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Abstract

This thesis presents a simulation campaign that demonstrates for
the first time, that by micro–bunching the Diamond Light Source
electron beam, X-ray pulses with peak brightnesses of B̂ = 3.2×1028

photons−1s−1mm−2mrad−20.1%BW−1 at E = 50 keV are produced.
The production mechanism ensures the pulses are radially polarized
on creation. These properties allow for a smaller focal spot, over-
coming the limit due to diffraction, providing a unique new probe
for individual atomic excitations by the utilisation of the longitu-
dinal component of the electric field. We also demonstrate that
the micro–bunched electron beam is an effective wakefield driver in
itself, able to accelerate a witness electron beam to higher energies,
providing a potential new route to reliable X–ray free electron laser
generation.

An experiment was performed using the E = 600 mJ, τ = 40 fs
Astra laser at the Central Laser Facility testing a novel single–shot
parasitic plasma diagnostic. The photon acceleration effect on the
driving laser pulse was utilised to determine the plasma density.
Strong modulation to the long laser pulse’s intensity profile were
measured at the plasma wavelength, capturing the self–modulation
effect on the long laser pulse. The results show a linear relationship
between the diagnosed plasma density and the known pressure
within the gas target and are supported by numerical simulations.
The diagnostic requires no dedicated probe pulse but instead simply
requires the driving laser pulse to be several plasma periods long,
allowing for a cost effective, simple to implement diagnostic.
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Chapter 1.

Introduction

1.1. Particle Acceleration

1.1.1. Conventional Acceleration

Since the 1930s, particle accelerators have been used to further understand the
fundamentals of particle physics. Colliders at the energy frontier are able to explore
the predictions of the standard model, and by proving or disproving them they
advance the field of particle physics. New discoveries come as particle accelerators
are able to reach higher energy regimes, but as the energies increase so does the size
and cost of the accelerators.

Constructing and running modern high energy particle accelerators is an expensive
and demanding task. Large laboratories such as CERN, SLAC, DESY and FNAL
have particle accelerators many kilometres long. These machines consist of metal
cavities wherein particles are accelerated using an alternating electric field. Electric
field gradients greater than E = 100 MV−1 ionise the metal itself, destroying the
accelerator, so to reach higher particle energies one has to increase the length over
which the particles are accelerated. The Livingston plot, figure 1.1, summarises
the centre-of-mass energy of colliders over the past 50 years. Until recently the
centre-of-mass energies increased by about an order of magnitude every ten years.
The slowing down of this rate is attributed in part to the saturation of conventional
radio frequency accelerator technology. The LHC is already the largest machine in
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Figure 1.1.: The Livingston plot [2] shows the centre-of-mass energy for both lepton and
hadron colliers as a function of time. The Next Linear Collider (NLC) is
a proposed lepton collider and as of 2015 there is no such project under
construction. Note the hadron colliders show the centre-of-mass energy for
the individual partons.

the world, with a circumference of 27 km, and with a budget of £6.19 Billion as of
2010 [1] it is one of the most expensive scientific instruments ever built.

The consensus in the high energy physics community is that the discovery of
the Higgs boson by the LHC will have to be complemented by a collider that can
study the properties of the Higgs in greater detail. The most likely candidates are
the Compact Linear Collider (CLIC) and the International Linear Collider (ILC),
both of which plan to collide electron and positron beams generated within linear
accelerators that are tens of kilometres long. To keep ever increasing the length of
accelerators is not economically viable. Plasmas offer a solution to this problem as
they can support far greater electric fields achieving the same energy gains over much
shorter distances and, being already ionised, are resistant to further destruction.

1.1.2. Acceleration within a Plasma

A plasma can be defined as a quasi neutral gas of charged and neutral particles
which exhibit collective behaviour [3]. A key quantity that characterises a plasma
is the plasma frequency. Consider displacing a sheet of electrons in a cold plasma.
An electric field between the sheet and the background ions is produced and acts
as a restoring force. The sheet of electrons accelerate back towards the region of
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Figure 1.2.: Arial view highlighting the underground Large Hadron Collider (LHC), at
CERN, near Geneva. This is the highest energy collider in the world, reaching
the TeV regime. Image © CERN.

unmoved ions, gaining kinetic energy. Having reached their original equilibrium
position, they overshoot, due to the kinetic energy gained from the electric field, and
an oscillation is set up. This is called a Langmuir oscillation [3] and the frequency of
this oscillation is the electron plasma frequency.

Now consider a short relativistic electron beam impacting on a plasma, as in
figure 1.3. The beam enters the plasma, repelling the plasma electrons away from
the axis of beam propagation, leaving the heavier ions behind. The electrons then
experience the restoring force of the ion region, which first slows their expulsion and
then attracts them back to their equilibrium positions. As they move back on axis
they gain kinetic energy and overshoot their equilibrium positions, setting up an
oscillation about the axis of beam propagation. The plasma electrons’ trajectory
traces a figure of eight in the average co-moving frame of the electrons. Alternating
regions of high ion density and high electron density trail the driving beam, providing
regions of strong accelerating and focusing electrics fields. It is this structure that is
called the wakefield, and is used to accelerate charged particles.

It is the electric field resulting from charge separation within a plasma that is
used to accelerate particles in plasma wakefield acceleration (PWA). The maximum
sustainable electric field in a cold, one dimensional plasma, is given by the relativistic
wave breaking limit:
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Figure 1.3.: A graphic of a short relativistic electron beam driving a plasma wakefield.
The perturbed plasma electrons form a wakefield that co-propagates with
the driving beam. An electron between an electron region and ion region will
experience a strong longitudinal electric field.

Ezmax =
ωpmec

e
(1.1)

where ωp is the plasma frequency and me, c and e have their usual meanings. Beyond
this maximum electric field, the oscillating electrons escape the restoring force of
the ions and become a collection of fast travelling electrons. This is known as wave
breaking and, under the right conditions, can be harnessed to inject electrons into
the wakefield. Note this limit is proportional to the square root of the plasma density.
Plasmas in the density region of ne = 1025 m−3 are common to plasma wakefield
experiments and there are many examples of experiments achieving electric fields of
Emax > 100 GVm−1 [4–15], which is one thousand times greater than the maximum
fields found in conventional accelerators. A plasma wakefield accelerator is a device
whereby a high amplitude wakefield is driven by either a relativistic beam of charged
particles or an intense laser pulse to accelerate a witness beam to high energies.

The hard limit of electric fields achievable in PWA is reached when collisional
effects within the plasma dominate. For a thermally ionised1 hydrogen plasma (T = 1

1The number of electrons populating a Debye sphere is proportional to T 1/2
e . A hotter plasma can

therefore have sufficient electrons populating a Debye sphere such that binary collisions do not
dominate.
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eV) collisional effects become significant at a plasma density of 1.9× 1024 m−3 when
the number of electrons populating a Debye sphere approaches unity, as discussed in
section 2.1.1. Such a plasma could support a maximum electric field of Ez ≈ 100

GVm−1 before succumbing to wave breaking.

Any electrons injected into the rear of this structure will be accelerated by the
longitudinal electric field. Both relativistic beams of charged particles [16] and intense
laser pulses [7, 17] have successfully been used to accelerate electron witness beams
to high energies of E = 84 GeV [9] and E = 1 GeV [8,18] respectively, which is below
the E ≈ 100 GeV relevant to high energy physics. Staging wakefield accelerators,
however, could reach higher energies at the expense of beam luminosity [4]. It is
crucial for the phase velocity of the driving beam to be close to the speed of light, c,
so that the accelerated electrons do not immediately outrun the driving beam and
escape the accelerating structure.

1.2. Radiation Generation

Electron accelerators are no longer just used for fundamental research. The short,
brilliant, X-ray pulses emitted by electron accelerators are useful in a wide range of
applications; including medical imaging [19], molecular crystallography [20], radio-
therapy [21], X-ray biomicroscopy [22] and EUV lithography [23]. Initially, X-rays
were obtained parasitically from accelerators by adding windows to the beam line,
where samples were imaged. These machines were known as the first generation light
sources. The first purpose-built light source was the Synchrotron Radiation Source
at Daresbury in 1981 and was classified as a second generation light source. Today
facilities such as the Diamond Light Source and the Linac Coherent Light Source
(LCLS) improve significantly upon key qualities of the X-ray pulse, such as pulse
length, wavelength and number of photons with brilliance increased by many orders
of magnitude. To continue to improve the quality of these X-ray pulses, and the
medical, industrial and technological impact they have, new facilities and techniques
are needed.
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Figure 1.4.: A graphic of an undulator [24]. Alternating polarity dipole magnets (1) cause
a propagating beam (2) to undulate, radiating bright, coherent synchrotron
radiation (3).

1.2.1. Third Generation Light Sources

Electrons emit synchrotron radiation when following a curved trajectory, i.e. pass
through a bending magnet. Third generation light sources maximise this by passing
electron beams through insertion devices known as undulators and wigglers. These
devices are composed of a series of adjacent alternating bending magnets. The
electrons follow a sinusoidal path, emitting radiation at each turn. In the case of an
undulator, the radiation coherently adds resulting in an intense coherent X-ray pulse
as seen in figure 1.4.

Third generation light sources produce a low emittance electron bunch typically
within a synchrotron. Due to the nature of synchrotrons however, the horizontal
emittance is hundreds of times larger than the vertical emittance [25]. This is
undesirable as the brilliance of an X-ray pulse, a key quantity, diminishes with
increased emittance. The advantage of this scheme however, is that a beam can pass
through a synchrotron many times, achieving a higher energy before passing through
the insertion device. This yields higher energy X-rays as the radiated photons have
energy proportional to the square of the emitting electron’s energy.

Undulators and wigglers have defining characteristics that allow for the tuning
of the spectral range of the emitted radiation. The magnetic period, λµ, and the
electron’s Lorentz factor, γe = E/mec

2 (where E is the electron energy and me is the
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effective mass2 of the electron), determine the photon energy, Eβ, of the radiation
produced in the undulator to be,

Eβ =
2~cγ2

e

λµ
, (1.2)

where ~ and c have their usual meaning. To image the atomic scale, photons of
wavelength ' 10−10 m are needed. The Diamond Light Source’s Cryogenic Hybrid
undulator [28] having an undulator period of λµ = 0.017 m with an electron gamma
factor of γe = 5871 gives a central wavelength of λ = 16.5× 10−10 m, allowing the
production of soft X-rays to probe the upper end of the atomic scale.

1.2.2. Fourth Generation Light Sources

To be qualified as a fourth generation light source, an important parameter such
as brilliance, coherence or pulse duration is typically improved upon by an order
of magnitude or more. The European XFEL and the LCLS fourth generation light
sources accelerate electron beams with linear accelerators, so must accelerate the
beam to the required energy in a single pass through the machine. As such these
accelerators are long, 3.6 km and 3.2 km respectively. Linear accelerators however,
are able to achieve pulse lengths far shorter than synchrotrons at higher energies.
The European XFEL for example has a pulse length of σt ≤ 100 fs [29], compared
to the Diamond Light Source pulse length of σt = 87 ps . This, combined with
harnessing the micro-bunching effect of undulators on short electron beams, leads
to over eight orders of magnitude enhancement to the brilliance of the X-ray pulses
when compared to third generation light sources.

Both third and fourth generation light sources are expensive. With the Diamond
Light Source costing £260 million to construct with an extra £120 million [30]
being invested to provide additional beam lines, any reduction in cost would have a
significant impact on future facilities. This thesis demonstrates how plasma wakefield
acceleration can drastically boost the qualities of X-rays produced at such facilities

2The effective electron mass is the mass it has when responding to a force. The effective mass
can differ from me due to self-inductance in thin wires [26] for example. The effective mass in
semi-conductors has been measured to depend on the number of charge carriers [27].
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Figure 1.5.: A graphic of a self injected electron’s trajectory within a wake (black line)
and the resulting cones of radiation emission (purple cone). Here, rβ is the
amplitude of the betatron oscillation, γz0 is the electron’s gamma factor in
the forward direction and 1/γz0 denotes the angle of emission of the radiation.

for a relatively small sum, potentially allowing next generation X-ray pulses to be
produced at existing facilities.

1.2.3. Radiation Generation Within a Plasma

An electron beam in the correct phase of a high amplitude wakefield experiences
tremendous focusing electric fields (Er < 100 GVm−1) [5]. These fields provoke
undulations of an electron beam in a similar way that an undulator or a wiggler
would [31], as seen in figure 1.5. The electrons undergo violent undulations generating
short, brilliant, X-ray pulses.

Laser-driven wakefields have been used to induce undulations in a witness electron
beam generating short, brilliant, linearly coherent X-ray pulses [6, 32, 32–37]. These
have been used to image fine structures via phase contrast imaging [6], as seen in
figure 1.6. These X-ray pulses, achieving peak brightnesses of 1× 1022 photons s−1

mrad−2 mm−2 0.1% BW−1 [32], are comparable to third generation light sources
whilst being produced over mere centimetres of plasma. If the length over which
these beams undulate within the wakefield could be maintained for metres or longer
then the brightness would increase by many orders of magnitude.
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Figure 1.6.: Phase contrast image of a cricket taken with the Astra Gemini betatron
source. Images show minimal absorption, indicative of high flux of photons at
energies greater than 20 keV, for which the phase-shift cross section greatly
exceeds that of absorption by more than 100 times [6].

1.3. Thesis Outline

The work presented in this thesis focuses on numerical simulations of beam-plasma
interactions using existing conventional beams and combines experimental results
with simulations to investigate ultra-high intensity laser-plasma interactions.

Chapter two contains an overview of relevant theoretical background whilst
chapter three details the simulation codes used and contains technical parameter
scans and benchmarks ensuring the main codes do not produce spurious results.

Chapter four presents the Diamond beam simulation campaign where the E = 3

GeV Q = 2 nC electron beam’s suitability as a wakefield driver is investigated. The
investigation leads to a novel beam line design that achieves longitudinal micro-
bunching of the Diamond beam at the micro-bunch length and spacing required to
drive a high amplitude wakefield and efficiently couple energy from the beam to the
plasma.

Chapter five investigates the Diamond beam’s utility as a bright X-ray light
source by simulating the treated Diamond beam’s micro-bunches oscillating within a
wakefield. The strong electric fields within a wakefield are found to trigger copious
X-ray emission comparable to current fourth generation light sources.

Chapter six details the experimental set up of the Astra experiment in Target
Area 2 while chapter seven presents the results of the photon acceleration single-shot
plasma diagnostic on the Astra Target Area 2 experiment.

Chapter eight states the main conclusions of the thesis and outlines avenues of
future research.



Chapter 2.

Theory and Techniques

In this chapter, the physics of laser–plasma interactions, particle beam–plasma
interactions, photon acceleration and betatron radiation within a plasma will be
outlined. The modulation effects of wakefields on particle beams and the radiation
emitted from these accelerating particles will be examined.

2.1. Plasma Properties

This section defines plasma parameters relevant to plasma wakefield acceleration
that characterise a plasma.

2.1.1. Debye Length

A key quantity for a plasma is the Debye length. The Debye length, λD, expresses
the distance over which electrostatic fields persist through a plasma. In the presence
of an electrostatic field plasma electrons move, acting to shield external charge from
the electrostatic potential. It is stated here for simplicity and derived in appendix
A.1.1.

λD =

(
ε0kBTe
n0e2

)1/2

. (2.1)
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Here kB is the Boltzmann constant, ε0 is the permittivity of free space, e is the
charge of the electron, n0 is the plasma number density and Te is the plasma electron
temperature. The Debye sphere is then trivially the sphere with the Debye length as
the sphere’s radius:

ΛD =
4π

3

(
ε0kBTe
n0e2

)3/2

. (2.2)

The Debye number is the average number of electrons populating a Debye sphere
and is given by,

ND = ΛDn0. (2.3)

When the Debye number exceeds unity, each particle affects many nearby particles
and collective electrostatic interactions dominate over binary collisions and the ideal
plasma approximation holds.

2.1.2. Plasma Frequency

A plasma is defined as a quasi neutral gas of charged and neutral particles which
exhibit collective behaviour [38]. At equilibrium, an unperturbed plasma has equal
numbers of electrons and ions in any region. Consider displacing all the electrons
some small amount, δx, from their equilibrium positions whilst keeping the ions fixed
as in figure 2.1. Displacing the electrons to the right leaves an excess of positive
charge on the left and negative charge on the right of the plasma slab. This produces
an electric field acting to move the displaced electrons back to their equilibrium
position. However, as they do they gain kinetic energy and overshoot their starting
position, resulting in simple harmonic motion about the equilibrium position. The
frequency of this oscillation is the plasma frequency, ωp. By calculating the force
acting on each electron and using this with Newton’s second law the plasma frequency
can be calculated. The slab of ions on the left side and the slab of electrons on the
right can be thought of as two parallel charged planes, with cross sectional area, A,
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Figure 2.1.: A cold homogeneous plasma (top pane) and a displaced electron slab in a
cold plasma (bottom pane). The displaced slab of electrons results in an
electric field that acts to restore the slab to its equilibrium position.

and width, x. Using Gauss’s law, the electric field between two such planes is given
by

E =
Q

ε0A
, (2.4)

where Q is the total charge of the slab. Writing this in terms of charge density, ρ,
and the volume of the plane, V , it is found that Q = ρV = eneAx. Equation 2.4
then becomes

E =
enex

ε0
. (2.5)

The force experienced by an electron is F = −eE = −e enex
ε0

. Using this as the force
term in Newton’s second law,

me
d2x

dt2
= −e

2ne
ε0

x, (2.6)
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where me is the electron mass. Putting equation 2.6 in the standard form of a simple
harmonic oscillator,

d2x

dt2
+
e2ne
ε0me

x = 0. (2.7)

The equation for a simple harmonic oscillator is of the form ẍ + ω2x = 0, where
ω is the angular frequency of oscillation. Then, the frequency of electron plasma
oscillations is:

ωp =

(
nee

2

meε0

)1/2

. (2.8)

This relation holds for small perturbations in the electron number density (δne/ne �
1) and for non-relativistic electron motion (γ−e− 1 < 1). The ions’ inertias are too
large to respond to the short period of the oscillation and are considered static. For
high amplitude waves in the two-dimensional case, ne’s local variation becomes large
enough to become significant and the problem becomes non-linear and analytically
insoluble. Typically, laser-driven schemes operate in this non-linear regime, however
in the laser/particle-driven hybrid simulations presented here, the amplitude of the
wakefield is small (δne/ne � 1) and is considered to be in the linear regime.

2.2. Wakefield Acceleration

Wakefields are driven by relativistic beams that provide a ‘kick’ to the plasma
electrons. This can be from the ponderomotive force of an intense laser pulse, or the
space-charge force of charged particles beams. Equation 2.9 expresses the electron
plasma number density perturbation of an initially uniform plasma as a driven
harmonic oscillation [39] with the drive term of both an electron beam (nb term) and
a laser pulse (a2 term) included,(

∂2

∂2t
+ ω2

p

)
∆ne
n0

= −ω2
p

nb
n0

+ c2∇2a
2

2
, (2.9)
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where n0 is the average non-perturbed electron plasma density, ∆ne is the electron
plasma density perturbation (∆ne = ne − n0), ωp is the plasma frequency (equation
2.8), nb is the beam density and a = e|A|/mc2 is the normalised vector potential of
the laser.

Laser pulses and electron beams kick the plasma electrons off-axis whilst proton
beams pull them onto the axis. The resulting wakefields in the linear regime are
essentially the same except they are π out of phase. This section discusses the
requirements of such beams to drive an effective wakefield, and contrasts their
various advantages and limitations.

2.2.1. Driving a Wakefield

The total energy gain of a witness electron beam experiencing the accelerating phase
of a wakefield is trivially the product of the electric field and the distance over which
that field is experienced. Maximising both these values is critical to producing high
energy electron beams. Efficiently coupling the energy of a drive beam to the plasma
is necessary to drive a high amplitude wakefield. This puts strict requirements on the
length of the drive beam. Laser drivers tend to be short and are able to efficiently
drive wakefields. However, their total energy is orders of magnitude lower than that
of the longer electron beams, which in turn are lower still than that of proton beams.
In the hybrid simulations presented, the advantages of both particle and laser driven
schemes are utilised to maximise the energy coupled to the plasma and ultimately to
the witness electron beam.

2.2.2. Dephasing Length

The dephasing length is the length over which a witness electron will remain in
the accelerating phase of the wakefield, before outrunning it and encountering the
decelerating phase. Trapped electrons remain in the accelerating phase of the
wakefield for an extended time because both the electron’s velocity and the phase
velocity of the wakefield are close to c. Laser driven wakefields tend to have a lower
phase velocity than those of particle-beam driven wakefields due to the reduced
group velocity of light in a medium, beam head erosion and beam head defocusing
effects. The point at which the decelerating region is encountered is the point at
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which the witness electron has achieved its maximum energy. As such we define the
dephasing time to be the time taken for an electron to travel λp/2 in the wakefield
frame, ξ = x− ct, and the dephasing length to be the dephasing time multiplied by
c. We assume the phase velocity of the wakefield to be the group velocity of the laser
pulse and the velocity of the electron to be c.

ve ≈ c (2.10) vph = vg (2.11)

For ω2
p/ω

2
0 � 1 we approximate,

vph = c

√
1−

ω2
p

ω2
0

≈ c

(
1−

ω2
p

2ω2
0

)
, (2.12)

where ω0 is the frequency of the laser. The difference between the wakefield and
electron beam’s velocity is then,

δv = ve − vph = c− c
(

1−
ω2
p

2ω2
0

)
= c

ω2
p

2ω2
0

. (2.13)

Given that the accelerating phase spans half of the plasma wavelength, Lacc = λp/2 =

πc/ωp, then the time taken for an electron to dephase is,

τdephase =
Lacc
δv

=
2πω2

0

ω3
p

. (2.14)

The dephasing length, then, is simply LD = cτdephase,

LD = c
Lacc
δv

=
2πcω2

0

ω3
p

= λp
ω2

0

ω2
p

. (2.15)

Using γ = 1/
√

1− v2
ph/c

2 with equation 2.12 it can be shown that,
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γwake =
ω0

ωp
. (2.16)

This gives a simple expression for the dephasing length,

LD = λpγ
2
wake. (2.17)

For a plasma density of ne = 1× 1025 m−3 and a laser of wavelength λ0 = 1.064

µm, parameters common to experiments [6], the dephasing length is LD = 1 mm. A
plasma of such a density supports a maximum electric field of Ezmax = 96 GVm−1,
given by equation 1.1. The maximum energy gain of a witness beam is then trivially
Wmax = Ezmax × LD = 96 MeV.

Dephasing occurs in particle-driven plasma wakefield acceleration over larger
lengths, due to the higher γ factor of the driving beam. Equation 2.18 gives the
dephasing length for the particle-driven case under the same assumptions as the
laser dephasing length derivation,

LDpwa =
λp

2(βe − βdrive)
, (2.18)

where βe is the velocity of the witness electron beam divided by c and βdrive is the
velocity of the drive beam divided by c.

Using the 3 GeV electron Diamond beam as an example and the same plasma
density as the laser driven example above and assuming βe � βdrive, the dephasing
length is LD = 1330 m. This is a full six orders of magnitude higher than the laser
driven case. Later the Diamond beam is shown to be able to drive a wakefield of the
order Ez = 1 GVm−1 in numerical simulations, when manipulated correctly. This
gives a theoretical maximum energy gain of the order of a TeV , given other limiting
factors, such as depletion length, are mitigated.

One solution to dephasing between the driver and the witness beam is to taper
the plasma density longitudinally [40]. Increasing the plasma density reduces the
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length of the wakefield (ne ∝ λ−2
p ). The front of the wakefield remains with the

driving beams head, whilst the rear accelerating region sweeps forward with the
faster travelling electron beam. If chosen correctly, a tapered longitudinal plasma
density profile can maintain the phase experienced by the witness beam throughout
a plasma stage.

2.2.3. Depletion Length

A beam driving a wakefield will eventually lose all its energy to the plasma, the
length over which this occurs is said to be the depletion length. Acceleration of the
witness beam cannot occur past this point. By equating the energy stored in the
electric field of a wakefield of length Lw with the energy of the drive beam, Ed, the
depletion length can be calculated.

Ed = E2
LcτA = E2

zLwA, (2.19)

where τ is the length of the laser pulse and A is the cross-sectional area. For a
laser of length cτ = λp/2, the amplitude of the wakefield driven is Ez = a2

0mecωp/e.
Assuming a constant wakefield across both; The laser’s electric field is given by
EL = meca0ω0/e. The pump depletion length of a laser pulse in the linear regime is
then:

Ld = Lw =
E2
L

E2
z

cτ, (2.20)

Ld = γ2
wake

cτ

a2
0

. (2.21)
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Figure 2.2.: Two laser beams of slightly differing frequencies, ω1 and ω2, red and blue lines
respectively (top pane) and the super position of these two beams producing
a beating laser beam with the envelope frequency being ω2 − ω1 (bottom
pane).

2.2.4. Plasma Beatwave Acceleration (PBWA)

Plasma wakefield acceleration was first proposed in 1979 by Tajima and Dawson [7]
who proposed to excite a plasma wake using an intense laser pulse, which would then
be used to accelerate electrons. At the time, state of the art laser pulses were many
nanoseconds long meaning only tenuous plasmas (whose plasma wavelengths were
comparable to the laser pulse length) could be efficiently excited. The maximum
achievable electric fields in such plasmas are of order kVm−1, which were orders of
magnitudes lower than those achieved in conventional accelerators.

As such the laser beatwave scheme was proposed. In this scheme a plasma
wakefield is driven by the ponderomotive force generated by the beat envelope of
two co-propagating laser beams of frequency ω0 and ω1, as shown in figure 2.2. The
plasma frequency ωp has to be matched to the difference of the two laser frequencies
ωp = ω1−ω2 in order for the laser beamlets to resonantly drive the wakefield to high
amplitudes. This allows plasmas of much higher density to be excited. This scheme
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Figure 2.3.: The longitudinal electric field of a high intensity laser pulse propagating
through a plasma and the resulting excited wakefield. The laser pulse is
propagating to the right with the wakefield trailing behind it. The top pane
shows the side view of the wakefield. The divergence of the wakefield profile
from a sinusoid is caused by non-linear effects. The bottom pane shows a
top down view.

however was found to have a major limitation. As the wakefield is driven to the
non-linear regime the plasma wavelength increases, whilst the spacing between the
laser beamlets remains the same. This resonant detuning of the plasma wave from
the ωp = ω1 − ω2 condition limits the amplitude of the wakefields driven [41,42].

2.2.5. Laser Wakefield Acceleration (LWFA)

Driving a wakefield with an ultra-short laser pulse, however, requires no tuning of
plasma frequency nor has synchronisation issues of the laser beatwave scheme. A
high amplitude wakefield can be driven by the ponderomotive force of a single high
intensity laser pulse as shown in figure 2.3. Commercially available compact laser
systems able to drive LWFA are cheap compared to dedicated particle-wakefield
acceleration experiments. Also, the laser pulse can generate plasma as it propagates
through a gas, relaxing the requirements of the plasma stage. Although they cannot
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sustain wakefields over as long distances as particle beams, they do provide a readily
available testbed for PWA experiments.

Ponderomotive Force

The ponderomotive force is the force experienced by a charged particle due to the
gradient in intensity of an electromagnetic wave. For the ultra-short intense laser
pulses used in laser wakefield acceleration this force is extremely large, and provides
the main mechanism that couples the energy of the laser pulse to the plasma. It is
stated for simplicity here and derived in appendix A.1.2.

FP = −1

4

e2

mω2
∇E2. (2.22)

Where E is the electric field and ω is the angular frequency of the field and other
parameters have their usual meaning. Note the ponderomotive force is proportional
to the gradient of the electric field squared, ∇E2, which is proportional to ∇I, where
I is intensity, and is exceptional in that it is independent of the sign of the charged
particle. That is to say that a charged particle will feel a force expelling it from the
region of high intensity to a region of lower intensity, be it a plasma electron or an
ion.

Laser Ionisation of an under dense gas

Ionisation of an under dense gas by an intense laser pulse can occur by tunnel
ionisation [43], barrier suppression ionisation [44] and multi-photon ionisation [45].
Tunnel ionisation occurs when the potential barrier of an atom is drastically distorted
by the presence of an intense electric field as shown in figure 2.4. An electron quantum
tunnels through the lowered potential barrier to a region of equal or lower potential
than its own. In the case of laser ionisation it is an alternating field that provides
the distortion of the potential barrier. Modern ultra-short laser pulses have electric
fields intense enough to entirely suppress the potential barrier, resulting in complete
ionisation of atoms in regions exceeding the ionisation threshold. In the context of
the laser-plasma simulations presented, the intensities of the lasers (I ∼ 1022 Wcm−2)
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Figure 2.4.: The unperturbed potential experienced by an atomic electron is denoted by
the dotted line (−Z/r). In the presence of a strong external electric field
denoted by the dashed line (EZ) the potential denoted by the solid line (V ) is
distorted allowing a previously trapped atomic electron to escape via barrier
suppression ionisation or tunnelling ionisation.

exceed the ionisation threshold of Xenon (I = 1.2× 1014 Wcm−2) [46]. Therefore the
gas is considered ionised before the trailing peak of the laser pulse arrives. As such
ionisation effects will be neglected henceforth.

Self Focusing

In LWFA, laser pulses are focused to a spot size that is a few tens of the laser
wavelength in order to achieve high intensities. As a consequence, the pulses rapidly
diffract, diminishing their high intensities and their ability to drive a high amplitude
wakefield. For a Gaussian beam propagating in free space along the ẑ axis the width
of the beam at position z is given by,

w(z) = w0

√
1 +

(
z

zR

)2

(2.23)
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Where zR is the Rayleigh length and w0 is the beam waist. The tighter the focus, the
shorter the Rayleigh length. For each Rayleigh length of propagation, the intensity of
the pulse decreases by a factor of two. This is undesirable as high amplitude electric
fields need to be sustained over as long a distance as possible in order to achieve the
greatest energy gains possible for the witness electron beam.

Another effect acting to disperse the laser pulse is refraction. An intense laser pulse
propagating through a neutral gas will ionise it forming plasma. The plasma density
will be highest on axis as the higher intensity meets higher ionisation thresholds,
generating more plasma. This creates a transverse refractive index gradient that acts
to defocus the laser pulse.

A competing and desirable effect is relativistic self focusing. As the plasma
electrons are accelerated to relativistic velocities their mass increases. This in
turn reduces the local plasma frequency, creating a refractive index gradient which
increases with transverse distance from the axis of propagation. In addition, the
ponderomotive force acts to dispel electrons from the axis, further increasing the
refractive index gradient. The threshold for relativistic self focusing in terms of
critical power is given by,

Pc =
8π

ε0

(
m

e

)2

c5

(
ω

ωp

)2

, (2.24)

or in a more convenient form,

Pc ' 17.5

(
ω

ωp

)2

[GW ]. (2.25)

If the laser pulse has power equal to the critical power then the pulse will maintain its
width, if it exceeds the critical power then it will focus to a tighter spot, enhancing
its intensity.
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2.2.6. Particle Wakefield Acceleration (PWFA)

A wakefield can be driven by the electric field of a passing charged particle beam.
Particle beams tend to have higher total beam energy and group velocity within
a plasma than their counterpart laser pulses, giving them greater depletion and
dephasing lengths, allowing the wakefield to be driven over metres rather than
centimetres. Electron beams have the advantage of experiencing the focusing region
of the wakefield whilst driving a wake, whereas proton beams have higher total energy
but instead experience a defocusing field whilst driving a wake. Such particle-beams
that are suitable to drive PWA however are not readily available like the commercial
laser systems. Instead existing facilities must treat their beams in order to effectively
drive PWA.

Particle-Beam Driver Length

Here the ideal length of a Gaussian density profile particle-beam driving PWA is
derived. To analyse the density profile of a plasma perturbed by a charged driving
beam travelling close to c, consider the plasma in three regions. Region 1 is the
plasma ahead of the driving beam. It is unperturbed as the beam is travelling close
to c, and the beam’s fields can not propagate faster than it. Region 2 is the plasma
being perturbed by the beam as it passes and region 3 is the perturbed plasma behind
the beam. Region 1 is trivial, region 2 is described by equation 2.9 without the laser
perturbation term and region 3 is described by equation 2.7 with the amplitude of
density oscillation determined by region 2. This derivation focuses on region 2 and
then uses boundary conditions to find region 3. The beam is modelled as a Gaussian
beam by the following equation:

nb =
N√
2πσ2

z

e
−(z−ct)2

2σ2z , (2.26)

where N is the number of particles in the beam, nb is the beam’s number density
and σz is the length of the beam. Note that the Gaussian chosen for the beam profile
has a constant area, normalised by the coefficient 1/

√
2πσ2

z . So the total charge
of the beam remains constant. Therefore as the beam length increases, the beam



Theory and Techniques 45

charge is distributed over a longer length and the charge density decreases. Later
the case is considered where the total charge of the beam is not fixed, and is instead
a function of the beam length.

Neglecting the laser term from equation 2.9 yields the expression for the number
density perturbation caused by a negatively charged driver beam. The equivalent
expression for a positively charged beam is simply,

(
∂2

∂2t
+ ω2

p

)
∆ne
n0

= ω2
p

nb
n0

. (2.27)

Substituting the expression for the number density of the driving beam, equation
2.26, into equation 2.27 gives,

(
∂2

∂2t
+ ω2

p

)
∆ne
n0

=
ω2
p

n0

N√
2πσ2

z

e
−(z−ct)2

2σ2z . (2.28)

Transforming to the Quasi-Static frame, co-moving with the beam [47] we define
ξ = z − ct and τ = t and find,

d

dt
=
dξ

dt

d

dξ
+
dτ

dt

d

dτ
= −c d

dξ
+

d

dτ
. (2.29)

The time τ is considered to be slowly varying during the transit time of the pulse.
d/dτ can then be set to 0 in this co-moving frame. Equation 2.29 then becomes,

d

dt
' −c d

dξ
. (2.30)

Expressing in terms of the plasma wavenumber kp = ωp/c and applying the above
approximation to equation 2.28,

(
d2

dξ2
+ k2

p

)
∆ne = k2

p

N√
2πσz

e
−ξ2

2σ2z . (2.31)
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We note that the form of this equation is y′′ + ω2y = f(ξ). Using Green’s functions
the solution to this general equation is,

y(ξ) =

∫ ∞
0

G(ξ,ξ′)f(ξ′)dξ
′ =

∫ ξ

0

1

ω
sin(ω(ξ − ξ′))f(ξ′)dξ

′, (2.32)

where G(ξ,ξ′) = 1
ω

sin(ω(ξ − ξ′))f(ξ′) for 0 < ξ′ < ξ and 0 otherwise. Applying the
solution to equation 2.31, an expression for the plasma density perturbation is found,

∆ne(ξ) = kp
N√
2πσz

∫ ξ

0

sin(kp(ξ − ξ′))e
−ξ′2
2σz dξ′. (2.33)

An important subtlety to note is that the integral in equation 2.33 is from 0 to
ξ, where 0 is the point at which the beam begins and ξ is the point at which the
beam ends. There are two problems, firstly the Gaussian is centred at 0 in the
quasi-static frame, so integrating over these limits effectively ignores the first half of
the beam, leaving an infinitely sharp leading edge. Plasmas respond very differently
to hard edged beams and the integral as it stands does not represent the Gaussian
beam. Secondly a Gaussian extends to ±∞, so the integration limits become ±∞ to
encompass the entire beam giving,

∆ne(ξ) = kp
N√
2πσz

∫ ∞
−∞

sin(kp(ξ − ξ′))e
−ξ′2
2σz dξ′. (2.34)

Integrating 2.34 the analytic expression for the variation in the electron density of
a plasma being perturbed by a relativistic Gaussian proton beam of charge N and
length σx is found,

∆ne(ξ) = kpN sin(kpξ)e
− 1

2
k2pσ

2
z . (2.35)

Note that this linear solution applies to situations where the charge density of the
driving beam is considerably less than the charge density of the plasma electrons,
nb0 � ne.
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Now the case where the charge density at the centre of the Gaussian beam profile
is fixed is considered and as the beam length is increased the total charge of the
beam increases — the variable-charge model. First nb from equation 2.26 is modified
by dropping the coefficient that conserved the charge of the Gaussian and instead
defining the peak number density of the Gaussian beam as nb0 ,

nb = nb0e
−(z−ct)2

2σ2z . (2.36)

Integrating equation 2.36 and applying the same treatment as before equation 2.37
is found,

∆ne(ξ) = kpnb0

∫ ∞
−∞

sin(kp(ξ − ξ′))e
−ξ′2
2σz

dξ′ . (2.37)

Integrating 2.37, the analytical expression for the variation in the electron density of
a plasma being perturbed by a proton beam of fixed peak charge density of length
σx travelling close to c is found,

∆ne(ξ) =
√

2πσzkpnb0 sin(kpξ)e
− 1

2
k2pσ

2
z . (2.38)

To find which value of σz yields the highest ∆ne, i.e. the highest amplitude wakefield,
first neglect the non σz components,

f(σz) = σze
−
k2pσ

2
z

2 (2.39)

Differentiating equation 2.39 with respect to σz allows us to find the turning points
for the expression. The turning points occur when the derivative is equal to zero.

f ′(σz) =
(
1− k2

pσ
2
z

)
e−

k2pσ
2
z

2 . (2.40)
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Figure 2.5.: The mathematical model, found in equation 2.38, for the amplitude of a
one-dimensional wakefield excited by a Gaussian beam of constant charge.
The fractional peak electron number density perturbation, i.e. the amplitude
of the wakefield is plotted as a function of the driving beam’s length.

Two values of σz set the derivative to zero, σz = 1/kp and σz =∞. Differentiating
once more and evaluating the function at these solutions determines if the solutions
are a maximum or a minimum.

f ′′(σx) =
(
k2
pσ

2
z − 3

)
k2
pσze

−
k2pσ

2
x

2 . (2.41)

f ′′(1/kp) < 0 and is the maximum. Therefore we have found the ideal length for a
Gaussian beam of peak charge density nb0 to drive a plasma wakefield to be,

σxideal =
1

kp
. (2.42)

This result not only gives the ideal driver length but also shows that there is one
unique optimum length for Gaussian profile beams. Figure 2.5 shows the amplitude
of the wakefield driven as a function of beam length for the fixed number density
model.
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Figure 2.6.: A top down view of the number density of a particle beam undergoing strongly
seeded self modulation. The top pane shows the initial number density of
the beam before interaction with the plasma, the middle pane shows the
head of the beam becoming micro-bunched via interaction with the wakefield
and the bottom pane shows saturation of the self modulation instability with
micro-bunches fully formed and evenly spaced at the plasma wavelength.

One-dimensional solutions can be usefully applied. For example, a very wide
beam (σr � λp) will drive a one dimensional wakefield. Also a strong magnetic field
can constrict the movement of charged particles to the field lines and reduce the
system to one dimension. In both these situations equation 2.38 would model the
response of the plasma to a Gaussian particle beam.

2.2.7. Self-modulated PWFA

For exciting wakefields in plasma densities of interest, particle-beam lengths have
to typically be the order of σz = 100 µm to satisfy equation 2.43. Given that
both proton and electron synchrotron beams are typically of length σz > 10 mm it
would seem that existing particle beams are unsuitable for PWA. Long beams can,
however, drive high amplitude wakefields via the self-modulation instability, so long
as the initial amplitude of wakefield driven is sufficient to seed the self-modulation
instability [48].
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Take an electron beam that is significantly longer than the plasma period. The
head of the beam will drive a low amplitude wakefield, exposing the trailing beam to
weak focusing and defocusing regions. The beam electrons in the defocusing region
will feel an off axis force, diminishing the number density, whilst the opposite is
true for the electrons in the focusing region. This leads to an enhanced wakefield
driving capability of the beam as the wakefield driven by the beam electrons in
the focusing region constructively adds to the initial wakefield. A feedback loop is
established resulting in an envelope modulated at the plasma frequency, as in figure
2.6. The growth rate of the self modulation instability for a long (kpσz � kβz), flat
top, cylindrically symmetric narrow (kpσr � 1) bunch at position ξ = z − ct along
the bunch is given by eG [49], where,

G ' 3
√

3

4

(
nb
n0

(kpξ)(kβz)

)1/3

. (2.43)

The self-modulation instability is also known to affect laser pulses that are longer
than the plasma wavelength. Instead of the high amplitude electric fields found in
wakefields affecting the number density profile of a long particle beam, the high and
low density regions of a wakefield act to diffract and self focus regions of the laser
pulse, forming a train of short pulses [50–52].

2.3. Betatron X-ray Generation

Electrons oscillating within a wakefield emit synchrotron radiation [53]. The spectrum,
direction and power of this radiated light is well known in conventional insertion
devices such as undulators and wigglers. By showing the trajectory of an electron
within a wakefield is identical to that of those in these conventional insertion devices
one can then assume the radiation characteristics are equivalent also.

2.3.1. Electron Trajectories within a Wakefield

By considering the radial electric field acting on a beam electron within a wakefield,
the betatron frequency of the beam electron can be calculated. Consider a strongly
driven wakefield in the blow-out regime. The electric field generated by the ion
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channel at a distance r from the axis of propagation can be calculated using Gauss’s
law,

∇ ·E =
ρ

ε0
=
−ene
ε0

. (2.44)

Using cylindrical symmetry and integrating and setting the on-axis field to zero (i.e
Er(r = 0) = 0) yields,

∇ ·E =
1

r

d

dr
(rEr) =

−ene
ε0

, (2.45)

Er =
−ene
ε0

r

2
. (2.46)

The force experienced by an electron at distance r from the channel is then,

F = −eE =
e2ner

2ε0
. (2.47)

The equation of motion is then,

dp

dt
= F =

meω
2
pr

2
. (2.48)

For ultra relativistic beams it can be assumed that the transverse momentum is small
compared to the forward momentum of the beam (i.e γ ' γ0 where γ0 is the initial
Lorentz factor of the beam). Expressing the relativistic momentum as p = γmeṙ

and considering the radial component, equation 2.48 yields,

r̈−
ω2
p

2γ
r = 0. (2.49)
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Recognising this as simple harmonic motion, the frequency of this radial oscillation
is,

ωβ =
ωp√
2γ
, (2.50)

where ωβ is the betatron frequency. The beam electrons, then, follow a sinusoidal
path as they propagate through the plasma. The model given by equation 2.49
allows the trajectories to be calculated given the electron’s initial momentum and
transverse position.

It is known that electrons propagating through an undulator also follow a sinu-
soidal path [54] described by,

x(z) =
K

βγku
sin(kuz ), (2.51)

where K is an important dimensionless parameter known as the undulator parameter
and for conventional undulators is given by K = eB0λµ/2πmec where B0 is the
magnetic field strength and λµ is the undulator period. For plasma wigglers the
undulator parameter is given by,

K =
ωbγr0

c
, (2.52)

where r0 is the radial distance of the beam from the wakefield. For K � 1 the
amplitude of the betatron oscillation is large compared to the wavelength of emitted
radiation, so the emitted photons are spatially decoupled. Because of this, the
emitted photons do not interfere, leading broad band emission. Such a device is
known as a wiggler. For K � 1 the emitted photons are not spatially decoupled, as
such self-amplified spontaneous emission occurs, leading to enhanced emissions of
the undulator frequency and its harmonics. These devices are known as undulators.
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2.3.2. Calculating Brilliance from Spectral Intensity

The spectral intensity radiated by a single accelerating charged particle [55] is given
by,

d2I

dωdΩ
=
e2ω2

4π2c

∣∣∣∣∫ ∞
−∞

ŝ × (ŝ × β)eiω(t−ŝ · r(t)/c)dt

∣∣∣∣2. (2.53)

where I is the energy, Ω is the collection angle, ω is the frequency, ŝ is in the direction
of observation and the expression is in CGS units.

The RDTX code used in later chapters to calculate the radiation emitted by
undulating particles expresses the spectrum in terms of spectral intensity. The
radiation generated by undulators and wigglers however, is commonly expressed as
brilliance having units of photons s−1 mm−2 mrad−2 0.1% BW−1.

The RDTX code calculates the spectral intensity [56] of radiation emitted by a
number NP of accelerating point charges, with the jth particle at position rj and
with normalised velocity βj = vj/c, in the far-field as,

d2I

dωdΩ
=
µ0e

2c

16π3
ω2

∣∣∣∣∣
∫ ∞
−∞

Np∑
j=1

ŝ × βjeiω(t−ŝ · rj/c)dt

∣∣∣∣∣
2

, (2.54)

where ω = v/ρ, β = |v|/c being the normalised velocity and ρ being the orbit radius.
The total number of radiated photons, NB, can be calculated from this quantity,

NB = Nb
d2I

dωdΩ

∆ω

ω

πθ2
d

~
. (2.55)

Assuming that the collection angle θd is small (θd < (∆ω/ω)1/2) so that the intensity
distribution is flat over the virtual spectrometer’s collection solid angle (∆Ω = πθ2

d),
the number of photons intercepted in a small bandwidth, ∆ω = 0.001 ω, about ω
for an electron bunch of Nb electrons is given by equation 2.55. The peak brilliance
is simply the photon flux per 0.1% bandwidth per unit volume in phase space, as
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described by Q. Shen [57], and is then given by,

B̂ =
NB

(2π)3εxεyεEτ
, (2.56)

where εx and εy are the transverse emittances, εE is the longitudinal energy spread
and τ is the beam length. Equations 2.55 and 5.1 are later used to convert the output
from the RDTX code into peak brilliance.

2.4. Photon Acceleration and Wave Kinetics

Photon acceleration is a simple and general concept associated with electromagnetic
wave propagation. It is best understood by relating it to the well known concept
of refraction. Refraction is the change in wave vector suffered by a photon crossing
a boundary between two optical media of differing refractive indices. Calling this
space-refraction, we can imagine a symmetric situation where the refractive index of a
medium varies in time. In such a situation the wave vector of the photon remains the
same and instead the frequency of the photon changes. We can think of this process
as time-refraction. Photon acceleration is the combination of these effects where
a medium’s refractive index varies with both space and time. Photon acceleration
leads to longitudinal pulse compression of laser pulses of length cτ ≈ λp within a
plasma. Consider two adjacent wave fronts, 1 and 2, of a laser pulse propagating
through an inhomogeneous plasma. The wavefronts will travel at different group
velocities, v1 and v2 as they are in regions of different plasma densities, n1 and n2.
As such, after a short time ∆t the distance between the wavefronts in this example
will vary, changing the wavelength by,

∆λ = (v1 − v2)∆t. (2.57)

Given ∆v is small relative to the change in wavelength, we can express the change
in wavelength after a time ∆t as,

∆λ = ∆tλ0
∂vφ
∂x

, (2.58)
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where λ0 is the wavelength of the laser and vφ is the phase velocity of the laser.
Then, the rate of change of the wavelength becomes,

∂λ

∂t
= λ0

∂vφ
∂x

. (2.59)

Moving to the speed of light frame, ψ = t− x/c and t = τ , note that,

∂ψ

∂x
=
−1

c
, (2.60)

∂x = −∂ψc, (2.61)

equation 2.59 becomes,

1

λ0

∂λ

∂τ
=
−∂vφ
c∂ψ

. (2.62)

Equation 2.62 can then be expressed in terms of frequency using λ = 2πc/ω and
∂λ = −∂ω2πc/ω2. The expression for the rate of change of frequency is then,

1

ω

∂ω

∂τ
=
c

v

∂v

∂ξ
=
−∂vφ
c∂ψ

. (2.63)



Chapter 3.

Computational Methods

This chapter describes the simulation codes used in this thesis. A brief outline of
each code is given and parameter scans and benchmarking of the main code EPOCH
are presented.

3.1. EPOCH

EPOCH1 is a plasma physics Particle In Cell (PIC) simulation code. The PIC
method represents a collection of physical particles with a smaller number of macro-
particles which are distributed on a underlying grid of fixed spatial resolution.
These macro-particles interact self-consistently via the electromagnetic fields they
produce [58, 59]. The fields generated by the motion of these macro-particles are
calculated using a finite difference time technique and are projected onto the grid.
Then these fields are used to calculate the forces on the macro-particles and update
their velocities, and these velocities are then used to update the macro-particles
positions as shown in figure 3.1. As a fully kinetic code, EPOCH is able to capture
the full range of classical micro-scale behaviour of a collection of charged particles.
PIC codes effectively represent a Lagrangian Monte-Carlo sampling of the phase
space of Vlasov’s equation2. EPOCH is based upon the particle push and field update
algorithms developed by Hartmut Ruhl [60], with modules added to capture physics

1The EPOCH code used in this work was developed as part of an ESPRC funded project, Grant
No, EP/G054950/1.

2The Vlasov equation in partial differential form, ∂f
∂t + dq̄

dt · ∂f
∂q̄ + dp̄

dt · ∂f
∂p̄ = 0, where f is a function

of generalised coordinates q̄, p̄ and t.
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Figure 3.1.: The core program flow of particle-in-cell codes such as EPOCH.

such as collisions, ionisation and quantum electrodynamics driven radiation [61].
EPOCH was written with the intent of being used by a wide number of communities,
with that in mind the code’s output is in S.I. units, with the exception of charge
which is normalised to that of the electron charge. EPOCH’s input deck accepts
either S.I. or cgs units.

3.1.1. Grid Resolution

When designing a simulation using a PIC code one has to provide a suitably fine
grid such that the smallest scale structures within the simulation are fully resolved.
Failure to do so will result in either a diminishing or absence of physical effects.
A finer grid requires the code to not only have a higher number of total macro-
particles to sufficiently populate each cell, but also to execute smaller time steps
in order to satisfy the Courant condition. The Courant condition is a necessary
condition for stability while solving partial differential equations numerically by the
method of finite differences. For N dimensions the Courant condition is given by:
C = ∆t

∑N
i=1

uxi
∆xi
≤ Cmax [62] where ∆t is the time step, ux is the magnitude of

velocity and ∆x is the distance between grid points and Cmax is the dimensionless
Courant Number and is typically 1.

The runtime of a simulation scales with the total number of particles, τr ∝ NPart,
and is proportional to the number of time steps τr ∝ Nsteps. By doubling the
grid resolution in one dimension, the total number of particles needed to maintain
the particles-per-cell is doubled and the number of time steps doubled. As such
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Figure 3.2.: A parameter scan of two hundred simulations over the number of grid points
resolving the plasma wavelength. The amplitude of the wakefield driven
(blue line) as a function of grid points per plasma wavelength is plotted. The
chosen resolution for future simulations is indicated by the black line (thirty
grid points per plasma wavelength). The red line indicates the amplitude
of the wakefields driven in simulations with sufficiently high resolution to
fully capture the physics of particle-beam driven plasma wakefields. For
simulations where the spatial variations in the density profile of the drive
beam are on the scale of, or greater than, the plasma wavelength, i.e. σb & λp.

the runtime of a one dimensional simulation scales as τr ∝ N2
points of the grid size.

It is necessary then to pick the coarsest resolution that fully captures the physics
whilst minimising runtime of the simulation. To this end a simple particle-beam
driven wakefield simulation was designed and the grid size scanned over (parameters
found in table 3.1). The smallest scale of interest in the particle-beam simulations
presented within this thesis is the plasma wavelength, and a main physical result of
such simulations is the amplitude of the wakefield driven. The grid sizes scanned
over were chosen such that they resolved the plasma wavelength with j points, where
j = 1 : 200. Figure 3.2 shows the amplitude of the wakefield driven as a function of
grid points per plasma wavelength in the two hundred simulations.

The resolution scan shows that forty five grid points per plasma wavelength and
above yield a stable wakefield amplitude of Ezmax = 1.62× 109 Vm−1. Note however,
that above thirty grid points per plasma wavelength yields a wakefield of amplitude
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Grid Values
nx j × 2

nz j × 4

grid width(m) 2× λp
grid length(m) 4× λp

j 1 : 200

Beam Values
species e−

E (GeV ) 3

σr (m)
√

2/kp

σz (m)
√

2/kp

N 109

Plasma Values
species H
PPC 6

ne (m−3) 1.11× 1023

Table 3.1.: Resolusion-scan parameters. For the grid parameters: nx and nz are the grid
width and length respectively; j is the integer parameter scanned over; and
grid width and grid length are the physical width and length of the grid. For
the beam parameters: species is the particle composing the beam; E is the
beam’s individual particle energy; σr and σz are the beam’s width and length
respectively; and N is the number of particles composing the beam. For the
plasma parameters: species is the ionised element composing the plasma,
PPC is the number of particles per cell; and ne is the plasma electron number
density.

Ezmax = 1.6× 109 Vm−1 (99% of the stable wakefield amplitude) whilst requiring
two thirds of the grid points. Below thirty grid points per plasma wavelength the
amplitude of the wakefield is diminished significantly, falling to zero at one grid point
per plasma wavelength. As such all PIC simulations presented henceforth were run
with thirty grid points per plasma wavelength unless expressly stated otherwise.

3.1.2. Particles Per Cell

Another technical parameter of PIC simulations is the total number of macro-particles
populating the grid, also expressed as particles per cell. The growth rate of noise
of the electric field in PIC simulations is inversely proportional to the number of
particles per cell, δE = N

−1/2
ppc . It is best then to choose a number of particles per

cell that both minimises the runtime whilst keeping δE � E. A parameter scan
over the number of particles per cell was run for a basic particle-beam driven plasma
wakefield simulation with parameters summarised in table 3.2, in the same way as
the resolution scan detailed above. Figure 3.3 shows the fractional deviation in the
amplitude of the wakefield from a perfect sinusoid as a function of particles per cell.
Six particles per cell was chosen as it achieves under 3% error and higher particles
per cell give diminishing returns on the error reduction. As such all PIC simulations
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Figure 3.3.: The fractional error of the amplitude of a wakefield driven over a range of
particle-per-cell simulations.

Grid Value
nx 200

nz 400

grid width (m) 2× λp
grid length (m) 4× λp

Beam Value
species e−

E (GeV) 3

σr (m)
√

2/kp

σz (m)
√

2/kp

N (e−) 1× 109

Plasma Value
species H
PPC 1 : 1000

ne (m−3) 1× 1020

Table 3.2.: Particles-per-cell-scan parameters. Parameters as defined in table 3.1.

presented henceforth were run with six particles per cell unless expressly stated
otherwise.
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Figure 3.4.: The beam length of a driving beam plotted against the amplitude of the
resulting plasma density perturbation. Data are from simulations using the
PIC code EPOCH (blue dots). The model (black line) is that derived in
section 2.2.6.

3.1.3. Benchmarking

To validate the code EPOCH for use in simulating plasma wakefield acceleration its
predictions were compared to the predictions of the theoretical model derived in the
theory section given by equation 2.38. Figure 3.4 plots the fractional number density
perturbation of the plasma as a function of beam length. The theoretical model
gives the electron number density perturbation caused by a passing Gaussian beam.

A true Gaussian extends infinitely in both directions. When designing a simulation,
one has to truncate the Gaussian beam at an arbitrary point in order to fit it into
the simulation window. As such, the model was adapted to yield the electron number
density perturbation caused by a truncated passing Gaussian beam, as detailed in
appendix A.2.1. A parameter scan over driver beam length was performed with
EPOCH, whose parameters are found in table 3.3. Figure 3.4 shows close agreement
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Grid Value
nx 200

nz 400

grid width (m) 2× λp
grid length (m) 4× λp

j 1 : 100

Beam Value
species p+

E (GeV) 3

σr (m)
√

2/kp

σz (m)
√

2/kp × j/50

nb0/ne 10−3

Plasma Value
species H

PPC 6

ne (m−3) 1020

Table 3.3.: Beam-length-scan parameters. nb0 is the peak beam number density, ne is the
plasma electron number density and other parameters are as defined in table
3.1.

between the fractional plasma density perturbation caused by the Gaussian beam as
predicted by the theoretical model and as calculated by EPOCH.

3.1.4. EPOCH Analysis software

A bespoke graphical user interface program, EpochGUI, was written to expedite
analysis of EPOCH simulations. EpochGUI was written by myself with contributions
from F. Keeble and J. Leland. The program is designed so the user can quickly
preview any data set present in the time step of interest, as shown in figure 3.5,
compare two data sets evolving with time, compile a range of time steps into movies
at the desired view angle and queue up arbitrary numbers of movies to be compiled
as shown in figure 3.6. EpochGUI is available for both Mac and Linux environments.

EPOCH is bundled with numerous MATLAB functions that aid in handling the
simulation data. However, a drawback is that to access a single dataset within a time
step, the whole time step must be loaded into memory. Given that individual time
steps can exceed several gigabytes in size this is both a time and resource intensive
task. EpochGUI first scans the time step of interest for all the names of data sets
it contains, returning a drop down menu to the user. The user then chooses the
data set of interest and EpochGUI extracts only that array from the time step. By
dynamically reading the data sets present within each time step, EpochGUI has
proven to be future-resistance to updates to EPOCH. In practice this speeds up
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Figure 3.5.: The EpochGUI program with a directory containing EPOCH time steps
selected (left pane), EpochGUI displaying the detected datasets within an
EPOCH time step (middle pane) and the electric field of a a time step plotted
by EpochGUI (right pane).

the access time of the data by an order of magnitude, crucial for previewing the
evolution of datasets in real time.

Given the total size of a simulation’s output can exceed terabytes of data, compil-
ing a movie from a dataset takes significant amounts of time on high end computers.
For this reason EpochGUI was written to allow the user to queue up several movies
to compile sequentially. This way interactionless compilation of movies of many
variables can be achieved overnight. Whilst compiling a movie, EpochGUI only holds
the current times step’s data set in memory, discarding the set once the movie frame
has been generated and saved, relaxing the memory requirements of the program.

3.2. Radiation Damped Electron Tracking Code

(RDTX)

RDTX code is designed to calculate radiation spectra from arbitrary electron orbits
in prescribed potential structures [63]. Particles populate a grid, as with other
PIC codes, and are pushed using a fourth order Runge-Kutta integrator with a
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Figure 3.6.: The EpochGUIMovieMaker (right pane) with four movies queued for compi-
lation (ex, ey, bx and by variables) and the EpochGuiRealTime previewer
(left pane) displaying an electron driving beam in its upper pane and the
resulting wakefield within its lower pane.

modified Lorentz-Abraham-Dirac equation of motion. The fourth order Runge-
Kutta integrator is a numerical method that approximates the solutions of ordinary
differential equations in a temporally discretised system. Being a fourth order method
yields a total accumulated error of order O(h4), where h is the size of the time step.

As the potential is prescribed and not dynamically calculated, RDTX can simulate
a beam-plasma interaction orders of magnitude quicker than fully kinetic PIC codes
such as EPOCH or OSIRIS. Having a prescribed potential however means that
it is unsuitable for simulating situations where the wakefield evolves significantly
throughout the interaction, such as self-modulation simulations. As such, RDTX is
used to calculate the radiated spectra from particle beam-plasma simulations that
have been performed in EPOCH once the wakefield has evolved to a stable state.

A feature of RDTX is a virtual spectrometer, which measures the spectral intensity
of radiation emitted by the moving charge being simulated. This feature is useful
for assessing the properties of potential light sources such as charge undulating in a
wakefield as discussed later in section 5. The benchmarking of the core algorithm of
RDTX against analytic theory is detailed d in the cited paper by the code’s author,
A.G.R. Thomas [64]



Computational Methods 65

3.3. FROGed

The code FROGed determines the phase and intensity profile of the laser pulse
that generates an experimentally recorded FROG trace. This non trivial task is
performed by starting with a hypothetical laser pulse, determining the FROG trace
produced by the hypothetical pulse and calculating the error between the FROG
trace of the hypothetical laser pulse and the experimentally recorded trace. The code
then attempts to improve upon the guess and minimise the error between the two
traces by applying several retrieval algorithms. The retrieval algorithms are briefly
summarised here, with a more in-depth discussion provided by M. Streeter [65].
The Data Constriants method, Generalized Projections method and the Genetic
Algorithm method are employed to minimise the error in the order stated.

Each retrieval algorithm is capable of reducing the difference between the hy-
pothetical and experimental FROG trace, however, individually they are prone to
becoming stuck in local minima and will not converge to the correct solution. As
such a master algorithm switches between the different retrieval algorithms after a
certain number of iterations yields no improvement on the discrepancy between the
two FROG traces. FROGed is later used to retrieve the intensity and phase of laser
pulses emerging from laser-plasma interactions.

3.4. Limitations of PIC Codes

PIC codes provide valuable insight into laser-plasma and beam-plasma interactions,
making predictions which have good general agreement with experiment [9,66]. They
do have limitations however.

Firstly they are computationally intensive, requiring hundreds of cores on high
performance computers. A typical realistic particle beam-plasma simulation takes
between two and four days to complete running on 256 cores. When introducing
a laser pulse the required resolution increases significantly and the largest of such
simulations completed took ten days to complete on 4096 cores. These simulations
resolve the plasma wavelength of a tenuous plasma (ne ≈ 1023 m−3). When increasing
the plasma density to solid densities, whilst resolving small scales such as the Debye
Length (given by equation 2.1), the runtime becomes prohibitive. Failure to resolve



Computational Methods 66

the Debye length results in numerical heating of the plasma, but can be safely ignored
if the heating time of the laser-plasma or beam-plasma interaction is greater than
that of the numerical heating.

PIC codes are commonly collisionless, again making them more suitable for
tenuous plasmas. EPOCH has an optional collisional module but it is in the early
stages of testing.



Chapter 4.

Conventional Beams Driving
Wakefields

- A novel numerical study is presented, showing that existing third generation light
sources can produce X-ray pulses with equally unique properties as state-of-the-art
fourth generation sources, by undulating their beams within plasma wakefields.

This study shows that by longitudinally micro-bunching a long electron beam an
X-ray pulse can be generated with orders of magnitude enhancement to both brilliance
and photon energy when propagated through a plasma stage when compared to
conventional magnetic insertion devices. First the micro-bunching technique is refined
in simulations on the σz = 26 mm long electron beam generated in the booster

Beam Value
E (GeV) 3
∆E/E 0.007

ε (nm rad) 140
σz (mm) 26
σr (mm) 1.58

N 1.25× 1010

Table 4.1.: Diamond beam baseline parameters. Where E is the electron energy, ∆E/E
is the longitudinal energy spread, ε is the normalised emittance, σz is the
beam length, σr is the beam radius and N is the number of electrons.
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Figure 4.1.: The transfer line between the Diamond Light Source’s inner booster ring
and outer storage ring (red circle) where the available 6 m of beam line is
found. A tuneable quadrupole is positioned before the start of the 6 m of
beam line (blue circle) allowing control over the radial size of the Diamond
beam. Picture courtesy of Dr. Michael Bloom.

section of the Diamond Light Source (referred to hereafter as the Diamond beam,
parameters found in table 4.1). After, the technique is applied to the shorter, lower
emittance Diamond beam found in the storage ring and the radiation produced is
studied.

The production mechanism ensures the pulses are radially polarised on creation.
Also, a micro-bunched electron beam is demonstrated to be an effective wakefield
driver in itself, providing a potential new cost-effective route to a reliable X-ray free
electron laser generation.

The first part of this chapter is concerned with testing various treatments to
the Diamond beam to make it an effective wakefield driver (i.e. able to drive a well
defined wakefield of Ez > 1 GVm−1). Once a regime is found, an optimisation study
is performed and a detailed beam line is designed and fully simulated demonstrating
the Diamond beam can drive high amplitude wakefields.

As this work forms an experimental proposal where the proposed beam line would
be installed at the Diamond facility, a strict requirement is that the beam line fits
within the 6 m of beam line available between the inner booster and outer storage
ring (figure 4.1).
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Figure 4.2.: Top view (top pane) and side view (bottom pane) of the wakefield driven by
the baseline Diamond beam within a plasma of number density ne = 1020

m−3 after 200 mm of propagation within the plasma.

4.1. Compressing and Cutting the Diamond Beam

As discussed in the introduction, particle beams found in modern synchrotrons
and linear accelerators are typically too long to drive a high amplitude wakefield.
An obvious solution is to longitudinally compress a beam with a series of magnetic
chicanes, such that σz = 1/kp, making the beam an effective wakefield driver. Another
approach is to shape the density profile of the beam such that the head sharply
increases in number density over a distance comparable to the plasma wavelength,
i.e. to cut the beam. A beam with a sharp rise time kicks the plasma electrons
abruptly in much the same way as a short beam does. A third approach is to radially
compress the beam, increasing its on-axis number density. This section presents
simulations of these schemes.
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Figure 4.3.: Top view (top pane) and side view (bottom pane) of the wakefield driven by
the baseline Diamond beam within a plasma of number density ne = 1020

m−3 after 2 m of propagation within the plasma.

4.1.1. Baseline Diamond Beam

The Diamond beam has a beam length of σz = 0.026 m which would effectively excite
a wakefield in a plasma of density ne = 8.38× 1016 m−3, as described by equation
2.43. Such a plasma supports a maximum electric field of Ezmax = 2.78× 107 Vm−1

before succumbing to wave breaking, given by equation 1.1. This electric field is in
the region of those achievable by conventional accelerators, therefore the simulations
performed herein are at higher plasma densities.

The initial plasma density of ne = 1× 1020 m−3 was chosen as the Diamond beam
shares similarities to the Super Proton Synchrotron (SPS) proton beam at the LHC,
which the Advanced Wakefield Experiment (AWAKE) collaboration proposes to use
to drive PWFA in this plasma density region [67]. They are both long conventional
particle beams with the SPS and Diamond beam having gamma factors of γ = 481

and γ = 5871 respectively. Furthermore, this initial plasma number density has a
plasma wavelength of λp = 3.34 mm which is closer to the length of the Diamond
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Grid Value
nx 130
nz 1660

grid length (m) 0.166

grid width (m) 0.01265

tend (s) 6.66× 10−9

ppc 6

Beam Value
species e−

E (GeV) 3

σr (m) 1.58× 10−3

σz (m) 26× 10−3

N 1.25× 1010

ε (nm rad) 140

Plasma Value
species H+

ne (m−3) 1020

Table 4.2.: Baseline Diamond beam simulation parameters. For the grid parameters: nx
and nz are the grid width and length respectively; grid width and grid length
are the physical width and length of the grid, tend is the runtime of the
simulation and ppc is the number of particles per cell. For the beam parameters:
species is the particle composing the beam, E is the individual beam’s particle
energy, σr and σz are the beam’s width and length respectively, N is the number
of particles composing the beam and ε is the normalised beam emittance. For
the plasma parameters: species is the ionised element composing the plasma
and ne is the plasma electron number density.

beam than that of higher density plasmas, meaning the Diamond beam’s length is
closer to that of the optimum driver length. At this density the plasma can support
a maximum electric field of Ez = 9.63 GVm−1, far exceeding conventional accelerator
limits. Figure 4.2 displays the longitudinal electric field excited within the plasma by
the baseline parameter Diamond beam after 20 mm of propagation into the plasma,
which is a superposition of the driven wakefield and the beam’s electric field.

A maximum of Ez = 2.4 kVm−1 is achieved, which is four orders of magnitude
lower than the maximum electric fields attainable in conventional accelerators.
Furthermore, the top pane of figure 4.2 shows that the wakefield excited is not
made of distinct, regularly spaced smooth buckets in which particles can be reliably
accelerated. The initial wakefield driven by the baseline Diamond beam is therefore
unsuitable for PWFA.

Co-propagating a particle beam with its own wakefield modulates the density
profile of the beam, enhancing its wakefield driving capabilities as discussed in section
2.2.7. Figure 4.3 shows the electric field of the Diamond baseline simulation after 2 m
of propagation through the plasma. Note that although the maximum wakefield has
increased to Ez = 10 kVm−1, the quality of the wakefield has decreased significantly
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Figure 4.4.: Top view of the baseline Diamond beam before (top pane) and after (bottom
pane) 2 m of propagation through a plasma of number density ne = 1020

m−3.

as the individual buckets are less defined. Figure 4.4 shows the number density of the
Diamond beam before and after 2 m of propagation through the plasma. Note that
the density profile of the beam has not been modulated significantly and shows no
micro-bunching at the plasma wavelength. The baseline Diamond beam is therefore
unsuitable for PWFA.

4.1.2. Ideal Compression of the Diamond Beam

Ideally, the Diamond beam would be compressed longitudinally and radially such
that σz = σr = 1/kp

1. A parameter scan over plasma density was performed to see
the amplitude of the wakefields driven by the ideally compressed Diamond beam,
parameters found in table 4.3. The ideally compressed Diamond beam drives an
initial wakefield in excess of Ez = 1 GVm−1 in plasma densities of ne = 1 × 1022

1Theoretically a point-like beam would drive a higher amplitude wakefield, but this is not considered
as it is technically unfeasible.
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Grid Value
nz 120
ny 60

grid length (m) 4 λp

grid width (m) 2 λp

tend (s) 4 λp/c

ppc 6

Beam Value
species e−

E (GeV) 3

σr (m)
√

2/kp

σz (m)
√

2/kp

N 1.25× 1010

ε (nmrad) 140

Plasma Value
species H+

ne (m−3) 0.278× 1020 × 2j

j 3 : 20

Table 4.3.: Ideally compressed Diamond beam density scan parameters. j is the parameter
scanned over and other parameters are as previously defined in table 4.2.

Figure 4.5.: The initial amplitude of the wakefield driven by the ideally compressed
Diamond beam plotted as a function of plasma density. The length and
width of the Diamond beam have been matched to the plasma such that
σz = σr =

√
2/kp. The red line indicates a wakefield of 1 GVm−1.
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m−3 and above, as shown in figure 4.5. The highly compressed beams diverge
rapidly however, diminishing the amplitude of the wakefield driven. The simulation
highlighted in figure 4.5 by label A drives an initial wakefield of Ez ' 1 TVm−1.
This high incredibly high amplitude wakefield however, is extremely short lived.
The initial wakefield of Ez ' 1 TVm−1 decreases to Ez ' 0.4 TVm−1 after 2 λp of
propagation as the beam’s radius rapidly increases from σr = 1/kp to σr ' 2/kp.
The rapidly expanding driver beam can only drive the high amplitude wakefield for
very short distances, therefore limiting the total energy gain of a witness beam.

At the plasma density of ne = 1× 1022 m−3, the Diamond beam is longitudinally
compressed to σz = 75.2 µm, driving a wakefield of amplitude E = 1 GVm−1, making
it a more viable parameter set. Investigations into compressing the SPS proton beam
concluded it would take 600 m of beam line to compress the beam from σz = 120

mm to σz = 3.6 mm to make it suitable for the AWAKE experiment [68]. According
to the linear theory of magnetic bunch compression it would take approximately
40 m of beam line to compress the Diamond beam to σz = 75.2 µm. Given the
hard constraint of 6 m of beam line and the softer constraint of total cost of the
experimental proposal, compressing the Diamond beam in this way was deemed
unfeasible.

4.1.3. Radial Compression

Radial compression of a particle beam is a straight forward task compared to
longitudinal compression. Quadrupoles in the existing Diamond beam line can be
used to focus the Diamond beam to a smaller waist at the entrance of the plasma
stage. Radially compressing a particle beam increases the peak number density and
therefore the amplitude of the wakefield driven. The radial compression simulation
has the same parameters as the baseline Diamond simulation, found in table 4.2, but
has the beam’s radius decreased by a factor of ten. This increases the beam’s peak
number density by a factor of one hundred. Figure 4.6 shows the radially compressed
beam driving a wakefield of Ezmax = 4 MVm−1 after 2 m of propagation, significantly
below the Ez = 1 GVm−1 of interest. The wakefield quality degrades over the 2 m of
propagation, with high amplitude off-axis electric fields and low on-axis fields. This
is due to the beam rapidly expanding over the 2 m, hosing significantly as a result
of the radial compression, as shown in figure 4.7. The effective temperature of a
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Figure 4.6.: The top view (top pane) and side view (bottom pane) of the wakefield driven
by the radially compressed Diamond beam after 2 m of propagation within a
plasma of number density ne = 1020 m−3. Hosing can be seen in the form of
pronounced transverse asymmetry in the number density of the beam (the
zig-zaging along the length of the beam.

particle beam is given by,

Teff =
E2ε2

mec2kBσ2
r

, (4.1)

where ε is the normalised emittance, kB is the Boltzmann constant, σr is the beam’s
radius, E is the beam’s energy and the other terms have their usual meaning. Given
that the emittance of a beam is constant, compressing the beam radially by a factor of
ten increases the beam’s temperature by a factor of one hundred to Teff = 1.59×1011

K. The low amplitude focusing fields of the wakefield driven is insufficient to contain
the now hotter beam. Further compression results in a greater divergence. Therefore
the radially compressed Diamond beam is not an effective wakefield driver.
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Figure 4.7.: The radially compressed Diamond beam before (top pane) and after (bottom
pane) 2 m of propagation through plasma of number density ne = 1020 m−3.

4.1.4. Half Cut

- Introducing a sharp cut to the density profile of the beam is a technically challenging,
but feasible task. A longitudinally cut Diamond beam was simulated, discarding the
front half of the beam, giving a sharp leading edge to the density profile. Figure
4.8 shows the Ez = 1.05 MVm−1 wakefield driven by the half-cut beam after 2 m of
propagation through the plasma. The wakefield is well defined and of a much higher
quality than those presented in the preceding simulations — albeit a factor of four
lower than the radially compressed Diamond beam. The half-cut beam experiences
this high quality wakefield throughout the 2 m of propagation, however the initial
wakefield driven of Ez = 1 MVm−1 does not sufficiently seed the self-modulation
instability and there is no micro-bunching to the Diamond beam after 2 m as shown
in figure 4.9. Given the beam line required to half-cut the beam in addition to
an extended stage for the self-modulation instability to saturate, half-cutting the
Diamond beam was considered unsuitable for the purposes of driving a high amplitude
wakefield.
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Figure 4.8.: The top view (top pane) and side view (bottom pane) of the wakefield driven
by the half-cut Diamond beam after 2 m of propagation through a plasma of
number density ne = 1020 m−3.

Figure 4.9.: The half-cut Diamond beam before (top pane) and after (bottom pane) 2 m
of propagation through plasma of density ne = 1020 m−3.
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Figure 4.10.: The amplitude of the wakefield driven across the length of the Diamond
micro-bunch train by the micro-bunched Diamond beam for four hydrogen
plasma densities (dashed line) and for four caesium plasma densities (solid
line). These four densities were chosen from a parameter scan of eleven as
they show the transition into the ion motion regime.

4.2. The Micro-Bunched Diamond Beam

Particle and laser beams longitudinally micro-bunched at the plasma wavelength
are effective wakefield drivers. Each micro-bunch is short compared to the plasma
wavelength and efficiently couples energy from the beam into the plasma. A micro-
bunch train, with micro-bunches evenly spaced at the plasma wavelength, will
resonantly excite the wakefield to high amplitudes. This section starts by investigating
the amplitude of the wakefield driven by a micro-bunched Diamond beam matched
to various plasma densities. Then a scheme to rapidly micro-bunch the Diamond
beam by co-propagating it with a high amplitude wakefield is devised. Optimisation
of the scheme then leads to a start-to-finish simulation of a novel two plasma stage
beam line where the Diamond beam is micro-bunched by a high amplitude laser
driven wakefield in a short plasma stage before going on to drive a particle-driven
wakefield in a second, longer plasma stage.
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Grid Value
nz 150
ny 150

grid length (m) 2 λp

grid width (m) 2 λp

tend (s) 6 σz/c

ppc 6

Beam Value
species e−

E (GeV) 3

N 1.25× 1010

ε (nm rad) 140

Plasma Value
species H+

ne (m−3) 0.278× 1020 × 2j

j 5 : 15

Table 4.4.: Micro-Bunched Diamond beam density scan parameters. j is the parameter
being scanned over and other parameters are as defined in table 4.2

4.2.1. Modelling the Micro-Bunched Diamond Beam

A scan over plasma density was designed to identify the density at which the largest
amplitude wakefield could be driven by the micro-bunched Diamond beam without
ion motion disrupting the wakefield. To model a micro-bunched beam a bi-Gaussian
envelope was assumed with a sinusoidal modulation along its length, described by
equation 4.2,

nb(z, x) =
N

(2π)3/2σzσ2
x

e−z
2/2σ2

ze−x
2/2σ2

x(1− cos(kpz)/2). (4.2)

Where nb(z, x) is the beam number density and other parameters have their usual
meaning. The initial density scan was performed over a hydrogen plasma, parameters
summarised in table 4.4. The wakefield amplitude as a function of distance from the
head of the Diamond beam (defined here as +3 σz from the centre of the Gaussian)
is plotted in figure 4.10. The amplitude of the wakefield increases with distance
from the head of the train of micro-bunches as the bunches constructively excite
the wakefield. This continues until the plasma ions move from their initial positions,
which acts to disrupt the wakefield.

Label A on figure 4.10 shows the point at which ion motion starts to disrupt
the wakefield for the highest plasma number density simulation. The ion number
density and electric field of this simulation are plotted on the top left and bottom
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Figure 4.11.: The electric field excited by the micro-bunched Diamond beam in a caesium
plasma of density ne = 1.84× 1024 m−3, 37 mm from the head of the beam
(bottom left pane) and 91 mm from the head of the beam (bottom right
pane). The caesium ion number densities at these points are plotted in the
panes above.

left panes of figure 4.11 respectively. The ion number density has subtle peaks and
troughs along the direction of propagation. The electric field excited has distinct
accelerating and decelerating regions, although not of a classic wakefield such as that
in figure 4.6. Label B on figure 4.10 is at a later time in the same simulation where
significant ion motion has occurred, the ion number density and electric field are
plotted on the top right and bottom right panes of figure 4.11 respectively. Note
that the distribution of ions has evolved to include sharp peaks and troughs as well
as regions of undisturbed ions. The electric field excited in such a plasma may have
high amplitude regions, as shown in the bottom right pane, but their distribution is
chaotic with no periodic well defined accelerating regions in which to accelerate a
witness beam. Therefore ion motion constrains the plasma densities in which a high
amplitude wakefield can be driven by the micro-bunched Diamond beam.

One way of mitigating ion motion is to decrease the charge-to-mass ratio of the
ion, i.e. to move to heavier singularly ionised elements. As such the density scan
was performed with the same parameters found in table 4.4, but over a singularly
ionised caesium plasma.

Figure 4.10 shows the maximum possible wakefield the micro-bunched Diamond
beam can drive in a caesium plasma is 4 GVm−1; above this the wakefield is disrupted
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Figure 4.12.: Micro-bunching of the short Diamond beam via co-propagation with a
Er = 1 GVm−1 wakefield. The top pane shows the short Diamond beam at
the point where the micro-bunches have fully formed L = 20 mm, and the
bottom pane shows the diverging micro-bunches at L = 200 mm.

by the motion of the background plasma ions motion. The density scan identified the
density of interest ne = 2.8× 1022 m−3. At this density a high amplitude wakefield
is driven along the length of the Diamond beam peaking at 2 GVm−1, 0.062 mm
behind the centre of the Diamond beam. 74.7% of the charge of the Diamond beam
experiences a wakefield of Ez > 1 GVm−1.

4.2.2. Single Stage Design

A charged particle beam can be micro-bunched at the plasma wavelength by co-
propagating it with a high amplitude wakefield. The transverse fields of a wakefield
form alternating focusing and defocusing regions which the beam particles experience.
The particles in the focusing region are focused on-axis forming evenly spaced micro-
bunches. Those in the defocusing regions are defocused as a result of the transverse
momentum imparted and leave the wakefield. The resulting micro-bunch train is a
highly effective wakefield driver.
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An ultra-short laser pulse can be used to drive the micro-bunching wakefield as
only a short co-propagation distance is needed between the wakefield and particle
beam to achieve micro-bunching of the beam. Resolving the laser wavelength within
a particle-in-cell simulation requires approximately two orders of magnitude more
computational resources to compute at the densities being simulated2. As such, a
way to model the laser pulse was required.

A simulation was performed using an ultra-short electron beam that drove a
Er = 1 GVm−1 wakefield, modelling the laser pulse, as a computational save. This
ultra-short electron beam led the core of the Diamond beam by +1 σz, driving
a wakefield in the plasma which co-propagates with the trailing Diamond beam.
The electron beam driven wakefield neglects effects, a significant one being slippage
between the wakefield and witness Diamond beam, as a laser driven wakefield typically
propagates slower than particle driven wakefield. Furthermore the electron driver
does not evolve significantly over the propagation distance whereas a laser pulse
would experience self focusing, diffraction and beam head erosion effects. As a first
iteration of simulations however, the electron driven wakefield approximation was
suitable for initial investigations.

Further computational savings were needed to simulate the interaction of the
Diamond beam with the wakefield over long distances. As the point of the simulation
was to investigate the micro-bunching effect of a wakefield on the Diamond beam,
the whole length of the Diamond beam need not be simulated, so a shorter Diamond
beam of σz = 0.6 mm was used.

The top pane of figure 4.12 shows the Diamond beam forming micro-bunches at
a distance of 20 mm into the plasma, and then the micro-bunches again at 200 mm
(The plasma length of 200 mm is significantly shorter than the minimal defacing
length of 1330 m calculated in section 2.2.2). The micro-bunches are spaced λp apart,
crucial in allowing them to successively excite a wakefield. Furthermore, the peak
number density of the central micro-bunch is nb = 2× 1019 m−3, an increase by a
factor of 5 from the peak number density of the centre of the baseline Diamond beam,
due to radial compression from the focusing fields of the wakefield. When modelling
the Diamond beam in subsection 4.2.1 radial compression of the micro-bunches
was not considered. Given the enhanced driving capabilities of radially compressed

2This is due to the smallest structure that needs to be resolved becomes the laser wavelength, λ = 1
µm, instead of the plasma wavelength of λp ≈ 100 µm.
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beams, the micro-bunch train achieved here could drive a higher amplitude wakefield
than the maximum Ez = 4 GVm−1 achieved in figure 4.10.

The on-axis number density of the central micro-bunch decreases from its peak
of 2.07× 1019 m−3 at the 20 mm focus to 1.28× 1019 m−3 at 200 mm. This is due to
the beam electrons in the focusing regions overshooting the axis, having sufficient
transverse momentum to escape the wakefield. The micro-bunches continually
leak charge, degrading the wakefield driving capability of the micro-bunch train.
Co-propagating the Diamond beam with a high amplitude wakefield for extended
propagation distances achieves micro-bunching of the Diamond beam, but the micro-
bunches have a too high a divergence for the transverse electric fields of the wakefield
to contain. This limits the effectiveness of the single-stage design for driving stable
wakefields over long distances.

4.2.3. Two Stage Design

Lower divergence micro-bunches can be attained by only briefly exposing the beam
electrons to the focusing fields of the wakefield. Then, by allowing the beam to
propagate through vacuum, the micro-bunches form as the transverse momentum
imparted causes the beam electrons to drift on axis. To achieve this the single plasma
stage was split into two stages. The first being short, wherein the Diamond beam
co-propagates with the laser-driven wakefield and the second being longer, where the
now micro-bunched Diamond beam drives a higher amplitude wakefield of its own.
The added advantage of such a scheme is that the laser pulse can be steered onto
the axis of propagation of the Diamond beam with a mirror (with a hole allowing
the Diamond beam to propagate through unperturbed) before the first stage, and
discarded similarly after the first stage, once its laser-driven wakefield has been
utilised.

The distance from the start of the first stage to the point at which on-axis number
density of the forming micro-bunches is maximised is said to be the ‘focal point’ of
the first stage. A simulation set scanning over plasma stage length was designed
to identify the co-propagation length needed between the Diamond beam and a
wakefield that achieves micro-bunching of the beam whilst minimising the divergence
of the micro-bunches, parameters found in table 4.5. For this scan a E = 300 MeV
Diamond beam was used to further save on runtime.
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Grid Value
nz 600
ny 180

grid length (m) 10 λp

grid width (m) 3 λp

tend (ns) 0.6

ppc 6

Beam Value
species e−

E (GeV) 0.3

N 1.25× 1010

ε (nm rad) 140

Plasma Value
species Cs+

ne (m−3) 1.11× 1022

Table 4.5.: Plasma stage length scan parameters. Parameters as defined in table 4.2.

Stage Length (mm) Focal Point (mm) nb at 200 mm (m−3)
∞ N/A 1.30× 1019

2.5 65.5 4.09× 1019

3.0 57.0 4.00× 1019

3.5 48.5 3.90× 1019

4.0 42.0 3.73× 1019

4.5 37.5 3.80× 1019

4.0 32.0 3.64× 1019

Table 4.6.: The focal points of the Diamond beam micro-bunches for various plasma stage
lengths and their peak on-axis number density after a total propagation length
of 200 mm.

Once the focal points of various stage lengths were identified the simulations were
re-ran with a second plasma stage added at these focal points. Table 4.6 summarises
the geometries of the two-stage simulations and the on-axis number density of the
micro-bunches after 200 mm of propagation through the beam lines. Note that
the longer stages have shorter focal lengths, focusing the micro-bunches harder but
resulting in less charge remaining on-axis at 200 mm of total propagation.

Figure 4.13 shows the micro-bunch train at focus (L = 63 mm) for a plasma
stage length of 2.5 mm and then again at propagation distance L = 200 mm. The
on-axis number density of the micro-bunch train at focus is ne = 2.82× 1019 m−3
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Figure 4.13.: Micro-bunching of the short Diamond beam via co-propagation with a
Er = 1 GVm−1 wakefield. The top pane shows the short Diamond beam
at the point where the micro-bunches have fully formed L = 63 mm, and
the bottom pane shows the stable micro-bunches at L = 200 mm, after 137
mm of further propagation through the second plasma.

and actually increases to ne = 4.09× 1019 m−3 at 200 mm, demonstrating that the
two stage design leads to low divergence, stable3 micro-bunches.

The first plasma stage length of L1st = 14 mm was chosen as it produces a
micro-bunch train of sufficient quality and is short enough such that a laser-driven
wakefield of Er = 1 GVm−1 can be driven over its length before divergence of the
laser pulse diminishes the micro-bunching wakefield.

4.2.4. Laser-Driven Micro-Bunching Wakefield

Section 4.2.3 above details how an electron-driven wakefield can be used to micro-
bunch the Diamond beam. This section is concerned with finding the parameters of
an ultra-short laser pulse that can drive such a wakefield, as the electron beam used
previously would require unfeasible amounts of space and expense to generate.

3Stable over the lengths relevant to the experimental proposal.
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Laser Parameter
E (J) 0.5

σt (fs) 50

σr (µm)
√

2/kp

λ0 (µm) 1.06

P (TW) 10

Table 4.7.: Laser parameters. Where E is the laser pulse energy, σt is the beam length,
σr the beam width, λ0 is the laser wavelength and P is the laser’s peak power.

The critical power for a laser pulse of λ = 1 µm to self focus in a plasma of
density ne = 2.8×1022 m−3 is Pc = 648 TW, given by equation 2.24. Given the short
laser pulse requirement of σz = 1/kp this means the energy of the pulse must exceed
E = 32.5 J in order to self focus. Such an ultra-short near peta-watt laser system
would be a bespoke design at the cutting edge of laser technology, a prohibitively
expensive piece of equipment. Self focusing, however, is not required to maintain a
significant wakefield over the L1st = 14 mm of plasma in the first stage. By increasing
the laser’s focal spot radius the Rayleigh length will be increased, maintaining the
pulses (albeit lower) intensity over more of the plasma stage. Furthermore positioning
the laser’s focal spot half way into the first stage instead of at the first stage entrance
maximises the amplitude of the wakefield driven throughout the stage. If a sufficient
wakefield can be driven without requiring the laser pulse to self focus, then the
requirements of the laser parameters will be relaxed, leading to a lower cost laser
system.

Figure 4.14 shows the amplitudes of the radial and longitudinal wakefields driven
by laser pulses of E = 1 J, E = 0.5 J and E = 0.2 J, parameters found in table
4.8. The laser pulse length and width were chosen to match the plasma such that
σz = σr =

√
2/kp. As such, the higher plasma density simulations had shorter, more

tightly focused laser pulses, enhancing their intensity. At densities of ne = 5× 1022

m−3 and above the laser pulses drive a non-linear wakefield, resulting in the breaking
of the linear relationship between number density and electric field amplitude. From
these simulations a parameter set for a suitable laser pulse was found, summarised
in table 4.7, capable of driving a wakefield of Er = 0.8 GVm−1 at focus without
entering the self-focusing regime.
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Figure 4.14.: The amplitudes of transverse (solid lines) and longitudinal (dashed lines)
wakefields driven by laser pulses of E = 0.2 J, E = 0.5 J and E = 1 J for a
range of plasma densities.

Grid Value
nz (λp/λl)× 90

nx 120
grid length (m) 4 λp

grid width (m) 3 λp

tend (s) (λp × 4)/c

ppc 6

Laser Value
E (J) 0.2, 0.5, 1

τ (fs) 50

σr (m)
√

2/kp

λ0 (µm) 1.06

Plasma Value
species Cs+

ne (m−3) 0.278× 1020 × 2j

j 8:14

Table 4.8.: Laser energy and density scan parameters. Parameters as defined in tables
4.2 and 4.7.

The laser pulse surmised in table 4.7 propagating through a plasma of density
ne = 2.8× 1022 m−3 has a dephasing length of 8 m (given by equation 2.17). The
pulse has 0.5 J giving a depletion length of 1.2 m (given by equation 2.20). Both of
these lengths are greater than the first plasma stage length of 14 mm and the laser
pulse is deemed suitable for driving a wakefield to micro-bunch the Diamond beam.
Such a laser system is commercially available. The AVET Ti:S Femtosecond TW
System [69] delivers a E = 0.5 J, τ < 45 (fs) pulse at a wavelength of λ0 = 800 nm
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Grid Value
nz 1, 200, 000

nx 78

grid length (m) 0.040

grid width (m) 2.6× λp
tend (s) 1.3× 10−10

cores 4096

runtime (hours) 240

Laser Value
E (J) 0.5

σt (fs) 50

σr (m) 3×
√

2/kp

λ0 (µm) 1.06

P (TW) 10

Plasma Value
ne (m−3) 2.84× 1022

species Cs+

L1st (mm) 1

Lvac (mm) 120

L2st (mm) 380

Table 4.9.: Full final simulation parameters for the Diamond Booster electron beam. L1st

is the first plasma stage length, Lvac is the length between the first and second
plasma stage and L2st is the length of the second stage. Other parameters as
defined in tables 4.2 and 4.7.

with a footprint of 4000× 1200× 220 mm3. Such a system meets the requirements
of the experiment as well as being economically feasible.

4.3. Fully Inclusive Diamond Beam Simulation

Given the optimisation study detailed thus far, a two stage conceptual beam line
was designed as shown in figure 4.15. The ultra-short laser pulse detailed in table 4.7
is focused by an off-axis parabolic mirror (not shown) before being steered onto the
Diamond beam’s axis of propagation, leading the beam, via a turning mirror. The
hole in the mirror allows the Diamond beam to propagate though unperturbed. The
ensemble of laser pulse and particle beam then enter the first plasma stage where
the laser-driven high amplitude wakefield imparts transverse momentum onto the
Diamond beam. Upon exiting the first plasma stage the micro-bunches form, and
the laser pulse defocuses, allowing the bulk of the pulse to be steered away via a
second turning mirror with a hole (not shown in figure 4.15). The micro-bunched
Diamond beam then enters the second plasma stage where the focusing fields in
this purely particle-driven wakefield stage are sufficient to keep the micro-bunches
contained. A start-to-finish high resolution simulation was performed, parameters
found in tables 4.9 and 4.1.
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Figure 4.15.: A conceptual design of the two plasma stage design. An ultra short laser
pulse drives a high amplitude wakefield in the first, short stage that exposes
the Diamond beam to alternating focusing and defocusing fields along its
length. The Diamond beam forms into micro-bunches between the two
stages. Upon entering the second stage the micro-bunched Diamond beam
constructively drives a 4 GVm−1 wakefield. This wakefield provides the
focusing fields that stimulate whole micro-bunch oscillations leading to
copious X-ray emission.

The fully inclusive simulation required resolving of the laser wavelength to capture
the physics that the previous simulations have neglected, such as beam head erosion,
diffraction and photon acceleration effects. As such the grid size needed was 1,200,000
× 72. This simulation required a dedicated high performance computer to run. 2.5

million core hours were awarded to run on the DiRAC high performance computer4.
Estimations taking into account how well EPOCH scales with large numbers of cores
approximated that with this number of core hours the full 2 m of beam line would
not be able to be simulated. As such two major computational saving techniques
were devised.

4This research made use of the DiRAC@durham.ac.uk HPC cluster. DiRAC is the UK HPC
facility for particle physics, astrophysics and cosmology and is supported by STFC and BIS.
We acknowledge technical support from Lydia Heck, a member of the DiRAC HPC facility
programming team.
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Figure 4.16.: The amplitude of the wakefield (longitudinal electric field in the top pane,
transverse electric field in the bottom pane) driven by the ultra-short laser
pulse at 10 ps snapshots throughout the first plasma stage (parameters
found in 4.9).

The first saving measure involved running the simulation at a high enough
resolution to resolve the laser wavelength, with the 1,200,000 × 72 grid size, from
the start of the simulation until the laser beam propagated through the first plasma
stage. At this point, the simulation would be terminated and a ‘restart’ time step
recorded. The data sets within this restart time step were binned down to a much
smaller grid size of 6000 × 72 (a factor of 200 reduction) using a custom program
and used to create a new restart time step. The simulation was then restarted from
this time step and the vacuum and second plasma stage interactions simulated.

The second computational save was necessary to capture the geometry of the
beam line and involved overcoming a limit of the EPOCH code. EPOCH only allows
laser pulses to be injected on the boundary of a simulation grid, whilst particle beams
can only be initialised within the grid. This means that the laser pulse could not lead
the beam. To overcome this the particle pusher of EPOCH was modified to generate
new particles on the boundary of the grid with a specified momentum, temperature
and density profile until a specified time step by an EPOCH developer C. Brady.
Further modifications were introduced by myself to the particle-pusher, the initial
positions of the boundary-pushed particles were randomised within the boundary
cells, solving the problem of unphysical beam profiles. This allowed not only the



Conventional Beams Driving Wakefields 91

Figure 4.17.: The amplitude of the focusing electric field experienced by the centre of the
Diamond beam (blue line) and the beam electrons at +σz/2 (black line)
throughout the first plasma stage. This demonstrates that different parts of
the Diamond beam experience different integrated focusing fields, therefore
forming micro-bunches at different distances from the first plasma stage.

laser pulse to lead the beam, but also took away the necessity of having additional
vacuum before the first plasma stage where the beam would first be generated before
proceeding to the plasma. This brought the total propagation distance needing the
1,200,000 × 72 grid from 2052 mm (2 m and the 2× σz before the first plasma stage)
down to 40 mm.

The laser pulse is at focus half way through the plasma first stage (7 mm). As
the pulse comes to focus, its intensity increases, driving a higher amplitude wakefield.
As such, the wakefield amplitude varies with position throughout the plasma stage.
Furthermore, a wakefield’s amplitude diminishes the further behind the driving pulse
(as energy is transferred from the wakefield to the witness beam, and dissipates as
heat), meaning a wakefield’s amplitude also varies with time. Figure 4.16 shows
the amplitude of the transverse wakefields driven by the laser pulse in the high
resolution simulation at 10 ps snapshots. Note that Diamond beam electrons just
behind the laser pulse experience a Ez = 1 GVm−1 to Ez = 0.4 GVm−1 wakefield as
they traverse the plasma stage, whereas beam electrons further behind will sample a
more consistent wakefield of Ez = 0.4 GVm−1. This means that different sections
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Figure 4.18.: The fractional energy change of particles within the Diamond beam along
the direction of propagation. The wakefield imparts an energy spread — or
chirp — on each of the micro-bunches, with the head of each micro-bunch
being lower energy than the tail. Magnetic chicanes can be used to utilise
this chirp to longitudinally compress the micro-bunches.

of the beam experience varying strength focusing fields — a result not captured
with the electron-driven model used in the previous plasma stage parameter scans.
These different regions of the Diamond beam will then have different focal points at
which they form micro-bunches. It was necessary then to investigate this effect in
order to optimally place the second plasma stage such that the central high-charge
micro-bunches of the Diamond beam would be focused onto the entrance of the
second stage.

Figure 4.17 shows the amplitude of the longitudinal and transverse wakefield
sampled by the electrons at the centre and at +σz/2 of the Diamond beam. The
focal points for these two regions were found to be L0 = 21 mm and L+σz/2 = 20.8

mm. Given the small difference between these focal points, and the fact that 38% of
the charge in the Diamond beam lies within ±σz/2, the second stage was positioned
21 mm after the end of the first stage in order to capture the optimal amount of
micro-bunched charge.

Figure 4.18 shows the longitudinal energy spread imparted on the Diamond beam
by the longitudinal wakefield shown in figure 4.17. This energy spread, also known
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Figure 4.19.: The micro-bunched Diamond beam as it enters the second plasma stage.
Electrons in focusing regions have formed the micro-bunches whilst electrons
in the defocusing regions are transversely expelled (circular formations in
the bottom pane).

as the chirp, can be used to compress these micro-bunches longitudinally via a
conventional chicane. This opens up the possibility of a more complex future beam
line design incorporating a chicane between the first and second stages. If compressed
in this way, the micro-bunches would retain their spacing whilst having a greater
peak number density.

Figure 4.19 shows the head of the Diamond beam at focus, from the fully inclusive
simulation described in table 4.9, demonstrating the laser-driven wakefield successfully
micro-bunching the Diamond beam. The top pane shows the steep leading edges
of the micro-bunches, giving them a greater wakefield driving ability than those
modelled by Gaussian profiles in the ideal compression simulations and those modelled
by a sinusoidal profile found in the micro-bunched density scan simulations. The
micro-bunches are regularly spaced a plasma wavelength apart, satisfying the strict
requirement allowing successive bunches to constructively excite a wakefield. Also
they have enhanced on-axis number density as the charge has been focused on-axis,
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further enhancing their wakefield driving ability. It is these micro-bunches that then
undergo radial oscillations about the axis of propagation in the second plasma stage,
leading to copious X-ray production, that is studied in the next chapter.

This fully inclusive simulation demonstrates that the Diamond beam can be micro-
bunched at the plasma wavelength over centimetres of plasma using a commercially
available laser system, producing a highly effective wakefield driver. The two-stage
beam line that achieves this can be applied to other charged particle beams, micro-
bunching them at arbitrary plasma wavelengths and allowing existing conventional
particle beam facilities to perform plasma wakefield experiments without a significant
rehaul of their infrastructure or at great cost.

4.4. Micro-bunching the Diamond Storage Ring

Beam

The two-stage micro-bunching technique has been applied to the electron beam of the
Diamond booster synchrotron via simulation in the previous section. The electron
beam found in the storage ring of the Diamond Light Source is shorter and has
significantly lower emittance than that of the Diamond Booster electron beam. Both
of these improvements are beneficial to generating more stable micro-bunches via
the two-stage method. Lower emittance allows the micro-bunches to stay formed for
longer and same amount of charge over a shorter beam allows fewer bunches to drive
the same amplitude wakefield, leading to less dephasing between them.

In this section the two-stage micro-bunching technique is applied to the storage
ring Diamond beam, parameters found in table 4.10, and the resulting wakefield
driven in the second plasma stage detailed. It should be noted that the geometry of
the two-stage beam line is the same for the Diamond Storage Ring electron beam.
This is because the ’focusing length’ of an electron beam by a wakefield lens is dictated
primarily by the effective mass of the particle, that is to say the energy. Given the
Storage Ring electron beam and Booster electron beam are E = 3 GeV in energy,
there is no need to change the length of the first stage and position of the second.
It should also be noted however, that lower emittance effects the matched beam
radius of the micro-bunches, rbm = (εn/γkβ)1/2 [70], where εn is the normalised beam
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Grid Value
nz 360, 000→ 1800

nx 80

length (m) 0.040

width (m) 2× λp
tend (s) 1.3× 10−10

cores 400

runtime (h) 48

Laser Value
E (J) 0.5

σt (fs) 50

σr (m) 3×
√

2/kp

λ0 (µm) 1.06

P (TW) 10

Plasma Value
ne (m−3) 2.84× 1022

species Cs+

L1st (mm) 1

Lvac (mm) 114

L2st (mm) 385

Table 4.10.: Parameters for the Diamond Storage Ring electron beam simulation. L1st is
the first plasma stage length, Lvac is the length between the first and second
plasma stage and L2st is the length of the second stage. nx has two values
as the simulation’s grid is scaled down after the laser-plasma interaction has
ended for runtime purposes. Other parameters as defined in tables 4.2 and
4.7.

emittance, γ is the Lorentz factor of the beam and kβ is the betatron wavenumber.
The matched beam radius for the Storage Diamond Ring electron beam is then
rbm = 0.4 µm, which is two orders of magnitude smaller than the radius of the
micro-bunches incident on the second plasma stage, ri. This mismatch between the
incident radius of the micro-bunches and the beam match radius is the source of
the radial oscillations discussed in the next chapter. The micro-bunches’ radii then
oscillate between r2

b = r2
i and r2

b = ε2/(γ2k2
br

2
i ) = r4

bm/r
2
i .

The form of the micro-bunched Diamond Storage Ring beam is shown in figure
4.20 as it enters the second plasma stage (top pane), 30 mm further into the stage
where the micro-bunch number density maximises (middle pane) and 30 mm further
still where the number density of the micro-bunches diminishes. The colour bar
shows that the peak number density of the micro-bunches doubles from entering
the second plasma stage to propagating 30 mm further into the stage. This is the
effect of the strong transverse focusing fields of the self-driven wakefield compressing
the micro-bunches. The electrons being discarded by the defocusing fields of the
wakefield drive a strong wakefield as they leave the simulation box, seen in the
middle pane of figure 4.21. This off-axis wakefield is π out of phase with the on-axis
wakefield and will interfere with attempts to inject electrons into the main wakefield.
This off-axis wakefield is short lived however, and diminishes rapidly compared to the
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on-axis wakefield. If one choose an off-axis witness electron beam injection scheme
then the natural point to do so would be at the entrance of the second plasma stage,
where there is no off-axis wakefield to interfere as there is no plasma.

Figure 4.20.: The number density of the Diamond Storage Ring electron beam as it is
entering the second plasma stage (top), as it is re-focused by the self-driven
wakefield 30 mm later (middle panel) and 30 mm further as the number
density of the micro-bunches begins to diminish.

Figure 4.21 shows the wakefields corresponding to figure 4.20. The wakefield peaks
at E = 1.1 GVm−1, 30 mm into the second plasma stage. The off-axis wakefield is
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briefly comparable in magnitude to the on-axis wakefield 30 mm into the second stage
before falling off at the discarded charge moves further from the axis of propagation.

Figure 4.21.: The corresponding electric fields driven by the Micro-bunched Diamond
storage beam in the above figure. The wakefield in the top pane begins at
the start of the second plasma cell (115 mm). Note the short-lived off-axis
π out of phase wakefield driven by the radially discarded beam electrons
in the middle pane

Figure 4.22 shows the wakefield driven at the significantly longer distance of
380 mm into the second plasma stage. The top pane of figure 4.22 shows that the
micro-bunches have grown transversely. The middle pane shows that the micro-
bunches have a similar number density of ne = 1.3× 1019 m−3 along the length of the
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micro-bunch train and the bottom pane shows wide wakefield of E = 0.39 GVm−1

being driven.

Figure 4.22.: The micro-bunch train at 380 mm into the second plasma stage. The
micro-bunches are significantly wider and have a similar in peak number
density of ne = 1.3 × 1019 m−3. The bottom pane shows the wakefield
driven is also significantly wider than that driven at the beginning of the
second plasma stage (' 2λp).



Chapter 5.

X-ray Emissions of the
Micro-bunched Diamond Beam
within a Wakefield

It has been demonstrated, via extensive, full-scale two dimensional computer simu-
lations, that it is possible to micro-bunch the 3 GeV Diamond beam using a novel
wakefield accelerator design. The micro-bunches are maintained within their self-
driven wakefield structure and undergo entire micro-bunch oscillations, generating
brilliant, radially polarised, X-ray pulses. This chapter is concerned with examining
the synchrotron radiation emitted by the micro-bunches as they propagate through
the second plasma stage. The simulations presented demonstrate these X-ray pulses
have orders of magnitude increases to key quantities, such as peak brightness and
photon energy, that are produced without the long and expensive insertion devices
used in conventional light source facilities.

Rather than the whole bunch oscillating in the same direction as in conventional
undulators, the electron bunch repeatedly radially collapses on-axis producing radially
polarised light instead of linearly polarised light, giving the X-ray pulses produced a
unique property.
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Figure 5.1.: Coherent oscillation of the simplified Diamond beam in the second plasma
stage. The six panes show an individual micro-bunches number density in 20
mm intervals, progressing from pane a) to pane f).

5.1. Micro-bunch Radial Oscillations

Figure 5.1 shows a single micro-bunch undergoing such radial oscillations. The
simulation presented in figure 5.1 is of the micro-bunched Diamond beam from
section 4.2.3. The focusing fields of the wakefield bring the beam electrons on-axis
as in pane a). The micro-bunch has maximum on-axis number density in pane b)
and is regarded as formed. The electrons overshoot the axis in pane c). The bulk of
the electrons are focused back on axis whilst some escape the focusing field in pane
d). A second and third oscillation is seen in pane e) and pane f), again with a small
amount of charge escaping the micro-bunch for each oscillation.
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Beam Value
E (GeV) 3
∆E/E 0.01
σz (µm) 38
σr (µm) 38
Npart 1000

Wakefield Value
Ewake (GVm−1) 1
Vph (ms−1) 0.99999997 c

Table 5.1.: Diamond beam micro-bunch parameters for the RDTX simulation, where E is
the electron energy, ∆E/E is the longitudinal energy spread, σz is the beam
length, σr is the beam radius and Npart is the number of macro-particles. For
the wakefield parameters, Ewake is the amplitude of the wakefield’s electric
field and Vph is the phase velocity of the wakefield.

To examine the radial oscillations of the micro-bunches, parameters of a single
micro-bunch were taken from the fully inclusive simulation as detailed in section 4.3
at the entry point to the second plasma stage, found in table 5.1. This bunch was
then simulated using the code RDTX1 co-propagating with a wakefield of amplitude
Er = 1 GVm−1 — the minimum amplitude of the wakefield experienced by 74.7% of
the charge of the micro-bunched Diamond beam in the second plasma stage.

The top pane of figure 5.2 plots the transverse displacement of the 1000 simulated
particles against time over a total propagation distance of 127 mm. It is seen in the
top pane that the particles initially oscillate coherently about the axis of propagation,
maintaining transverse coherence over several undulations before the small difference
in oscillation frequency causes the electrons to dephase.

This is in part2 due to the electrons at the centre of the micro-bunch experiencing
the strongest focusing fields of the wakefield (as the micro-bunch is centred about the
wakefield) and therefore having a higher oscillation frequency than those at the head

1RDTX is described in section 3.2.
2The transverse electric field profile of a wakefield in the linear regime is approximated by a
parabola, as such the force on a micro-bunch electron is not proportional to its displacement from
the axis of propagation. The electron motion cannot be described by simple harmonic motion
and the frequency of oscillation is not independent of the particles initial transverse displacement.
Theoretically a properly tailored transverse plasma density profile could provide a force that is
proportional to the transverse displacement from the axis of propagation, leading to the same
oscillation frequency for the micro-bunch electrons.
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Figure 5.2.: Trajectories of 1000 electrons populating a Diamond beam micro-bunch
simulated using RDTX. The top pane plots the transverse displacement of an
individual micro-bunches electrons as a function of time. The bottom pane
plots the transverse displacement of the electrons as a function of longitudinal
displacement from the centre of the micro-bunch.

and the tail which experience diminished focusing fields and have a lower oscillation
frequency.

The electrons in this simulation oscillate with a maximum amplitude of r0 =

2.75 × 10−5 m and an average oscillation frequency ωBavg = 8.31 × 1010 rads s−1

with a frequency spread of ∆ω/ω = 0.324. The theoretical oscillation frequency
is given by equation 2.50 and found to be ωB = 8.8 × 1010 rads s−1 which is in
agreement with that observed in the RDTX simulation. It is important to note at
this point that the amplitude of oscillation is not the same for all the electrons but
varies considerably, unlike the amplitude of oscillation in conventional undulators
and wigglers. For electrons oscillating with this maximum amplitude the undulator
parameter is K = 150, given by equation 2.52. Therefore these electrons behave
similarly to those in a wiggler, emitting radiation that is spatially decoupled. As
such the radiated spectrum is broad without the characteristic peaks found in the
spectra produced by undulators. However, electrons populating the centre of the
micro-bunch have a small enough r0 such that K < 1 and emit radiation that is not
spatially decoupled. Given ωB = 8.31 × 1010 rads s−1, the r0 required to give an
undulator parameter of K < 1 is r0 = 1.83× 10−7 m. The radiated spectrum of such
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Figure 5.3.: Trajectories of electrons lying within narrow regions of a Diamond beam
micro-bunch, co-propagating with a high amplitude wakefield. The top pane
plots transverse displacement as a function of longitudinal displacement from
the centre of the micro-bunch for electrons within three narrow regions. The
second, third and fourth panes plot the transverse displacement of bunch
electrons as a function of time for the regions defined by the red, green and
blue lines respectively.

electrons would interfere, producing a spectrum with sharp peaks at the undulator’s
harmonics. For a Gaussian beam with σr = 38 µm it is found that 0.4% of the charge
lies in the region r0 < 1.83 × 10−7. Therefore the vast majority of electrons have
K > 1 and behave as if in the wiggler regime.

5.2. Micro-bunch Coherence Length

The coherence length for a source is defined simply as Lco = c/∆f , giving a coherence
length of Lco = 71.4 mm between all the electrons throughout the simulated micro-
bunch. The bottom pane of figure 5.2 shows the transverse displacement of the
same electrons against the longitudinal displacement from the centre of the micro-
bunch. It is important to note from the bottom pane that although the particles do
move longitudinally within the micro-bunch, they only move a fraction of the bunch
length. This means that the X-rays radiated from an individual electron are spatially
decoupled from those radiated by electrons a significant distance from that particle’s
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initial longitudinal position. This implies that although transverse coherence is
lost between all the electrons of the micro-bunch after just a few oscillations as in
the top pane of figure 5.2, the electrons within a narrow longitudinal region of the
micro-bunch, which experience similar focusing fields, will remain coherent for longer.

Figure 5.3 examines the trajectories of electrons from three regions with respect
to the centre of the micro-bunch. Those that populate −16µm ±2.5µm (red vertical
lines in the top pane), ±2.5µm (green vertical lines in the top pane) and +16µm
±2.5µm (blue vertical lines in the top pane). The trajectories of the electrons in
these three regions are plotted in the second, third and fourth pane respectively. The
coherence length when considering only the electrons in these narrow regions increases
with decreasing region length, giving an average coherence length of Lco = 700 mm in
the three examples in Figure 5.3. As the micro-bunch propagates further through the
second plasma stage the electrons have more time to slip longitudinally throughout
the micro-bunch, resulting in diminished transverse coherence.

If brilliance is favoured over coherence then the second plasma stage can be
extended, allowing the oscillating micro-bunches to co-propagate with the wakefield
for longer radiating more X-rays.

5.3. Radiated Spectrum of the Oscillating

Micro-bunch

The radiated spectrum of the whole of the micro-bunched Diamond beam can be
approximated by extrapolating the radiated spectrum of the representative micro-
bunch to account for the 74.7% of the beam experiencing the E > 1 GVm−1 wakefield.
The output of the RDTX simulation was expressed in terms of peak brilliance using
equation 5.1, restated here for convenience:

B̂ =
NB

(2π)3εxεyεEτ
, (5.1)

where NB is the number of photons per pulse per 0.1% band width, εx and εy
are the transverse rms emittance of the X-ray pulse and εE is the fractional energy
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Figure 5.4.: The angularly resolved spectrum emitted by the representative Diamond
micro-bunch (top right pane). The left pane is integrated over the frequency
of the photons and gives the root-mean-squared divergence of the photons.
The bottom pane is integrated over solid angle and gives the spectrum of
the radiation.

spread of the X-ray pulse. Effectively peak brilliance is the number of photons, in a
0.1% band width frequency window, per unit six dimensional phase space volume.
This calculation will be broken down by first calculating the phase space volume and
then the number of photons per 0.1% frequency window.

5.3.1. Six Dimensional Phase Space Volume

Figure 5.4 shows the output of the RDTX code for the Diamond micro-bunch
simulation, which is the energy deposited on the virtual spectrometer as a function
of angle from the propagation axis, θ and the frequency of radiation, ω. The figure
shows that the majority of the energy deposited is close to the axis (θ ' 0.001 rads)
and the spectrum is that of a synchrotron, i.e. lacks the narrow peaks emitted by an
undulator. The left pane is integrated over the frequency of the photons and gives the
root-mean-squared divergence of the photons. The bottom pane is integrated over
angle of emittance and gives the spectrum of the radiation. The critical frequency of
the synchrotron-like spectrum is given by this plot as ωcrit = 4.5× 1019 Hz with a
FWHM energy spread of ∆ω = 2.1× 1020 Hz. This gives a longitudinal emittance of
εE = ∆E/E = 2.812.
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Figure 5.5.: The transverse and longitudinal root-mean-squared beam size of the Diamond
micro-bunch in the second plasma stage. The initial transverse size compresses
significantly during the first betatron oscillation before undergoing smaller
amplitude oscillations. The length of the micro-bunch decreases throughout
the simulation as the head of the bunch experiences the decelerating regions
of the wakefield and the rear the accelerating.

The transverse beam size of the particle beam is used as an approximation of the
X-ray transverse beam size and is displayed, as a function of time, in figure 5.5. The
rms transverse beam size was found to be 〈x〉 = 〈y〉 = 23 µm. Given the quantities
above, the six-dimensional phase space is found to be Vps = εxεyεEτ = 1.43× 1016

mm2 mrad2 s.

The number of photons per 0.1% bandwidth is found by taking the solid angle
integrated spectrum and performing a moving point integration over the frequency
window ω −∆ω to ω + ∆ω where ∆ω is 0.005. The peak brilliance is then trivially
this quantity divided by the calculated phase space volume and the beam length, σt.

The code RDTX calculates the spectral intensity, d2I
dωdΩ

, emitted by accelerating
charge. To calculate the brilliance from this quantity one first finds the number of
photons per relative bandwidth per steradian,

d2I

dωdΩ
=
d2N~ω
dωdΩ

= ~
d2Nω
dω
ω
dΩ

, (5.2)

where N is the number of photons and ~ is planck constant. Convention states
that peak brilliance is given as the number of photons per 0.1% bandwidth, i.e.
d
dω
ω

= 103 d
d(0.1%BW )

. Furthermore peak brilliance is measured in milliradians squared,

so d
dΩ

= 106 d
d(πθ2)

. Substituting these unit conversions into equation 5.2 yields,
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d2N

d(0.1%BW )dπθ2
=

1

109~
d2I

dωdΩ
. (5.3)

This quantity is the number of photons per 0.1% bandwidth per milliradian
squared. To find the peak brilliance one has to divide by the intrinsic source
properties of the electron beam generating the pulse, the duration, τ , and the source
area, σ2

r , measured in millimetres squared (this convention adds a factor of 106 to
the co-efficient to the right have side of equation 5.4).

B̂

[
photons

s mm2 mrad2 0.1%BW

]
=

1

1015~σ2
rτ

d2I

dωdΩ
(5.4)

Figure 5.6 plots the peak brilliance of the single representative micro-bunch
against existing third generation light sources. The peak brilliance of the X-ray pulse
produced at the Diamond Light Source by the U-27 insertion device is shown for
comparison. The peak brilliance produced by the Diamond U-27 insertion device
is shown in blue, with peak brilliance of B̂ = 1.8× 1020 photons mm−2 mrad−2 s−1

0.1%BW at E = 2 keV. The peak brilliance of the two-stage-device is B̂ = 1.9× 1023

photons mm−2 mrad−2 s−1 0.1%BW at an energy of E = 59 keV. The two-stage
device yields a three orders of magnitude improvement when compared to the existing
U-27 insertion device and a factor of thirty increase in peak X-ray energy. This is
accomplished over hundreds of millimetres as opposed to the tens of metres required
by conventional magnetic insertion devices. Broad band emission is seen and there
are no characteristic narrow energy bands, as would be seen from an undulator. In
contrast to betatron oscillations that arise from electrons injected in the blow-out
laser wakefield regime (comprising typically of tens of pico-coulombs of charge [32,71]
oscillating over millimetres), a nano-coulomb of charge in the micro-bunches undergo
these coherent oscillations over hundreds of millimetres.

Radially polarised X-rays can overcome the diffraction limit when strongly focused
and have a longitudinal component to the electric field at the focus [72] with use of a
suitable aperture. These properties could potentially allow for a unique single-atom
probe. It should be noted that, as the peak brilliance of a synchrotron-like source is
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Figure 5.6.: The peak brilliance of various third generation light sources compared to
the X-ray pulse produced by a Diamond beam micro-bunch in the two-stage
device. The peak brilliance produced by the Diamond U-27 undulator is
shown in blue, with peak brilliance of B̂ = 1.8× 1020 photons mm−2 mrad−2

s−1 0.1%BW at E = 2 keV. The peak brilliance of the two-stage-device is
B̂ = 1.9× 1023 photons mm−2 mrad−2 s−1 0.1%BW at an energy of E = 59
keV.

proportional to the charge of the beam and inversely proportional to the length of
the beam, the peak brilliance of the micro-bunch train will be on the order of the
single representative micro-bunch.

The number of photons within an X-ray pulse is proportional to the charge of
the micro-bunch that generated it. As such, the train of micro-bunches passing
through the two-stage device generates a train of X-ray pulses. This allows for an
interesting time resolved diagnostic to be pursued whereby a streak camera could be
used separate the images produced by individual X-ray pulses. For those applications
that require femtosecond or even shorter duration X-ray pulses, the second stage can
be used to accelerate a suitably conditioned witness electron beam up to 6 GeV. This
witness bunch can be injected into a conventional undulator to generate harder X-ray
pulses of the required pulse duration. This chapter, in conjunction with the previous,
have demonstrated via numerical simulations that the Diamond beam can produce
X-ray pulses with three orders of magnitude increase over a wide bandwidth to peak
brilliance and over an order of magnitude increase to photon energy when compared
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to conventional magnetic insertion devices. The two-stage device and laser required
can be commissioned with feasible capital investment over metres of beam line. The
treatment described is readily generalisable and applicable to many conventional
beams, potentially revolutionising many applications utilising synchrotron radiation.



Chapter 6.

Experimental Setup at the Astra
Facility

Diagnosing a plasma wakefield proves to be a difficult feat. The resonantly excited
wakefield detailed in the previous chapters has a profile which varies along it’s
length, reaching a high fractional plasma electron number density perturbation of
∆ne/ne ' 0.3. One way to diagnose such a wakefield is to co-propagate it with a
long laser pulse, and measure the wakefield’s photon acceleration effect on said pulse.

This chapter introduces the high power laser facility, diagnostics, targets and
experimental configurations used to develop a diagnostic based on the photon
acceleration effect. The Astra laser system at the Central Laser Facility at the
Rutherford Appleton Laboratory was used to perform the experimental work detailed
in this thesis.

6.1. The Astra Laser System

The Astra laser is an ultra-short high power high repetition rate laser system [73].
It is a Titanium doped sapphire laser that delivers a near infrared 800 nm central
wavelength pulse of E = 600 mJ in τ = 40 fs. The Astra laser system has a master-
oscillator power amplifier architecture, meaning that a high quality short pulse at the
start of the laser chain is successively amplified to higher energies throughout a series
of amplifiers. The amplifiers are a transmissive medium with a damage threshold.
Ultra-short high intensity lasers can have powers that exceed this threshold and
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as such must be amplified by means of chirped pulse amplification, as detailed in
section 6.1.1.

The initial seed pulse of the Astra laser is a low energy high quality 12 fs pulse.
The bandwidth of the pulse allows glass blocks to be used to stretch the pulse to 7

ps and then amplified to a millijoule of energy by the preamplifier. A fast Pockel cell
selects some of these amplified pulses at a rate of 10 Hz. These pulses then undergo
chirped pulse amplification once more by first using diffraction gratings to stretch the
pulses to 530 ps, and then passing the long pulse through three amplifiers to reach a
final energy of 1 J. Stretching the pulse by nearly two orders of magnitude reduces
the intensity by the same factor, ensuring damage is not done to the laser optics and
amplifying medium. To keep the pulse intensity below the damage threshold as it
passes through the three amplifiers, both the laser beam and crystals become larger.
After the third amplifier the pulse is passed to Target Area 2 where it is compressed
down to 40 fs achieving intensities of I = 1019 Wcm−2 at focus. The pulse can also
be passed through the Astra Gemini system which amplifies the pulse further to 15

J but this system was not used for the experiment detailed in this chapter. Target
Area 2 has its own control room with remote diagnostics and triggering systems,
isolating experimenters from the laser hazards.

6.1.1. Chirped Pulse Amplification

When the intensity of a laser pulse approaches the damage threshold of the gain
medium the pulse can suffer from non-linear effects, such as self-focusing, photoioni-
sation and avalanche ionisation [74]. Modern high power laser pulses regularly exceed
the damage threshold of the transmissive optics that form part of the laser that
generates them, so the intensities must be lowered whilst traversing these optics. To
accomplish this, the pulse can be expanded transversely or stretched longitudinally
to lower the peak intensity. Expanding a laser pulse transversely requires the size of
the optic (for example a titanium sapphire crystal in an amplifier) to increase. This
is costly and, although it is implemented in the generation of the Astra laser pulses
it is not economically feasible on its own to produce cutting edge high power laser
pulses.

Chirped Pulse Amplification [75] stretches the pulse longitudinally, reducing the
intensity by the factor of length increase, before passing it through a gain medium
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Figure 6.1.: Graphic of a short laser pulse undergoing chirped pulse amplification.

where it is amplified and then finally recompressed. Diffraction gratings disperse
the laser pulse according to the wavelengths present, giving different path lengths
through a pair of diffraction gratings for different wavelengths of laser light. This
results in the pulse being both chirped and stretched as shown in figure 6.1 and can
be stretched this way by up to three orders of magnitude. The stretched pulse is then
amplified before being recompressed by a second pair of diffraction gratings whose
geometry is such that they exactly counter the path length differences introduced by
the first pair of gratings. As chirped pulse amplification can stretch a pulse, with
power near the damage threshold of the system’s optics, by three orders of magnitude,
it allowed for the amplification of pulses with up to three orders of magnitude more
energy. This led to huge advances in the intensities and peak powers attainable by
laser systems [76].

6.2. Experimental Setup

Figure 6.2 shows a schematic of the experimental area, which includes the target
chamber (centre) and two diagnostic tables (top and left). The Astra laser pulse
enters the target chamber through the right port, first striking mirror M1. Mirrors
M1 through to M4 steer the pulse first onto an off-axis parabolic mirror before taking
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the now focusing pulse onto the gas jet, defined as target chamber centre (TCC).
The Astra laser impinges on the supersonic gas jet, ionising a channel of the gas and
driving a wakefield within, which traps and accelerates background plasma electrons.
These accelerated electrons and surviving laser pulse travel from TCC to M14, which
is a switchable magnetic base supporting different optics. If the electron spectrometer
was to be used no optic was placed at M14, allowing the accelerated electrons to
continue downstream from TCC, through the magnet M1 and impact upon the lanex
screen mounted in the external cube. Light from TCC then passes downstream, past
the lanex screen and onto the Andor soft X-ray spectrometer.

If the forward diagnostics table was favoured (left of the target chamber), then a
mirror was placed at M14. The mirror steered the surviving laser pulse and light
from other interaction effects first onto a spherical mirror, S1, for collimation and
then out of the target chamber and onto the forward diagnostic table. The collimated
collected light from TCC is focused by spherical mirror S2 onto three diagnostics: the
spectrometer, an energy diode and the exit mode imaging diagnostic by a collection
of mirrors and beamsplitters that ensure the path lengths to each are the same.
A pickoff mirror was used to steer a small amount of the collimated light through
further mirrors and onto the FROG. The FROG is the diagnostic around which the
analysis in the following chapter is based, and as such will be discussed in further
detail.

6.2.1. Frequency Resolved Optical Gating (FROG)

Frequency resolved optical gating (FROG) is a single shot diagnostic technique used
to fully characterise ultra-short laser pulses, able to measure the full time-dependant
electric field. When measuring a laser pulse a short probe pulse can be used to
sample the longer pulse by crossing the two in a nonlinear crystal material (this
nonlinear mixing is called gating). A third pulse is generated from where the two
cross and contains information on the sampled pulse. This technique cannot be
used when measuring ultra-short laser pulses on the cutting edge of technology as
no shorter probe pulse exists. The FROG scheme gates the laser pulse with itself,
as an auto-correlator [78] would, overcoming this problem. Figure 6.3 shows the
schematic of a FROG diagnostic. The laser pulse is split and one of the split pulses is
delayed with respect to the other before being gated in a frequency-doubling crystal.
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Figure 6.2.: Schematic [77] of the interaction point vacuum chamber (centre), electron
spectrometer (above) and imaging diagnostic table (left) for the TA2 experi-
ment.
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This gating generates a nonlinear signal pulse which is then spectrally resolved with
respect to the relative delay. The envelope of the FROG signal field has the form,

Esig(t, τ) = E(t)E(t− τ), (6.1)

where E(t) is the complex envelope of the laser pulse and τ is the delay between the
two beams. The intensity measured by the CCD array yields the FROG trace,

IFROG(ω, τ) =

∣∣∣∣∫ ∞
−∞

Esig(t, τ)exp(iωt)dt

∣∣∣∣2, (6.2)

IFROG(ω, τ) = |Esig(ω, τ)|2. (6.3)

A change in the sign of the delay time τ yields the same Esig. This means that a
second harmonic generation FROG trace is always symmetric about delay, leading
to temporal ambiguity. This ambiguity can be overcome if an asymmetric time-
dependent property of the pulse is known, such as the chirp. For this reason both
positive and negative chirps are introduced to the laser driving pulse as discussed in
the next chapter.

A pulse’s phase and intensity can be retrieved from a spectrally resolved auto-
correlation, i.e. the FROG trace, as the problem reduces to a two-dimensional
phase-retrieval problem [79]. Such a problem has unique solutions and is solved in
this thesis using the software FROGed1 discussed in section 3.3.

6.2.2. Gas Jet

Gas jets are used in a variety of high intensity laser plasma interaction experiments,
such as high harmonic generation [80], incoherent X-ray generation [81] and relativistic
electron beam generation [82]. A gas jet releases a short burst of high velocity gas

1Acknowledgements to the authors Dr. Matthew Streeter and Dr. Edward Hill.
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Figure 6.3.: Schematic for a frequency resolved optical gating diagnostic. The laser
pulse to be measured is split and gated with itself in the non-linear medium,
generating a new pulse (blue). The generated pulse is then spectrally resolved
with respect to delay.

into the target chamber a short time before the laser pulse arrives. Advantages of
gas jet targets include high repetition rates, the order of a thousand shot durability
and shock free tailorable density profiles. The Astra laser pulse ionises the gas ahead
of the high intensity peak of the pulse as discussed in section 2.2.5 providing the
plasma. The gas jet is generated by having a high pressure reservoir of gas behind
a nozzle, shown in figure 6.4, released by a Parker solenoid fast pulse valve shown
in figure 6.5. By varying Dcrit, Dexit and Lopt the plasma density profiles can be
controlled and has been shown to yield a quasi-top-hat transverse density profile
when the parameters are chosen carefully, with density decreasing with distance from
the nozzle. Having a large Dexit for a given Dcrit increases the angle of divergence of
the emerging gas jet and therefore the Mach number, given by sin(α) = M−1. Higher
Mach numbers give higher exit velocities, sharper boundaries for the density profile
and lower densities than low Mach numbers. Dcrit should be chosen such that it is
the most narrow point the gas flow experiences between its immediate storage and
the target chamber. This is important as supersonic gas flow earlier in the system
can affect the density of the final gas jet produced.
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Figure 6.4.: The gas jet nozzle design [83] detailing
the parameters which characterise the
gas jet target. Properties of the gas jet
such as density, Mach number and sharp-
ness of the vacuum-gas boundary are set
by these parameters.

Figure 6.5.: The Series 9
solenoid fast
pulse Parker
valve [84] used in
the Astra TA2
experiment.

The nozzle used has parameters Dcrit = 1 mm, Dexit = 2 mm and Lopt = 6 mm.
This nozzle gives a nearly top-hat density profile with a sharp boundary, which is
preferred for simple plasma wakefield experimental set ups that aim to accelerate
electrons. The constant density gives a constant plasma wavelength and a stable
region in which electrons can be accelerated, as well as being readily modelled in
numerical simulations.

6.2.3. Electron Spectrometer

S. Mangles et al. were the first to drive a wakefield producing a narrow energy
spread electron bunch [12]. This experiment was in fact performed using the Astra
laser as the drive beam. An electron spectrometer was necessary to determine if the
electrons produced from the plasma were of a narrow energy spread, as expected
from wakefield acceleration, or if they had a continuous energy spread indicative
of other processes. A narrow energy spread electron beam would indicate that a
high amplitude wakefield was being driven, allowing any phenomena detected by
more novel diagnostics, such as the FROG, to be more confidently attributed to
laser-wakefield interactions. Furthermore, characterisation of the electron beam is
an essential accompaniment to analysis of any X-rays produced by the laser-plasma
interaction to investigate betatron emission.
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Figure 6.6.: Schematic of the electron spectrometer used in the TA2 experiment. A B = 1
T magnet bends the electrons according to their energy onto a lanex screen
where the spectra are recorded by a camera positioned behind the screen
(not shown).

The electron spectrometer was comprised of a B = 1 T magnet and a lanex screen
covered by anodised aluminium foil, as in figure 6.6. The anodised foil prevents the
laser light from activating the lanex screen and has been used in this configuration
experimentally [85]. The magnet design was such that the fringe field lines were
minimised by use of an appropriate yoke to simplify analysis of electron trajectories
through it. The position of the lanex screen was placed such that it could reliably
measure electrons in the energy range E = 50 : 350 MeV. Lanex is a composite
material comprising of a phosphor layer backed by a polyester support that is
activated by the electron beam. The phosphor atoms’ electrons are excited to a meta
stable state by the electron beam and scintillate over a timescale of milliseconds as
the states decay [86] back down to the lower energy state. This property of prolonged
scintillation allows the camera collecting the light from the lanex screen to do so
some time after the laser pulse has passed. If the camera attempted to capture as
the electrons were impacting upon the lanex screen the laser light would dominate
over any scintillation.



Chapter 7.

Photon Acceleration as a Wakefield
Diagnostic

This chapter analyses the photon acceleration effect of the plasma on the Astra laser
pulse and uses this modulation of the laser intensity envelope to infer the plasma
density. Photon acceleration as a diagnostic allows for characterisation of both the
plasma and the wakefield being driven within on a single shot basis.

The laser light emerging from the gas target is captured by a grenouille, recording
a full phase and intensity measurement of the pulse. A strong modulation to the
intensity profile of the emerging pulse is seen with a well defined frequency. The
modulation is caused by the laser pulse co-propagating with a wakefield and the
frequency of the modulation is therefore the plasma frequency, which is used to
calculate the plasma density. A first iteration set of simulations using the PIC code
OSIRIS demonstrates modulation to the intensity profile of the Astra laser pulse is
that of the plasma frequency.

7.1. Characterising the lengthened Astra Pulse

To sample many periods of the wakefield the Astra laser pulse was stretched from
its nominal length of τ = 40 fs, as seen in the third pane of figure 7.1, to τ = 200

fs as seen in the fourth pane. To accomplish this, group velocity dispersion was
introduced by the dazzler at the start of the laser chain such that the laser pulse
emerging from the compressor was lengthened. Figure 7.1 shows the effect of four
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Figure 7.1.: The experimentally measured intensity profile of the Astra laser pulse after
introducing group velocity dispersions by the dazzler. The red shots and blue
shots were taken two hours apart, demonstrating the level of reproducibility
of the intensity profiles.

different group velocity dispersions on the post-compressor pulse intensity profile and
figure 7.2 shows the spectrum of the laser pulse before the laser-plasma interaction.

Each group velocity dispersion value has two measurements taken, two hours
apart. It is seen that there is shot to shot variation and that the intensity profile
of the pulse is not well described by simple models such as a Gaussian distribution.
This is important to note as the presence of a periodic component to the intensity
profile could be mistaken for an effect of the plasma post interaction, as well as
possibly seeding the self modulation instability.

7.2. Reconstructing Laser Intensity Profiles

The raw data captured by the grenouille is a spectrally resolved auto correlation
of the laser pulse, and is described in further detail in section 6.2.1. The code
FROGed was used to extract the phase and intensity profile of the laser pulse from
the grenouille traces. The code makes a best guess as to the intensity profile and
phase of the laser pulse responsible for creating such a trace and then iteratively
improves the guess by switching between several algorithms. The code converges on
a unique solution given a correctly recorded trace and enough iterations. Figures
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Figure 7.2.: The spectrum of the Astra laser pulse measured by a SPIDER at the start of
the laser chain. With a FWHM bandwidth of 20 nm the transform limited
pulse duration of a sec2 profile beam is 40 fs. It should be noted that the
centre of this λ = 735 nm spectrum pulse is not representative of the centre
of the on target pulse as the longer wavelengths are preferentially amplified
throughout the laser chain — leading to a λ = 800 nm centred pulse.

7.3 and 7.4 show the raw trace (top left pane), the best guess of the algorithm (top
right pane), the recovered intensity profile (bottom left) and the spectrum (bottom
right) of the laser pulse at the entrance of the grenouille for two shots.

A percentage error between the raw traces and the best guesses of the FROGed
code below 5% were considered to have achieved a good level of convergence. The
twelve shots that showed this high level of convergence fell within the range of nozzle
backing pressures of 0.2 to 5 bar, achieving an average percentage error of 4.39%. It
was found that at higher backing pressures insufficient laser light survived the higher
density plasma to be detected by the grenouille and that at lower backing pressures
so much light survived the interaction that the grenouille’s CCD became saturated.

The reconstructed intensity profile of the laser has multiple distinct peaks at the
entrance of the grenouille. However, the effect of the transmissive optics detailed in
figure 6.2 have not been accounted for so any periodicity seen in the intensity profile
at the entrance of the grenouille cannot be attributed to the plasma frequency.

To retrieve the laser pulse emerging from the plasma the laser pulse measured
at the entrance to the grenouille must be back propagated through the upstream
optics, accounting for any group velocity dispersion those optics would introduce.
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(a) Raw FROG trace

Time (fs)
-200 -100 0 100 200

A
ng

ul
ar

 F
re

qu
en

cy
 (

ra
d 

s-1
)

4.5

4.6

4.7

4.8

4.9

5

(b) Retrieved FROG trace
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(c) Retrieved laser intensity
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(d) Retrieved laser spectrum

Figure 7.3.: The recovered FROG trace from the FROGed code (top right pane) along
with the laser pulse intensity profile and laser pulse spectrum that generates
the recovered trace (bottom left and bottom right respectively). The raw
data captured by the grenouille is displayed in the top left pane. The nozzle
backing pressure for this shot is 2.3 bar.

Group velocity dispersion acts to delay higher frequency photons with respect to
the lower frequency photons. The effect on an unchirped Gaussian pulse would be
to lengthen it whilst decreasing the peak intensity. The effect on a chirped pulse
would be to compress or lengthen the pulse depending on the sign of the chirp. If a
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(a) Raw FROG trace
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(b) Retrieved FROG trace
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(c) Retrieved laser intensity

Wavelength (nm)
750 800 850

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0

0.5

1

P
ha

se
 (

ra
d)

-9

-6

-3

0

3

6

9

(d) Retrieved laser spectrum

Figure 7.4.: The recovered FROG trace from the FROGed code (top right pane) along
with the laser pulse intensity profile and laser pulse spectrum that generates
the recovered trace (bottom left and bottom right respectively). The raw
data captured by the grenouille is displayed in the top left pane. The nozzle
backing pressure for this shot is 3.1 bar.

chirped pulse was to have a complex intensity profile an arbitrary introduction of
group velocity dispersion acts to wash out the structure. Given the pulse is known to
contain a chirp before interaction with the plasma, and the photon acceleration effect
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introduces chirp over the scale length of a plasma period, it is crucial to account for
the group velocity dispersion introduced by the optics upstream of the grenouille.

7.3. The Effect of Group Velocity Dispersion

The reflective optics have a 100 nm coating of fused silica, which, at 45◦ incident
angle and taking a double pass introduces a path length of 141 nm of fused silica per
reflective optic. The transmissive optics introduce far more in total however. The
wedge labelled as W13 introduces 7.5 mm of fused silica to photons travelling at 45◦

through its centre. When propagating through the wedge the laser light is collimated,
and remains so until it reaches the entrance of the grenouille where an aperture
selects a narrow region of the laser light (< 1 mm). The selection of a narrow region
minimises the effect of the varying path difference through the wedge experienced by
photons at the centre of the laser pulse compared to photons traversing the thick or
thin end of the wedge.

A back propagation code was used to account for the group velocity dispersion
introduced by the transmissive optic and the intensity profile of the laser emerging
from the plasma was found. Figures 7.5 and 7.6 show the intensity profiles for two
shots and the Fourier transforms after back propagation. A striking modulation to
the laser envelope is seen with near distinct micro-pulses being formed in the shots
in the top panes. The Fourier transform of the intensity profiles in the bottom panes
shows a well defined frequency component to the modulations.

7.4. Reconstructed Plasma Density

Taking the frequency of the modulation to the laser intensity profiles, as seen in the
bottom pane of figures 7.5 and 7.6, as the plasma frequency, the plasma densities
are calculated. Plotting the plasma density as a function of nozzle backing pressure
yields figure 7.7. This result shows a linear correlation between the nozzle backing
pressure and the plasma density with a best fit of ne = 6.13× 1024 × P + 2.03× 1023

m−3, where P is the nozzle backing pressure in bar. The error on each datapoint has
two main contributions. The FROGed code reconstruction introduces a percentage
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Figure 7.5.: The Astra laser pulse intensity profile of a shot back propagated through the
transmissive optics upstream of the grenouille to the interaction point. The
nozzle backing pressure for this shot is 3.5 bar.

Figure 7.6.: The Astra laser pulse intensity profile of a shot back propagated through the
transmissive optics upstream of the grenouille to the interaction point. The
nozzle backing pressure for this shot is 4.7 bar.
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Figure 7.7.: The plasma densities calculated from the frequency of the intensity envelope
modulation of the Astra laser pulse by the plasma as a function of the nozzle
backing pressure.

error and the signal in the fourier transform of the intensity profile is fitted with a
Gaussian which has an associated error.

The plasma densities are as high as ne = 3×1025 m−3 at a nozzle backing pressure
of 4.7 bar. Assuming doubly ionised helium at this pressure, this measured density
is within the maximum electron number possible of ne = 5.4× 1026 m−3.

7.5. Comparison with Numerical Simulation

A first iteration parameter scan over plasma density was performed to investigate
the amplitude of the modulation to the laser intensity profile. The lengthened Astra
laser pulse was simulated propagating through plasmas of five densities, parameters
summarised in table 7.1.

In figures 7.8 and 7.9, modulation of the lengthened Astra laser pulses’s intensity
envelope at the plasma frequency is seen, with an increased amplitude of modulation
at higher plasma densities. This effect is attributed to the modulation of the laser
intensity profiles measured emerging from the plasma in figures 7.5 and 7.6. The
calculated plasma densities of figures 7.5 and 7.6 are ne = 1.5 × 1025 m−3 and
ne = 2.3 × 1025 m−3 respectively. In simulations, densities of ne = 2 × 1025 m−3
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Grid Values
nx j × 1000

nz j × 10000

grid width (m) 50 c/ωp

grid length (m) 30 c/ωp

Laser Values
a0 0.868

ω0 41.76× ωp
σt (m) 200 fs
profile Gaussian

Plasma Values
species He+

j 3 : 2 : 9

ne (m−3) j × 1024

Table 7.1.: Density-scan parameters. For the grid parameters: nx and nz are the grid
width and length respectively; and grid width and grid length are the physical
width and length of the grid. For the laser parameters: a0 is the normalised
vector potential of the laser pulse; ω0 is the pulses’s normalised frequency, σt
is the laser pulse’s duration and profile is the laser pulses’s intensity profile.
For the plasma parameters: species is the ionised element composing the
plasma; j is the integer parameter scanned over and ne is the plasma electron
number density.

and above show degradation of the modulation to the intensity profile of the laser
at the plasma frequency, as shown in figure 7.9. The experimental measurements
however, show that the laser pulse survives the interaction at these densities, and
modulation to the intensity envelope at the plasma frequency can be seen up to
ne = 4 × 1025 m−3. The idealised Gaussian intensity profile and perfect plasma
density homogeneity of the simulation would lead to a stronger seeding and onset to
the self-modulation instability when compared to experiment. Figure 7.10 shows the
intensity profile of the laser pulse after propagation through 0.5 mm of plasma at
density ne = 2× 1025 m−3. Note that at this point a clear modulation to the plasma
envelope is seen. It is upon further propagation that the degradation of this envelope
occurs. In the experimental case however, this point of significant modulation may be
reached after longer propagation distances through the plasma due to imperfections
in the laser profile, as seen in figure 7.1, lower energy on target and so on, explaining
why modulated laser intensity profiles are seen at up to twice the densities seen in
simulations.

In summary an experiment was performed using the Astra laser system at the
Central Laser Facility where the modulation to the laser intensity profile by the
wakefield the laser pulse was driving was used to calculate the plasma density. An
under populated dataset yielded measured plasma densities that correlated well with
the nozzle backing pressures. The simulations presented qualitatively support the



Photon Acceleration as a Wakefield Diagnostic 128

In
te
ns
ity

(a
.
u.
)

(a) ne = 3× 1024 m−3 (b) ne = 5× 1024 m−3

(c) ne = 7× 1024 m−3 (d) ne = 9× 1024 m−3

Length (a. u.)

Figure 7.8.: Simulations [87] of the lengthened τ = 200 fs Astra laser pulse after prop-
agating through 2 mm of helium plasma at various densities. Simulations
performed in OSIRIS by M. Kasim.

theory that the laser intensity envelope is modulated at the plasma frequency. This
method of diagnosing the plasma density requires no dedicated probe pulse but
instead relies on analysing the modulations to the laser pulse driving the wakefield,
allowing for a low cost diagnostic requiring only downstream optical components from
the interaction point and an appropriate FROG or grenouille. For the diagnostic
to work, a significant amount of the laser pulse has to survive the interaction, so
higher energy pulses are needed for larger plasma densities over longer propagation
distances.
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Figure 7.9.: Simulations [87] of the lengthened τ = 200 fs Astra laser pulse before
interaction (green line) and after propagating through 2 mm of helium
plasma (blue line) at higher densities. Simulations performed in OSIRIS by
M. Kasim.

Attenuating the laser pulse after interaction will allow the diagnostic to probe
lower plasma densities, so long as the propagation distance through the plasma is
increased to allow for significant modulation to the laser intensity envelope. Future
work includes taking a larger data set over a greater plasma density range, allowed
by the introduction of attenuating optics, and cross checking the measured densities
with other established fast plasma density diagnostics. Such a diagnostic would be
suitable to implement on laser driven wakefield experiments where the length of the
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Figure 7.10.: The lengthened τ = 200 fs Astra laser pulse after propagating through 0.5
mm of helium plasma of ne = 20× 1024 m−3. The modulation to the laser
envelope at the plasma frequency is maximised here and diminishes with
further propagation.

laser pulse is several plasma wavelengths providing a direct single shot measurement
of the plasma density in the region of the wakefield being driven.



Chapter 8.

Conclusions

This thesis has developed a novel two-stage beam line demonstrating, via numerical
simulation, the generation of high brilliance X-ray pulses by utilising the advantages of
both the laser driven and particle driven wakefields. A detailed study was presented,
showing that X-ray pulses with greatly enhanced brilliance and energy could be
produced within plasma using the existing Diamond electron beam and commercially
available laser systems. The novel beam line uses the high amplitude wakefield driven
by ultra-short laser pulses to micro-bunch the long Diamond beam, allowing the
Diamond beam to drive a high amplitude over longer propagation distances than
a single laser pulse could. The co-propagation of the micro-bunch train with the
driven wakefield provokes radial, whole bunch oscillations, stimulating copious X-ray
emission. The wakefield driven by the micro-bunch train could also be utilised to
accelerate a witness electron beam to higher energies than the 3 GeV Diamond beam.

The two-stage design is generalisable in such that the spacing between the stages,
and length of the first stage can be tuned to micro-bunch other existing electron,
and theoretically proton beams in the same way as demonstrated with the Diamond
beam. This scheme could allow existing facilities to produce brighter X-ray pulses by
violently oscillating their high charge, low emittance beams within plasmas instead
of the lesser fields found in conventional insertion devices. The beam line for the
Diamond beam is less than one metre in length and can be accommodated into the
Diamond facility without major changes. An experiment is currently being planned
where the beam line detailed will be implemented at the Diamond Light Source
and the predictions of simulations tested. If the proof-of-principle experiment is
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successful then utilising both laser and particle beam driven wakefields in this way
promises to revolutionise the production of bright X-ray pulses.

Experimental results were presented of a plasma wakefield diagnostic utilising
the photon acceleration effect. The Astra laser, at the Central Laser Facility was
lengthen to several plasma periods long and used to drive a wakefield in a variety of
plasma densities. Periodic modulation to the laser envelope at the plasma frequency
was expected from simulation and seen experimentally. Strong modulations were seen
with the laser pulse being comparable to a pulse train. The measured plasma density
scaled with nozzle backing pressure as expected and was within the maximum density
allowable by experimental constraints. A future experiment is planned at the Astra
target area 2 late 2015 where a larger data set will be taken and the measured plasma
density cross checked against independent diagnostics. The single-shot diagnostic
is attractive in that it requires no dedicated probe pulse and no optics upstream
of the interaction. For laser-driven experiments with drive pulses longer than the
plasma period the diagnostic achieves a minimally intrusive set up with a relatively
small capitol investment. A Such diagnostic is well suited to diagnosing resonantly
excited wakes, such as those driven by the micro-bunched Diamond beam. The long
laser pulse samples many periods of the wakefield as it ramps up, allowing for the
quality and spacing of the micro-bunches to be inferred. The limitations of this
diagnostic include the need for a large wakefield and propagation distance product to
impart significant modulation on the laser pulse and the inability to probe wakefields
that are moving significantly slower than the group velocity of the laser pulse. Such
wakefields have been witnessed in self-modulated beam driven wakefields towards
the rear of the micro-bunch train
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Appendix

A.1. Theory

A.1.1. Debye Length Derivation

To derive the Debye length, we first consider Poisson’s equation:

∇ ·E =
ρ

ε0
, (A.1)

where E is the electric field, ρ is the charge density and ε0 is the permittivity of free
space. Using E = −∇φ, where φ is the potential, equation A.1 becomes

−∇2φ =
ρ

ε0
. (A.2)

In a uniform neutral plasma, the charge of the electrons and ions cancel completely,
however in general this is not the case. ρ is then

ρ = nie− nee, (A.3)
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where ne and ni are the electron number density and ion number density respectively.
Introducing a test change, equation A.3 becomes

ρ = nie− nee+ s. (A.4)

Boltzmann’s law can be used to express the number density distribution, n, of a
particle species in thermal equilibrium subject to a potential φ

n(r) = n0e
− qφr
kBT , (A.5)

where T is the temperature of the species, n0 is the time averaged electron plasma
density, kB is the Boltzmann constant, q is the species’ charge and r is position.
Using equation A.5, equation A.4 becomes

ρ = en0

(
e
− eφ
KTi − e

eφ
KTe

)
+ s. (A.6)

In one dimension, Poisson’s equation is ∂2φ(x)
∂x2

= ρ
ε0
. Substituting equation A.6 into

Poisson’s we find

−∂
2φ(x)

∂x2
=
en0

ε0

(
e
− eφ
KTi − e

eφ
KTe

)
+ s. (A.7)

Solving equation A.7 analytically is non–trivial. We can linearise the equation using
the assumption eφ

KT
� 1, allowing the approximations

e
− eφ
KTi ≈ 1− eφ

KTi
, (A.8)
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e
eφ
KTe ≈ 1 +

eφ

KTe
. (A.9)

The linearised form of the poisson equation then becomes,

∂2φ(x)

∂x2
=
e2n0

ε0

(
1

KTi
+

1

KTe

)
φ+ s. (A.10)

We can further simplify the equation by combining the ion and electron temperatures
into an effective temperature, 1

Teff
= 1

Te
+ 1

Ti
,

∂2φ(x)

∂x2
=

e2n0

ε0KTeff
φ+ s. (A.11)

Solving for φ gives the general solution

φ(x) = φ0e
−x/λD . (A.12)

The Debye length is then:

λD =

√
ε0KTeff
n0e2

. (A.13)

In convenient units, the Debye length can be expressed as

λD = 7.4

√
T (eV )

n0 (cm−3)
m. (A.14)
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A.1.2. Ponderomotive Force Derivation

The ponderomotive force is the force experienced by a charged particle due to the
gradient in intensity of an electromagnetic wave. For the ultra–short intense laser
pulses used in laser wakefield acceleration this force is extremely large, and provides
the main mechanism that couples the energy of the laser pulse to the plasma.

By considering the motion of an electron in the electric and magnetic fields of
a laser we derive an expression for the ponderomotive force. The force on such an
electron is the Lorentz force, and is given by,

F = m
dv

dt
= −e(E(r) + v ×B(r)) (A.15)

where E is the electric field, B is the magnetic field and v is the particle’s velocity.
The electric field of the laser is a product of an envelope function, Eξ, and the fast
oscillation at the laser frequency, ω:

E = Eξ(r) cos(kx− ωt). (A.16)

The motion of the electron can be considered in two parts. A slow motion phase,
where the force due to the magnetic field can be neglected, as it requires an electron
velocity, then a fast motion phase where the v×B term becomes important and the
electric field is not constant across space. Taking the slow motion approximation,
equation A.15 becomes:

m
dv1

dt
= −eE(r0). (A.17)

Further assuming that the laser pulse is monochromatic we can integrate equation
A.17 yielding:
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v1 = −(e/mω)Eξ sin(ωt) (A.18)

Integrating for a second time:

δr1 = (e/mω2)Eξ cos(ωt), (A.19)

where δ signifies that this relation only holds for a small variation in r1. Considering
the fast motion phase we have to take into account the spatial variation of the electric
field around r1. Taking the second term in the Taylor expansion for E around r1:

E(r) = E(r0) + (δr1 ·∇)Er=r0 + . . . (A.20)

Using equation A.16 with Maxwell’s equation −∂B/∂t = ∇×E and integrating for
B yields:

B1 = −(1/ω)∇× Eξr=r0
sin(ωt). (A.21)

Taking this equation with equation A.20 gives the second order approximation of
our starting point, the Lorentz force experienced by the electron:

m
dv2

dt
= −e((δr1 ·∇)E + v1 ×B1). (A.22)

Substituting for v1 (equation A.18), δr1 (equation A.19) and B1 (equation A.21)
gives the expression:

m
dv2

dt
= − e2

mω2
(cos2(ωt)(Eξ ·∇Eξ + sin2(ωt)Eξ)× (∇× Eξ)). (A.23)
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Averaging over a laser cycle (cos2(ωt) = sin2(ωt) = 1
2
) and using the vector identity

A× (∇×A) = 1
2
∇A2 − (A ·∇)A gives us the non–linear force on an electron:

m
dv2

dt
= −1

4

e2

mω2
∇E2. (A.24)

This is the ponderomotive force experienced by an electron:

FP = −1

4

e2

mω2
∇E2. (A.25)

Note the ponderomotive force is proportional to ∇E2 which is proportional to
∇I and is exceptional in that it is independent of the sign of the charged particle.
That is to say that a charged particle will feel a force expelling it from the region of
high intensity to a region of lower intensity, be it a plasma electron or ion.

A.2. Computational Techniques

A.2.1. EPOCH Bench Marking

In subsection 2.2.6 the ideal Gaussian beam length to efficiently drive a wakefield
was derived. When simulating a Gaussian beam one has to truncate it in order to fit
it into the simulation window. A hard cut to a Gaussian beam affects its wakefield
driving capabilities. As such, for a true comparison between simulation code and
theory predictions, the analytic model was adapted for a truncated Gaussian beam
with the truncation at ±3 σz. Changing the integration limits from ±∞ to ±3 σz in
equation 2.37 yields,

∆ne(ξ) = kpnb0

∫ 3σz

−3σz

sin(kp(ξ − ξ′))e
−ξ2
2σx

dξ′ . (A.26)

Integrating equation A.26 gives the expressions for the variation of the electron
number density perturbed by a relativistic truncated Gaussian proton beam:
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∆ne(ξ) =− iσ

4

√
2πe−

1
2
k2σ2−3ikσ−ikx

(
e6ikσerf

(
−z + 3σ + ikσ2

√
2σ

)
+ e2ikzerf

(
z− 3σ + ikσ2

√
2σ

))
+
iσ

4

√
2πe−

1
2
k2σ2−3ikσ−ikz

(
e6ikσerf

(
3√
2

+
iσk√

2

)
+ e2ikzerf

(
−3√

2
+

iσk√
2

))
(A.27)

In essence the front and back hard edges of the truncated Gaussian drive a small
amplitude wakefield that constructively or deconstructively interfere depending on
the distance between truncations. If the distance is an integer multiple of the plasma
wavelength then they interfere constructively, as a top hat density profile beam
would.

When benchmarking EPOCH against theory in section 3.1.3, it is A.27 that it is
compared to.
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