

14577785 HPOL

15636066 VPOL

16014510 VPOL

27146983 HPOL
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Figure 6.25: Locations of candidates passing all analysis cuts, black squares indicate

the balloon position with lines connecting the balloon and event locations, red stars

indicate VPOL events, green stars indicate HPOL events.

ysis in table 6.8, events # 14917312, # 22807894 and # 23056816, fail the impulsive

signal cut. A total of three HPOL and two VPOL events pass the final analysis cuts,

with the event locations displayed in figure 6.25.

6.9 Discussion
This chapter has discussed the main analysis on which this thesis is based. The chapter

has taken us from a set of 26.7 M events, through event selection cuts, outlined the

main analysis tools and demonstrated the cuts used to reject thermal and anthropogenic

noise. The analysis has discovered two vertically polarised isolated events and three

horizontally polarised isolated events. The horizontally polarised events are consid-

ered to be cosmic-ray geosynchrotron emission candidates. Further analysis of these

events, and an extension to the cosmic-ray search, are given in chapter 7. The vertically

polarised events are considered to be neutrino candidates. Further analysis of these

events, along with constraints on the diffuse and selected point-source UHE neutrino
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Figure 6.26: Effect of modifying the clustering separation and −2LL cuts on the num-

ber of events passing the clustering. The plot on the right is a smaller binned version

of the plot on the left focussing on the region close to the actual cut values used in the

analysis.

fluxes, are given in chapter 8.

The background of 1.13 ± 0.27 VPOL events suggests that the neutrino search

discovered no statistical evidence of neutrino-induced radio emission. Moreover, the

backgrounds in both polarisations are dominated by anthropogenic noise rather than

thermal noise. To test the cuts used in the clustering algorithm, the effect of modifying

the cuts on the number of isolated signals was inspected. Figure 6.26 shows that two

new events would have been labelled as isolated if either the separation cut were mod-

ified from 40 km to 37 km, or if the −2LL cut was modified from 30 to 29. Although

this does not confirm the two VPOL candidates as anthropogenic events, the distribu-

tion of event singles shown in figure 6.26 suggests that the clustering cuts used in the

analysis are far from 100% efficient on removing anthropogenic noise.
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Chapter 7

Cosmic-Ray Search

Analysis of the ANITA-1 data demonstrated the instrument was sensitive to UHECRs

[84]. Unfortunately the optimisation of ANITA-2’s trigger to UHE neutrinos, which in-

volved running on VPOL signals only, was severely detrimental to ANITA-2’s UHECR

acceptance.1 However, the three remaining HPOL signals after all analysis cuts suggest

that there may still be UHECR signals in the ANITA-2 data.

7.1 UHECR search
The UHECR analysis cuts (HPOL) were developed at the same time, and in the same

manner, as the neutrino cuts (VPOL). The HPOL event search and clustering was per-

formed in tandem with the VPOL analysis, in this way, a single HPOL and single VPOL

signal from the same anthropogenic source which both pass thermal cuts would still be

identified and excluded from the final event sample.

As it is possible for ANITA to observe UHECR geosynchrotron emission directly

as well as in reflection from the ice, the UHECR search was extended above the hori-

zon (though with θ < 0◦, as extensive air-showers will develop below ANITA’s flight

altitude). Two such events passed all thermal cuts in this energy range; # 20485624 and

# 21684774. The first of these is a self-triggered blast event that was not identified by

the event quality cuts, the latter event is a well-reconstructed, HPOL dominated event.

The isolated events from the full UHECR search are summarised in table 7.1.

Analysis images of each event are shown in figure 7.1, the similarity between the scaled

instrument deconvolved coherent waveforms of the four events is demonstrated in fig-

1Modifications to the trigger system for ANITA-2 were completed before analysis in [84] demon-

strated that ANITA-1 had observed UHECR-induced geosynchrotron radiation.
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Table 7.1: ANITA-2 isolated UHECR candidates. Latitude and longitude information

refers to the reconstructed location on the Antarctic continent rather than projected

air-shower location, as such no location information is provided for the direct event.

Event # Elevation (◦) Dir./Refl. Latitude (◦) Longitude (◦)

14496361 -24.9 Reflected -75.49 -150.73

14577785 -31.2 Reflected -75.83 -152.779

21684774 -3.0 Direct N/A N/A

27146983 -16.1 Reflected -82.39 -156.39

ure 7.2.

7.1.1 Identification as UHECR

An UHECR-induced air-shower over the Antarctic continent will develop in a magnetic

field, shown in figure 7.3, that is predominantly vertical in orientation. The radio emis-

sion that ANITA observed from such an air-shower, caused by the splitting and gyration

of e+e− pairs about the local magnetic field, will therefore be largely horizontally po-

larised. The UHECR events observed by ANITA-1 [84] were identified by comparing

the expected polarisation angle of an event with a prediction based on the local mag-

netic field orientation. Additionally, the power of the geosynchrotron emission was

observed to fall exponentially with increasing frequency. This is due to ANITA’s mea-

surements being made at frequencies where EAS radio emission has lost coherence, as

described in section 3.1.4.

The expected polarisation at emission (θpol) is found through equations 7.1.1 and

7.1.2, where FH and FV are the Lorentz force projected onto local horizontal and verti-

cal axes, ~B is the magnetic field vector at the shower and ~v is the motion of the charge.

As the primary cosmic-ray, the longitudinal shower axis and the radio emission are all

expected to be fairly collinear, ~v is taken as the projected RF emission direction.

~F = ~v × ~B (7.1.1)

θpol = tan−1

(
FV
FH

)
(7.1.2)

Using the magnetic field orientation at projected shower location for each event,
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(a) (b)

(c) (d)

Figure 7.1: HPOL interferometric images of the four isolated UHECR candidate events,

(a): # 14496361; (b): # 14577785; (c): # 21684774; (d): # 27146983.
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four isolated UHECR candidates, the directly observed event (magenta) displays oppo-

site polarity to the three reflected events. Waveforms have been scaled such that their
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Figure 7.3: The vertical (a) and horizontal (b) geomagnetic field strength in Antarctica,

data from [103].
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estimates of the expected VPOL signal strength at the balloon were made. These were

based on the observed HPOL signal strength and accounted for Fresnel reflection co-

efficients, shown in figure 7.4, where appropriate. Table 7.2 shows that the two highly

inclined showers displayed an excess in VPOL signals when compared to the expecta-

tion. Upon inspecting these events, the VPOL signal appears almost entirely in anten-

nas on either side of the main φ-sector in which HPOL emission was observed. This

implies that the mismatch between expected and observed VPOL signals (and, hence,

event polarisation) could be due to a detector effect.

7.1.2 Antenna response

Until now, all analysis has neglected the effect of signal leakage at the antenna stage

between the two ANITA polarisations. Calibration signals from the Taylor Dome bore-

hole antenna were transmitted only in VPOL. It was observed in the ANITA-2 data that,

when the balloon was very close to Taylor Dome, these signals were also observed in

HPOL. It was noted that the HPOL signal was often stronger in antennas further off-

boresight in azimuth than those on boresight. It became apparent that the observed

HPOL signals were caused by non-negligible cross-polarisation effects in the antenna.

These effects are known to become increasingly significant the further off antenna bore-

sight a signal is. This effect could easily impact on any physics signal observed in

the ANITA-2 data, particularly as both UHECR EAS emission and neutrino-induced
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Table 7.2: Comparison of measured and expected VPOL signal strengths in the case

that all four candidates are caused by UHECR EAS geosynchrotron emission. The

largest discrepancy occurs for highly down-pointing events (i.e. events with large neg-

ative elevations), a detector effect is the likely cause. Measured signal strengths are

taken as the electric field of the three φ-sector instrument deconvolved coherent wave-

forms.

Event HPOL VPOL

# mV/m Expected Observed

mV/m mV/m

14496361 1.10 0.090 0.332

14577785 1.15 0.046 0.355

21684774 1.86 0.399 0.597

27146983 2.67 0.377 0.362

Askaryan emission that ANITA-2 was sensitive to are expected to be highly linearly

polarised.

Prior to the first flight of ANITA, a series of tests was conducted on the Seavey

antennas in an anechoic chamber at the University of Hawai’i [98]. Included in this

data are the response of antennas to the transmission of impulsive signals, with trans-

missions made in either H- or V-POL and response measured for both polarisations for

every measurement. The data was taken over a range of angles for seven different an-

tennas, it is this data that is used in the system response for both simulation and signal

deconvolution. However, perpendicular-polarised response measurements were only

made in all seven antennas for one angle (azimuth or elevation) being off-boresight

at a time. Figure 7.5 shows the results of cross-polarisation measurements, made for

one Seavey antenna in [98] that include off-boresight response in both azimuth and

elevation angles.

Taylor Dome results

Using Taylor Dome impulsive events, the cross-polarisation antenna response was

tested by comparing a prediction of the HPOL signal (induced by VPOL emission)

with the measured HPOL signal in each event. Even within the VPOL measurements,
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Figure 7.5: Relative peak-peak amplitude of the cross-polarisation response as a func-

tion of angle off-boresight for HPOL→VPOL (left) and VPOL→HPOL (right).

there are significant fluctuations in signal strength at an event-to-event level. As the

HPOL signal prediction is made for each antenna and each event, the resulting HPOL

prediction also varies greatly from event to event.

The cross-polarisation leakage from VPOL to HPOL is only well defined for an-

gles of incidence up to∼ 45◦ off-boresight. While the main analysis uses five φ–sectors

of antennas to produce coherently-summed waveforms, the amplitudes of predicted

HPOL were too uncertain in the outermost φ–sectors for the Taylor Dome events. The

coherently-summed waveforms used in this section were therefore restricted to three

payload φ–sectors, corresponding to seven or eight antennas (depending on the nadir

antenna locations).

Figure 7.6 demonstrates that the HPOL signal amplitude prediction follows the

observed HPOL amplitude closely. However, figure 7.7 shows that the predicted am-

plitude of the coherently-summed waveform from cross-polarisation leakage is consis-

tently lower than the observed amplitude. It is possible that the discrepancy is caused

by time delay effects introduced in the cross-polarisation response that depend on angle

of incidence. Improving the prediction would be difficult; as well as having only cross

polarisation response data from one antenna, the Taylor Dome calibration signals often

contain CW contamination which affects the measured HPOL amplitude.
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Figure 7.6: Predicted waveform amplitudes (red) and measured HPOL waveform am-

plitudes as a function of elevation angle for Taylor Dome events in three sectors of

antennas.
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Figure 7.7: Absolute (left) and fractional (right) error in HPOL prediction from cross

polarisation signals for coherently-summed waveforms from Taylor Dome as a function

of elevation angle.

7.1.3 Isolated event results

Using the expected cross-polarisation response effects, the measured and expected po-

larisation angles of the four UHECR candidate events are once again compared. Fig-

ures 7.8 and 7.9 demonstrate that, with the observed VPOL E-field amplitudes closely

matching the expected amplitudes, the resulting expected and observed polarisation

angles are therefore also well matched.

7.1.4 Non-isolated events

The anthropogenic event cuts described in section 6.5 removed any ANITA-2 events

that clustered with one or more other non-thermal events. Within this clustering anal-

ysis, three event doublets were found – that is, three clusters consisting of two events

and no bases. In two of these doublets, both events passed the thermal cuts described in

this analysis. The third doublet contained only one event passing this analysis, with the

other event coming from the inserted events passing the analysis described in [86]. The

event failing this analysis contained narrowband CW that was filtered. The remaining

event, # 3493989, passed the analysis in HPOL and reconstructed with an elevation of

−30◦.

To search for further UHECR events in the ANITA-2 data, the coherent wave-

forms of all events passing thermal cuts are compared to the coherent waveforms of the
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Figure 7.8: Measured vs. expected VPOL E-field amplitudes of UHECR emission for

the four isolated cosmic-ray candidates. Expected values include Fresnel coefficients,

measured values include cross-polarisation signal contamination. The black line is

measured = expected.
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Figure 7.9: Measured vs. expected polarisation angles of UHECR emission for the

four isolated cosmic-ray candidates. Expected values includes Fresnel coefficients,

measured values include cross-polarisation signal contamination. The black line is

measured = expected.
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Figure 7.10: Average correlation coefficients of waveforms for all events passing

the HPOL thermal cuts to the waveforms of the three isolated, reflected, UHECR

candidates. Correlation coefficients are found for both the normalised instrument-

response-deconvolved (x-axis) and normalised instrument-response-included (y-axis)

coherently-summed waveforms. Magenta stars indicate the average correlation of each

UHECR candidate to the other two UHECR candidates. The correlation values for

event # 3493989 are 0.67, 0.87. Note that events with negative correlation values are

not included in the plot.
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Figure 7.11: Waveforms from figure 7.2 with the one non-isolated candidate event

overlaid in dark blue.

isolated (reflected) UHECR candidates. Both the instrument-response-included and

instrument-response-deconvolved, coherently-summed, waveforms were compared by

correlating the UHECR candidate waveforms with each event’s HPOL waveforms. Av-

erage correlation coefficients to the three candidates were calculated for each event and

compared to the average correlation of the candidates with each of the other two can-

didates. The results of this test are shown in figure 7.10. It was found that event

# 3493989 correlates with the reflected isolated UHECR events very well compared

to all other HPOL events that had been cut by event clustering. In fact, the average

correlation between event # 3493989 and three reflected UHECR candidates is as good

as the correlation of cosmic-ray event # 14496361 to the remaining two candidates.

The waveforms for the isolated UHECR candidates and event # 3493989 are

shown in figure 7.11. Figures 7.12 and 7.13 show that the expected and observed

VPOL emission were also well matched. It is highly likely that event # 3493989 was

caused by geosynchrotron emission from an UHECR-induced EAS.

7.2 Discussion
ANITA-2 observed four isolated, horizontally polarised events that have been shown to

be signals from geosynchrotron radiation of cosmic-ray-induced extensive air-showers.

The data also show a further event that, while clustered with one other reconstructed
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Figure 7.12: Measured vs. expected VPOL E-field amplitudes of UHECR emission

for the four isolated and one non-isolated cosmic-ray candidates (red markers). Ex-

pected values include Fresnel coefficients, measured values include cross-polarisation

signal contamination. The 16 UHECR events from ANITA-1 are also displayed (black

markers). The black line is measured = expected.
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Figure 7.13: Measured vs. expected polarisation angles of UHECR emission for the

four isolated and one non-isolated cosmic-ray candidates (red markers). Expected val-

ues include Fresnel coefficients, measured values include cross-polarisation signal con-

tamination. The 16 UHECR events from ANITA-1 are also displayed (black markers).

The black line is measured = expected.
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Figure 7.14: Reconstructed locations of the cosmic-ray events. Black squares indicate

the balloon location. The three reflected events from the main analysis are shown with

green stars, the location of closest approach to ground of the direct event is indicated

by the red star, the non-isolated event is indicated with a blue star.

event, is highly likely to be a signal from UHECR geosynchrotron emission. The loca-

tions of the events found in the ANITA-2 cosmic-ray search are shown in figure 7.14.

The ANITA-1 data analysis discussed in [84] observed 16 isolated UHECR events.

The uncertainty in the energy calculation for these events was relatively large, however,

simulation- and data-driven estimations for this energy calculation place the mean pri-

mary energy from the 16 events at> 1019 eV. The ANITA-1 results represented the first

observations of UHECR-induced geosynchrotron emission at frequencies > 600 MHz.

Although the ANITA-2 data only provides a further four isolated UHECR (five

events if we include the non-isolated correlated event), it does represent an opportunity

to produce an independent measurement of the frequency spectra of UHECR geosyn-

chrotron.



7.2. Discussion 155

7.2.1 Frequency dependence

The power of geosynchrotron emission from UHECR-induced air-showers is expected

to fall off rapidly with increasing frequency for wavelengths shorter than the transverse

shower size. At such wavelengths, the substructure of the shower is being resolved,

so emission is no longer coherent over the shower. Electromagnetic shower transverse

size is governed by the Moliére radius. In air, geosynchrotron emission will begin to

lose coherence at frequencies of O(10) MHz (exact values depend on the size of the

shower). Spectral emission measurements from the ANITA-1 UHECR events confirm

this frequency dependence, with a spectrum of

I(ν) ∝ e−( ν
121 MHz)W m−2 MHz−1 (7.2.1)

observed for the coherently-summed average of the 16 observed cosmic-ray events.

The frequency spectrum was calculated for the four isolated UHECR events (omit-

ting the clustered candidate to retain a conservative analysis). The power of emission

from the individual UHECR events that ANITA-2 observed falls below the thermal

noise floor for frequencies above about 600 MHz. To assist with resolving power

at higher frequencies, a 10 ns window is taken around the peak of the instrument-

response-deconvolved, coherently-summed, waveforms. Electric field values at all

other times are set to zero to remove thermal noise. The four individual signals are

then normalised in amplitude and coherently-summed. The coherent power spectrum

for the four event average is shown in figure 7.15.

An exponential function appears to fit the coherently averaged frequency spectrum

of the cosmic-ray events. The exponential function fitted in figure 7.15 follows

I(ν) ∝ e−( ν
376 MHz)W m−2 MHz−1 (7.2.2)

This represents a harder spectrum than was found for the ANITA-1 events.

Thermal noise levels for the averaged coherent power spectrum (10−6 − 10−5 in

the arbitrary units of figure 7.15) suggest that thermal fluctuations are not the cause of

the discrepancy between the ANITA-1 and ANITA-2 power spectrum measurements.

It is possible that the different signal chain responses (and the level of accuracy to

which they were measured) could contribute to the observerd difference. Another po-
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Figure 7.15: The coherent power spectrum of the four cosmic-ray events, with arbitrary

power units. Two fits to the data in a 300 < f < 1000 MHz range are displayed, a

power law and exponential. The exponential best-fit to ANITA-1 data is also shown,

having been scaled such that the power at 300 MHz matches that of the ANITA-2

exponential best-fit. The thermal noise power level ranges from 10−6 to 10−5 in the

frequency range of interest, these values are negligible compared to the power of the

cosmic ray signal.

tential cause is the trigger banding and logic, which differed between ANITA-1 and

ANITA-2. In ANITA-1, two circularly polarised channels (LCP and RCP) were cre-

ated by combining HPOL and VPOL signals, with each channel then divided into four

frequency bands for the sub-band trigger. The four bands (low, mid1, mid2 and high)

roughly covered 200-400 MHz, 400-600 MHz, 600-800 MHz and 800-1200 MHz re-

spectively, only the low band was retained in ANITA-2. There was a 3-of-8 L1 trigger

requirement for an antenna-wide trigger, such that a signal could be recorded with just

two low band triggers plus one trigger from another band. In addition to a reduced

aperture to cosmic-rays by running on a VPOL-only trigger, the trigger banding used

in ANITA-2 of 2-of-3 low, mid or high-band in addition to a required full-band trigger

biased ANITA-2 to recording cosmic-ray signals with increased high-frequency con-

tent.
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7.2.2 Event energies and directions

The UHECRs observed by ANITA-1 are likely to be highest energy events observed via

geosynchrotron emission to date. The energy scale is still uncertain, though the mean

energy of the 16 observed events is expected to be > 1019 eV. The events observed

by ANITA-2 are likely to have similar energies, though the two isolated and one non-

isolated highly down-pointing events will be at the low energy end of this distribution.

Table 7.2.2 gives the electric field strength at the shower for each candidate. The aver-

age electric field strength of the ANITA-1 events was found to be 325 V/m. The three

reflected events that originated very close to the balloon have lower field strengths than

this value, as expected. Assuming that all of the cosmic-rays are viewed in the same

manner, the energy of the events scale linearly with the electric field strength of the

emission, implying the mean energy of the ANITA-2 cosmic-rays is similar to that of

the ANITA-1 events. It should be noted, however, that this assumption is not likely

to be a reliable one – the frequency spectrum of EAS geosynchrotron emission is ex-

pected to vary significantly with the angle from which observations are made relative

to the primary cosmic-ray’s direction. We known that the frequency spectra of the

events observed by ANITA-2 differs from those observed by ANITA-1. Unfortunately,

modelling of geosynchrotron at such high energies in the far field scenario remains

inconsistent with the ANITA observations and an estimation of viewing angle is not

possible.

cosmic-rays at energies E < 1020 eV are not expected to reconstruct back to their

source location. However, we can still reconstruct the UHECR primary arrival direction

in celestial coordinates as shown in figure 7.16.

7.2.3 Outlook for ANITA-3

The confirmation of ANITA-1’s observation of geosynchrotron emission from exten-

sive air-showers was provided after the ANITA-2 flight. Through attempts to optimise

the hardware sensitivity to neutrino-induced signals, ANITA-2’s UHECR acceptance

was severely reduced when compared with ANITA-1. A third flight of the ANITA

experiment, ANITA-3, will provide an opportunity to implement the noise reducing

modifications that were used for ANITA-2’s VPOL channels in the HPOL channels as

well. Linearly polarised triggers will still be used, but with dedicated and independent
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Table 7.3: Electric field at the projected location of the UHECR EAS. Distance values

are given as 1.2 times the distance to site of reflection for reflected events (resulting

in an estimated altitude of shower maximum of 7 km) and as the distance to location

of closest approach for the direct event. While Fresnel coefficients of reflection, r,

are accounted for, surface roughness effects are not considered. The effect of surface

roughness for the three events from the Ross Ice Shelf or sea ice should be negligi-

ble. The uncertainties given only account for variation between signal strengths from

different antennas.

Event Projected r E-field

# distance (km) at 1 m (V/m)

3493989 76 -0.319 225± 21

14496361 107 -0.388 249± 58

14577785 85 -0.325 317± 38

21684774 505 N/A 1095± 183 2

27146983 154 -0.542 573± 3

horizontal and vertical polarisations. As such, ANITA-3 is expected to have a vastly

increased aperture to UHECR signals when compared to both of its predecessors. Es-

timates of the UHECR sample size for ANITA-3 are of O(100) events for a typical 30

day flight, an order of magnitude increase over the combined ANITA-1 and ANITA-2

data. The majority of this data will consist of events at energies lower than the mean

ANITA-1 energy, though it is expected that ANITA-3 will be able to detect a larger

sample of events with E > 1019 eV than both of its predecessors.

2The direct event has a projected shower maximum very far from the balloon, if the emission was

viewed slightly (< 2◦) off shower axis then the projected location could be significantly closer to the

balloon (as little as 200 km), resulting in a significantly reduced projected E-field.
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Figure 7.16: Projection of the four isolated and one non-isolated cosmic-ray candidates

in right ascension and declination. Errors on the projection are expected to be ≤ 5◦.

Black dots represent AGN within 100 Mpc from the Veron-Cetty catalogue [104].
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Chapter 8

Neutrino Search

The search for isolated VPOL RF signals within the ANITA-2 data returned two events

that the analysis classed as isolated signals consistent with the expectation from neu-

trino interactions. Using the expected number of background events, this result can be

used to place a constraint on the flux of UHE neutrinos. Such a limit is implemented in

this chapter in two ways. Firstly, it is possible to place an overall, model-independent,

limit on the UHE neutrino flux as a function of primary energy. Secondly, ANITA-2’s

directionally dependent exposure is used to place UHE neutrino flux limits on specific

sources.

8.1 Results of the main analysis
The analysis outlined in chapter 6 returned two vertically polarised events that passed

all thermal and clustering cuts. Using this result together with the aperture of ANITA-2

(see figure 5.10), the analysis efficiency (see figure 6.20) and the expected background

(see sections 6.6.2 and 6.8), it is possible to set a limit on the diffuse UHE neutrino

flux.

8.1.1 Neutrino Candidates

Event 15636066

The interferometric image and coherently-summed, instrument-response-deconvolved,

waveform for event # 15636066 are shown in figure 8.1. The event is highly down-

pointing, with θ ∼ −34◦, so only just passes the elevation cut. The event was recorded

when φ-sector masking was activated in φ-sectors 1 & 2, CW is present in the spectra

of the masked channels. The trigger originated in φ–sectors 5 & 6, over 45◦ from
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Figure 8.1: Event #15636066. Top: interferometric image, bottom: coherently-

summed, instrument-response-deconvolved, waveform.
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the masked channels, suggesting the source of the triggered signal and CW are not

associated. The CW noise was successfully removed by the filtering algorithm and

the event points in the direction of the triggered channels. The event reconstructs to

a location close to the edge of the Ross Ice Shelf. The closest base and event passing

thermal cuts to event # 15636066 are 51.3 km and 46.9 km away respectively (each

with −2LL > 1500).

The instrument deconvolved waveform of the event displays a strong impulsive

event that appears bipolar in nature. The horizontally polarised channels display no

similar signals and the event has a polarisation of 86◦ from the horizontal after filtering.

Event 16014510

The interferometric image and coherently-summed, instrument-response-deconvolved,

waveform for event # 15636066 are shown in figure 8.2. Event #16014510 is a well

reconstructed event, with a peak correlation coefficient of ∼ 0.23. The event originates

from the Ross Ice Shelf. The closest base and event passing thermal cuts to event

# 16014510 are 149.6 km and 41.3 km away respectively, with −2LL of 198 and 132.

The instrument deconvolved waveform is less clearly impulsive than that of event

#15636066, event #16014510 is also slightly less VPOL dominated with a polarisa-

tion of 83◦ from the horizontal. Neither of these characteristics are inconsistent with

expected signals from neutrino induced EM showers.

Event locations

Both isolated VPOL events originate from the Ross Ice Shelf, from locations close to

clusters of anthropogenic noise. Simulations inform us that ANITA-2 is far more likely

to observe neutrino induced radio signals from regions of > km deep ice, rather than

the shallow ice shelves, as shown in figure 8.3. Figure 8.4 compares the clustering

results for the candidate events to those for simulated neutrinos. Both events only just

passed the distance cut, which defined events as isolated if their separation from bases

and other events was > 40 km. It therefore seems highly likely that the two events

passing all analysis cuts are background events of anthropogenic origin.

As both events were classed as isolated by the clustering algorithm they are con-

sidered neutrino candidates in order to reconstruct the direction of the potential neu-

trino primary. This direction is then mapped onto celestial coordinates in figure 8.5.
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Figure 8.2: Event #16014510. Top: interferometric image, bottom: coherent-summed,

instrument-response-deconvolved, waveform.
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Figure 8.3: (a): The ice thickness at reconstructed event location for the two neutrino

candidates and simulated neutrino events. (b): The effect of the extrapolated neutrino

cross section (from [56]) on the average depth of interaction of simulated neutrinos that

cause a hardware trigger. Histograms shown in (b) have been normalised.

Event # 16014510 reconstructs with a neutrino primary direction of right ascension

α = 193.5◦ and declination δ = −9.1◦. Event # 15636066 reconstructs with a neutrino

primary direction of α = 80.4◦ and δ = −15.5◦. The latter of these locations is at

the very edge of ANITA-2’s declination exposure to neutrinos in the case of a Standard

Model cross section (see section 8.2.1).

8.1.2 Diffuse UHE neutrino flux limit

Using the neutrino search results a limit can be placed on the UHE neutrino flux.

Naively, it can be assumed that the upper limit on the flux can be defined via equa-

tion 8.1.1.

Eν
dN

dEν
≤ N90

Aeff(Eν)Tlive(Eν)ε(Eν)
(8.1.1)

Where N90 is the 90% upper confidence limit on the number of neutrino events ex-

cluded by the analysis, Aeff is the aperture of the experiment in km2 sr, Tlive is the

livetime of the experiment and ε is the efficiency of the analysis. Aeff , Tlive and ε are all

energy dependent.
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Figure 8.4: Clustering results for VPOL events passing all cuts compared to simu-

lated neutrinos passing all cuts. (a): Closest base separation. (b): Closest base log-

likelihood. (c): Closest event separation. (d): Closest event log-likelihood.
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Figure 8.5: Projection of isolated VPOL candidates in right ascension and declination

in the case that the observed signals are Askaryan pulses from neutrino induced EM

showers. Note that the size of the projected areas are not representative of the neutrino

direction resolution. Black dots represent AGN within 100 Mpc from the Veron-Cetty

catalogue.

Methods set out in [77, 92, 105] show that equation 8.1.1 underestimates the limit

that can be placed on the UHE neutrino flux. Equation 8.1.1 effectively places an

upper limit on the flux at any given neutrino energy for the number of events observed,

while the desired limit should account for neutrino flux models providing neutrinos

over the energy interval being considered. [77, 92, 105] argue that both neutrino flux

and experimental exposure can be represented as a piecewise construction of power

laws. Using slightly different approaches, the arguments of both [77, 105] and [92]

show that the limit calculated in equation 8.1.1 should be scaled by a factor of 1
4
. This

scaling is applied to the limit and is consistent with the scaling used in [106].

Two different Aeff values are used, from the icemc Monte-Carlo simulation and

the modified icemcEventMaker simulation (described in chapter 5 and shown in figure

5.10). Tlive is 28.5 days and ε is taken from figure 6.20. Feldman Cousin’s statistics

[107] are used to calculate N90; the two observed events on an expected background of

1.13± 0.27 lead to N90 = 4.785.

The resultant UHE neutrino flux limit is shown in figure 8.6. The flux limit cal-

culated in this analysis is not an improvement over that calculated in [86], where one
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Figure 8.6: Limit on the diffuse neutrino flux from the analysis described in this thesis.

Two limits are shown for the ANITA-2 analysis from this work, using the aperture

from the icemcEventMaker modified simulation (a) and the aperture from the icemc

simulation (b) as calculated in chapter 5. Also shown are limits from the FORTE [77],

Auger [57], HiRes [91], RICE [92] and IceCube [108] experiments, as well as the

published neutrino limit for ANITA-2 [106]. ESS-01 lines show the flux of νµ for two

source evolution scenarios from [51]. The KKSS-02 line shows the flux predicted by

[109] in the case of strong source evolution and an injected UHECR spectrum that

follows ECR ∝ E−1.
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VPOL event was observed on a background of approximately one (see [106] for revised

result). A number of factors contribute to the limit placed here being less stringent. Two

events were observed on an expected background of 1.13 ± 0.27, resulting in a higher

value of N90. This analysis included events that failed thermal cuts, but passed the

thermal cuts of [86], at the clustering stage. This resulted in a reduced area in which

an event would be allowed to pass the clustering cuts. Finally, the analysis described

in [86] did not analyse simulated neutrinos and, as such, did not account for events that

would be cut due to SURF saturation.

If the five VPOL events found prior to the impulsive signal cut are used, with an

expected background of 1.5 events, N90 = 8.49. The resultant limit would be a factor

of 1.8 weaker over all energies compared to the limit shown in figure 8.6.

None of the limits calculated constrain so-called ‘mid-range’ cosmogenic neutrino

fluxes, such as those predicted by [51].

8.2 Point source limits
The limits discussed in the previous section apply to the diffuse (i.e. total) flux of UHE

neutrinos. Using the results of the ANITA-2 neutrino analysis, along with directionally

dependent exposure of ANITA-2, it is possible to place limits on the luminosity of

specific sources in UHE neutrinos.

Two candidate sources have been most commonly suggested as progenitors of

UHE neutrinos: active galactic nuclei (AGN) and gamma-ray bursts (GRBs). A ded-

icated search for UHE neutrino emission from GRBs in the ANITA-2 data, that takes

advantage of the short duration of GRB events to loosen thermal cut thresholds, has

been produced [110]. Meanwhile, the tentative correlation of UHECR to AGN from

Auger data [33] gives motivation to the calculation of UHE neutrino limits for AGN

using the ANITA-2 results. Such limits are the focus in this section.

Most models of CR acceleration within dense sources, such as AGN, give rise to an

associated neutrino flux via photo-meson production and subsequent meson decay (see

e.g. [111] for a review). When considering the diffuse neutrino flux, no expectation

is placed on the energy spectrum which is being constrained and the resulting flux

limits are model-independent.1 In the case of direct source limits, we consider sources

1Constraints on the diffuse neutrino flux do assume that the energy spectrum is continuous within the
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accelerating charged particles via first order Fermi acceleration, providing a UHECR

energy spectrum of ECR ∝ E−2. The resultant neutrinos produced within the source

will follow a similar energy spectrum. However, they will carry only a fraction of the

energy of the primary CRs, leading to a lower energy cutoff in their Eν ∝ E−2 spectra

[112].

With a model constraint on the expected source spectra, we can define the differ-

ential neutrino flux:

dΦν

dEν
= Φ90

(
Eν
E0

)−γ
(8.2.1)

Here, Φ90 is the spectrum normalisation on which we can place limits and has units

eV−1cm−2s−1, while γ is the spectral index (2 for Fermi acceleration).

For a given region of the sky, we place limits on the flux at the 90% C.L. according

to a Poisson distribution, with the number of events we can exclude for the ANITA-2

flight being defined by:

N90 =

∫ Eν,max

Eν,min

dΦν

dEν
AeffTlivedEν (8.2.2)

Here, the combined effective area and livetime (Aeff and Tlive, where Aeff accounts for

the analysis efficiency) produce ANITA-2’s exposure, which is a function of energy

(see figure 8.7 for an example). We can therefore derive a constraint on the differential

flux as:

Φ90 =
N90∫ Eν,max

Eν,min

(
Eν
E0

)−2

AeffTlivedEν

(8.2.3)

Using Φ90, it is then possible to set a limit on the flux and luminosity (assuming

isotropic emission) using:

Φν,lim =

∫ Eν,max

Eν,min

Φ90

(
Eν
E0

)−1

dEν (8.2.4)

Lν,lim = 4πd2
sΦν,lim (8.2.5)

where Φν is the energy flux in eV cm−2 s−1, ds is the distance to source and Lν is the

source luminosity in eV s−1.

energy interval being considered.
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Figure 8.7: ANITA-2’s exposure at 1020 eV, using data from B. Mercurio and the icemc

simulation.

8.2.1 Reflected neutrino search

Figure 8.8 demonstrates that the ANITA-2 experiment was optimally sensitive in the

declination (δ) band −13◦ < δ < 15◦. However, the only currently published neutrino

point source limits for AGN in the Eν > 1019 eV regime are for Centaurus A (a nearby

AGN) and Sagittarius A* (the Galactic centre) [113]. Both of these sources are outside

of ANITA-2’s optimal declination band, with δ < −13◦. However, ANITA-2 was still

sensitive to this region via reflected RF from down-going neutrinos.

The ANITA-2 analysis described in chapter 6 contained a cut on elevation of

θ > −35◦. This cut was intended to remove events to which the antenna response

was degraded. The elevation cut also reduced sensitivity to neutrino events viewed in

reflection, particularly reflected signals from highly down-going neutrinos that would

provide most of ANITA-2’s sensitivity to sources with δ < −13◦.

In order to place point source flux limits on sources that ANITA-2 was only sensi-

tive to via reflected RF, further analysis was run with events passing all thermal analysis

other than the elevation cut. All other thermal and clustering cuts remained unchanged.

A summary of the downward-pointing (θ < −35◦) events passing cuts and the results

of event clustering is shown in table 8.1.
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Figure 8.8: ANITA-2’s exposure as a function of declination (averaged over all right

ascensions) for 1018.5 − 1021.0 eV.

A total of 66268 events passed thermal cuts with an elevation < −35◦, with the

sample composed of 58% VPOL dominated and 42% HPOL dominated events. Event

clustering results, shown in figure 8.9, returned zero isolated HPOL events and one

isolated VPOL event, # 14250373. Inspecting this event, it is clear that unfiltered weak

CW is present at 400 MHz in the direction that the event reconstructed. After filtering

around the CW contaminated band in the range 380 MHz < f < 420 MHz, the event

reconstructs in a different direction and would not pass thermal cuts. Figure 8.10 shows

that narrowband noise that was not filtered, along with interferometric images before

and after filtering.

8.2.2 Neutrino event limits

In section 6.5.1, the ANITA-2 pointing resolution for reconstruction of RF signals was

demonstrated to be sub-degree in both azimuth and elevation for most correlation coef-

ficient values. To calculate the arrival direction of a neutrino candidate, the RF signal,

observed by ANITA-2 and pointed to ground via the analysis code, must be passed
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Table 8.1: A summary of the number of events in the downward-pointing sample and

the outcomes of event clustering.

HPOL VPOL

# cut # remaining # cut # remaining

All down-pointing events – 27857 – 38411

Clustered to flight/traverse 0 27857 0 27857

Clustered to base 27854 3 38404 7

Clustered to main analysis event 1 2 3 4

Clustered to down-pointing event 2 0 3 1

Remaining isolated events – 0 – 1
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Figure 8.9: Locations of the 66268 events with elevations < −35◦ that pass all other

analysis cuts. Black markers are events that cluster to bases, green are those that cluster

to other events, the red marker near easting:northing (-1000,-1250) is the single isolated

event, #14250373.
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Figure 8.10: Top: interferometric images for event 14250373, with the event after nor-

mal analysis (left) and after filtering in in a band 380− 420 MHz. Bottom: the φ-sector

based filtering in the direction the event was recorded, the dashed line shows the anal-

ysis filter threshold, red stars indicate filtered bands.
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Figure 8.11: The resolution on neutrino pointing as a function of peak correlation co-

efficient from the interferometric image (P1 value). Resolution for each angle is calcu-

lated using the root-mean-square, given in equation 6.5.1.

through the firn–air boundary with the refraction effect accounted for. Additionally,

a polarisation measurement is required to decide which region of the Cherenkov cone

was viewed by the instrument. The latter of these has a large associated uncertainty,

resulting in poorer resolution on neutrino candidate pointing.

Due to the lack of any real data, the neutrino pointing resolution was calculated us-

ing simulated neutrinos, passed through the ANITA-2 analysis code. While the declina-

tion resolution is close to a degree, the right ascension resolution has suffered from un-

certainty in the polarisation measurement, with an average resolution of about 7.7◦. The

pointing resolution will clearly be much better for strong, well reconstructed events. As

with the RF signal pointing resolution, neutrino pointing resolution is binned by peak

correlation coefficient, results are displayed in figure 8.11.

Using the two VPOL events found in the ANITA-2 neutrino analysis, event lim-

its can be set for all observable celestial coordinates. The events, # 15636066 and

# 16014510, had P1 coefficients of ∼ 0.25 and ∼ 0.15 respectively. These P1 values

have associated neutrino pointing resolutions of σRA = 8◦, σDec = 1.5◦ and σRA = 11◦,

σDec = 1.5◦ respectively. These pointing resolutions can be used to set 90% exclusion
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Figure 8.12: The 90% C.L. of the number of events ANITA-2 can exclude as a function

of right ascension and declination. Black dots represent AGN within 100 Mpc, from

the Veron-Cetty catalogue [104].

limits (N90) on the number of events in Celestial coordinates, as shown in figure 8.12.

8.2.3 Selected source limits

Using the 90% C.L. of the number of events the analysis can exclude as a function of

right ascension and declination, combined with the exposure of ANITA-2, limits can

be placed on the neutrino flux for specific celestial coordinates.

UHE neutrino flux limits are places on AGN sources which lie within, or close

to, ANITA-2’s optimal sensitivity band. AGN are selected if they have been observed

in γ-rays by the Fermi-LAT telescope [114] and are within a redshift of z < 0.1.

Additionally, flux limits are calculated for Cen. A and Sgr. A*, as these sources are

the only AGN for which UHE neutrino limits have previously been published [113].

Results for these sources are summarised in table 8.2.

The Virgo cluster, the closest large cluster to the Milky Way, falls almost entirely

in the optimal −13◦ < δ < 15◦ band, flux limits are also set for any AGN within this

cluster. M87 is of particular interest as the central and most massive AGN in the Virgo

cluster, it is also one of the AGN associated with a Fermi-LAT γ-ray observation [114].

Results for these sources are summarised in table 8.3.

The model-dependent flux limits summarised in tables 8.2 and 8.3 can be directly
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compared to limits from other astrophysical neutrino experiments. As mentioned pre-

viously, point source neutrino flux limits in the UHE regime have only been set for

Cen. A and Sgr. A* [113]. Although published by members of the LUNASKA collab-

oration, flux limits in [113] were compared (in some cases calculated for the first time)

over a wide energy range and for a number of experiments. Flux limits were shown

for three lunar Cherenkov experiments, LUNASKA, NuMoon [115] and GLUE [78],

all of which had optimal sensitivities at Eν > 1021 eV. Further limits were shown for

IceCube [116] and Auger [117]. Finally, a limit was calculated for the radio Cherenkov

experiment RICE [92] over a large 1016.5 eV < Eν < 1022 eV range. For this work,

the best limits for each energy range (IceCube, RICE and LUNASKA) are taken and

compared with the point source flux limits from ANITA-2, with IceCube limits updated

using more recent results [118]. The model-dependent and model-independent limits

from ANITA-2 for the Cen. A and Sgr. A*, shown in figure 8.13 are weaker than those

from the RICE experiment, due to ANITA-2 viewing both sources in reflection.

The point source flux limit comparison is extended into ANITA-2’s optimal dec-

lination range. M87 is chosen as a source for comparison due to it’s relative proximity

and the fact that it is the central galaxy of the nearest large cluster, Virgo (although it

should be noted that Auger has seen no correlation of UHECRs to M87). Flux lim-

its from ANITA-2 are compared to IceCube, for which model-dependent limits have

been published for νµ and νµ + ντ [118], and RICE, for which the elevation dependent

exposure was calculated with data from [92, 119]. As ANITA-2 is the most sensitive

UHE neutrino experiment to date, and M87 falls in the optimal declination band, both

model-independent and model-dependent UHE neutrino flux limits from ANITA-2 for

M87 are an order of magnitude more stringent than those from RICE. Limits for both

experiments, along with those from IceCube, are shown in figure 8.14.

8.3 Discussion
ANITA-2 is able to provide the most stringent limits to date on the UHE neutrino flux.

A limit from the analysis outlined in [86] was more stringent than the limit from this

analysis, due to the two isolated VPOL signals compared to one isolated VPOL signal

in [86] and the fact that this analysis accounts for SURF saturation and includes more

events at the anthropogenic cuts stage. The limit placed in this analysis is still more
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Figure 8.13: Model-independent (solid) and -dependent (dashed) limits for Centaurus

A (left) and Sagittarius A* (right) from ANITA-2, IceCube [118], LUNASKA [113]

and RICE [92].
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stringent than those from other experiments in the energy interval 1019.5 eV < Eν <

1022 eV.

The point source flux limits set by the ANITA-2 experiment in this chapter are the

first neutrino limits at Eν > 1019 eV for AGN in the declination band |δ| < 20◦. It is

within this band that ANITA-2 was most sensitive to neutrino induced Askaryan sig-

nals, with the limits calculated representing the most stringent from any UHE neutrino

experiment to date.

The point source UHE neutrino limit results can be interpreted by comparing them

to the UHECR flux from Auger [28], shown in figure 3.4. Given that ANITA-2 is

sensitive to neutrinos with Eν > 1018 eV, and the neutrino produced from a cosmic-ray

interaction is expected to have an energy ofEν ∼ 0.2ECR, the neutrino flux limits from

ANITA-2 are compared to the cosmic-ray flux with ECR > 1019 eV.

Consider a scenario in which the entire UHECR flux observed by Auger originates

from M87 (or from the Virgo cluster as a whole). The implied luminosity of M87 in

UHECR would be LCR = 2 × 1042 erg/s for isotropic emission. The neutrino flux

limits placed on sources in the M87 cluster imply an isotropic luminosity in neutrinos

of Lν < 1.5 × 1044 erg/s. In this single UHECR source scenario, the escape fraction

of UHECRs from their source locations would be at least 1%. This result in itself is

not constraining. It demonstrates that, by comparing UHECR fluxes (along with a pos-

sible future positive correlation of UHECR arrival directions with specific sources) to

neutrino flux limits, constraints on source optical depth could be calculated. This could

then assist in enlightening physicists on specific acceleration locations and mechanisms

within the UHECR sources themselves.
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Table 8.2: UHE neutrino flux limits, in the form E2
νdΦ/dE ≤ Φ90(E/eV )−2, from the

ANITA-2 experiment on AGN observed in γ-rays using the Fermi-LAT telescope and

on Cen. A and Sgr. A*.

Object r.a. (◦) dec. (◦) z Φ90

1FGL J0339.1-1734 54.81 -17.6 0.07 30528

1FGL J1253.7+0326 193.45 3.44 0.07 327

1FGL J0308.3+0403 47.11 4.11 0.03 318.6

1FGL J2204.6+0442 331.07 4.67 0.03 311.6

1FGL J1551.7+0851 237.92 8.87 0.07 256.7

1FGL J1641.0+1143 250.25 11.73 0.08 364.2

1FGL J1230.8+1223 187.71 12.21 0.004 418.5

1FGL J0008.3+1452 2.02 14.84 0.05 1157.6

1FGL J1744.2+1934 265.99 19.59 0.08 12757

Cen. A 201.4 -43.0 0.0006 65714

Sgr. A* 266.4 -29.0 – 54580

Table 8.3: UHE neutrino model-dependent flux limits, in the form E2
νdΦ/dE ≤

Φ90(E/eV )−2, from the ANITA-2 experiment on AGN in the Virgo cluster.

Object r.a. (◦) dec. (◦) z Φ90

M 100 185.73 15.26 0.0052 1473

NGC 4383 186.36 16.27 0.0057 2969.3

NGC 4477 187.51 13.22 0.0045 592.2

M 84 186.27 12.2 0.0034 418.0

M 87 187.71 12.21 0.0042 418.5

NGC 4380 186.34 10.17 0.0032 275.6

M 49 187.44 8.13 0.0033 256.1

NGC 4651 190.93 16.28 0.0027 2983.8

M 58 189.43 11.18 0.005 320.0

NGC 4639 190.72 13.22 0.0033 593.1

IC 3576 189.16 6.1 0.0036 282.9
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Chapter 9

Conclusions

A search for evidence of ultra-high energy neutrino and cosmic-ray interactions in

the ANITA-2 data has been conducted. No statistically convincing evidence was ob-

served of Askaryan emission from neutrino-induced particle cascades in the Antarc-

tic ice sheet. After all analysis cuts two vertically polarised events consistent with

the expected signals from neutrinos were discovered, on an expected background of

1.13 ± 0.27 events. The two events are therefore consistent with originating from the

experimental background which is caused by either thermal or anthropogenic noise.

In this instance, both events were separated by less than 50 km from the next nearest

event that passed thermal cuts. Both events reconstruct to the Ross Ice Shelf, a region

in which much of the human activity in Antarctica is located.

Using simulations of neutrino interactions and the ANITA-2 experiment, a limit on

the neutrino flux was calculated that excludes certain models of cosmogenic neutrino

flux at the 90% confidence level. The limit placed demonstrates that ANITA-2 is the

most sensitive experiment to neutrinos in the interval 1019 eV ≤ Eν ≤ 1022 eV to

date. However, the limit placed on the diffuse UHE neutrino flux in this thesis is not

as stringent as the published limit from previous analysis, outlined in [86, 106]. This is

due to a combination of factors: two events were discovered in this analysis compared

to one in the published analysis; more events were included in event clustering for

anthropogenic noise rejection in this analysis; extra consideration of factors that would

cause neutrino signals to be rejected were included in this analysis. Limits on the

neutrino flux from specific active galactic nuclei were calculated. These represent the

first neutrino limits on such sources with declinations of |δ| ≤ −20◦ and Eν ≥ 1019 eV.

Although no evidence for neutrino interactions was detected, emission from
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geosynchrotron processes within cosmic-ray-induced air-showers was observed. Af-

ter all analysis cuts four cosmic-ray events were observed on an expected background

of 0.34±0.15 events. The identity of the events was confirmed through the comparison

of the measured polarisation of emission to the expected polarisation that would arise

from geosynchrotron radiation. Additionally, cross-correlation of the cosmic-ray candi-

dates’ waveforms with one another demonstrated the similarity between the waveform

shape of the cosmic-ray candidates, while the vast majority of other events passing

thermal cuts in the horizontal polarisation did not correlate well with the cosmic-ray

candidate waveforms. A further, non-isolated, event was also shown to be consistent

with the expectation from air-shower geosynchrotron radiation.

The four isolated cosmic-ray events, and one further non-isolated candidate, ex-

tend the sample of 16 events observed by ANITA-1. ANITA-1 was the first experiment

to measure cosmic-ray-induced geosynchrotron radiation above 600 MHz. A further

flight of the ANITA experiment, with a dedicated cosmic-ray trigger, should be able to

increase the sample of events by an order of magnitude. Such a dataset would com-

pliment measurements by the Auger and HiRes experiments, with ANITA providing a

new and complimentary detection method with expected sensitivity to UHECRs with

E > 1020 eV.

A third flight of the ANITA instrument will provide an opportunity to further con-

strain the cosmogenic neutrino flux. However, it appears likely that making actual

observations of these particles will fall to successor experiments. One such experiment

is the Askaryan Radio Array (ARA), an in-ice array of radio antennas. ARA test sta-

tions are being deployed at the South Pole, with much of the technology used deriving

from ANITA.
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