
Optimisation of the COMET experiment to search for
charged lepton flavour violation and a new simulation

to study the performance of the EMMA FFAG accelerator

Richard Thomas Patrick D’Arcy

University College London

Submitted to University College London in fulfilment of the requirements for the

award of the degree of Doctor of Philosophy, 21th September 2012

1



I, Richard D’Arcy, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

2



Abstract

The particle tracking software package, GPT, has been developed and utilised to

simulate the beam optics of the EMMA injection line and ring, constructed at the

Daresbury Laboratory, UK. EMMA is a proof-of-principle machine for a new type

of accelerator: a non-scaling fixed-field alternating gradient (ns-FFAG) accelerator.

As such the beam dynamics of the magnetic lattice require benchmarking, with GPT

chosen for its space-charge self-field simulation package. Tune and time-of-flight

measurements have been successfully simulated and compared to experimental

data, recorded during the first few runs of the machine. Measurements confirm the

successful operation of EMMA as a ns-FFAG accelerator and simulations highlight

that space-charge effects are observable in the EMMA bunch-charge and energy

regime.

Such accelerators have many applications within and outside particle physics,

ranging from cancer therapy and accelerator driven thorium reactors to neutrino

factories and muon colliders. The application of FFAGs and the design of the

COMET/PRISM experiment, which is seeking to measure muon-to-electron con-

version at the 10−18 level, is investigated. Simulations of the COMET experiment,

staged in two phases, have been performed with a focus on optimisation of the

stopping target design. A number of geometries have been tested, with a cone

then disk structure preferred for Phase-I then Phase-II respectively. Initial data

from the COMET precursor experiment, MuSIC, have also been analysed and

successfully compared to simulation.
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics [1, 2, 3] is a unified mathematical

description of the fundamental components of matter and their interactions

mediated by the strong, weak, and electromagnetic forces. It has been very

successful in describing these interactions for many years, and has stood up to a

number of very rigorous tests across a range of experiments.

The SM is a SU(3) ⊗ SU(2) ⊗ U(1) gauge theory, where conventionally a

Lagrangian describes the behaviour of a set of quantised fields of the twelve

fermionic particles and five bosons known to exist.

This SM describes many observable properties of the Universe. All the prop-

erties of fundamental particles (with the exception of neutrino mass) and forces

(excluding gravity, which is not included in the SM) are successfully described.

Conservation of quantities such as energy, angular momentum, and electric charge

are accounted for by the symmetries of the theory. The three forces chosen as

a mathematical representation of the fields and forces of the SM account for an

exceptional number of complex phenomena e.g.

• Electromagnetism is visible at the macroscopic level via the effects of

electric and magnetic fields but also at the quantum level through the

coherence of atoms and e.g. corrections to magnetic moments.

21
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• The weak force dictates a number of decay processes, including the decom-

position of radioactive nuclei and heavy quarks.

• Strong interactions are evident in the cohesion of quarks and gluons into

protons and neutrons, comprising atomic nuclei.

The SM also describes the phenomenology of the extensive particle zoology

currently observed. The interactions of these particles can be represented using a

simple diagrammatic approach, first expounded by Feynman and Stueckelberg in

1948 [4]. In this approach complex calculations in field theory are often equivalent

to a mathematical integration across a number of interaction points. An example

of such a process, represented using a Feynman diagram, can be seen in Fig. 1.1.

This diagram represents only the leading order term of an expansion for this

process. The observable process is a sum of these higher order diagrams which

generally converge (e.g. for electroweak processes) and so the calculation of

the first few diagrams is sufficient. However, the SM contribution to charged

lepton flavour violation (cLFV) is only non-zero at loop-level (see Fig. 1.4 for an

example of a cLFV loop-level Feynman diagram). Even at loop-level the rates are

extremely small, with a branching ratio (BR) of O(10−54). This topic of cLFV

will be discussed further in Sec. 1.3.

The complete set of observed particles that interact in such a way, represented

by the SM, can be found in Tab. 1.1. The complete phenomenology of the SM

γ

e−

Figure 1.1: Leading order s-channel electron-photon scattering, e+ γ → e+ γ, repre-
sented by a Feynman diagram. The positive arrow of time goes from left
to right.
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is far too rich to describe here in detail. However, the set of particles can be

subdivided into groups: fermions (leptons and quarks) with half-integer spin, each

with three generations containing two particles separated by a unit of charge, and

gauge bosons which mediate the forces.

1.1 Shortcomings of the Standard Model

The SM is chiefly empirically derived and therefore rooted in experimental data.

It remains a model however, and as such has its limitations. One of the most

flagrant limitations is its inability to incorporate massive neutrinos. The SM

defines neutrinos as having zero mass, however recent experimental data clearly

contradicts this [5]. This ad-hoc extension of the SM to include neutrino masses

(via Yukawa coupling to the Higgs) and neutrino oscillations is referred to as

the νSM henceforth. Neutrinos are notoriously difficult to detect, as they only

interact via the weak force, but recent experiments [6] have observed oscillations

Particles Spin
Charge

Electric Weak Strong

Up-type Quarks u, c, t 1
2

+2
3

Yes Yes

Down-type Quarks d, s, b 1
2

−1
3

Yes Yes

Leptons e, µ, τ 1
2

+1 Yes No

Neutrinos νe, νµ, ντ
1
2

0 Yes No

Weak Bosons
W± 1 ±1 Yes No

Z 1 0 Yes No

Gluon g 1 0 No Yes

Photon γ 1 0 Yes No

Higgs Boson H 0 0 Yes No

Table 1.1: The complete set of particles described by the Standard Model. There also
exists a set of corresponding anti-fermions e.g. e+, ν̄e, etc. not denoted in
this breakdown.
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in the weak eigenstates that is interpreted as splittings in the mass eigenstates.

This suggests the existence of at least two neutrinos with a non-zero mass. Like

other fermions they could be Dirac particles, however they could be their own

anti-particle and thus obey the Majorana equation [7] and not the Dirac equation.

The question of neutrino masses links to the flavour problem of the SM, of

which there are many facets: undetermined fermion masses and mixing angles;

CP violating phases and their origin; the observed smallness of flavour changing

neutral currents. Some of these problems have been solved (e.g. the ad hoc

setting to zero of CP violation in the QCD sector via the axion) but many remain

outstanding.

The mechanism of electroweak symmetry breaking within the SM is an out-

standing problem. Gauge-invariance dictates that the mediating gauge bosons are

massless, thus operating over an infinite range. In reality this symmetry does not

exist and cannot be broken explicitly without gauge-invariance being compromised.

It must therefore be broken in another way and the SM accounts for this via

the Higgs mechanism, which predicts the existence of a scalar boson - the Higgs

particle. Recent observations of a new boson by ATLAS and cmS are consistent

with the Higgs hypothesis [8, 9, 10].

The lack of a description of gravity within the SM is also a concerning limitation.

At present string theory is the only known renormalisable QFT with the ability to

merge gravity with general relativity, however there is no experimental evidence for

it. A unification of gravity with the other three forces would require a fundamental

overhaul of particle physics (e.g. an introduction of extra spatial dimensions); the

three gauge interactions of the SM which define the electromagnetic, weak, and

strong interactions, would likely need a new symmetry.
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1.2 Beyond the Standard Model

As mentioned in Sec. 1.1, it is widely believed that new physics beyond the SM is

required to accommodate non-zero neutrino masses. As neutrinos may be their

own anti-particle, obeying the Majorana equation, the most elegant mechanism

for generating small neutrino masses is the seesaw mechanism [11]. This requires

the introduction of extra singlets to the SM Lagrangian. A consequence of this

is the violation of individual lepton-flavour number, allowing processes such as

µ � eγ in the νSM. However, due to the small size of neutrino masses the rates

for cLFV are extremely small in the νSM [12].

The gauge hierarchy problem [15] also hints at physics beyond the SM (BSM).

Low-energy supersymmetry (SUSY) is one preferred candidate for a BSM solution

to this problem. cLFV processes such as µ � eγ are potentially amplified in such

a framework, pushing the rates up to a level that may be in reach of near future

experiments. In the νSM the rates for cLFV are proportional to the neutrino

masses, whereas in SUSY models these processes are only suppressed by inverse

powers of the SUSY breaking scale, typically at most O(1 TeV).

There are many different seesaw models which accommodate non-zero neutrino

masses, both SUSY and non-SUSY based. The current and future experimental

limits on µ � eγ and µN � eN for a specific SUSY BSM scenario are shown

in Fig. 1.2. These models demonstrate the complementarity of cLFV results to

those of the LHC - in this model any future results from cLFV experiments will

isolate values of the masses of the right handed boson mWR
and heavy neutrino

mN , probing beyond the energy scales available to the LHC. As can be seen the

current experimental limits e.g. at MEG [16] and SINDRUM [18], are beginning to

probe these predictions.

An observation of just one cLFV process may indicate the mass scale of the

BSM physics but it would not be enough to uncover the form of the new interaction.

In fact, it would be necessary to observe cLFV in other processes to be able to
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Figure 1.2: Comparison of LFV event rates at the LHC and in low energy rare decays.
In order to verify the LHC sensitivity to the flavour couplings VNe and
VNµ , the right-handed W boson mass and neutrino mass are fixed at
mWR

= 2.5 TeV and mN = 0.5 respectively. This is denoted by the
blue dot. The solid blue contours give the number of events for the LFV
signature e±µ±,∓ plus jets at the LHC at

√
s = 14 TeV and an integrated

luminosity of 30 fb−1. The dashed contours define the parameter region
with signals at 5σ and 90%. The shaded red areas denote the parameter
regions excluded by current low energy LFV limits, whereas the red
contours show the expected sensitivity of planned experiments [19].
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obtain this information. Considering a generic Lagrangian for this new interaction,

where Λ is the energy scale of the new interaction and κ the relative strength of

two possible mechanisms (dipole and contact interactions), then Fig. 1.3 shows

the experimental sensitivity in terms of these two parameters.

These parameters are related to specific BSM models e.g. for SUSY

1

Λ2
=

g2e

16π2M2
SUSY

θẽµ̃ , (1.1)

where g is the SUSY interaction strength, e is the electromagnetic coupling

constant, MSUSY is the mass of some super-partner, and θẽµ̃ is the mixing angle

between selectrons and smuons [20]. Fig. 1.3 demonstrates that the µ � eγ

interaction is dominated by a dipole interaction, whereas µN � eN can occur

via both interactions. It will therefore be necessary to observe, or place a rigid

exclusion on, the µ � eγ process in addition to an observation of µN � eN it will

be necessary in order to determine the nature of the BSM model.

This demonstrates the potential reach of cLFV to energy scales far exceeding

those available to the LHC, with low energy rare decays sensitive to BSM models

with energy scales Λ > 10, 000 TeV.

1.3 Lepton flavour violation

In the SM Lagrangian there are no interactions that change lepton flavour, con-

trasting the weak interactions for quarks which is based on observation. Each

generation of lepton has an inherently conserved quantum number. As an example

consider the electron generation, where Le = 1 for e−/νµ, Le = −1 for e+/ν̄µ, and

Le = 0 for all other particles. Processes involving this generation of lepton have

∆Le = 0 i.e. electron lepton flavour is conserved.

However, the SM does not explain all phenomena, as described in Sec. 1.1.

In particular, the observation of neutrino oscillations requires extensions to the



The Standard Model 28

Figure 1.3: The relation of cLFV to two BSM parameters Λ and κ. In this model Λ is
the energy scale of the new model and κ represents the relative strength
of the process to a certain mechanism, with κ� 1 and κ� 1 indicating
a fully dipole and four-fermion point interaction respectively [20].
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SM Lagrangian. Such extensions result in a non-zero rate for cLFV processes,

however the rate is still very small i.e. O(10−54). An example of such a lepton

number violating process is

µ± → e±γ . (1.2)

A Feynman diagram for this process can be seen in Fig. 1.4.

The calculation of branching ratios for these processes is determined by the

neutrino masses and elements of the PMNS matrix, which are not yet all known.

Using present experimental limits of the unknown parameters one can determine

an upper limit of the BR in the νSM:

BR(µ→ eγ) =
3α

32π

∣∣∣∣∣∑
i=2,3

U∗µiUei
∆m2

1i

M2
W

∣∣∣∣∣
2

< 10−54 , (1.3)

where Uαi are the elements of the neutrino mixing matrix and ∆m2
1i are the neutrino

mass-squared differences. This is far too low to detect with any experiment since

at least 1054 muons would be required to reach this branching ratio. However,

when BSM theories are considered (see Sec. 1.2 for a breakdown of such models)

the predictions for the rate of cLFV dramatically increases to a point where it

may be possible to observe it in the near future.

These branching ratios are model dependent and the branching ratio within

SUSY models can be anywhere from 10−14 to 10−25 [12]. However, any BSM

results from the LHC will likely constrain such models significantly, leading to

rather robust predictions of cLFV. The consistency of LHC results with cLFV will

be one of the definitive and necessary checks in establishing a model of new physics

beyond the SM. The LHC is a probe to high energy regimes but cannot easily

measure slepton or SUSY mixing parameters [13]. Future experiments utilising

cLFV and, for example, the anomalous muon magnetic moment (g − 2) [14] will
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µ− e−νµ νe

γ

W−

Figure 1.4: One possible charged lepton flavour violating process allowed within the
SM.

therefore likely be required to isolate these parameters and resolve degeneracy

between different theories of BSM physics.

1.4 Current cLFV experimental status

Since the first search for cLFV by Hincks and Pontecorvo in 1947 [17], experimental

searches for cLFV have been continuously carried out with various elementary

particles, such as muons and taus. The upper limits have been improved at an

approximate rate of two orders of magnitude per decade, displayed in Fig. 1.5.

The rate of improvement of the cLFV upper limit has slowed over the last decade

but is about to take off again, as shown in Fig. 1.6 where the current, and possible

near future, upper limits of various cLFV decays are shown.

The COMET experiment (described further in Ch. 3) proposes to achieve an

upper limit on µN → eN of 10−16 by 2021, providing a drastic jump of four orders

of magnitude on the current limit set by SINDRUM-II [18]. In order to analyse

first results in the medium term, as well as gain operational experience with this

type of experimental procedure, the COMET experiment will be staged with the
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Figure 1.5: 90% confidence level upper limits on the branching ratio for three cLFV
processes from 1947 to the present day.

upper limit on the BR of 10−14 expected to be probed by 2017. This Phase-I is

described and simulated in Ch. 4.

The sensitivity of the muon system to cLFV is very high. This is owing to the

large number of muons available for current experimental searches (approximately

1018 µ/yr proposed for COMET). The cross section of µ � eγ is dependent on the

lepton mass difference to the 4th power, thus changing the incident particle from

a muon to tau leads to higher order rates of O(104) in the τ sector compared to

the µ sector. The BR for µN � eN is defined as the ratio of coherent conversion

to that of nuclear capture. For this reason the m4
l term present in both cross

sections cancels, removing any intuitive suppression in the τ sector. However,

the far greater yield of muons available suggests that this channel poses a deeper

probe to cLFV with near-future experiments.

There are a number of channels to explore cLFV, with µ � eγ and µ � 3e the

most studied [16]. The search for these processes is predicated on firing a high
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Figure 1.6: Current and future sensitivity limits for charged lepton flavour violating
processes allowed within the SM.

intensity muon beam (3× 108 µ/s at PSI [16]) onto a thin foil target, stopping

as many muons as possible, then searching for the respective signal from the

decay of the captured muon at rest. Both the signal and background are emitted

isotropically from the target, travelling directly to the detector system. This leads

to huge levels of accidental backgrounds of electrons (from non-lepton number

violating processes, either in flight or at rest), therefore making it difficult to

distinguish between signal and background.



The Standard Model 33

The latest experimental upper limit for µ→ eγ at a 90% confidence level is

2.4× 10−12, recorded by the MEG collaboration at PSI, utilising a positive muon

beam with up to 9.5× 1015 µ/yr [16]. The experiment proposes to improve this

sensitivity by two orders of magnitude through an increase in muon intensity

of 100. However, the accidental background Nacc. grows with the muon rate Rµ

according to

Nacc. ∝ R2
µ ·∆teγ · (∆θeγ)2 · (∆Eγ)2 , (1.4)

where ∆teγ is the timing resolution, ∆θeγ is the anglular resolution between the

electron and photon, and ∆Eγ is the photon energy [21]. For the case of µ � eγ

the accidental background of daughter particles therefore scales as R2
µ. Thus at

ever higher muon rates the signal becomes saturated by accidental background.

For this reason other cLFV processes are considered.

The coherent neutrinoless muon-to-electron conversion process µN → eN

represents an alternative to the aforementioned cLFV processes as it removes the

necessity to detect coincidences between particles. This is achieved by searching for

signal in a region boosted by nuclear recoil to a momentum range e.g. 95 MeV/c

for gold, beyond the classical Michel decay limit of approximately 52.8 MeV. The

SINDRUM-II experiment explored muon-to-electron conversion by firing a muon

beam into a gold (and subsequently titanium) target, creating muonic atoms. No

signal was detected and a 90% confidence level upper limit on the BR(µN → eN)

of 3.3 × 10−13 was set [18], along with a comprehensive correlated background

study. The primary source of background in the µ � e signal momentum range is

that of decay-in-orbit (DIO) electrons from µ− +N(A,Z)→ e−νµν̄e +N(A,Z).

This background, recorded by the SINDRUM-II experiment, along with simulated

signal, can be seen in Fig. 1.7.

The detrimental effect of backgrounds can be mitigated by the implementation

of novel beamline elements, particularly:
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Figure 1.7: SINDRUM-II results showing the decay-in-orbit background tail at the
signal region, as well as a simulated signal momentum distribution [18].

• The prompt background arising from protons leaking between bunches may

be reduced by using a pulsed proton beam, alternating particle bunches

with regions of proton extinction at (O(10−9)).

• Muons, typically of p > 70 MeV/c, responsible for decay-in-flight electrons

with p > 100 MeV/c in the µ � e signal region, can be eliminated by

implementing curved solenoids for momentum selection.

The COMET collaboration proposes an improvement on current sensitivities

of up to a factor of 105 through the introduction of such elements. These im-
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provements will be outlined in Ch. 3, along with simulations of the proposed

experiment.

The DIO process is an intrinsic property of the muon, with the DIO endpoint

and lifetime dependent on the Z number of the stopping target material used

to create the muonic atoms. As the branching ratio limit decreases the signal

may move within the limits of the DIO background spectrum. It is therefore

necessary to minimise energy loss on the signal by reducing background and

stopping more muons. The implementation of a phase-rotating FFAG ring is

proposed to decrease the mean muon momentum and RMS to a level where almost

all muons are stopped, as well as providing added decay length for energetic pions.

This will drastically increase the number of stopped muons per proton with a

much smaller muon stopping target, thus decreasing the amount of energy loss

of signal electrons en route to the detector. These plans will be included in the

PRISM project, increasing the sensitivity of µ � e conversion to O(10−18). These

advances, along with their research and design, will be expounded in Ch. 3.2.

As previously mentioned, like the DIO endpoint the lifetime of the muonic

atom is also an intrinsic property of the stopping material. Precise measurement

of the muonic lifetime, across a range of materials, is a key aspect in setting a

suitable timing window for the detector to maximise the exclusion of prompt and

delayed background. The muonic lifetime is inversely proportional to Z4, which is

in turn proportional to the nuclear capture rate [22]. The nucleon charge has two

effects:

• The main effect is the electric attraction: the larger Z, the closer the muon

is to the nucleus, and the higher the probability for the muon to be at the

position of the nucleus.

• The size of the nucleus also effectively increases with Z. The larger the

nucleus, the higher the probability to capture the muon.
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The MUon Science Innovative Commission (MuSIC) experiment is designed as

a precursor to COMET and PRISM, used to forerun and test the new beamline

elements proposed for implementation in the experimental decrease of BR(µN →

eN). These elements are tested and analysed in Ch. 5.



Chapter 2

The Physics of Particle

Accelerators

Since the invention of the cyclotron in the 1930s [23], particle accelerators have

played a major role in the research of physics at the subatomic level. The

principle objectives of accelerator physics has been to reach ever higher energies

and intensities; thus advancing the depth of knowledge of elementary particle

physics. There are now over 20,000 particle accelerators in the world with uses as

diverse as cancer therapy and food treatment.

A novel type of acceleration proposed to perform these functions, as well as a

host of experimental particle physics objectives, is that of fixed-field alternating-

gradient (FFAG) acceleration. A proof-of-principle non-scaling variant of this

FFAG accelerator is detailed in Ch. 6, with a demonstration of the simulation and

experimental works performed. The principle of FFAGs were first demonstrated

over half a century ago. However, due to the difficulties in modelling the beam

dynamics their development was stunted; an issue only recently overcome with

the advent of advanced simulation software and sufficient CPU power.

In order to fully understand the nature of this complex method of acceleration,

a brief overview of the beam dynamics of accelerators will be presented.

37
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2.1 Beam dynamics and beam transport

The electromagnetic lattices of all accelerators are required to achieve beam

steering and confinement along a desired trajectory. A description of beam

dynamics within a confined magnetic lattice is given.

2.1.1 Beam focusing

A bunch of charged particles, when left unconstrained, will ultimately diverge

due to self-field effects. However, it is this intrinsic charge that allows for beam

manipulation towards a desired trajectory. As such, a beam of particles may be

manipulated and steered by altering the orientation and strength of an applied

magnetic field. Accelerating structures are therefore formed of a lattice of in-

terspersed magnetic elements, at regular intervals along the beamline. When a

particle enters a magnetic field it experiences a force F , related to the magnetic

field strength B, given a charge q and velocity v:

F = qvB . (2.1)

A charged particle experiencing a uniform magnetic field will therefore follow a

circular trajectory. The centripetal force required to give such a circular motion

is given by:

F =
mv2

ρ
=
pv

ρ
, (2.2)

for a particle with momentum p travelling along a circular trajectory of radius ρ.

Combining this with Eq. 2.1 gives:

Bρ =
p

q
. (2.3)
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This quantity Bρ is referred to as the magnetic rigidity and defines the magnetic

layout for a charged particle with a specific momentum [23].

e.g. The LHC uses the pre-existing LEP tunnel with a circumference of 27 km.

Assuming a packing fraction of 65% the bending radius is therefore 2.8 km. With

an ideal beam energy of 7 TeV the required magnet strength may be calculated

using Eq. 2.3, such that

B =
p

eρ
=

10

3
· 7000

2804
= 8.3 T . (2.4)

The simplest type of magnetic element operating under this principle is a

dipole, which serves to bend charged particles in a perpendicular direction to the

motion of the beam. A uniform field is achieved by placing two coils parallel to

one another, with the coils having equal coil dimensions and identical currents. If

the condition of a uniform dipole field is met then the particle will travel along a

circular path governed by the relation in Eq. 2.3.

2.1.2 Linear beam optics

Dipoles are the simplest magnetic element but current accelerator optics generally

requires other functions such as beam focussing and steering. The field of beam

optics describes the fundamental physics of maintaining a nominal trajectory

(by convention along the z-axis) by utilising all these magnetic functions. By

expanding the magnetic field around the nominal trajectory, the magnetic field

can be regarded as a sum of multipoles, each having a different effect on the beam.

The relationship between the magnetic field and the multipoles is given by

e

p
Bz(x) =

1

R
+ kx+

1

2!
mx2 +

1

3!
ox3 + ... , (2.5)

where the nature of the leading order multipoles is detailed in Table 2.1. Through-

out this report only the two lowest multipoles are considered, therefore the beam
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steering is referred to as linear beam optics, owing to the bending forces being

either constant or linear throughout.

By considering the trajectory of a single particle in a co-moving Cartesian

co-ordinate system K = (x, z, s), illustrated in Fig. 2.1 where the particle’s origin

moves along the orbit of the s-axis, it is possible to derive a set of linear equations

of motion as the particle travels through the magnetic lattice:

x′′(s) +

(
1

R2(s)
− k(s)

)
x(s) =

1

R(s)

∆p

p
, (2.6)

z′′(s) + k(s)z(s) = 0 , (2.7)

where ∆p describes the momentum deviation away from the nominal momentum

p, 1/R and k are the dipole and quadrupole strengths respectively, and x′′ is the

second derivative of the x co-ordinate with respect to the spatial co-ordinate s.

Eqs. 2.6 and 2.7 describe the propagation of one particle, but within the field

of particle acceleration it is both difficult and undesirable to create a beam with

a single particle. It is therefore necessary to extend this theory to describe a

composite beam of many particles and in particular to understand how the shape

of the bunch evolves as it passes through the magnetic lattice. This is done by

considering the limit R �∞ and ∆p � 0, with the result being Hill’s differential

equation of motion in a single transverse plane [24],

x′′(s) + k(s)x(s) = 0 , (2.8)

describing either transverse axis oscillations about the orbit; known as betatron

oscillations as they were initially studied in an accelerator of that type [25] 1.

Hill’s equation can then be treated as any other second order differential equation,

1The x-axis case is chosen for analysis from this point onwards but is applicable to both
transverse axes.
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Multipole Definition Effect

dipole 1
R

= e
p
Bz beam steering

quadrupole k = e
p
dBz
dx

beam focusing

sextupole m = e
p
d2Bz
dx2

chromaticity/dispersion correction

octupole o = e
p
d3Bz
dx3

field compensation

Table 2.1: The most important multipoles in beam steering/focusing, and their princi-
ple effects on the motion of the beam.

x" s"

z"

beam"direc-on"

Figure 2.1: Cartesian co-ordinate system to describe the motion of particles in the
vicinity of the nominal trajectory.

solved using the trial solution

x(s) = Au(s) cos (ψx(s) + φx) , (2.9)

where A and φx are constants of integration. The amplitude function u(s) can

also be written in the form

β(s) ≡ u2(s) , (2.10)

which is the definition of the beta function β(s). The amplitude factor A in Eq. 2.9

can also be replaced by
√
ε, where ε is the emittance, the physical meaning of
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which will be explained later. The solution of Hill’s equation can subsequently be

written as

x(s) =
√
εxβx(s) cos (ψx(s) + φx) , (2.11)

with the phase advancing according to

dψ(s)

ds
=

1

β(s)
. (2.12)

The solution of the trajectory equation in Eq. 2.8 is at a maximum when

cos (ψx(s) + φx) = 1. This maximum is known as the envelope function, E(s),

and is described by

E(s) =
√
εβ(s) . (2.13)

Particles in the bunch perform betatron oscillations with a position-dependent

amplitude, which all lay within the bounds of the envelope function. As can be seen

from the plot in Fig. 2.2, the envelope function expounds the transverse size of the

beam, and if it is possible to know β(s) at any cut along the particle’s trajectory

then the beam-size can be determined using Eq. 2.13. This is a fundamental

quantity of any magnetic lattice as the physical beam size is limited by the magnet

aperture, so if E(s) exceeds this aperture the beam will be lost.

As such, the rate of change of transverse beam position, i.e. the angle, x′, is

given by:

x′ =
dx

ds
= −

√
εx

βx(s)
[αx(s) cos (ψx(s) + φx) + sin (ψx(s) + φx)] , (2.14)

where α(s) = −β′(s)/2.

It is not enough to simply know the size of the beam at any given point, but

to know its angular divergence as well. This is essential in fully simulating the
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Figure 2.2: Trajectories, x(s), of 50 electrons within the envelope, E(s), of the beam.
The beam is comprised of a combination of all the individual trajectories.

tracking of a bunch of particles through a lattice so that beam divergence, blow-up,

and ultimately beam loss can be avoided. In order to describe the motion of the

particle in the x − x′ phase space plane it is necessary to eliminate the terms

which depend on the phase, φ(s). By differentiating Eq. 2.11 with respect to

s, and using the trigonometric identity sin2 θ + cos2 θ = 1, the Courant-Snyder

invariant is obtained

γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s) = ε , (2.15)

where

α(s) ≡ −β
′(s)

2
,

and γ(s) ≡ 1 + α2(s)

β(s)
.

It is also necessary to define the relative phase advance, µ, where µ(∆s) = ∆ψ(s).

The functions α(s), β(s), µ(∆(s)), and γ(s) are known as the Twiss parameters:

there are two of each parameter (one for each transverse plane) and they are used
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to characterise the accelerator lattice. These parameters will be defined in the

following section.

It is then possible to plot the phase-space of the bunch by finding the axis

intersections and maxima/minima, an example of which is shown in Fig. 2.3. It is

now clear that the emittance is the area of the phase-space ellipse such that

A = π
√
εβ ·

√
ε

β
= πε , (2.16)

where

ε2 = 〈x2〉〈x′2〉 − 〈xx′〉2 . (2.17)

Liouvilles’s Phase Space Theorem states that

“For a nondissipative Hamiltonian system, phase space density (the

area between phase space contours) is constant... for a small time

increment dt.” [26]

The condition of constant emittance is generally required by accelerators in order

to maintain beam stability. This is especially pertinent to repeating lattices, such

as the circular FFAG lattices of EMMA (see Ch. 6) and PRISM (see Sec. 3.2),

where the beam experiences the effect of any imperfections on every revolution.

The emittance of the beam is therefore considered an invariant of the particle

motion throughout the entire accelerating structure. The shape of the ellipse

is not constant, however, as it depends upon the amplitude function β(s). The

shape of the ellipse, therefore, represents the nature of the beam such that a

beam along the x′-axis represents a completely divergent beam, whereas a beam

along the x-axis represents a completely collimated beam. In modern-day circular

accelerators, where the energy is not constant during acceleration, the emittance



The Physics of Particle Accelerators 45

Figure 2.3: A phase-space ellipse showing the relation between the angular and spatial
width of a beam of particles in the x′-x plane.

is not an adiabatic invariant and is often defined according to

εN = ε×
(
γ
v

c

)
, (2.18)

where here γ is the Lorentz factor (not the previously stated Twiss parameter)

and εN is the invariant normalised emittance.

The phase-space ellipse can then be used to demonstrate the beam focusing

abilities of magnetic elements, such as that of a quadrupole magnet. As a beam

of particles passes through a magnetic lattice, a quadrupole magnet acts as a lens

which focuses in one axis of the phase-space diagram but defocuses in the other.

An example of this process can be seen in Fig. 2.4.

2.1.3 Transfer matrices and beam matching

In accelerator simulation and design it is useful to compare the tracking of a beam

statistically (as previously described) to the intrinsic magnetic properties of the

lattice. This allows direct comparison between tangible properties of the beam,

such as size, to the inherent beta functions of the lattice. In order to relate the

Twiss parameters at any one point to another the lattice is dissected into discrete

sections with matrix transformations performed for each element e.g. drift lengths,
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Figure 2.4: The effect of a quadrupole magnet of strength k on a beam of particles,
a) the emittance before the quadrupole and b) the emittance after the
quadrupole.

dipoles, quadrupoles, etc. Each of these sections can be described via a matrix

transformation, translating the initial parameters at point s1 along the accelerator

to s2. Taking the horizontal beam parameters, x and x′, as an example the matrix

transformation is described via x

x′


s2

= M(s1 � s2)

 x

x′


s1

=


√

β2
β1

(cosµ+ α1 sinµ)
√
β1β2 sinµ

−1+α1α2√
β1β2

sinµ+ α1−α2√
β1β2

cosµ
√

β2
β1

(cosµ− α2 sinµ)


 x

x′


s1

.

(2.19)

The relation described in Eq. 2.19 needs to be expanded for the three spatial

dimensions of the beam, spanning across a full 6D plane, to accurately describe

propagation [27]. This 6× 6 matrix is referred to as the R-matrix, and performs
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the transform 

x

x′

y

y′

l

δ


s2

= R(s1 � s2)



x

x′

y

y′

l

δ


s1

, (2.20)

where l is the particle location along the longitudinal length of the bunch and δ is

the relative momentum deviation from the reference particle (∆p/p).

This general form of the transfer matrix can be simplified for different bunch

configurations and magnetic elements. For example most bunches are Gaussian in

nature, with no x− y coupling, so the majority of the 36 matrix elements may be

set to zero. Likewise for different magnetic elements, simplifications are possible.

For example the effects of a quadrupole in the transverse x− x′ plane are defined

by the transfer matrix:

Rquad. =

 cos(
√
kl) sin(

√
kl)√
k

−
√
k sin(

√
kl) cos(

√
kl)

 , (2.21)

where l is the length of the quadrupole and k the normalised gradient, as given in

Tab. 2.1. Using the thin lens approximation, where 1/kl� 1, Eq. 2.21 reduces to

Rquad. =

 1 0

−1/f 1

 , (2.22)

where the focal length of the quadrupole is defined as f = 1/kl. The R-matrix

may then be constructed via a matrix multiplication from the definitions of the
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separate magnetic components, such that



x

x′

y

y′

l

δ


s2

= RNRN−1...R1



x

x′

y

y′

l

δ


s1

, (2.23)

where N represents a discrete magnetic element of any type. It is of note that

the order of multiplication is reversed, such that the first element the beam

encounters is the last to undergo matrix multiplication. Using this method it is

possible to track the motion of the beam through the lattice by simply knowing

the initial beam parameters. The shape of the beam emittance ellipse (Fig. 2.3)

may therefore also be tracked in this way.

The evolution of the optical functions through the magnet structure may be

calculated using the matrix equations derived above. In addition to this, it is

usually necessary to tune the optical functions to specific values at the end of

the lattice, if not before. The procedure of varying magnet strengths to regulate

these parameters, and so retain the beam within the magnetic aperture, is called

matching of beam optics and becomes increasingly pertinent in structures with

a repeating lattice, i.e. circular devices, where small fluctuations can be rapidly

magnified in successive ‘turns’.

Beam matching can be performed across multiple spatial and angular dimen-

sions. Take for example the beta functions in the transverse x-plane at a point s

along the accelerator. It is necessary to know the relation

β(s) = f(kj) , (2.24)
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where kj is the strength of the jth quadrupole. f(kj) may be any non-linear

function so, therefore, it is not possible to find a general analytic solution to

this relation. The function must therefore be expanded and solved iteratively.

The solution will not be exact as all the higher order terms are neglected, but in

general it will produce a better value than initially. This process may be repeated

for all the optical parameters found in Tab. 2.2.

This type of matrix multiplication method is that utilised by the methodical

accelerator design (MAD) [28] software package. It is a cornerstone of all accelerator

simulation codes and one used to benchmark and characterise almost all modern

accelerators, including EMMA, as detailed in Ch. 6.

2.1.4 Dispersion

The motion of particles with ideal momentum (i.e. reference momentum) has

been described in previous chapters. In reality however, particles in a bunch have

a momentum range relative to that of the reference particle and will therefore

not behave in such a well-defined manner. Position and angle deviations are

compensated for by quadrupoles but deviations in momentum are far more

difficult to correct.

These dispersive deviations arise from a number of different causes e.g. energy

loss from synchrotron radiation, but all result in a spreading of the momentum

from that of the reference particle. This deviation is described by ∆p/p.

The momentum deviation from that of the reference particle only has a

significant effect on the trajectory of the particle if 1/R 6= 0, and so it is only

necessary to solve the equations of motion inside the bending magnets (i.e. when

k = 0). The transverse displacement, ∆x, due to the momentum spread is given
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optical function horizontal vertical

beta function βx(s) βy(s)

gradient of the beta function αx(s) αy(s)

betatron phase ψx(s) ψy(s)

dispersion Dx(s)

gradient of the dispersion D′x(s)

Table 2.2: Optical functions which can be matched by varying quadrupole strengths
in a magnetic lattice.

by

∆x = xg − x(s) = D(s)
∆p

p
, (2.25)

where x(s) is the transverse position that a particle of nominal momentum would

have and xg is the transverse position of the off-momentum particle. The dispersion

function, D(s), can be calculated from the lattice via a matrix-transformation

method analogous to that used for the Twiss parameters [23]. It is computed

independently for x and y.

The derivative of the Dispersion function, D′(s), may also be calculated in a

similar way. In this case the transverse position is substituted by the normalised

transverse velocity, v/c.

2.2 Combined focusing and steering elements

2.2.1 Multi-quadrupole cells

An accelerator is composed of a number of discrete sections, each of which is

designed to have a specific effect on the beam. Accelerators used to be built

solely with dipoles, with the beam confined to a desired trajectory with a dipole’s

inherent weak focusing. The weak focusing of a dipole field, outlined in Sec. 2.1.1,
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is insufficient to provide the required focusing necessary to keep a modern, high-

energy beam restricted to a desired orbit however. Quadrupoles, utilising strong

focusing, are therefore required.

A quadrupole consists of four poles with hyperbolic surfaces, arranged with

alternating polarity North-South-North-South, as shown in Fig. 2.5. This arrange-

ment of poles creates a field that disappears along the beam axis but increases

linearly with transverse distance, such that

Bx ∝ y , By ∝ x . (2.26)

The magnet strength can also be expressed in terms of the normalised gradient,

k, as given in Tab. 2.1. This gives rise to a dipole field perpendicular to the beam

axis, the result being that particles further off-axis are steered more strongly

back towards the centre of the beam-pipe. This results in an overall focusing

effect on the beam in one of the transverse planes. However, this focusing in

the horizontal plane, for example, leads to a defocusing in the vertical plane. It

is therefore necessary to have a minimum of two quadrupoles per magnetic cell,

rotated through 90◦ relative to each other. This basic magnetic arrangement is

known as a FODO cell, where the O refers to a drift length between the two

magnetic elements.

FODO cells are primarily included in a magnetic lattice as beam focusing

tools. However, it is possible for the beam to see a dipole field by implementing

the quadrupoles off-axis. Utilising the nature of quadrupoles to steer off-axis

particles, a beam may be transversely bent by pushing the beam further off-axis.

This is achieved by a physical shift in the quadrupole position. This type of

off-axis FODO lattice design is a recent addition to the field of accelerator design,

with a successful proof-of-principle design recently commissioned at Daresbury

Laboratory, UK. The performance of this accelerator is analysed in Ch. 6.
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Figure 2.5: The magnet pole arrangement for a quadrupole magnet.

2.2.2 Pancake solenoids

Solenoidal fields are important in beam propagation as they create a uniform

magnetic field within a closed volume. Unlike quadrupoles, the magnetic field

strength is independent of transverse position within the bounds of the solenoid

so a bunch will travel along the longitudinal axis without divergence. However, if

a beam enters the solenoid off-axis then it experiences a kick from the Bz field.

The bunch will then experience an inherent focusing effect from the solenoid,

propagating along the beam axis with a transverse helical trajectory. The helical

radius is dependent on the longitudinal magnetic field, such that

Bz ∝ r . (2.27)

This linear dependence of the integrated radial fields on the distance r from

the axis constitutes linear focusing capabilities of solenoidal fringe fields, which

is used at proton targets such as those required by the COMET experiment. An

electromagnetic cascade, seemingly emerging from a point like source into a large

solid angle, may be captured by placing the target in centre of a solenoid with a
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Figure 2.6: The magnetic field and pole configuration of a series of solenoid pancakes.
The crosses represent the field pointing into the page and the dots the
reverse.

large magnetic field. Due to the nature of the solenoidal field the radial motion

of the cascade couples with the longitudinal field to transfer the radial particle

momentum into azimuthal momentum. At the end of the solenoid, the azimuthal

motion couples with the radial field components of the fringe field to transfer

azimuthal momentum into longitudinal momentum. In this scenario a divergent

beam emerging from a small source area is focused into a quasi-parallel beam of

larger cross section.

As well as utilising the magnetic nature of solenoids for particle capture they

are also considered for particle transport and momentum selection. One such

design is based on an arrangement of thin coll pancakes, electrically and thermally

connected in series along a curve. By rotating these coils in turn to form a toroid,

it is possible to make the beam dispersive. This leads to a drift in the centre of

the helical trajectory towards the perpendicular direction to the curved solenoid

plane. The magnitude of drift, D, being given by

D =
1

qB

( s
R

) p2
L + 1

2
p2
T

pL
, (2.28)

=
1

qB

( s
R

) p
2

(
cos θ +

1

cos θ

)
, (2.29)

where q is the electric charge of the particle, B is the magnetic field at the axis,

and s and R are the path length and the radius of curvature of the curved solenoid
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respectively. pL and pT are the longitudinal and transverse momenta respectively,

and θ is the pitch angle of the helical trajectory.

A compensatory dipole field is therefore required to correct for this drift and

keep the helical trajectories on orbit. This is achieved by tilting the solenoid

pancakes to create a vertical dipole field, the magnitude of which is described by

Bcomp =
1

qR

p0

2

(
cos θ0 +

1

cos θ0

)
, (2.30)

where the trajectories of particles with momentum p0 and pitch angle θ0 are

corrected to be on-axis. A visualisation of this tilt in the solenoid pancakes can

be seen in Fig. 2.7, thus producing a vertical dipole field.

Figure 2.7: A visualisation of the curved, tilted muon transport channel of the COMET
beamline demonstrating the tilt used to produce a vertical dipole field.
The tilt angle shown is exaggerated for the purpose of visualisation with
the angle used in simulation set to 1.43o.

This novel beamline structure is the key aspect in beam transport for high

dispersive beams e.g. proton target cascades, for many cLFV experiments. The

necessity, and relevance, of these pancake solenoid sections in such experiments is

contextualised in Ch. 3 with the COMET experiment.



Chapter 3

COMET

The experimental search for charged lepton violation (cLFV) in the muon channel

began in 1947 and has been a vibrant area of research for over 60 years. Ob-

servations of cLFV in the muon channel have primarily been sought in three

processes. The 90% confidence level on the upper limit of the branching ratios for

the three processes over the past 60 years is shown in Fig. 1.5. Almost 10 orders

of magnitude improvement in the experimental sensitivity have been achieved.

Two major experiments, Mu2e [29] and COMET [30], are now in the final

design phase and are seeking to extend the cLFV search by at least four orders of

magnitude in the µN � eN channel.

The COherent Muon to Electron Transition (COMET) collaboration aims to

observe cLFV or push the 90% confidence level limit on cLFV BR to below 10−16.

In subsequent sections sensitivity refers to the 90% confidence level (CL) on the

upper limit of the BR unless explicitly stated otherwise. The collaboration is

also working on a subsequent experiment (PRISM) which aims to increase the

sensitivity to cLFV by a factor of 100 to 10−18. This will be achieved by increasing

the distance over which pions can decay and utilising the principle of phase

rotation. The PRISM experiment will be discussed further in Sec. 3.2.

55
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The aim of the COMET experiment is to search for the coherent neutrinoless

conversion of muons to electrons in a muonic atom (µ � e conversion), µN � eN ,

at a sensitivity of 10−16. The proposed location of the experiment is the Japanese

Proton Accelerator Research Complex (J-PARC), in Tokai, Japan. As described

in Sec. 1.4, a muonic atom can undergo a number of processes after cascading to

its 1s ground state:

• Decay-in-orbit (µ− � e−νµν̄e), where the e− energy is similar to the Michel

decay of a free muon but with a small, but significant, boost from nuclear

recoil.

• Incoherent capture by a nucleus of mass number A and atomic number Z,

such that µ− +N(A,Z) � νµ +N ′(A,Z − 1)+ capture products.

• The exotic coherent conversion of a muon to an electron, µ− +N(A,Z) �

e− +N(A,Z), under investigation by the COMET experiment.

All the nucleons participate in the latter process. As such the rate of the conversion

process is enhanced by a factor of Z, and the rate of coherent conversion to

incoherent capture is enhanced by a factor approximately equal to the number of

nucleons.

This process of creating muonic atoms, through stopping incident muons in a

solid target and allowing them to cascade to the 1s ground state, may be optimised

by altering the design of the target i.e. the Z number or target dimensions. Along

with mitigating background, optimising this stopping process is the most important

experimental aspect towards providing as clean and distinct a signal as possible.

These studies have been performed in simulation and are detailed in Sec. 3.1.2.

The single event signature of coherent µ � e conversion is a mono-energetic

electron emitted from the conversion. This signal electron has an energy ap-

proximately equal to the rest mass of the muon, with an additional energy shift

determined by the target material used to stop and capture the muon. This energy

is defined by the approximation Eµe ≈ mµ − Bµ, where mµ is the mass of the
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Figure 3.1: A schematic of the proposed COMET experiment, with elements of interest
highlighted and detailed.

muon in its rest frame and Bµ is the binding energy of the muon in the 1s state.

This process provides an attractive proposition for the potential improvement

in sensitivity by utilising a high muon rate without suffering from accidental,

coincident background, that limits the sensitivity of cLFV searches through the

µ � eee and µ � eγ channels.

The main source of background in the search for µ � e conversions arises

from decay-in-orbit (DIO) electrons. The momentum spectrum of DIO extends

beyond the Michel edge at mµ/2 due to a boost from the nuclear recoil, such that

DIO electrons can be produced with energies very similar to those expected from
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the neutrinoless µ � e conversion. In Sec. 3.1.1 the implementation of a recent

calculation of the DIO spectrum into the COMET simulation is described.

There are several other potential sources of beam-related background in the

signal region, such as high momentum muons decaying in flight or radiative

muon/pion capture. In order to reach the proposed sensitivity of COMET,

O(10, 000) times better than that of current experimental limits, it has been

necessary to introduce several design changes compared to previous experiments.

These are described in the following sections. A schematic for the proposed

beamline can be found in Fig. 3.1, with aspects highlighted that will be described

in subsequent sections.

High intensity muon source

The total number of stopped muons needed is of the order 1018 to achieve an

experimental sensitivity of 10−16. Therefore, a high intensity muon beamline has

to be constructed. Currently the most intense muon beamline is at PSI where

108 muons per second are produced using a number of proton targets to multiply

muon yield, and using conventional magnets for capture and steering. For COMET

to achieve the desired sensitivity 100 times that of PSI at least 1010 muons per

second are required. This muon flux requires a new pion capture strategy.

Not only are higher fluxes required, but the capture of low momentum particles

is essential: pions in order to decay within the decay length and muons in order

to be stopped by the muon stopping target. The majority of particles created

from an 8 GeV proton beam incident on a graphite target are forward moving

with a mean momentum of 300 MeV/c. The backward moving pions have a

mean momentum of approximately 120 MeV/c. The momentum spectra for both

directions are shown in Fig. 3.2.

For muons to be stopped in the stopping target with high efficiency their

momentum needs to be less than 40 MeV/c. The majority of backward moving
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Figure 3.2: Total momentum distributions for both forward and backward moving π−

with respect to the proton stopping target. The data was produced by
MARS, firing an 8 GeV proton beam on a cylindrical tungsten target.

pions satisfy this but the yield can be substantially increased by reversing the

direction of the forward pions using a strong, graded magnetic field. This was

proposed by Djilkibaev and Lobashev [31] in the 1980s. The idea was recently

adopted for muon collider and neutrino factory R&D and studied for pion capture

over a large solid angle. The superconducting pion capture solenoid system is

essential for exploiting megawatt beams, with approx. 8×1020 protons of 8 GeV

necessary to achieve the required number of muons. This type of high luminosity

beam can now be produced by the intense proton sources at FNAL and J-PARC,

with Monte Carlo (MC) studies predicting an O(1000) increase in yield on previous

methods. The MuSIC experiment in Osaka, Japan represents a real study for
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this type of muon production, and initial results from this experiment will be

described in Ch. 5.

Pulsed proton beam

There are several potential sources of electron background events in the energy

region around 100 MeV, where the µ � e conversion signal is expected. One

of these is prompt electrons produced from the initial proton target interaction.

They are typically produced over a time interval of approximately 250 ns. In

order to suppress the occurrence of prompt beam-related background events, a

pulsed proton beam is proposed. Since muons in muonic atoms have lifetimes of

approx. 1 µs, a pulsed beam with short beam buckets, relative to muonic atomic

lifetimes, would allow the veto of prompt beam background events by requiring

the measurements to be performed in a delayed time window. An example of the

time structure for the COMET proton beam can be seen in Fig. 3.3.

Pion and muon transport solenoid

The pions produced by the proton interaction with the fixed target will inevitably

decay to muons. These muons are then transported with an estimated efficiency

of 40% through a superconducting solenoid magnet system. Muons with high

momentum (p > 70 MeV/c) decay to produce electron background events in the

signal energy region of approximately 100 MeV and, therefore, must be eliminated

with the use of curved solenoids. The centres of the helical motion of the beam

particles (primarily muons and pions at this initial point in the beamline) drift

perpendicular to the plane in which their paths are curved, and the magnitude of

the drift is proportional to their momentum. By using this effect and by placing

suitable collimators at appropriate locations, beam particles of high momentum

can be eliminated. A full description of these ‘pancake solenoids’ can be found in

Sec. 2.2.2.
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Figure 3.3: The time structure of the primary proton pulses, backgrounds, and signal
for the COMET experiment.

Curved spectrometer solenoid

In order to reject electron background events and reduce the probability of false-

tracking owing to high counting rates, a curved solenoid spectrometer is used

to select electrons on the basis of their momenta. The principle of momentum

selection is the same as that used in the transport system. However, in the

spectrometer electrons of low momenta (p < 60 MeV/c), mostly coming from

muon DIO, are removed. The tracking detector rate, composed of DIO electrons,

and the secondary electrons from scattering, is expected to be less than 1 MHz.

This is almost two orders of magnitude less than the expected detector rate at

other proposed LFV experiments.

The curved electron spectrometer also removes high momentum protons which

can be produced as a consequence of the nuclear capture process. These protons
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can swamp the tracker both in terms of rate and because being highly ionising

they can ‘deaden’ the tracker response for a short period.

3.1 COMET G4

The COMET experiment is currently in the R&D phase, with an initial Phase-I

(see Ch. 4) run proposed for 2017. Comprehensive MC simulations are therefore

required to model the physics effects of the magnetic lattice and particle interac-

tions. This is necessary for the manufacturing of the experimental components, a

robust estimation of background and signal rates, and optimisation of detector

design.

The COMET software framework, COMET G4, is an integrated package, com-

prising both GEANT4 [32] and MARS [33] components. MARS is a hadron production

code that simulates the interaction of hadron beams with fixed targets, in this case

a high intensity proton beam with a graphite target. A list of particle 4-vectors

from the MARS simulation is stored in a file and this is read in by the GEANT4

simulation. The GEANT4 code tracks the particles and models their interactions

from a point 3 cm downstream of the graphite target. In the case of COMET

(and MuSIC) the pion capture system is designed to select backwards propagating

particles which due to their lower momentum are more likely to stop downstream

in the target region. A proof-of-principle prototype superconducting pion capture

solenoid (as well as the first 36◦ of bend section) has already been constructed

at Osaka University, Japan for the MuSIC experiment. A photograph of this,

with highlighted beam components, can be seen in Fig. 3.4. This enhancement

in backward going low momentum pions and muons has been demonstrated in

simulation. The MuSIC experiment has been constructed in Osaka to establish

the veracity of these simulations and to improve them.

The beamline is modelled in GEANT4 for its ability to simulate both magnetic

elements and physical interactions. The MARS output files are automatically parsed
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Figure 3.4: A photograph taken in April 2010 showing the MuSIC superconducting
pion capture solenoid and the first 36◦ section of the pion transport section.

into this portion of the code, then tracked through the beamline on a particle by

particle basis. The particles travel on a helical trajectory due to the magnetic field

of the pancake solenoids, with momentum selection occurring in all bend sections

via an induced dipole field. Due to this selection, and decay-in-flight, particles

interact with beamline elements (beam collimators, the magnets themselves, etc.)

where physical processes such as inelastic scattering and bremsstrahlung need

to be accurately simulated; GEANT4 has an extensive set of routines, largely

experimentally verified, ideally lending itself to this type of framework.

3.1.1 Software development

The COMET G4 software has evolved substantially over the past two years and

continues to be developed to provide the best possible simulation of the experiment
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so that robust design choices can be made. This is informed by experimental results

and new theoretical developments. In the following sections the implementation of

improved magnetic field maps and DIO simulation are described. Fig. 3.5 shows a

computer-aided design (CAD) of the latest COMET beamline, detailing solenoid

lengths and radii, as well as the direction of the proton beam and major beamline

elements such as the proton target and stopping target region.

Magnetic field implementation

The magnetic field produced by the COMET magnetic lattice is a novel, and thus,

crucial aspect of the experiment. Most simulation packages, COMET G4 included,

have the ability to generate magnetic fields of some description. The original

form of the package used GEANT4-generated fields, with basic approximations for

the stopping target region (i.e. the second straight section in Fig. 3.5). These

approximations were simple, linear, hard-edged models and thus not adequate to

model the complex bend sections of COMET, combining both solenoid and dipole

fields. For this reason a G4beamline [34] simulation was created to accurately

navigate the particles to this second straight section. G4beamline is a single-

particle tracking toolkit for GEANT4, specifically designed for the simulation of

beamlines. Once this tracking was complete the distribution was parsed into the

GEANT4 model to simulate particle interactions with the stopping target.

As mentioned, G4beamline is specifically designed to model magnetic lattices

and has much more sophisticated approximations of magnetic elements which com-

plement GEANT4’s intrinsic physics models. Since G4beamline is based on GEANT4

functionality, the code used to approximate magnetic fields was extracted from

G4beamline and rewritten as a plugin for COMET G4 to define a single simulation

framework.

The proposed COMET beamline is to be constructed in a stepwise manner,

starting upstream with the pion capture solenoid and ending downstream with the
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Figure 3.5: A CAD of the latest COMET beamline. Solenoid lengths, thicknesses,
and radii, are shown. The direction of the proton beam as well as major
beamline elements, such as the proton target and stopping target region,
are shown.
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Figure 3.6: Evolution of the magnetic field for the straight sections containing a) the
pion capture solenoid, and b) the stopping target region. Both plots show
the total magnetic field along the beam axis, r = 0.
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detector solenoid. As part of the procurement process for the magnetic elements of

the experiment Toshiba have developed a precise simulation of the magnetic field

in TOSCA [35] based on the exact materials and mechanical design of the magnetic

beamline. They have produced a CAD file of the experimental layout (shown in

Fig. 3.5) as well as a series of field maps for the separate solenoid sections. These

field maps represent the most accurate field model for the intended beamline

design and, as such, had to be incorporated into the COMET G4 framework. The

field maps for the individual solenoids are concatenated, with the co-ordinate

systems centred such that the origin is consistent for all the maps i.e. the proton

target in the pion capture solenoid section. The G4beamline plugin was altered

such that field maps could be parsed in a Cartesian co-ordinate format.

Fig. 3.6 shows the three magnetic field implementations: the simplified GEANT4

model, G4beamline and the most sophisticated Toshiba field map modelled using

TOSCA. The fields are shown on-axis, with r = 0. There is no GEANT4 magnetic

field representation for the first straight section as the pion capture solenoid was

initially modelled using MARS. The solenoid lengths, and therefore the section

lengths, have been optimised over time to provide the highest stopped muon yield.

For this reason the maps are plotted around constant elements, denoted by a

vertical dashed line: the centre of the proton target for the first section and the

geometric centre of the stopping target for the second.

Fig. 3.6 a) shows the magnetic field strength in the first straight section,

comprising the superconducting pion capture solenoid and matching solenoids.

The magnetic field strength reaches an apex at the position of the proton target

in order to maximise the capture of pions and muons (typically p < 80 MeV/c).

Pions are emitted into a half hemisphere from the rear of the target and can be

captured within a transverse momentum threshold,

pmax
T ( GeV/c) = 0.3×B(T)× R(m)

2
, (3.1)
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where B is the magnetic field strength and R is the inner radius of the solenoid

bore.

Every implementation of the magnetic field in both straight sections show a

graded magnetic field from high to low field strength. This gradient is implemented

to mitigate the dispersion created by the isotropic particle cascade from the proton

stopping target and from momentum selection in the bend sections. Liouville’s

phase space theorem (see Sec. 2.1.2) states that a volume in phase space (in this

case the emittance) remains constant in a non-dissipative system. Knowing this,

Eq. 2.18 may be manipulated to represent the proportionality

ε ∝ p2
T

B
, (3.2)

where pT is the transverse momentum and B the magnetic field. From this relation

it is evident that if the magnetic field is reduced by one third then the transverse

momentum must also decrease by a factor of
√

3 to maintain constant emittance.

As the transverse momentum is related to the angular divergence of the beam

through the relation pT = p sinφ, a reduction in pT will lead to a reduction in

angular divergence. This is the principle of adiabatic transition and results in a

‘collimation’ of the beam across the two straight sections.

Thus the design of the solenoids in the stopping target region is intended to:

• maximise the geometrical acceptance for conversion electrons emitted from

the stopping target disks, reflecting backwards emitted electrons using a

magnetic mirroring technique, and

• maximise the transmission efficiency for conversion electrons by constraining

their helical trajectories as they enter the electron transport solenoid.

The acceptance of the signal electrons is described by the formula

εacc =
1− cos θcrit

2
, (3.3)
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where

θcrit = π − sin−1

(√
Btarget

Bin

)
. (3.4)

Here, Btarget and Bin are the magnetic field strengths at and before the muon

stopping target respectively. It is evident that the smaller the ratio between these

strengths, the larger the acceptance will be, hence a negative magnetic gradient is

used across this region.

The TOSCA field map is believed to be the most accurate but increasing the

sophistication of the fields is redundant if their functionality is not also increased.

Another definitive test of their effectiveness is the number of stopped muons per

proton for each field map. Tab. 3.1 illustrates an increase in the yield, as desired.

Both of these factors indicate the efficacy of an increase in field map sophistication.

Decay in orbit calculations

As mentioned at the beginning of Ch. 3, DIO electrons provide the main source

of intrinsic physics background in the signal region. Muon DIO is a Michel decay

(µ− � e−νµν̄e) of a muon bound under the Coulomb potential in the 1s state of

a muonic atom. The decay electron may be boosted beyond the end point of a

classical Michel decay (approx. 52.8 MeV), extending to the momentum region

of the µ � e conversion signal. The end point of this spectrum depends on the

Field type N(µ−/p+)

GEANT4 0.0020 ± 0.0001

G4beamline 0.0023 ± 0.0001

TOSCA 0.0024 ± 0.0001

Table 3.1: Number of stopped muons per proton for the evolving magnetic field
simulations used in the COMET G4 software framework.
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binding energy in the ground state and so depends on the element forming the

muonic atom. A larger binding energy (higher Z) shifts the endpoint to a lower

energy.

The DIO spectrum for gold muonic atoms, as measured by the SINDRUM

experiment, was shown in Fig. 1.7. The end point of this spectrum is at a

momentum of approx. 93 MeV/c, whereas the end point for aluminium (one

suggested material for the COMET stopping target) is at approximately 105 MeV/c,

demonstrating the far weaker binding energy than gold.

DIO occurs within the Coulomb potential of the nucleus. For this reason the

nucleus recoils, sharing the final state momenta to conserve momentum. As a result,

the maximum energy of DIO electrons extends to the energy of µ � e conversion

electrons. However, the intensity decreases rapidly with increasing electron energy,

with the spectrum shape known to be approximated by (Eµ−e − Ee)5 [36]. DIO

electrons may therefore be suppressed by raising the lower energy threshold of the

µ � e signal region. This comes at a cost of a reduction in signal acceptance.

The DIO spectrum has been measured and shown to agree well with theory

up to energies of approx. 70 MeV [37]. Since the number of DIO events falls

rapidly with energy and existing muon sources do not provide sufficient muons

it has not been possible to measure the DIO spectra above 70 MeV. Therefore

simulations are reliant on purely theoretical models. Watanabe et al. [38] derived

such a model for a number of elements, valid from 1− 100 MeV, with the result

for aluminium shown in Fig. 3.7.

The signal region for aluminium extends beyond the limit of the Watanabe

calculation. For this reason another relation is required to model the DIO spectrum

in the signal region. Shanker [36] derived an analytical form for Ee > 90 MeV,

N(Ee)dEe =

(
Ee
mµ

)2(
δ1

mµ

)5 [
D + E

(
δ1

mµ

)
+ F

(
δ

mµ

)]
dEe , (3.5)
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Figure 3.7: The analytical Watanabe DIO spectrum for aluminium. The calculation
is only valid to 100 MeV.

where mµ is the mass of the muon, δ = Emax − Ee, and δ1 = Eµ − Ee − Erec.

Emax is the end-point of the DIO spectrum, Eµ = Emax + E2
max/(2MA), and

Erec = E2
e/(2MA) is the nuclear recoil energy. MA is the mass of the recoiling

nucleus. The coefficients D, E, and F are functions of the atomic number of the

nucleus. They were calculated using a linear interpolation between the calculations

for magnesium (Z = 12) and sulphur (Z = 16): values of D = 0.388 × 10−21,

E = 1.03× 10−21, and F = 2.27× 10−21 are used for aluminium.

Both the Watanabe and Shanker calculations are valid between 90 < Ee <

100 MeV. The gradients are most similar at 98.7 MeV so this is chosen as the

transition point between the two calculations. The Shanker formula was then scaled

at this energy in order to minimise the difference between the two calculations.
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The result of this matching can be found in Fig. 3.8. The entire Shanker formula is

then multiplied by this scaling factor to create a smooth transition at the crossover

energy, but also to give an accurate description of the DIO spectrum in the signal

region. The Watanabe-Shanker DIO spectrum is shown in Fig. 3.9.

The default stopping target material in COMET is aluminium, modelled by

the Watanabe-Shanker relation up to this point. However, the target material

is a property under consideration in the optimisation of the stopping target and

therefore DIO spectra for different materials need to be incorporated into the

COMET G4 code. The Watanabe spectra for a range of materials [38] is shown in

Fig. 3.10.

Another candidate for the stopping target material is titanium, which has a

similar muonic lifetime to aluminium but also has an increased branching ratio for

Energy [MeV]
98.0 98.2 98.4 98.6 98.8 99.0 99.2 99.4

]
-1

N
(E

) [
M

eV

-1210

Watanabe

Shanker

Figure 3.8: The DIO spectrum in the transition region between the Watanabe and
Shanker calculations.
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Figure 3.9: The combined Watanabe-Shanker DIO spectrum a) across the full allowed
electron energy range, and b) in the µ− e signal region.
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Figure 3.10: Watanabe energy spectra for a range of elements producing DIO electrons.

the conversion process (see Tab. 3.2). The Watanabe spectrum for this material is

needed in order to match to the Shanker spectrum at a suitable crossover energy.

However, the range of Watanabe spectra [38] do not include titanium. The

spectrum for titanium (Z = 22) is therefore calculated by linearly interpolating

between those given for calcium (Z = 20) and iron (Z = 26). Similarly, the

element-dependent coefficients required by Eq. 3.6 are also linearly interpolated

between the two elements expounding this region. The same method may then be

applied to titanium, as for aluminium, to achieve an approximation of the DIO

spectrum at its endpoint.

The equivalent spectra for titanium, compared to those of aluminium in Fig. 3.9,

can be seen in Fig. 3.11. The initial differences in the Watanabe spectrum are

highlighted in the first plot, up to Ee = 98.7 MeV where the scaled Shanker plot

takes over. The second plot is the more relevant of the two, highlighting the level
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Figure 3.11: The combined Watanabe-Shanker DIO spectrum for both aluminium
and titanium, a) across the entire allowed electron energy range, and b)
in the µ − e signal region. The difference in end points highlights the
different binding energies for the two materials.
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of DIO in the signal region for the different target materials. The endpoints of

the spectra differ primarily due to the higher binding energy in the 1s orbital of

titanium. However, the shift in endpoint due to the differing material also applies

to the signal conversion electrons so the more important feature is how steeply

the DIO spectrum falls off in the signal region. Fig. 3.11 shows a steeper gradient

for titanium, decreasing the integrated background in the signal region for this

material. The sensitivity to the conversion process for aluminium versus titanium

is qualitatively described in Sec. 3.1.2.

Since the completion of this work a single calculation valid across the whole

momentum range, and incorporating nuclear recoil, was published [39]. A com-

parison between this relation and the Watanabe-Shanker spectrum in the signal

region for µ � e conversion is shown in Fig. 3.12. As can be seen the relations are

similar, converging towards their endpoints. The differences between these spectra

are not expected to alter the qualitative conclusions in the following section as

any minor discrepancies will be lost due to smearing from detector resolution,

etc. In Sec. 3.1.2 a measurement window of 103.5− 105.2 MeV is defined. In this

region the two DIO definitions agree to within 2%.

3.1.2 Stopping target optimisation

The MARS code is used to simulate the cascade of particles produced by 100× 106

protons incident on the proton stopping target. A solid angle of 180o behind the

proton target is used to select the backwards moving particles. Of these selected

particles there are approximately 3.1× 106 µ− and π−. This distribution is then

parsed into COMET G4 where it is tracked around the first 180o bent solenoid and

through the straight section until the stopping target section. The number of

muons at this point is approx. 240× 103, giving a transmission efficiency of 0.0024

µ− per proton.
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Figure 3.12: Comparison between the Watanabe-Shanker energy spectrum for DIO
electrons and the new Czarnecki-Marciano relation.

The COMET stopping target is designed to stop as many of these µ− and

provide an ideal medium for those muons to convert to signal electrons. For that

reason the stopping target design must be optimised to:

• maximise stopped muons,

• minimise energy loss of conversion electrons,

• minimise the number of electrons produced by muon decay-in-orbit (DIO).

These constraints are at some level mutually exclusive as using more material

stops more muons but also increases the energy loss for conversion electrons

and the smearing. The default stopping target design is taken from the MECO

experiment [40], composed of 17 aluminium disks of 200 µm thickness, separated
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by 50 mm. The target parameters considered for optimisation are summarised in

Tab. 3.3.

Fig. 3.13 [41] demonstrates the stopping power of copper as a function of the

momentum of incident muons. The majority of µ− and π− produced via the

interaction of the 8 GeV proton beam and tungsten target are high momentum

(p > 300 MeV/c), as demonstrated by the results of MARS simulations in Fig. 3.2.

Muons are close to minimum ionising at this momenta, and so would only be

stopped by a large amount of material. Muons with p < 45 MeV/c lose energy

far more rapidly and can be stopped by a thin material. It is thus essential to

ensure that the yield of p < 45 MeV/c is maximised.

The effect of changing the stopping target parameters in Tab. 3.3 can be

significant. For example, Fig. 3.14 shows the effect on the electron momentum by

reducing the disk spacing to zero. The stopping target has the same amount of

material but, as the signal electrons are emitted isotropically from the muonic

atoms, the lack of spacing between the disks prevents the signal from escaping

the stopping target volume without interacting with further material. Despite

the number of electrons in the signal region being approximately equal, the peak

height is drastically reduced and shifted down in momentum.

The metric against which the stopping target will be optimised is the fraction

of muons stopped by the target compared to the total incident on the target,

integrated over the momentum range 0 < p < 90 MeV/c. An example of this can

parameter value

disk radius 100 mm

disk thickness 200 µm

number of disks 17

spacing 50 mm

material aluminium

Table 3.3: Default parameters of the muon stopping target.
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Figure 3.13: Stopping power (−dE/dx) for muons as a function of βγ = p/Mc in cop-
per over nine orders of magnitude in momentum. The muon momentum
range expected at the COMET stopping target is 0− 90 MeV/c [41].

be seen in Fig. 3.15, with the green histogram displaying the momentum of the

muons stopped by the target. This case gives a stopping efficiency of 0.46 for the

default stopping target configuration. Error bars are included on this plot but are

too small to observe due to the high statistics involved. This is also the case for

Figs. 3.17 and 3.20 as the same initial data set was used for all simulations.

As mentioned, it is not enough to simply stop the muons but also ensure

that the resulting signal electrons do not encounter enough further material to

significantly reduce their momenta below the DIO upper edge i.e. approximately

104.0 MeV/c for aluminium at a branching ratio of 10−16. Energy loss smears

both the signal and background events and ultimately the metric of interest in

optimising the stopping target is the highest possible sensitivity to the conversion

process i.e. the enhancement of signal over background.

Several different ways have been used to quantify the sensitivity of a search,

which makes it sometimes difficult to compare them. In particular, two different
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Figure 3.14: µ-e signal for the default COMET stopping target configuration and for
the same configuration but with zero spacing between the disks. A beam
of 10000 µ− (of p = 40 MeV/c) are simulated in each case.

sensitivity figures are often quoted, one that is relative to the potential for

actually making a discovery, and another to characterise how strong a constraint

is imposed on the unknown phenomena if no evidence is found for a deviation

from the standard theory. Correct statistical practice requires a decision (before

the experiment occurs) on appropriate values for the significance level α and

confidence level CL. Assuming their values are given the region of the parameters

m for which the power of the chosen test is greater or equal to the confidence

level chosen for the limits in the case of no discovery is,

1− βα(m) > CL , (3.6)
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Figure 3.15: Momentum distribution of the muons incident on the stopping target.
The momentum spectrum of those stopped is also shown, with a stopping
efficiency of 0.46. Error bars are included on this plot but are too small
to observe due to the high statistics involved.

where 1− β is the power function describing the probability that a discovery will

be claimed.

In particle physics a single-event sensitivity is typically quoted to give an

estimated sensitivity of the threshold at which a signal may become apparent.

This is for the case where background is zero so may be used for a discovery but

not as an exclusion limit. Therefore the 90% confidence level upper limit on the

branching ratio is typically quoted as a statement of exclusion when no significant

signal is seen. A single metric is required combining both information, however.

Such a metric has been proposed by Punzi [42] whereby a single BR is quoted

at which a signal is established with 90% confidence with 3σ significance or is
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excluded at 90% confidence (BR[Punzi]). This naturally takes into account signal

and background so is therefore more appropriate than a single-event sensitivity

with large backgrounds.

The BR[Punzi] is evaluated using 3 × 1018 muons incident on the stopping

target which is the value expected for two years COMET running [43]. Backgrounds

from radiative muon and pion capture, neutrons, and cosmic rays are neglected in

this analysis since DIO is the dominant background. An event selection efficiency

of 0.096 [43] is assumed which includes the effects of timing cuts, trigger and

reconstruction efficiency and the acceptance of the electron spectrometer and

detectors. The conversion and DIO electrons are smeared with a series of Gaussians

and exponential decays to simulate the effects of energy loss from interactions with

the stopping target and detectors. Timing cuts are also implemented to remove

prompt background: transit times to the muon stopping target, time position in

the pulse, muonic atom lifetime, etc. have all been simulated. The minimum time

at which signals will be recorded is particularly sensitive to a change in target

material, with the relative muonic lifetimes for a range of materials detailed in

Tab. 3.2.

Fig. 3.16 is a reconstruction of the e− momentum entering the tracker. De-

pending on their momentum, the signal and background may interact with further

material in the stopping target region, leading to energy loss. The electrons then

traverse the curved electron spectrometer solenoid and detector solenoid. The

detector contains an electron calorimeter and tracker, both providing media of

interaction. The resolution effects from the tracker will smear the electron energy,

either up or down. A smearing with an RMS of 150 keV is added to each DIO and

signal event to account for the tracker resolution [43]. This information, and the

other values necessary to calculate the BR[Punzi], can be found in Tab. 3.4. This

yields a BR[Punzi] of 5.9× 10−16, 1000 times better than achieved by SINDRUM-II.
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Figure 3.16: The expected µ− e conversion and DIO background results in the signal
region, with the default stopping target configuration, a) as a raw output
from the COMET G4 code, and b) with a Gaussian smear due to a tracker
resolution of 150 keV. A BR of 10−16 used in both plots.
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total number of protons 8.5× 1020

beam power 56 kW

proton energy 8 GeV

total running time 2.0× 107 s

mean transit time to target 165.8 ns

mean transit time to detector 149.6 ns

timing window 1000 ns

detector resolution 150 keV

N stopped
µ−/p 0.0024

N stopped
π−/p 3.3× 10−7

µ− stopping efficiency 0.46

total number of stopped muons 2.0× 1018

signal region 103.5 < p < 105.2 MeV/c

Table 3.4: Breakdown of yields, timing cuts, and efficiencies expected for COMET
with the default stopping target configuration.

The virtual monitors within the target section are used to quantify the evolution

of the beam profile, for both the incident muon beam and resultant µ � e electrons.

These profiles reveal some pertinent properties of the muon beam: the x-plane

remains approximately Gaussian across the entire region, described by almost

constant values of σ and µ; the y-plane begins skewed, with an increasingly

negative mean; both transverse planes are contained within ±15 cm. It is this

last property that suggests an increase in disk radius from the default 10 cm to

one that would allow all muons to be incident on the stopping disks.

Making this increase requires a similar investigation to that previously outlined,

calculating the number of stopped muons and the BR[Punzi]. The momentum

distribution of incident and stopped muons with a disk radius of 15 cm (analogous

to the plot in Fig. 3.15 with r = 10 cm) is shown in Fig. 3.17. Making this
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adjustment to the stopping target geometry decreases BR[Punzi] to 2× 10−16. A

disk radius of 15 cm is therefore taken as the default from this point onwards.

Increasing the disk radius by 5 cm evidently stops more muons, stopping

essentially all muons below 45 MeV/c. This leads to an increase in stopping

efficiency of approximately 9%. The high momentum cut-off for stopped muons

remains at approximately 60 MeV/c however, suggesting that an increase in the

amount of stopping material (whether that be via an increase in disk radius or

thickness) won’t stop more muons. As this new stopping target configuration is
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Figure 3.17: Momentum distribution of the muons incident on the stopping target.
The momentum spectrum of those stopped is also shown. In this con-
figuration the target disk radius is increased to 15 cm, resulting in the
stopping efficiency increasing to 0.55.
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well optimised for pµ < 45 MeV/c, there appears to be little room for geometric

improvements without changing the material of the target.

Increasing the disk radius will require the signal electrons to have a larger

transverse momentum in order to escape the target section. The distribution of

signal electrons is isotropic leading to the possibility of a beam blow-up from more

electrons interacting with the next disk. Fig. 3.18 shows the RMS of the transverse

size of the incident muon and signal electron beam. The signal electron beam-size

demonstrates an initial disparity between the values of the two transverse planes,

as well as a net increase over the target region. However, the final (and largest)

RMS is less than half the diameter of the disks.
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Figure 3.18: The transverse RMS of the incident muon and signal electron beams.

The divergence of the muon beam is acceptable across the entire target
region. The signal electron beam increases in size but converges and
plateaus from the fifth disk onwards.
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Figure 3.19: Comparison of momentum distributions for stopped muons using the
default stopping target configuration but with a) 4 cm, b) 5 cm, c) 6 cm,
d) 7 cm, e) 8 cm, and f) 9 cm disk spacing.
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It is apparent that increasing the amount of material in the stopping target

does not increase the number of stopped muons above pµ = 60 MeV/c, with the

increase in disk radius to 15 cm stopping essentially all muons with pµ < 45 MeV/c.

For this reason changing the disk thickness or increasing the number of disks would

be a redundant route of optimisation. The only geometric variable independent of

material quantity is the disk spacing, with a default spacing of 5 cm included in

simulation thus far. Fig. 3.19 shows the momentum spectra for stopped muons

with a spacing ranging from 4− 9 cm. As can be seen the incremental increase

in disk spacing decreases the number of stopped muons in the lower momentum

region while retaining the upper limit of 60 MeV for stopped muons. Integrating

the momentum spectra indicates that the maximum stopping efficiency is found

using the default 5 cm spacing. The equivalent BR[Punzi] for these configurations

can be seen in Tab. 3.5, also demonstrating the disk spacing as already optimised.

The previous results suggest that the only remaining variable that may improve

the stopping efficiency at higher momenta, without increasing the amount of

material in the beamline, is the disk material. Tab. 3.2 gives a selection of potential

stopping target materials, detailing their muonic atom properties. Aluminium has

been taken as the default material but titanium has a branching ratio 1.7 times

that of aluminium, with a muonic lifetime still compatible with the pulsed beam

structure at J-PARC. The timing window needs to be reconsidered for titanium

disk spacing [cm] BR[Punzi] [×10−16]

4.0 2.3

5.0 2.2

6.0 2.4

7.0 2.7

8.0 3.1

9.0 3.6

Table 3.5: BR[Punzi] for a range of disk spacings with the now default 15 cm radius
stopping target geometry.
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as its muonic lifetime is approximately half that of aluminium (see Tab. 3.2). The

timing window is therefore opened 550 ns earlier for titanium, accounting for their

approximate difference in muonic lifetime. This will open the window to more

prompt background, radiative pion background, and beam splash.

The momentum spectrum of stopped muons in titanium is shown in Fig. 3.20.

The efficiency has increased by approximately 9% on that of aluminium. The

main difference between the spectra of the two materials is the increase in the high

momentum cut-off, moving up to approx. 65 MeV/c. This is expected as titanium

has a larger dE/dx than aluminium, leading to an increase in the fraction of higher

momentum particles being stopped. There is a slight decrease in efficiency from

30− 50 MeV/c but this is more than offset by the increase from 50− 65 MeV/c.

Sec. 3.1.1 outlined the process employed to simulate the DIO background for

different disk materials. Titanium was taken as the example for extending the

DIO model as it is the most likely stopping target candidate after aluminium.

The momentum of signal and background is displayed in Fig. 3.21.

The signal region for aluminium is selected as 103.5 < Ee < 105.2 MeV in

order to maximise the number of signal electrons and minimise DIO background.

If the region is narrowed to 104.0 < Ee < 105.2 MeV for example, the DIO

background will drop but the loss of signal will decrease by a far greater amount.

The titanium endpoint is approximately 0.7 MeV/c lower than that of aluminium,

so the signal region is shifted down by this value to 102.8 < Ee < 104.5 MeV.

The number of stopped muons and pions per proton is 0.0033 and 4.59 × 10−7

respectively. As well as the adjusted signal region the timing window must be

opened earlier in order to account for the shorter muon lifetime in titanium. The

difference in muon lifetimes between aluminium and titanium is approximately

550 ns, so the timing window is initially opened after 450 ns. This value was then

optimised, with a BR[Punzi] for titanium of 4.89 × 10−16 found with a timing

window opened after 515 ns.
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Figure 3.20: Momentum distribution of the muons incident on the stopping target.
The momentum spectrum of those stopped is also shown. In this configu-
ration the target disk material is changed to titanium, with an increased
stopping efficiency of 0.64.

This new configuration is more efficient at stopping muons and has a BR[Punzi]

comparable to aluminium in the adjusted timing window and signal region. The

geometry, with parameters listed in Tab. 4.1, is therefore preferential to the default

setup currently utilised in preliminary design studies for the COMET experiment.

Tab. 3.7 shows the relevant numbers for the three major stopping target

geometries explored in this analysis. As can be seen the BR[Punzi] shows a slight

decrease upon a change in target material, however of the same order of magnitude

as aluminium. This, coupled with the relative signal strengths of Figs. 3.21 and

3.16, indicate titanium and aluminium will yield comparable results.
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Figure 3.21: Simulated µ-e conversion and DIO background results, with the stopping
target disk material changed to titanium.

parameter value

disk radius 150 mm

disk thickness 200 µm

number of disks 17

spacing 50 mm

material titanium

Table 3.6: New parameters for the optimised muon stopping target.

material radius [cm] stopping efficiency BR[Punzi]

Al 10.0 0.46 6×10−16

Al 15.0 0.55 2×10−16

Ti 15.0 0.64 5×10−16

Table 3.7: Stopping efficiency and BR[Punzi] for a range of COMET stopping target
geometries.
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Another way to utilise the additional stopping target monitors is to assess the

number of muons stopped by each target disk. This information for the default

configuration is displayed in Fig. 3.22. The distribution is not uniform across the

disks. This suggests that changing the shape of the target region to a cone is

worthy of consideration, but offers two conflicting arguments as to the nature of

its geometry: the disk radius should start small and increase downstream in order

to stop more muons; the majority of signal electrons are produced in the first few

disks so the radius should decrease in order to minimise scattering with further

disks.

The SINDRUM-II experiment, searching for the decay µ � eee, adapted to

this non-uniformity of stopped muons by optimising their design to maximise

the number of 28 MeV/c muons stopped. The baseline design employed a thin
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Figure 3.22: The number of muons stopped by each target disk, with the first disk at
z = −360 cm.
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(approx. 60 µm) hollow aluminium double cone, of 100 mm length and 20 mm

diameter [44]. This design will be discussed further in Sec. 4.3.

3.1.3 Conclusions

The experimental search for µ � e conversion has been proposed as a probe

into BSM physics, along with new experimental methods to improve the current

sensitivity by O(10, 000).

Benchmarking these experiments is an essential element to achieving this

goal and, as such, a sophisticated and robust software framework is required.

Both beamline mechanics and physics processes have been incorporated into this

framework in the form of magnetic field implementation and DIO calculations

respectively.

These successful amendments provided the necessary tools to simulate the

experiment in its entirety, with the content of this analysis focussing specifically

on the optimisation of the muon stopping target. The necessity to capture low

momentum muons in order to minimise stopping target material has been shown,

validating the need for a novel type of superconducting pion capture system and

momentum selection in the two 90◦ bend sections.

The stopping target was optimised to maximise the stopping efficiency of the

default geometry (see Tab. 3.2) whilst minimising the BR[Punzi]. This was initially

achieved by increasing the disk radius from 10 to 15 cm after consideration of the

transverse beam size incident on the stopping target region. After an unsuccessful

exploration of other variables (disk spacing, thickness, etc.) the COMET G4 code

was developed to model other disk materials. Titanium was the next choice due to

its higher density but also as it has a muonic lifetime compatible with the pulsed

beam structure at J-PARC. The pertinent statistics garnered from this analysis

are shown in Tab. 3.7. As can be seen the stopping efficiency improves at the

expense of a slight deterioration of BR[Punzi]. This suggests that the titanium
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geometry should be used in preliminary runs to probe as far into the current limit

with its higher stopping efficiency and larger signal peak. If this is unsuccessful

then the aluminium target should then be utilised to place a lower exclusion limit

on the process.

If only one target setup were to be used continuously for the proposed two

year run then prudence would suggest the implementation of the 15 cm Al disk

geometry as this represents an acceptable compromise between the stopping

efficiency and BR[Punzi].
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3.2 PRISM

If a cLFV signal is observed by COMET it will be imperative to determine the

nature of the beyond SM physics causing it. This will require running with a higher

Z stopping target since the ratio of cLFV rates between low and high Z is strongly

dependent on the type of interaction e.g. a vector versus a tensor interaction [45].

It will likely also require a significant improvement in experimental sensitivity

so that a large signal sample can be collected. If no cLFV signal is observed

then an improvement in experimental sensitvity will be mandatory. There are

many ideas as to how one could improve the Mu2e/COMET sensitivities by a

factor of 100 and one of the most promising, PRISM, would exploit a Fixed-Field

Alternating-Gradient (FFAG) accelerator to phase rotate the muon beam. This

type of accelerator will be discussed in more detail in Sec. 3.2.3 in the context of

the EMMA project.

Phase rotation is a well established technique employed to reduce the momen-

tum range of a beam of particles by accelerating slower moving particles and

decelerating faster moving ones. This can then result in an almost monochromatic

beam whose momentum can be tuned, through the acceptance, into the FFAG.

A low momentum (approximately 20 MeV/c), monochromatic muon beam will

improve the sensitivity of muon conversion experiments due to several factors:

• the low momentum means a higher fraction of muons will be stopped,

• the monochromatic nature means that the muons will all stop after a well

defined thickness of target and so the origin of signal electrons will be much

better localised allowing for greater discrimination against background when

combined with the electron trajectory in the tracking detector,

• the low momentum means that a thin stopping target can be used, thus

reducing the energy loss of the signal electrons, affording a greater discrimi-

nation against the DIO background.



COMET 97

Furthermore, since the muons and pions will cycle the FFAG several times,

the additional path length will effectively eliminate the background from pions,

as even the most energetic pions will have decayed. The acceptance of the FFAG

will also be such that the decay products of both muon and pion decays will not

enter the stopping target beamline.

A schematic of the proposed PRISM experiment can be seen in Fig. 3.23, where

the FFAG phase rotates the muon beam before it interacts with the stopping

target further downstream.

This technique of phase rotation, however, has never been used with such a

large emittance beam before (possibly as large as 10000 π mm mrad). An FFAG

is the obvious choice in this case since it has a high acceptance for large emittance

beams.

Figure 3.23: A schematic of the proposed PRISM beamline, with the inclusion of an
FFAG for phase rotation and additional decay length.
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3.2.1 Phase rotation

Phase rotation works on the principle of longitudinal bunching, such that higher

energy particles occupy the front of the bunch and lower energy particles sit at the

back. The RF cavity has an initial decelerating field, slowing the initial muons,

then transitions to a positive field for the slower muons at the back of the bunch.

As energy and time are canonical conjugates, Liouville’s theorem is preserved.

The effect of phase rotation on a bunch in (t, E) phase space can be seen in

Fig. 3.24. The particles initially have a wide energy spread but a narrow temporal

spread. They then undergo phase rotation, rotating the phase space ellipse such

that the energy spread becomes very narrow. However, as can be seen the time

spread of the final beam is increased significantly and so in order for this to be

contained within the measurement window between primary proton pulses it is

necessary for the original time spread to be very small (20 ns) which requires

improvements in the way the protons are bunched. For COMET and PRISM

to achieve their expected sensitivities the number of residual protons between

pulses needs to be at least 109 times smaller than the number of protons in the

main pulse. Improvements to the beam extinction, and the pulsed proton beams

necessary to achieve this in next generation cLFV experiments, such as COMET,

are detailed earlier in this chapter. It is the combined effect of these improvements

that will allow PRISM to reach a proposed single-event sensitivity of 3× 10−19.

3.2.2 Lattice design

Any accelerator used to perform phase rotation for a muon beam is required to

accept a bunch with an emittance upwards of 105 π mm mrad. In comparison

the electron beam injected into EMMA’s non-scaling FFAG ring has a typical

emittance of 10 π mm mrad. At present FFAGs are the only accelerator type

capable of accommodating these large emittances.
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Figure 3.24: A simulation of the phase rotation effect of the PRISM FFAG ring on a
beam of muons with a typical energy spread expected in the experiment.

The different types of (already proven) FFAG machines capable of this level

of acceptance, as well as the required levels of rapid acceleration, are described

in Sec. 6.1.1. The FFAG ring originally suggested for PRISM is a scaling FFAG

with 10 identical DFD triplet cells (cells with a combined defocusing-focusing-

defocusing series of magnetic elements). A prototype of this accelerator has been

constructed at Osaka with six cells, operating with alpha particles [46].

The muons injected into the PRISM ring remain there for approximately five

turns, taking about 1.5 µs to traverse this distance. This affords additional time

for the pions to completely decay, while a reasonable fraction of the muons remain

undecayed.
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3.2.3 PRISM@EMMA

When the proposal was made for the phase rotating lattice to use a scaling FFAG

the proof-of-principle non-scaling FFAG ring, EMMA, was yet untested. However,

since commissioning concluded and acceleration was demonstrated in early 2011

(the results of which are analysed and presented in Ch. 6) non-scaling FFAGs

have become a possible avenue of exploration for incorporation into future cLFV

experiments.
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Figure 3.25: Longitudinal phase space trajectories of beams with five different initial
phases. Acceleration along the serpentine channel is demonstrated within
the separatrix boundary between in-bucket motion denoted by the grey
region. This boundary was calculated using the estimated systematic
error of ±25 ps in the orbital period measurements of Fig. 6.15. The
blue region at low phase and momentum indicates the bucket used for
phase rotation on PRISM@EMMA.
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The main goal of EMMA commissioning was to observe a parabolic time of

flight and serpentine acceleration, indicative of a non-scaling FFAG machine.

This novel type of acceleration is described by the particle bunches following an

S-shaped path on a plot of energy versus phase, and this has now been observed.

Fig. 3.25 illustrates the serpentine acceleration recorded by EMMA while the

parabolic time of flight measurements are described in more detail in Ch. 6 and

shown in Fig. 6.15.

Having demonstrated these principles EMMA’s non-scaling FFAG ring may

be used to test phase rotation by accelerating a bunch in the bucket, denoted by

the light blue region of Fig. 3.25 (at low momentum and negative phase). This

region will then transform into the usual RF bucket seen in EMMA. Achieving this

requires setting a high RF gradient to maximise the size of the bucket, measuring

the orbit during the period of acceleration to verify the effect.

In accelerator design a buncher is used to shorten the length of the bunch at

the expense of an increase in energy spread. Fig. 3.24 indicates phase rotation

having the opposite effect of a buncher, lengthening the bunch and reducing the

energy spread. An expected muon beam in PRISM is much longer than that

available to EMMA from ALICE. In order to mimic the bunch expected in PRISM

the bucket is filled with approximately 3 back-to-back ‘bunchlets’ from ALICE.

The bucket denoted in Fig. 3.25 is thus filled either vertically by changing the

injection momentum or horizontally by altering the phase. Phase rotation may

then be demonstrated by observing a 90◦ rotation in either plane. PRISM@EMMA

proposes to perform both experiments with varied momentum and phase.

After injection into the EMMA ring the bunch is extracted at certain points

corresponding to known synchrotron oscillations: 3 turns for 1/4 of an oscillation,

6 turns for 1/2, etc. Extracting the beam at different fractions of its synchrotron

oscillation allows the mapping of the longitudinal phase space as a function of

the transverse amplitude. In this case the bunch is initially extracted with no
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RF after 1/2 a revolution of the machine, then again at 3/2, as it is prudent to

perform initial tests with a minimal number of revolutions.

The bunch is monitored using a YAG beam profile monitor in the first dispersive

section of the extraction line, immediately after the extraction septum. The

transverse dimensions of the beam after 1/2 and 3/2 revolutions, with no RF, can

be seen in Fig. 3.27. Both plots demonstrate a correlation in transverse position

and size indicating stable propagation after an additional revolution of the ring.

Once the bunch is successfully injected and extracted the RF may be switched

on, with the voltage and phase set to produce a stationary bucket. In order to

reproduce the results with no RF the magnet strengths of the entire lattice were

scaled to reach an effective energy. This was achieved iteratively with a final

scaling factor of 1.044 established. The beam was then extracted, again after 3/2

turns, with the result shown in Fig. 3.28. The two profiles after 3/2 turns are not

identical but do serve to demonstrate the reproducibility of results with no RF

compared to bucket acceleration with RF switched on.

Figure 3.26: Schematic of the EMMA extraction line with the first YAG screen used
to output the transverse beam profile highlighted by the blue circle.
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(a)

(b)

Figure 3.27: Transverse beam profile of the bunch at extraction after a) 1/2, and
b) 3/2 turns of the EMMA ring, recorded with a YAG screen. The red
region represents a high density beam with the blue region indicating
no beam. The CCD camera used to capture these images was placed
downstream of the YAG screen with the beam coming out of the page.
The y- and x-axis are those of the vertical and horizontal respectively.
The same applies to that of Fig. 3.28.
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Figure 3.28: Transverse beam profile of the bunch at extraction after 3/2 turns of the
EMMA ring with the RF switched on.

This process would then have been repeated for further turns, each time pro-

ducing the longitudinal phase space in order to map the effects of the synchrotron

oscillation. However, due to the the lack of experimental run time this could only

be performed up to 3/2 turns of the machine. Similarly better settings may be

achieved for 1/2 and 3/2 turns with further tuning of the machine. This work is

ongoing but is a successful first step in demonstrating that ns-FFAGs could be

used for phase rotation in the next generation of cLFV experimentation.



Chapter 4

COMET Phase-I

The COMET experiment is seeking to improve the sensitivity to the neutrinoless

muon-to-electron conversion process by a factor of 100 beyond SINDRUM-II.

This will be achieved using a pulsed muon beam produced from a pion capture

solenoid using an 8 GeV proton beam. The production of muons of this intensity

using this methodology has never been attempted before and as such presents

considerable challenges. Extrapolating backgrounds over four orders of magnitude

from SINDRUM-II to COMET where theoretical models are only loosely constrained

by data has significant uncertainties. The operation and detailed understanding

of the detectors, beam, and accelerator in a new regime will also not be without

difficulties. In light of these considerations it was decided in January 2012 to

stage the construction of COMET so that valuable operational experience could be

gained and first physics results obtained on a shorter timescale. The results from

this critical initial running with a reduced beamline, dubbed COMET Phase-I, will

be used to gather valuable experience and to inform and optimise the design of

the final COMET implementation and so reduce the risk that the physics goals of

COMET will not be met.

A schematic of the COMET Phase-II beamline is shown Fig. 4.1, with the

planned construction of Phase-I highlighted in blue. It comprises the pion cap-
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ture solenoid and first 90◦ section of the muon beamline of the final COMET

implementation. The primary goals of COMET Phase-I are:

• a direct measurement of the proton beam extinction factors and other

potential background sources for the full COMET experiment,

• a search for µ � e conversion with a sensitivity at least a factor of 100 better

than the SINDRUM-II limit.

However, to achieve this physics goal where the beam power (3 kW) and running

time (106 s) will be significantly less than the final experiment it will be necessary

to improve the acceptance of the experiment. A cylindrical detector in a uniform

1 T field will thus be used in Phase-I as opposed to the lower acceptance (but

higher resolution) transverse detector of Phase-II. Fig. 4.2 contains one proposed

layout for Phase-I, demonstrating the nature of the cylindrical detector solenoid

positioned at the end of the first 90o bend section. The stopping target will thus be

at the center of a cylindrical detector in a solenoidal magnetic field which is very

different from COMET Phase-II where a graded magnetic field is used upstream of

the detector. Initial investigations into the effect of this new magnetic field are

performed and detailed in Sec. 4.1, with the implemented field strength shown in

Fig. 4.3.

Consequently it has been necessary to determine whether the default stopping

target configuration (see Tab. 3.3) is optimal for Phase-I and a double cone target,

as used by SINDRUM-II, has been investigated (see Sec. 4.3). The restricted

beamline of COMET Phase-I will also result in a large increase in the flux of high

momentum muons and pions that, through decay, could result in a significant

number of electrons in the signal region. A study of implementing a collimator at

the end of the beamline before the detector section has therefore been undertaken

(see Sec. 4.2). Both these investigations have required significant changes to the

COMET GEANT4 software and these changes are described in the next section.
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COMET Phase-I

Figure 4.1: A CAD of the COMET beamline, with the Phase-I section of beamline
highlighted within the outlined blue region.
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Figure 4.2: A visualisation of the proposed Phase-I beamline, identical to that of
Phase-II until the end of the first 90o bend section. The beamline elements
under investigation, contained within the cylindrical detector solenoid i.e.
the collimator and muon stopping target, are illustrated and highlighted.

4.1 Magnetic field implementation

The Phase-I beamline geometry is identical to that of Phase-II up to the end of

the first 90o bend solenoid, as highlighted in Fig. 4.2. Field maps provided by

Toshiba, and modelled in TOSCA, are utilised for this section of lattice. Beyond

this point detailed field maps do not exist for Phase-I and so approximations have

been made to model this region.. The straight section immediately after the bent

solenoid is designed to transport the beam to the detector solenoid and remove

unwanted particles en route. This selection is achieved by situating a tungsten

collimator in this straight section, scraping high momentum particles from the

beam profile in a graded magnetic field.

The graded magnetic field across the beamline transport solenoid drops from

the total field strength at the end of the 90o bend (approximately 3.2 T) to a

constant value of 1 T. The field then remains constant (at 1 T) across the whole

detector solenoid. This gradient is also present in the full Phase-II model in order

to accommodate the dispersive nature of the beam upon exit of the bent solenoid,
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attenuating beam blow-up and maximising the functionality of the collimator.

This is achieved via the process of adiabatic transition, as outlined in Sec. 3.1.1.

The nature of the magnetic field strength for Phase-I after the 90o can be seen

in Fig. 4.3, with the z-axis positions of the beam collimator and stopping target

highlighted. This gradient is beneficial since it mitigates the dispersion created by

the momentum selection in the bend, which has a dipole field of 0.018 T.

s [mm]
0 500 1000 1500 2000 2500 3000

B
 [T

]

1.0

1.5

2.0

2.5

3.0

field strength
collimator
stopping target region

Figure 4.3: The magnetic field strength implemented in the simulation after the
truncation of the Toshiba field maps at the end of the first 90o bend
section. The field is given a linear negative gradient across the straight
solenoid section connecting the end of the bend to the detector/stopping
target region.



COMET Phase-I 110

4.2 Collimator optimisation

As previously mentioned the beam is dispersive at the end of the 90o solenoid.

This momentum dispersion is a useful property of the beam for isolating and

eliminating high momentum muons and pions (p > 70 MeV/c) which could

otherwise contribute to background events through decay in flight and radiative

pion capture. In order to compensate for this background an asymmetrical cylinder

of tungsten is placed after the bend section and before the detector solenoid with

the purpose of scraping unwanted particles from the beam. Consideration of the

transverse emittance is required in order to optimise the collimator dimension,

with the effective emittance in both transverse planes for µ− and π− shown in

Figs. 4.4 and 4.5 respectively.

Both the desired µ− and unwanted π− exhibit a skewed relation between

momentum and position in the y-plane only, with lower momentum particles

lying closer to the beam axis. In contrast the symmetry in the x-plane means

collimation in that plane is redundant since removal of high momentum particles

would produce a similar reduction in the number of those with lower momentum.

For this reason the tungsten collimator is given a cylindrical shape with an inner

and outer radius of 200 mm and 250 mm respectively, and a length of 1 m. The

most important physical property of the collimator is the solid section with a

negative y-offset. A transverse cross-section of the collimator can be seen in

Fig. 4.6.

Fig. 4.4 b) indicates a mean y-position of −70.08 mm for the negative muons,

so it is expected that the negative y-offset removing the optimal number of high

energy particles will be close to this value. As an initial indication of the effects of

the collimator a simulation was performed with a y-offset of −70 mm. The result

of this is shown in Fig. 4.7. The shape of the muon momentum spectrum after

the collimator indicates approximately 31% of the desired low momentum muons

(p < 45 MeV/c) reaching the end of the collimator. However, as the collimator is
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Figure 4.4: The effective emittance of muons in the a) x-, and b) y-plane that are
incident on the beamline transport collimator.
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Figure 4.5: The effective emittance of pions in the a) x-, and b) y-plane that are
incident on the beamline transport collimator.
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Figure 4.6: A cross-section of the schematic of the proposed beamline transport
solenoid collimator, of length 1 m, with the negative y-offset (x) to be
optimised by simulation.

designed to maximise the removal of high momentum muons and pions, whilst

transmitting a maximum number of low momentum muons, the efficacy of the

collimator may be quantified by

w =
Nµ−(p < 45 MeV/c)

Nµ−(p > 70 MeV/c)×Nπ−
, (4.1)

which is effectively a signal/background ratio since low momentum muons are the

most likely to stop in the target and higher momentum muons will not and can

decay-in-flight to yield high momenta electrons. Similarly all pions can potentially

be radiatively captured by the target nucleus with the emission of high energy

photons that can convert, yielding high energy electrons.

Simulations were thus conducted over a range of collimator offsets, centred

around −70 mm, using a sample of 7 million µ− and π− as generated by the MARS

Monte Carlo. The muon momentum spectra incident on the stopping target, with
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Figure 4.7: Muon momentum spectra for µ− before and after a collimator with a
negative horizontal offset of −70 mm. This transmits 12.5% of the initial
µ− but 31% of µ− with momenta below 45 MeV/c.

y-offsets of −65,−70, and −75 mm, are shown in Fig. 4.8. It is not immediately

clear from this plot which configuration is more efficient as the number of muons

reaching the stopping target is similar. However, Tab. 4.1 displays the number

of muons per proton and the value of w after the collimator. The maximum

signal/background is achieved with a horizontal offset of −70 mm, resulting in

0.0027 muons per initial proton incident on the pion production target. This

is smaller than the rate of 0.0035 for Phase-II [43], demonstrating the necessity

to extend the beamline to include the additional Phase-II elements in order to

increase the muon yield. i.e. the second 90o bend affording additional decay

length and further momentum selection.
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Figure 4.8: Muon momentum spectra incident on the stopping target after passing
through a collimator of varying negative horizontal offset.

The collimator offset is therefore taken to be −70 mm as the default in all

further simulations. As a verification of its effects, the impact of the collimator on

the incident muon and pion beam is shown in Fig. 4.9, which clearly shows that

the particles passing through the collimator are predominantly at low momentum:

the average muon momentum is reduced from 63 to 39 MeV/c and 99.5% of the

pions are eradicated.

4.3 Stopping target optimisation

As mentioned at the beginning of Ch. 4, the significant differences between the

detector and magnetic field surrounding the stopping target in Phase-I versus



COMET Phase-I 116

p (MeV/c)
0 20 40 60 80 100 120 140

y 
(c

m
)

-20

-15

-10

-5

0

5

10

15

20

0

10

20

30

40

50

60

70

80

90(a)

p (MeV/c)
0 20 40 60 80 100 120 140

y 
(c

m
)

-20

-15

-10

-5

0

5

10

15

20

0

1

2

3

4

5

6

7

8
(b)

Figure 4.9: The effective emittance of a) muons, and b) pions incident on the stopping
target after the effect of the beamline transport collimator with a negative
horizontal offset of −70 mm.
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y-offset (mm) N(µ−/p+) w

-55 0.0019 ± 0.0001 0.31 ± 0.01

-65 0.0023 ± 0.0001 0.90 ± 0.01

-70 0.0027 ± 0.0001 0.99 ± 0.01

-75 0.0032 ± 0.0001 0.61 ± 0.01

-85 0.0191 ± 0.0001 0.25 ± 0.01

Table 4.1: The number of muons per proton after the collimator and effectiveness of
the collimator for a range of negative y-offsets.

Phase-II warrant a re-evaluation of the stopping target design for Phase-I. The

Phase-I geometry has a graded magnetic field before the stopping target, as

opposed to a graded field around the target in Phase-II, and the target is placed

in the detector volume with a fixed 1 T field.

Two stopping target geometries have been modelled: the disk geometry of Phase-

II (see Tab. 3.3) and a double cone geometry that was used by the SINDRUM-II

experiment with a cylindrical detector in a solenoidal field. The schematics of

both geometries are shown in Tab. 4.2. Each target region is placed at the centre

of the detector solenoid, with visualisations of both target regions from the Phase-I

simulation (Phase-I G4) shown in Fig. 4.10. In the visualisations an on-axis

30 MeV/c muon is incident on the target region, substantiated upstream in the

beamline transport solenoid, scattering off the aluminium target and producing

secondary particles.

parameter 17 disks double cone

radius 100 mm 100 mm

thickness 200 µm 200 µm

region length 800 mm 2 × 400 mm

volume 106814.2 mm3 50682.8 mm3

Table 4.2: Geometric parameters of the disk- and cone-type muon stopping targets.
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(a)

(b)

Figure 4.10: Phase-I G4 visualisations of a 30 MeV/c µ− entering the detector
solenoid (from the top left of frame) and interacting with the disk
(top) and cone (bottom) stopping target geometries.
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Using these two different configurations seven million backwards propagating

µ− and π−, as simulated by MARS, are initiated at the pion capture solenoid and

propagated through the experiment. These seven million µ− and π− used in the

simulation were created by firing 31× 106 p+ at the pion production target. After

the bend section the beam interacts with the collimator, yielding 0.0027 µ− per

proton after the collimator. These muons are then incident on the stopping target

region, with the momentum spectra of the incident and stopped muons (for both

geometry types) shown in Fig. 4.11. Phase-I is expected to run for approximately

106 s, with a beam power of 3.2 kW and proton momentum of 8 GeV. Using the

equation

Np =
P

eEp

× t , (4.2)

the number of protons incident on the proton stopping target will be approximately

2.5×1015 for the entire run. The number of incident and stopped muons is therefore

scaled by the ratio of protons simulated to expected, giving a total of 6.72× 1015

muons incident on the target.

The original disk configuration stops 66% of incident muons, more than the

42% stopped by the cone. Tab. 4.3 shows that, even though the spatial dimensions

of the target regions are similar, the disk configuration has a volume approximately

twice that of the cone. While more material will stop more muons, the different

geometry plays a role: the disk geometry stops more muons but the cone geometry

stops more muons per unit volume of target.

Shifting from a transverse to cylindrical detector requires a redesign of all

the components therein. A cylindrical drift chamber (CDC) is proposed as the

baseline detector for Phase-I. This has a number of benefits over the transverse

detector in Phase-II:

• a reduction in background events. Only DIO electrons above a certain

transverse momentum will reach the inner layer of the CDC,
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Figure 4.11: Comparison of the momentum spectrum of stopped muons for the Phase-I
disk and cone geometries, simulated using the same incident beam. The
disk geometry has a stopping efficiency of 0.66 whereas the cone stops
0.42 of the incident muons.

• detector saturation from beam particles that are not stopped in the muon

stopping target is avoided as the particles continue downstream and out of

the detector solenoid.

The CDC comprises a thin carbon-fibre reinforced plastic inner and outer cylinder,

filled with a 50:50 helium-ethane mixture, with aluminium endplates. Hit informa-

tion generated in the simulation is smeared by the expected position resolutions

of the drift chamber, ∆x = ∆y = 100 µm and z = 2 mm, resulting in a core

momentum resolution of 600 keV and a tail resolution for 10% of 1.2 MeV. The

detector system also includes a scintillator trigger counter at the start and end

of the CDC inner cylinder providing trigger timing insensitive to protons. These
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physical components have been included in the Phase-I G4 simulation, with all

interactions included in the results shown. The simulated resolutions are included

in the Punzi sensitivity calculations. These are key factors for inclusion as stopping

target optimisations will be rendered redundant if the gain is washed out by poor

resolutions and energy losses.

A conical target presents less material to escaping electrons and so conversion

electrons will have a smaller energy loss in comparison to the the disk target and

the signal peak should be sharper and so more distinguishable from the DIO

background. The DIO and signal momenta (for a conversion BR of 10−15) are

shown in Fig. 4.12 where the signal peak is indeed seen to be better defined for

the cone target. There are also more signal events for the cone geometry but to

quantify whether the cone geometry improves the experimental sensitivity we

evaluate the Punzi sensitivity.

As with the analysis in Sec. 3.1.2, in order to establish a firm conclusion a

Punzi calculation of the 90% confidence level upper limit on the branching ratio

(BR[Punzi]) is required, in addition to the number of events and signal shape.

These results can be found in Tab. 4.3. In this case the BR[Punzi] is of the

same order of magnitude with similar values for both cases. If only one type

of stopping target were to be manufactured then this, coupled with the relative

number of events and signal shape, would suggest that the cone should be chosen

for construction.

Nevents BR[Punzi]

disks 1.14 ± 0.08 (1.2 ± 0.2) ×10−14

cone 1.45 ± 0.17 (1.8 ± 0.3) ×10−14

Table 4.3: Number of events above 104.4 MeV/c and the BR[Punzi] for the disk- and
cone-type muon stopping targets for a BR of 10−15.
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Figure 4.12: Comparison of the signal and DIO electron momentum spectra, as
produced from the disk and cone stopping target configurations. The
spectra are scaled to the expected number of protons on target for the
entire Phase-I run. A muon-to-electron conversion branching ratio of
10−15 has been used in this plot.

4.4 Conclusions

A staged approach to the COMET experiment has been proposed in order to

expedite the physics results as well as gaining valuable operational experience

with these novel experimental components. The first stage of this, Phase-I, will

advance the sensitivity to µ � e conversion by a factor of 100 on current limits.

The components required to achieve this have been described and simulated:

implementation of magnetic fields and the inclusion of a cylindrical detector

system.
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The software framework was used to estimate experimental elements such as

the beamline collimator. Transverse beam studies indicated a correlation between

negative y and high p, suggesting an asymmetric design with a y-offset. Optimi-

sation of low momentum transmission and high signal/background advocated a

−70 mm offset, with 0.0027 µ− per proton reaching the muon stopping target

region with this configuration.

The nature of the muon stopping target geometry was therefore reconsidered

due to the shift in detector design and previous optimisation of the collimator.

A double cone design, utilised by SINDRUM-II, was tested in conjunction with

the disk structure of Phase-II. The stopping efficiency, signal shape, and Punzi

sensitivity were calculated for these two geometries, with the cone structure having

a slightly higher sensitivity. However, the cone design resulted in more signal

events in the required momentum region and had a more distinct peak in Fig. 4.12

which cannot be ignored. Taking these features into account suggests a similar

conclusion to that of the stopping target studies of Ch. 3: a cone design would be

a logical first step to maximise the likelihood of observing signal, with the disk

design then implemented to minimise the exclusion region if no signal is observed.

The current optimised design for COMET Phase-I outlined in this chapter

demonstrates a viable first step in achieving the ultimate goal of reaching the

proposed sensitivity of COMET: 10,000 times that of current experimental limits.

Simulations suggest employing the double cone structure with the cylindrical

Phase-I detector will probe µ � e conversion to a limit 100 times better than

achieved by SINDRUM-II.



Chapter 5

MuSIC

There are many muon related programmes proposed or under discussion, such as

searches for muon-to-electron conversion (see Ch. 3), neutrino factories, and muon

colliders. They need intense muon beams of 1011 − 1014 muons per second, while

the highest muon intensity currently available is approximately 108 muons per

second at PSI [16]. In order to achieve a more intense muon beam it is necessary

to build a dedicated muon production system using new concepts to improve on

current pion/muon production efficiencies. A novel superconducting pion capture

system is one such idea. In the system a thick pion production target is located

on a proton beamline, with a strong solenoidal magnetic field applied to the target

region. According to many simulation studies the pion/muon production efficiency

of such a pion capture system produces is more than a 1000-fold increase in muon

yield compared to current muon facilities.

The intention of the Muon Science Innovative Commission (MuSIC) experiment

in Osaka is to test, and measure, these novel ideas and prototype equipment

essential to future research in the field of muon physics. In particular it is seeking

to demonstrate (for the first time outside simulation) that pion capture solenoids

do indeed result in a dramatically increased muon yield which is a key requirement

of the COMET and Mu2e experiments (see Ch. 3). This chapter will detail the

124



MuSIC 125

studies of position and energy distribution of the MuSIC beam at the end of

the existing 36◦ of beam pipe, highlighted in Fig. 5.1. These measurements will

ultimately be used to refine the simulations for COMET since MuSIC is in many

ways a prototype of COMET, but with a beam power two orders of magnitude

less.

The MuSIC experiment took data in discrete running periods in order to allow

the machine to be optimised stepwise and for subsequent runs to have time to

assimilate and utilise the data and experience from the previous runs. This chapter

will cover the first two of seven runs of the machine in Secs. 5.1 and 5.2 respectively.

These sections are then subdivided into simulation and analysis of experimental

data. The simulation is intended to aid the analysis of the experimental data,

both in terms of defining the expected behaviour, isolating anomalous behaviour,

and providing possible explanations for such.

The first phase of MuSIC construction was completed in 2010, incorporating a

prototype superconducting pion capture solenoid and a 36◦ portion of the first

pancake solenoidal bend section. A photograph of the current state of the MuSIC

Figure 5.1: A schematic of the proposed MuSIC beamline, with the current 36o of
constructed beamline highlighted within the red box.
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beamline can be seen in Fig. 3.4. The next phase of construction is due to begin

in 2013 so all studies in this analysis are completed with the equipment present in

the first phase.

5.1 Run-I

In order to assess the pion capture and transport efficiency of the constructed

beamline a detector system was required to make timing, energy, and hit count

measurements. A plastic scintillating cuboid bar was placed in the beamline with

a series of photon counters used to measure the amount of scintillation caused by

the beam. This information was recorded by a data acquisition (DAQ) system

which facilitated the subsequent extensive offline analyses. This section outlines

the experimental process of simulation, design, and construction of the online

system for Run-I of the MuSIC experiment.

5.1.1 Simulation

The first aspect of the simulation developed was the interaction of the expected

MuSIC beam at the end of the 36◦ bend with the plastic scintillating bar. This

was a necessary step to benchmark the experiment and define thresholds for the

DAQ system. The simulation was also used to develop techniques that could be

useful for particle identification, particularly the discrimination of muons from

other particles.

Scintillator design

A plastic (polyethylene) scintillating bar is modelled in GEANT4 with dimensions

38.0 × 3.0 × 1.0 cm. The bar is wrapped in a layer of aluminium foil of thickness

0.2 mm, with the surrounding volume given the properties of air.
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Four Multi-Pixel Photon Counters (MPPCs) are placed at the end of the

scintillating bar, both positioned 0.75 cm from the central x-axis of the scintilla-

tor. Four MPPCs were chosen to optimise the detection rate within the spatial

limitations of the scintillator bar. The face of the MPPCs have a circular shape

with an area of 1 mm2, each with 400 pixels per MPPC. Fig. 5.2 shows the end of

the scintillating bar with two attached MPPCs.

The origin of the experimental volume is taken to be at the centre of the

scintillating bar (in all three dimensions) and a particle beam is initiated at

−20.0 cm along the z-axis, unless otherwise stated.

Radioactive sources (e.g. 60Co, 90Sr, etc.) are used to calibrate the detector

by analysing the analogue-to-digital converter (ADC) output corresponding to

known emissions of that isotope. A calibration curve was then determined yielding

a relation between channel number and energy. In simulation this process is

unnecessary as particles with a continuous energy range may be fired into a

material, recording the energy deposited by individual scintillations. An example

of such an event can be seen in Fig. 5.3, highlighting the detected photons for

a 1 MeV incident electron. In simulation the number of photons incident on

every MPPC is recorded, along with the energy deposited by particle interactions,

but digitisation in the TDC and ADC has been omitted from the simulation.

Experimental threshold values are incorporated, however.

Figure 5.2: A photograph of the polyethylene scintillating bar with MPPCs mounted
on one end. One is exposed, the other wrapped in insulating black tape.
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Figure 5.3: An example output of the plastic scintillating bar with a 1 MeV incident
electron (arriving along the negative z-axis) producing optical photons
(green) detected by the MPPCs and secondary electrons (blue).

Timing (TDC)

Time differences between the left- and right-hand MPPCs are recorded with a

time-to-digital converter (TDC). Once calibrated, TDC readings can then be used

to estimate the hit-location of the incident particle.

The first method for calculating the hit-location in the simulation was to take

a ratio of the number of detected photons from each side (i.e. the sum of the

two left MPPCs divided by the two right MPPCs). For a particle incident on the

centre of the scintillator the ratio between the two sides should be equal to 1.0,

with any offset obeying the relation

x =
NR −NL

NR +NL

L

2
, (5.1)
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where x is the position of the hit (relative to the centre at x = 0), NL and NR

are the total number of hits of the left- and right-hand side respectively, and L is

the length of the scintillating bar. In the geometry of the experimental setup the

right-hand side is the positive end of the scintillator. It is essential to insulate

the scintillating bar with a layer of aluminium foil (to prevent the photons from

escaping the bar before detection) and black tape (to isolate external photons).

This insulation however rendered this method of timing measurement redundant

due to the high reflectivity (≈ 0.99) of the aluminium foil. This meant that the

photons, that did not travel directly to an MPPC from scintillation, were liable

to scatter within the scintillator until either being re-absorbed by the scintillator

or absorbed by another MPPC.

It was therefore necessary to account for the effects of scattering by developing

a portion reconstruction method based on time distributions rather than hit count

ratios. This was achieved by recreating the results of the DAQ setup by recording

the time at which each scintillation photon hits any one of the four MPPCs. The

time of each hit is recorded then modelled as a pulse-shape using the equation

F (t) =
τ1

τ1 − τ2

(
e
− t
τ1 − e−

t
τ2

)
, (5.2)

where τ1 and τ2 are arbitrary time constants. A single-photon signal for one

MPPC circuit was then isolated using the dark current readout from the DAQ

oscilloscope. An example of this can be seen in Fig. 5.18. This shows a 50 ns

pulse width from −5 to 45 ns. The time constants of Eq. 5.2 were optimised to

recreate this pulse width and shape. The result of this optimisation can be seen

in Fig. 5.4.

The model in Fig. 5.4 represents a hit time of 0.0 ns. Each simulated pulse-

shape is shifted so the peak is centred on the hit time. This hit time is calculated

by subtracting the time a photon interacts with the MPPC from the time of

scintillation creating the photon. The pulse-shapes of all the hits for each primary

event may then be summed, with an example of the result shown in Fig. 5.5.
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Figure 5.4: A recreation of the one-photon signal pulse-shape produced by the DAQ
oscilloscope, with τ1 = 1.0 and τ2 = 0.15 for a hit-time of t = 0.
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Figure 5.5: A summation of pulse-shapes (as in Fig. 5.4) from one initial event, at
one MPPC. This resulting pulse shape is an approximation of what is
observed by the DAQ.
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This example is for one of four MPPCs with only one initial event. It is a

representation of what is seen by the TDC DAQ readout and is used to discriminate

between the dark-current and real data. A trigger value is chosen to minimise

dark-current noise whilst maximising signal. A trigger value of 7 photons was

chosen after analysis of the dark-current by the DAQ setup (see Sec. 5.1.2). This

trigger value was then used in the simulation to select the time of the first bin

with a content greater than this value. This process is then repeated for each

MPPC across 1000 events, with examples of the resulting histograms shown in

Fig. 5.6.

A Gaussian curve may then be fitted to each MPPC histogram in Fig. 5.6,

with an average of the RMS and mean taken across the four MPPCs. The timing
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Figure 5.6: Histograms for each MPPC of the first-hit time for 1000 initial 0.511 MeV
electrons, incident on the centre of the scintillating bar. A Gaussian
distribution is fitted to each histogram.
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resolution of the MPPCs (for 0.511 MeV electrons incident on the centre of the

scintillator) is then given by

R =
∆t

t
= 2
√

2 ln 2 · σ
µ

= 0.83± 0.21 , (5.3)

where σ and µ are the RMS and mean, respectively, derived from the fit.

Using the simulated data of MPPC hit-times it is then possible to create

a calibration curve relating the hit-position of the incident particle with the

difference between the average hit-time of the left-hand MPPCs and the right.

This yields a linear relationship that can be seen in Fig. 5.7.
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Figure 5.7: A calibration curve (from simulation) for the hit-position of the initial
event, related to the difference in average hit-time of the left- and right-
hand side MPPCs. The errors are from Monte Carlo statistics.
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The calibration curve is calculated by firing particles into the scintillator at

different positions along the x-axis (only in the negative x-direction however as

the relation is symmetric about the origin). This plot can then be used to analyse

the real data from the TDC, estimating the hit position of individual particles

from the difference in hit-times of the left and right side of the scintillator. In

this case the relation is described by

∆T = (0.120± 0.002) · x+ (−0.094± 0.021) . (5.4)

Energy (ADC)

The ADC is a device used to convert a continuous signal to a discrete digital

number. In the case of this experiment the continuous signal is that of optical

photons incident on the MPPC and the discrete digital number is the total count

within the timing window.

Unlike in experiment the simulation is able to initialise a string of particles

with the same initial energy, incident upon the same point of the scintillator. It

may then be used to calculate the exact energy deposited (Edep.) in the detector,

via scintillation, per event. The number of photons detected by all four MPPCs

in one event is plotted against the energy deposition in Fig. 5.8. It is described

well by a linear relation:

Nγ = (157.4± 8.4) · Edep. + (−2.1± 15.7) , (5.5)

where Nγ is the number of photons detected. This relation may then be applied

to further results, from the simulation or experimental data, in order to estimate

the energy deposited per event.

The simulation was then modified to output ADC data analogous to that of

the experimental DAQ. The ADC extracts the total number of MPPC hits per

event, and then stores that number for however many events are incident in the
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Figure 5.8: The total number of optical photons detected for a series of electrons,
with differing initial energies ranging from 0.511 to 7.0 MeV. The energy
deposition is plotted (rather than the initial energy of the particle) so as
to fit a linear relation between photons detected and Edep.. Each point
has error-bars corresponding to

√
Nγ .

timing window. The plot in Fig. 5.9 displays the simulation data for 1000 events

of three particles observed in the MuSIC experiment; negatively charged electrons,

muons, and pions. Each particle type is given an initial energy of 10.0 MeV in this

example. The lower x-axis is the expected output of the ADC. However, using

the relation in Eq. 5.5 (derived from the fit in Fig. 5.8) it is possible to convert

the number of photons detected to an approximation of the energy deposited by

the incident charged particle. This calibration is based on electrons.

The significance of the plot in Fig. 5.9 is that the simulation software has the

ability to make cuts on particle type, whereas the DAQ does not; the DAQ can
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Figure 5.9: The number of hits for 1000 initial events of negatively charged 10.0 MeV
e−, µ−, and π−. The calibration curve used to calculate the energy
deposited is based on e−.

only report times and number of ADC hits which need to be interpreted in terms

of particle type/flux, position, and energy.

Calibration

The simulation package has also been used to model the spectra of the calibration

sources, in this case 22Na and 60Co. The isotopes used in calibration, including

the decay channels modelled, can be seen in Tab. 5.1.

The resulting spectra from this simulation can be seen in Fig. 5.10. In this

case each incident particle has been simulated 5000 times. These plots have then

been compared with the calibration data taken during the experiment.
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Isotope Primary decay channel Energy [MeV]
22Na 22Na → 22Ne + e+ + γ 0.54 (1.27)
60Co 60Co → 60Ni + e+ + γ 1.17 (1.33)

Table 5.1: Isotopes used to calibrate the TDC and ADC, and therefore used in sim-
ulation. The numbers in brackets are energies of secondary photo-peaks.
22Na’s second photo-peak is due to the detection of both photons produced
in the annihilation of the positron. 60Co has two photo peaks from the
gamma-rays emitted by the de-excitation of the 60Ni.
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Figure 5.10: Simulation of the calibration spectra for a) 22Na, and b) 60Co, firing
incident particles of energy corresponding to the different radioactive-
decay channels of that isotope.

Hit count

In order to simulate the hit rate it is necessary to simulate a realistic particle

distribution at the position of the scintillator. This is done using the particle

tracking code G4beamline [34]. An initial beam of protons with energy 392 MeV

is simulated to strike a graphite target. The resulting particle cascade is then

tracked through a 36◦ solenoidal bend to the position of the scintillator - 5.0 cm

away from the end of the beampipe. The spatial distribution of the beam at the

scintillator (in the transverse plane) can be seen in Fig. 5.11.
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Figure 5.11: Spatial distribution of the beam (with a cut removing neutral particles
that are not tracked through the solenoidal magnetic field) incident on
the scintillating bar.

Fig. 5.11 demonstrates that the beam of charged particles is not centred around

the origin of the beamline axis but skewed in both the negative x- and y-direction.

This is due to the nature of the solenoidal magnetic field resulting in a helical

trajectory to the beam. Once this beam exits the end of the beam pipe, assuming a

hard-edged magnetic model with B = 0 beyond the beam-pipe, it will continue on

an off-axis trajectory due to the transverse momentum of the beam. A breakdown

of the constituent particles in the beam at this point can be seen in Tab. 5.2.

Tab. 5.2 demonstrates that the majority of the beam is composed of electrons,

whereas the positively charged counterparts are approximately 50% e+. The

magnetic field in the MuSIC experiment is tuned to select positively charged

particles as, due to charge conservation, the majority of pions produced in the
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Particle e− e+ µ− µ+ π− π+ p

number 2146 288 11 121 6 69 85

percentage 78.7 10.6 0.4 4.4 0.2 2.5 3.1

Table 5.2: A breakdown of the number of particles, and relative abundance, in the
beam as simulated at the position of the scintillator.

proton-graphite cascade will be positively charged. This is confirmed by simulation

with the ratios 7π+:1π− and 5µ+:1µ− emitted from the target. One explanation

for the abundance of electrons is the interaction of the beam with the magnetic

elements/beam chamber, as well as the decay of in-flight particles. This is a raw

particle output however and doesn’t account for the threshold of the ADC. If a

momentum threshold is applied e.g. p > 1 MeV/c then the number of e− halves.

The particle beam is then tracked through the entirety of the MuSIC beamline,

lending a distribution to fire into the scintillator simulation. An example of the

output distribution produced by the scintillation software can be seen in Fig. 5.12.

There is one definitive peak at approximately 2 MeV that corresponds to the

abundance of low momentum electrons and positrons. The other less well defined

peaks at higher energies correspond to the muon and pion content of the beam

(both positive and negative) which are present in Fig. 5.9.

Fig. 5.12 also illustrates the number of particles that have produced scintillation

at that geometry (in this case the origin). Dividing this number by the initial

number of protons incident on the graphite target (1×106) gives the expected hit

rate for the scintillator. The scintillator is then repositioned at discrete vertical

intervals of 5 cm, corresponding to the positions recorded for the real data. The

plot of hit counts for the simulation, using the G4beamline MuSIC beam, can be

seen in Fig. 5.13.

This distribution takes into account a flip in the sign of the y-axis, such that

the distribution in Fig. 5.11 is reflected in the line y = 0. This arises from a
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Figure 5.12: A simulation of the spectrum of photons produced - corresponding to the
energy deposited by the scintillation process - analogous to the output
of the DAQ ADC system.

discrepancy between the particle tracking and scintillation codes, such that the

results are analogous to within a co-ordinate flip in the y-axis.

5.1.2 Experiment

After benchmarking the experiment through simulation, ascertaining expectation

values for particle counts and corresponding energy depositions, the detector

system was then constructed. Three systems were employed for readout: a TDC,

ADC, and a scalar for hit counting. The TDC and ADC can be used in tandem

but the scalar has to be used separately to calculate the trigger rate. The TDC is
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Figure 5.13: The number of particles causing scintillation, for 1×106 initial protons
incident on the graphite target, at discrete positions along the y-axis of
the beampipe.

used to provide positional data on the events by analysing the difference between

the time of hits on one side of the scintillator to the other. The ADC meanwhile is

used to measure the size of the analogue signal in order to ascertain the strength

of the signal; a function of the energy deposited.

DAQ design

During the experiment a scintillator with dimensions identical to those described

in Sec. 5.1.1 was employed. Two MPPCs are attached to each end (see Fig. 5.2),

the MPPCs used (Hamamatsu S10362-11-050c) having 400 pixels in a 1 mm2 area.

The MPPCs output a charge proportional to the number of photons detected,

these signals forming clear bands corresponding to the number of photons detected



MuSIC 141

(see Fig. 5.14) these peaks are then a measure of the energy deposited within the

scintillator. The simulations imply that no event should produce more than 200

photons per MPPC so with 400 pixels no significant pileup is expected.

Each MPPC has an operational voltage (Vop) in the range 70.92 V to 70.99 V,

supplied using a standard power source with an output error of ±0.05 V. The other

pertinent specifications of the four MPPCs can be found in Tab. 5.3. Of these

specifications the one of particular interest is the dark current. Dark current is a

measure of the average number of non-photon ‘signals’ produced by the MPPC.

These signals are primarily caused by thermal excitation of the MPPC and are

random in nature. While they cannot be distinguished from genuine signals they

are very rarely of a strength greater than 1 photon.

In order to ensure the highest fidelity of signal, each MPPC was attached

to a CR-RC circuit (Fig. 5.15) to reduce noise. This combination of a low- and

high-pass filter allows the passage of only frequencies within a desired range i.e.

the signal region. The resistor and capacitor values, displayed in Fig. 5.15, are

calculated to isolate this region.

Figure 5.14: The MPPC response, with each integer photon signal corresponding to
a curve of higher magnitude.
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MPPC Vop [V] Dark current [×103 count s−1] Gain [×105]

1 70.99 308 7.47

2 70.92 331 7.52

3 70.92 355 7.50

4 70.92 332 7.49

Table 5.3: Specifications of the four Hamamatsu S10362-11-050c MPPCs used, as
supplied by the manufacturer.

As well as correct implementation of appropriate resistors and capacitors, one

of the biggest problems in reducing noise is achieving satisfactory grounding.

To minimise this noise all the wires were shielded and copper tape was used as

grounding strips. To ensure easy repositioning of the scintillator each MPPC was

attached to its respective circuit using a short length of LEMO cable (a prototype

without the cable extension can be seen in Fig. 5.16).

After the signal shaping and noise reduction of the CR-RC circuit the largest

source of background is the dark current of the MPPCs. As was noted in Sec. 5.1.2,

the dark current signals are rarely larger than that of a single photon, so by using

a voltage discriminator with a threshold equivalent to that of several photons it is

possible to remove most of the dark current.

Using the discriminator removes the majority of the dark current but there are

a small number of dark signals that will exceed the threshold. These signals can

be removed by imposing a coincidence condition prior to triggering; by requiring

Figure 5.15: Diagram of the CR-RC circuit used to reduce noise. The 0.1 µF capacitor
connected to ground is ceramic due to its need to accommodate high
potential differences.
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Figure 5.16: Prototype CR-RC circuit without MPPC mounting extension.

that all MPPCs have produced a suitable signal it is possible to vastly reduce the

background. The dark current signals that are allowed through the discriminator

are very rare and the likelihood of one occurring on each MPPC is very small, of

the order 10−5.

The DAQ is split over two systems: the trigger and the readout. The trigger is

primarily implemented using Nuclear Instrumentation Module (NIM) other than

the veto release. In contrast the readout is performed by Computer Automated

Measurement and Control (CAMAC) modules. A block diagram of the logic used

can be seen in Fig. 5.17.

There are four sets of delays needed in the logic, the first being the ADC cable

delays. The delay gate generator ensures that the ADC has had the necessary 500

ns to process the signals. ADCs operate by charging a capacitor, which must fully

discharge before the ADC can be read. The delay on the TDC start signal ensures

the 4-fold coincidence detector’s signal is ‘1’ first, i.e. it ensures that MPPC1 is

the start signal. The delays on the stop signals guarantee that they always arrive

after the start signal, and that the start-stop interval is greater than the TDC’s

minimum time.

Calibration

Calibration of the experiment falls into two distinct sections: calibration of the

trigger and calibration of the readout system. The main functions of the trigger are
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Figure 5.17: A block diagram of the DAQ system. Vertical boxes correspond to
CAMAC modules while horizontal and logic symbols represent NIM
modules. Signals move left to right unless otherwise indicated. The only
analogue signals are between the MPPCs, the discriminator, and the
ADC.

to reduce the number of background events and maintain synchronicity between

the various signals. The calibration of the read-out focuses on converting the

digital results into physical values.

Determining the timing of the delays and the signal duration are the primary

goals of calibration. Each signal has to arrive at the right time and stay in the

correct state for the trigger to properly respond.

The prescription for ensuring the correct timing between sections is a general

solution: the relevant signals are read out to an oscilloscope and then adjusted

until they produce the desired result, normally the triggering of the next signal.

The exception to this is setting the delay for the analogue signals in the ADC. The

ADC signals have to be delayed long enough such that they are wholly contained

within the ‘gate’ signal originating from the coincidence detector. An output of

this can be seen in Fig. 5.18. The delay on the gate generator attached to the

interrupt register ensures that the ADC is ready to be read when the PC starts
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requesting data. The TDC delays ensure that the start signal is due to MPPC1

and that the stop signals arrive after the minimum interval measurable by the

TDC. The values for the delays can be seen in Tab. 5.4.

As well as setting the delays to ensure proper execution of the DAQ, the signal

widths need to be carefully set. This is achieved via a similar method to the delay

calibration: each input signal is inspected via the oscilloscope and then the timing

of the output signal is checked. The simplest widths are those that only need to

meet a minimum requirement to trigger their module: these are the start/stop

signals of the TDC (where the separation of these signals is what matters) and

the input to the interrupt register. This only needs to be strong enough to alert

the PC that there is data to collect. As well as these simple signal widths there

are several signal widths that directly impact the quality of the data recorded.

The first of these is the width of the ADC gate: it needs to be long enough to

receive the entire signal without picking up extra signals or dark current. The

other critical width is that of the discriminator output. This width is salient as

the co-incidence detector will only trigger when all four signals are present. The

requirement that all four signals are high means that the longer the discriminator

signal is, the more likely it is that background signals will cause false positives.

Conversely, too short a signal and the peak of another signal may not have reached

Figure 5.18: An example of the oscilloscope display showing the ADC gate and the
signal.
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Line Delay [ns]

MPPCs to ADC (cable) 100

Start (pre ‘AND’) 50

Stop 200

Int gate delay 500

Table 5.4: The delays used to synchronise signals.

sufficient strength. The widths optimised to mitigate these issues can be seen in

Tab. 5.5.

Lastly the threshold used by the discriminators requires calibration. This

process is vital in removing dark current signals that otherwise could swamp the

trigger. The majority of dark current signals only have the strength of a single

photon, whereas even a low energy particle will produce hundreds of photons.

Because of the comparatively high energy of the particles a photon limit of 7

photons is set, equivalent to Edep. = 0.057 MeV according to the relation in Eq. 5.5.

This corresponded to a threshold of 30 mV: the minimum threshold that could be

set, thus removing the sensitivity to very low-energy particles. The effectiveness

of the discriminator and co-incidence detection can be quantified in the ratio of

trigger rates between beam-on and beam-off.

Collimated radioactive isotopes are used to calibrate the ADC and TDC: in

this case 90Sr, 22Na, and 60Co. The 22Na and 60Co isotopes have well defined

photo-peaks so are used to calibrate the ADC, generating an energy calibration

curve. The 90Sr is used to calibrate the TDC as it is the most radioactive of the

Line Width [ns]

Start/Stop and Int 100

Discriminator 75

ADC Gate 100

Table 5.5: The widths of the various signals within the DAQ.
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three sources. It also decays via beta emission so is not suitable for precise energy

calibration. The isotopes, decay processes, and peak energies used for calibration

are the same as in Tab. 5.1.

Calibration of the ADC is performed in two stages: measuring the pedestal

of the ADC and calibrating it for energy measurements. The pedestal of the

voltage is the offset gained from the background and the modules. It is easily

accounted for by taking measurements using the ADC but without triggering.

This is done by manually triggering the interrupt and ADC gate generator using

the OUT register, then disabling the TDC (as it would time out with no start/stop

signals). To account for it the mean value of this is subtracted from all further

measurements.

To calibrate the ADC the sources were placed on the scintillator for extended

amounts of time. The peak(s) found were used to associate a bin with a certain en-

ergy, thus establishing a calibration curve. Unfortunately, due to time constraints,

not enough events were gathered. The photo-peaks couldn’t be distinguished in

order to generate a calibration curve.

Calibration of the TDC is carried out with a collimated 90Sr source placed at

various points on the centre line of the scintillator. The difference between the

TDC data for the left and right side gives a ratio of separation of the event from

the MPPC. Repeating these readings in different lateral positions generates a

calibration curve. The result of these measurements is shown in Fig. 5.19. Initially

the average of the differences between the two left and one right MPPC were used

but this introduced a bias to the results. Additionally two of the MPPCs broke

during data taking, making direct comparison difficult.
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Figure 5.19: The TDC calibration curve. The left-right time difference was taken
for different positions, in each case exposed to a collimated 22Na source.
This source was attached flush to the scintillating bar. The left-right
count difference is converted to time using the relation in Eq. 5.4 from
simulated calibration data.

5.1.3 Results and analysis

Hit count

The hit rate was calculated using scalars to record the beam intensity and trigger

count in a 50 s period. Taking these values when the beam was on, then off, gives

the bias of the results. The hit rate per initial proton can then be calculated using

these values and the relation

dH

dt
=
Ton − Toff

Ion − Ioff

1

q
, (5.6)

where H is the hit count, T refers to the trigger rate, I is the proton beam

intensity, and q is the proton charge.
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The hit rate is calculated for seven vertical positions along the end of the beam

pipe. These values are shown in chronological order of recording in Tab. 5.6, and

displayed graphically in Fig. 5.20. Between the measurements at −150 mm and

50 mm one of the MPPCs broke and another developed an intermittent fault (the

reason for the displaced second reading at 0 mm). Taking the ratio of the two

separate measurements at 0 mm gives a scaling factor that needs to be applied

to all subsequent measurements made with the non-functioning MPPCs. These

rescaled hit rates are also displayed in Fig. 5.20. This demonstrates that there is

a slight bias in the beam towards the top of the beam pipe. The data of Fig. 5.21

can then be used in a chi-squared analysis to test the validity of the simulation

against experimental results. The error used in the calculation are those associated

with both the simulation and experimental, added in quadrature. The number of

degrees of freedom is equivalent to the number of data points, in this case five.

The relation used to calculate this comparison is therefore,

χ2/ndf =
1

n− 1

∑ (Nsim. −Nexp.)
2√

σ2
sim. + σ2

exp.

, (5.7)

giving the result:

χ2/ndf = 1.6 . (5.8)

This simulated beam bias stands up well against the experimental data, serving

as a validation of the scintillator simulation framework.

ADC

As has been noted in Sec. 5.1.2, calibration of the ADC for energy measurements

did not produce any useable data.
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y [mm]
Trigger rate [Hz] Intensity [nA]

Hit rate [Hz]
beam no beam beam no beam

0 2151736 119 1.26 0.24 2126

−50 1438685 69 1.29 0.38 1579

−150 446302 30 1.21 0.38 537

50 1663702 83 1.30 0.40 1848

150 1080170 40 1.34 0.38 1125

0 1307015 34 1.40 0.40 1314

Table 5.6: Hit rates at a range of vertical positions.
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Figure 5.20: Hit rate for a range of vertical positions at the end of the beam pipe. One
of the MPPCs broke mid-run (for +50 and 150 mm) so the measurement
at 0 mm was retaken, scaling the readings at +50 and 150 mm up by a
factor of 1.63.
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Figure 5.21: Rescaled experimental hit rates of Fig. 5.13 compared with the simulated
number of particles causing scintillation per proton of Fig. 5.13. A
threshold of 0.057 MeV is added to the simulated data, corresponding to
the experimental photon limit of 7 photons.

TDC

As can be seen in Fig. 5.22, even after calibration a large number of events resolve

outside the physical bounds of the scintillator, i.e. beyond ±190 mm. This occurs

in every data set from each vertical repositioning, shown in Fig. 5.23. The origin

of this problem is in the DAQ logic and is outlined in the timing diagram in

Fig. 5.24. This diagram shows an earlier signal from MPPC 2 confused with the

true stop signal. This flaw in the DAQ means that none of the horizontal position

information can be trusted. This flaw does not affect the ADC data, however, as

the gate for this is taken from the co-incidence detector. Similarly, the hit rate is

unaffected as this is counted from the same signal.



MuSIC 152

x [mm]
-3000 -2000 -1000 0 1000 2000 3000

C
ou

nt
s

0

200

400

600

800

1000

1200

1400

1600

Figure 5.22: Distribution of hits for vertical position of 0 mm. Note the significant
number of hits outside of the physical volume of the scintillator (shown
by the red lines).
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Figure 5.23: 2D plot of particle hits on the scintillator. The size of the box indicates
the number of hits. The red lines expound the physical volume of the
scintillator.
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Figure 5.24: Timing diagram showing one possible origin of erroneous TDC measure-
ments. Due to the lack of ‘AND’ gates on the stop lines earlier signals
(either from dark current or other events) can create stop signals that
don’t correspond to those from the actual event.

5.2 Run-II

Upon analysis of the Run-I data it was decided that the Run-II scintillator

design should be optimised to make hit rate measurements only, in order to have

comparable results for both periods. For this reason a scintillator with dimensions

better suited to such a measurement was chosen: a disk with a radius of 3.5 cm

and depth of 2.0 cm. These dimensions allow the scintillator to be moved in both

transverse planes for a 2D representation of the beam (limited to 1D in Run-I).

5.2.1 Simulation

Again the Polyethylene scintillating material is modelled in GEANT4, wrapped in a

layer of aluminium foil of thickness 0.2 mm, with the surrounding volume given

the properties of air. In this case the MPPCs are placed on-axis of the x−y plane,

at 90◦ intervals around the scintillator. A visualised output of the disc undergoing
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scintillation can be seen in Fig. 5.25. In this simulation run the scintillator was

placed 85 cm from the end of the beampipe as other detector clamps occupied

the intermediate space. In this figure only the photons detected by the MPPCs

are displayed, highlighting their positions at 0◦, 90◦, 180◦, and 270◦.

A simulated calibration of the scintillator, similar to that of Run-I, was

performed. The correlation between energy deposition and number of photons

detected is shown in Fig. 5.26, analogous to those in Fig. 5.8 for Run-I.

A ratio between the scintillating volumes of Run-I and -II is

R =
Vbar

Vdisk

= 1.48 . (5.9)

Naively this difference in volumes between the two runs should result in 1.48

times more photons in Run-I compared to Run-II. However, by comparing Fig. 5.8

with Fig. 5.26 it is apparent that the simulated ratio is closer to a threefold

Figure 5.25: An example output of the plastic scintillating disc with a 1 MeV incident
electron (arriving along the negative z-axis) producing optical photons
(green) detected by the MPPCs.
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Figure 5.26: The total number of optical photons detected for a series of electrons,
with differing initial energies ranging from 0.511 to 7.0 MeV. The energy
deposition is plotted (rather than the initial energy of the particle) so as
to fit a linear relation between photons detected and Edep.. Each point
has error-bars corresponding to

√
Nγ .

increase. The discrepancy between these two ratios is due to the geometry of

the two scintillators. Owing to the symmetrical nature of the disk the photons

have a higher average path length if they do not travel directly to the MPPC

from scintillation. This increase in path length in Run-II means the photon is

approximately twice as likely to reabsorb than intercept the surface of an MPPC.

The number of photons detected from a typical µ− in MuSIC (with pµ ≈ 59 MeV/c)

can therefore be derived from Fig. 5.26 as approximately 800.

As in Run-I the simulated distribution produced from a 392 MeV proton beam

incident on a graphite target is tracked through the magnetic lattice. This is

then allowed to propagate, in the absence of a magnetic field, for 85 cm until it is
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outputted from G4beamline. The beam profile at the point of interception with

the scintillator can be seen in Fig. 5.27.

There are far fewer particles at this scintillator position than in Run-I. Due

to the helical trajectory of the beam the particles exit the beampipe off-axis and

with a large transverse momentum. If left to propagate unchecked through a drift

length (in this case 85 cm) the beam will diverge in the approximate direction it

is travelling. This can be seen in Fig. 5.11 with the distribution skewed in the

negative x- and y-direction, centred at approximately (−0.07,−0.14) m. In Run-II

the scintillator is positioned 80 cm further from the end of the beampipe than

Run-I. The beam should therefore reach the scintillating disk with an increase

in transverse displacement, shown in Fig. 5.27. To vindicate the simulation a

measurement of hit counts across this area was performed.

5.2.2 Experiment

The positioning of the scintillating disc was constrained by the rigging used for its

placement. For this reason a hit count was initially taken within the range of the

rigging: |x| < 20 cm and |y| < 20 cm. According to the G4beamline simulation

the majority of the beam lies outside this region so the rigging was moved to

accommodate this. This allows measurements to be made over a larger region in

the negative x- and y-direction. The results of these measurements can be seen in

Fig. 5.28, with the hits normalised to the intensity of the beam at that point.

Particle e− e+ µ− µ+ π− π+ p

Number 1066 219 9 122 6 51 82

Percentage 68.6 14.1 0.5 7.8 0.4 3.3 5.3

Table 5.7: A breakdown of the number of particles, and relative abundance, in the
beam as simulated at the position of the scintillator (85 cm after the
beampipe terminates).
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Figure 5.27: Three-dimensional spatial distribution of the beam (with a cut removing
neutral particles that are not tracked through the solenoidal magnetic
field) incident on the scintillating disc, tracked using G4beamline. The
profile is taken 85 cm away from the end of the beam pipe, with a 7
photon trigger.

5.2.3 Result and analysis

The hit rates from both experiment and simulation show a strong correlation, with

an obvious bias in beam position towards the negative x- and y-directions in both.

Upon adding a 7 photon trigger (corresponding to Edep. = 0.019 MeV) to the

simulation, analogous to that in the DAQ, the hit rate per proton lies in the region

of the experimental data relative to the beam intensity over the measurement

window. By selecting the simulated hit rate at the discrete experimental positions,

as displayed in Figs. 5.27 and 5.28, a chi-squared analysis may be performed

between the two data sets, analogous to that found in Sec. 5.1.3. Again the

errors used in the calculation are those associated with both the simulation and
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Figure 5.28: A three-dimensional representation of the hit rate on the scintillating disc
over a range of discrete transverse positions. The counts are normalised
per proton using the beam intensity over each measurement window.

experimental at the discrete experimental positions of the scintillating disk, added

in quadrature. The number of degrees of freedom is equivalent to the number

of experimental data points, in this case nine. Using the relation in Eq. 5.7 a

chi-squared is calculated:

χ2/ndf = 1.7 . (5.10)

This again demonstrates the validity of the G4beamline and GEANT4 simulations

in modelling the experimental results.
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5.3 Conclusions

A novel method of particle capture using superconducting magnets and graded

magnetic fields, first proposed by Lobashev in the 1980s, has been demonstrated

using a nano-ampere proton beam incident on a graphite target. The increased

pion yield from the utilisation of these superconducting solenoid fields has thus

been vindicated placing the future of the COMET experiment on an assured

footing.

The first two experimental runs of the MuSIC experiment have been analysed,

with both data sets modelled using a combination of codes: G4beamline, used

to simulate the novel superconducting pion capture solenoid and beamline, and

GEANT4, simulating the detector system and ensuing physics processes.

The integrity of these codes has been verified via direct comparison with

experimental results. In the first instance of the experiment 1D hit rates were

measured. However, due to a shortcoming of the DAQ software the ADC and

TDC results were rendered unusable. The second experimental run focussed solely

on 2D hit rate measurements with the simulation again agreeing with experimental

data.



Chapter 6

EMMA

6.1 Current status of accelerator science

A significant fraction of the particle physics community is currently focussed on the

Large Hadron Collider (LHC) at CERN in Switzerland. This type of accelerator

is at the forefront of the energy frontier and aims to push this upper limit by

colliding extremely small bunches of particles with small emittances. The desire to

probe at ever higher energies has always furthered the technological development

in other areas of accelerator science.

In most accelerating lattices, whether they be linear or circular, the particles

are guided by magnetic fields. When a particle is accelerated on a circular path

its radius of trajectory increases, requiring an increase in the magnetic field to

keep it on a fixed orbit. Modulating magnetic fields are difficult to maintain

and as such are often limited to a few kHz. Particles therefore spiral outward

through acceleration and a larger aperture is needed. For this reason high power

machines tend to use fixed magnetic fields, allowing for this radial increase over a

few turns of rapid acceleration. These accelerators are known as cyclotrons and

are composed of simple magnets to bend the beam.

160
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Synchrotron accelerators (such as the LHC), where the magnetic field strength

scales with beam energy, tend to incorporate focusing quadrupole magnets, which

focus the beam in one transverse plane but defocus in the other. It is therefore

necessary to implement a minimum of two quadrupoles in one cell to focus in

both the horizontal and vertical plane (this can be shown through the thin lens

approximation). It is a natural progression in accelerator design that a Fixed-Field

would be combined with these focusing cells of Alternating-Gradient (FFAG).

A description of this type of multi-quadrupole magnetic cell can be found in

Sec. 2.2.1.

FFAG accelerators were proposed half a century ago [47, 48, 49], when acceler-

ation of electrons was first demonstrated. Technical issues, such as the modelling

and manufacture of complex magnets, stunted the growth of this field of research.

FFAGs have become the focus of renewed attention in recent years. A proof-of-

principle FFAG has recently demonstrated proton acceleration at KEK [50] and a

number of applications for this type of acceleration have emerged.

6.1.1 Scaling and non-scaling FFAGs

To avoid the slow crossing of betatron resonances associated with a typical low

energy-gain per turn, the first FFAGs designed and constructed so far have been

based on the ‘scaling’ principle. The scaling term refers to the optics of the

machine, which implies that the radial orbits are geometrically similar and scale as

the beam is accelerated [51]. This means that the number of betatron oscillations

per turn (known as the tune) remains constant and the magnetic field follows the

relation B ∝ rk (where r is the radius and k � 1). Due to this optical property

the radial momentum compaction factor is not much greater than that of a normal

synchrotron at relativistic velocities. The magnet apertures are therefore large,

requiring machining on a large scale which is generally difficult and expensive,

leading to recent interest in ‘non-scaling’ FFAGs.
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In non-scaling FFAGs the bending and focusing is provided simultaneously

by focusing and defocusing quadrupole magnets repeating in an alternating

sequence. The radial orbits and tunes do not scale but have different shapes over

a momentum range. This results in a large compaction of orbits through the

bending elements of the lattice and therefore a parabolic relation between the

mean radius and particle energy. This momentum compaction is the reason these

machines are a prime candidate for muon acceleration as they can accept much

larger transverse/longitudinal beam emittances than conventional synchrotrons

and, conveniently, the magnetic field necessary to accomplish this compaction is

linear.

In circular accelerators, such as synchrotrons and FFAGs, the beam repeatedly

encounters the same magnetic structure. Under certain conditions the magnetic

lattice may cause the circulating beam to resonate, causing the oscillation ampli-

tude of the beam to grow. This results in beam blow-up and possibly complete

beam loss; a phenomenon known as optical resonance. The beta function is

periodic for a repeating lattice, with the tune defining the number of betatron

oscillations per revolution.

In the case of the FFAGs the tunes are not held constant during acceleration,

resulting in the beam crossing many transverse resonance conditions, again poten-

tially leading to beam blow-up and loss. If rapid acceleration can be achieved then

resonance crossing can be effectively ignored as the beam occupies the ring for

only a small number of turns. Cyclic accelerators are generally designed to avoid

resonance crossing which provides freedom to choose machine parameters which

are beneficial to acceleration: minimising the circumference to control intensity

loss and maximising magnet aperture size by using only linear elements [52].
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6.1.2 Possible future applications of FFAGs

FFAG devices are an attractive alternative to other accelerating means due to

their unique mode of acceleration. The rapid acceleration of particles practically

eliminates beam-degrading properties which hamper the design of other accelerat-

ing machines. As a consequence of this, specific parameters can be chosen which

are conducive to acceleration. Specifically:

• smaller ring diameters,

• larger transverse/longitudinal acceptance,

• simpler, cheaper magnets.

As previously mentioned, these properties are attractive to future particle

physics experiments which require a cheaper method of rapid acceleration to high

intensities, whilst also demanding the unique properties of alternating gradients

applicable to applications outside of particle physics.

Neutrino factories

Neutrino Factories are designed to determine the neutrino mass hierarchy and

search for evidence of CP violation in the neutrino sector thus providing an insight,

lacking in the Standard Model, into the dominance of matter over antimatter in

the universe. Current experiments, such as T2K [53], are designed on a similar

premise but have limited sensitivity to CP violation owing to the number of

neutrinos produced. Neutrino factories will provide a far higher flux of neutrinos

(approximately 1021 per year) from muon decays [54]. The muons are produced

by irradiating a liquid mercury target with high energy protons, producing pions.

These pions quickly decay to muons, producing a muon beam with a high angular

dispersion which has to be cooled before it can be accelerated. The schematic

in Fig. 6.1 utilises a muon ionisation cooling section which ‘cools’ the spatial

dispersion of the beam. Even after cooling the beam has an extremely large
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Figure 6.1: A proposed schematic for a Neutrino Factory, incorporating a non-scaling
FFAG for muon acceleration [54].

emittance (3×104 π mm mrad, compared to e.g. 3×10−3 π mm mrad for the LHC)

which cannot be accommodated by current synchrotrons, but can by FFAGs due

to their large acceptance.

Furthermore, the lifetime of the muon in its rest frame is 2.2 µs so rapid

acceleration is also a necessity as the muons need to be accelerated to relativistic

velocities before they decay. For these two reasons, which are cheaper to implement

than the alternatives, the most attractive option for muon acceleration in Neutrino

Factories is to use an FFAG accelerator. The same properties also provide an

appealing argument for the use of FFAGs as future high-energy muon colliders.

Proton therapy

In developed countries one in 25 people are diagnosed with some form of cancer

per year, with a large fraction of those being treated with some sort of high energy

beam [55]. Up until the early 1990s X-rays were used to treat tumours with
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Tumour!

Figure 6.2: The variation in radiation dose against depth for photons (X-rays) and
protons. The narrow peak at the largest depths for protons is known as
the Bragg peak.

reasonable effect, yet they were inefficient as quite a large volume of surrounding

tissue (including the tissue traversed to arrive at the tumour) was irradiated

and/or killed. There is another problem, in that the intensity of the beam tailed

off as it travelled further into the tissue, meaning the skin received the highest dose

of radiation whereas the tumour received a smaller dose depending on its depth

within the tissue. Both are problems for the body in general, but particularly

for sensitive body parts such as the eye, brain, spinal chord etc. and for children

where organs are still developing.

The concept and potential benefits of proton therapy were first proposed by

Robert Wilson in 1946 [56] but, due to restrictions in accelerator technology,

were not broadly realised until the beginning of the 1990s. Due to the narrow

Bragg peak at the end of the depth range, illustrated in Fig. 6.2, it is possible

to irradiate a well defined area whilst reducing the irradiation of the traversed
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tissue. The disadvantage of proton therapy at the time was the huge apparatus

(even by medical standards) required for the treatments, often carried out in

nuclear physics laboratories with linear accelerators and simple magnet designs.

Despite these setbacks 10,000 people had been treated by proton therapy by 1993,

indicating the necessity for growth in this area.

For more people to benefit from hadron therapy it is necessary to make the

accelerators as easily accessible as possible, namely by making them cheaper and

smaller. There are two proposed machines for cheaper hospital-based dual centres,

a KEK-like FFAG or a cyclinac (a combination of a low-energy high-current

cyclotron and a high-frequency linac), both of which may be suitable for proton

therapy. It will be a few years before it is known which proposal offers the solution,

both economically and technically, but the results coming from the FFAG sector

hold a lot of promise.

Nuclear waste transmutation

The majority of nuclear reactors use uranium as a primary fuel source, which

naturally undergoes fission. The emission of neutrons, that then interact with

other uranium atoms, causes a chain reaction. In this case the reactor is said

to be ‘critical’ and the reaction continues until an expiration of Uranium. This

process has to be controlled to avoid nuclear meltdown.

An alternative, safer option is to use a radioactive isotope that undergoes

natural fission at a much lower rate, e.g. thorium. In this case the fission requires

a catalyst in the form of firing a beam of low energy protons onto a heavy metal

target. The protons create a cascade of neutrons, at an approximate ratio of 30n:1p,

which drives the fission process. This type of reactor is said to be ‘subcritical’

since the fission reactions immediately cease upon termination of the incident

beam, eliminating the risk of past nuclear catastrophes.
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Figure 6.3: Graphic demonstrating the process of accelerator driven nuclear waste
transmutation after production in a nuclear reactor [57].

As well as initiating and running a fission process, the accelerator driven

system may be used to transmute and reprocess nuclear waste into shorter lived

fission products. Americium and curium are two of the most prevalent products

of fission, with approximately 10,000 years passing before they decay to the

same level of radioactivity as the uranium used to initially fuel the reaction. By

transmuting these isotopes through the absorption of slow neutrons, the storage

time is dramatically reduced to less than half a century. This process is illustrated

in Fig. 6.3.

The accelerator technology required for these processes is currently available,

however the capital and running expenses are huge. The next generation of

accelerators, specifically FFAG-driven high-power proton sources, will dramatically

mitigate costs by utilising a far higher acceleration gradient [58]. The process

also requires the down time of the accelerator to be limited to a few seconds per

year, otherwise unacceptably large changes in temperature, leading to untenable

thermal stresses, occur. Present accelerators are not reliable enough to maintain
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such a constant level of activity whereas FFAG accelerators potentially are. Both

MYRRHA [59], Belgium, and Project X [60], USA, have programmes designed to

develop and demonstrate the next generation of ADS technology.

6.2 The EMMA project

The validity of these applications needs to be verified with a similar non-scaling

proof-of-principle machine, analogous to the KEK machine outlined in Sec. 6.1.

The Electron Model for Many Applications (EMMA) project utilises a 10−20 MeV

linear non-scaling FFAG (ns-FFAG), constructed at the Daresbury Laboratory,

UK. The EMMA ring, as well as injection and extractions lines, can be seen in

Fig. 6.4. The experiment is part of the Construction Of a Non-scaling FFAG

For Oncology, Radiation, and Medicine (CONFORM) project [61], which is also

seeking to develop a ns-FFAG accelerator (PAMELA) for hadron therapy. PAMELA

is still at the design stage so positive results from EMMA will be of the utmost

importance.

The EMMA machine began commissioning in Daresbury in July 2010. It is

the first of its kind so extensive simulations, using a spectrum of both analytical

and particle tracking codes, had to be performed at the design stage. These

simulations are also critical for in situ tuning of the machine, where measurements

are being made. The experimental results will then be used to benchmark the

codes, allowing optimisation for accurate modelling of future FFAG accelerators.

It is shown to give a good description of the data giving confidence that it can be

used to optimise the design of future FFAG accelerators.
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6.3 Modelling in GPT

The General Particle Tracer (GPT) package [62] is a well established simulation

tool for the design of accelerators and beamlines. GPT tracks particles based on

comprehensive 3D techniques, allowing for non-linear effects of charged particle

dynamics in electromagnetic fields to be modelled. The particle tracking is based

on solving the relativistic equations of motion of the individual macro particles.

The position x and the momentum p = γmv are used as the coordinates of a

particle. The equations of motion for particle i are given by:

dpi
dt

= Fi , (6.1)

dxi
dt

= vi =
pic√

p2
i +m2

i c
2
i

. (6.2)

Figure 6.4: The EMMA experiment at the start of commissioning in June 2010. The
injection line from ALICE is visible in the foreground, with the ring and
extraction lines are shown in the background.
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These equations of motion can not be solved for each particle individually because,

due to space charge, the force on each particle depends on the position of all other

particles. The vector y(t) is therefore introduced containing the six coordinates

of all the particles as a function of time. The equations of motion in Eqs. 6.1 and

6.2 can then be rewritten as

dy(t)

dt
= f(t,y(t)) , (6.3)

where f(t,y(t)) is a combination of Eqs. 6.1 and 6.2 for every particle. The only

boundary conditions are the initial particle coordinates at a specified time.

The method utilised by GPT to solve Eq. 6.3 is known as fifth-order embedded

Runge-Kutta with adaptive stepsize control. The algorithm is efficient and has the

capability to specify the accuracy of the calculation. The algorithm advances in

steps from y(t) to y(t+ h), calculating the error between a fifth- and fourth-order

formula, keeping the error to a specified degree - not too large so as to indicate

an insufficient precision of the result but not too small so as to waste CPU time.

This software was chosen to complement other EMMA tracking codes e.g.

Zgoubi [63], and analytical transfer matrix packages (e.g. MAD (Methodical

Accelerator Design)) [28], and because of its inbuilt modelling of space-charge. In

this chapter a simulation of EMMA is presented and the results compared to the

experimental data. The results of this space-charge modelling will be discussed in

Sec. 6.4.

6.3.1 Injection line

The energy recovery linac ALICE [64] serves as an injector for EMMA, providing

electron bunches in the energy range of 10 to 20 MeV. The injection line used

to transport the bunches from ALICE into EMMA can be seen in Fig. 6.5, where

the key magnetic and diagnostic components are shown. The line consists of
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Figure 6.5: A schematic of the ALICE to EMMA injection line.

a symmetric 30◦ dogleg to extract the beam from ALICE. This is followed by

a matching section of quadrupoles with a tomography section for transverse

emittance measurements. The line concludes with a transport section to the

injection point of the EMMA ring, including further beam diagnostic equipment.

As the injection line consists of well documented magnetic components (dipoles

and quadrupoles) its modelling was used to validate the software package. All the

magnetic elements were substantiated using built-in GPT elements, thus providing

a simulation of all the magnetic fields, including the summed effect of fringe fields.

The simulation starts with the two quadrupoles in ALICE upstream of the first

dipole of the injection line up to its end (including an approximation of the EMMA

injection septum).

The injection line was initially modelled using the matrix transfer method

forming the basis of MAD. In this software the lattice is constructed using a

hard-edge approximation, calculating the Twiss parameters defining the lattice.

MAD differs from GPT in that it analytically tracks the Twiss parameters through

the beamline using transfer matrices, whereas GPT numerically tracks the initial
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particle beam using custom magnetic elements. The MAD software is widely used

and deemed highly reliable for modelling simple beam transport systems. As the

beam transport is modelled using matrix transformations it does not take into

account certain non-linear optics effects, which is why numerical computation

is required for comparison. For the EMMA injection line, it is assumed that the

lattice is simple enough for the results from the MAD simulation to be reliable and

so be used as a robust benchmark against which the performance of GPT can be

assessed.

As previously mentioned in Sec. 2.1.2, the beta function is analogous to the

beam-size for a system of constant emittance. The beta functions for the injection

line calculated by MAD are shown in Fig. 6.6.

The initial Twiss parameters were then extracted from MAD and used to

substantiate a Gaussian distribution in GPT. The initial parameters can be found

in Tab. 6.1. Using this data, and the theory outlined in Sec. 2.1.2, it is possible

to initiate a Gaussian beam.

Once the beam has been initiated the magnetic lattice has to be modelled to

observe the effects of propagation. It is a blueprint of Fig. 6.5, consisting of 20

quadrupoles and 5 dipoles, modelled using the elements and co-ordinate changes

unique to GPT.

Twiss parameter Initial value

βx 13.1 m

βy 12.7 m

αx 1.5

αy -2.1

εx,y 3.0 πmm mrad

Table 6.1: Initial twiss values for the EMMA injection line, extracted from MAD and
inputted into GPT.
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Figure 6.6: Beta functions, βx,y, for the ALICE to EMMA injection line, as modelled
by MAD.
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Figure 6.7: Beta functions, βx,y, for the ALICE to EMMA injection line, as modelled
by GPT.
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The beam is then matched to certain constraints along the line: the tomography

section requires the beta values to be equal (and alpha values to be equal and

opposite) at the entrance as the quadrupole strengths are fixed and cyclical; the

dispersion is required to approach zero at the end of the dogleg section and at

the entrance to the ring due to large dipole fields experienced at these locations.

As the initial beam parameters are fixed by the MAD simulation the quadrupole

strengths are the only variables to be optimised. Fig. 6.7 shows the product of

this optimisation, analogous to the output from MAD seen in Fig. 6.6.

A direct comparison between Figs. 6.6 and 6.7 indicates GPT provides an

accurate simulation of the injection line. The beta functions differ by a factor of

3-4 before and after the tomography section but the constraints from matching

previously outlined are met. These discrepancies between the beta functions are

accounted for by the disparate nature of the quadrupole approximations.

6.3.2 EMMA ring

In accelerator design a reference trajectory is chosen, whereby an ideal particle

travels at a fixed energy without dissipative forces. Magnets are positioned and

aligned such that the particle ends at the exact point it started after one revolution

of the machine: a closed orbit. If the orbit is not closed then the bunch will

experience a kick every time it sees the same magnetic field, resulting in a first

order resonance and leading to beam blow-up.

In synchrotrons the magnet strengths are scaled with beam energy to maintain

a constant reference trajectory. By definition a non-scaling FFAG maintains a

fixed field so the orbit will be displaced outwards with an increase in energy,

meaning the orbit is not closed. It is possible, however, to study the trajectory of

a particle in an FFAG without acceleration, allowing for different closed orbits at

different energies.
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(a) (b)

Figure 6.8: A a) schematic, and b) photo of a typical EMMA cell. The defocusing
magnet (blue) is the first element in the cell and is larger than the focusing
magnet (red) due to its higher magnetic field gradient.

The EMMA ring is composed of 42 identical cells, an example of which is

depicted in Fig. 6.8, each containing a focusing and defocusing quadrupole. The

lattice has a periodicity of 2π/42 with the intrinsic beam dynamics defined by

a single cell. As well as the ability to change the magnetic field (by altering the

current) the quadrupoles are on rungs so they can be laterally shifted (see Sec. 2.2.1

for a more detailed explanation). The EMMA cells are therefore characterised by

four variable parameters.

Single cell matching

The GPT simulation of the EMMA ring differs from that of the injection line in

demanding a closed orbit (both in the cell and the ring) and requiring that this

criteria takes precedence over all others. For this reason the quadrupole strengths

and offsets were fixed and a field map of am already constructed cell was measured

to remove the potential errors arising from quadrupole approximations. The fixed

magnet parameters for the field map used in all GPT simulations are detailed in

Tab. 6.2. As the field is held constant, the initial Twiss parameters, as well as the

radial and angular offsets, were optimised to achieve a closed orbit.
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The matched alpha and beta functions for one EMMA cell, as simulated by

GPT, are displayed in Fig. 6.9. In order to match the beam, a bespoke GPT element

was written requiring a zero difference between the Twiss values at the start and

end of each cell, i.e. a closed orbit. As previously mentioned, if periodicity is

achieved in one cell then the periodicity of the entire ring is also defined. This

matching was achieved to within a self-imposed constrained accuracy of 1× 10−4.

The matching simulations detailed in this section are for an injection energy of

15 MeV, in the middle of the energy range, and a longitudinal bunch length of

1 mm.

Multiple turns

The electron bunches injected into EMMA are expected to complete hundreds of

turns of rapid acceleration before extraction. For this reason the validity of the

beam dynamics needs to be reconfirmed at this range, making sure mismatches

and resonances are avoided.

The simulation was set up to track 10,000 macro particles around 100 turns

of the machine. The Twiss parameters were outputted at the end of each turn

and, as for one cell, these values should be constant over each turn if the beam

is matched correctly. Fig. 6.10 shows the beta functions and emittance for this

range behaving with the properties of a matched beam.

parameter value

F magnet
gradient 6.68 T/m

offset 7.51 mm

D magnet
gradient -4.70 T/m

offset 34.05 mm

Table 6.2: The EMMA baseline lattice parameters. The quadrupole magnetic gradients
and displacements are shown for both the focusing and defocusing magnets.
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Figure 6.9: a) Alpha functions, αx,y, and b) beta functions, βx,y, for an EMMA cell,
as modelled by GPT.
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Figure 6.10: a) Beta functions, βx,y, and b) transverse emittances, εx,y, for 100 turns
of the EMMA ring, as modelled by GPT.



EMMA 179

The small fluctuations around the mean arise from symplectic errors in beam-

matching i.e. numerical inaccuracies in integration algorithms that blow-up over

many turns. Therefore the fluctuations observed are not dependent on statistics

but an intrinsic artefact of the Jacobian matching operator.

Time of flight

In the case of EMMA, the electrons have a kinetic energy in the range of 10−20 MeV

and as such experience little increase in velocity with a gain in energy. To overcome

orbit radius scaling with energy (i.e. higher energy particles orbit with a larger

radius, as seen in traditional FFAG machines like the proof-of-principle machine

at KEK), the lattice was designed such that lower energy particles experience

stronger magnetic fields than higher energy particles. The effect of this is evident

in Fig. 6.11, illustrating that lower energy particles follow a larger bend and higher

energy particles travel closer to an on-axis trajectory.

For this reason it is expected that particles with lower energies will take longer

to complete one revolution of the machine, therefore having a longer time of flight

(TOF). The orbital periods across the EMMA energy range can be seen in Fig. 6.12.

The period follows a parabolic relation with a minimum at approximately 17 MeV.

Fig. 6.12 also displays the TOF curve from a different code (ZGOUBI) with the

same cell geometry, co-ordinate transforms, and baseline fieldmap [65]. These

two curves demonstrate a similar trend, with an almost constant offset of 0.01 ns.

This displacement is most likely due to nuances between the two codes’ numerical

solvers used to match the beam.

In EMMA the TOF is not constant, but varies within a small range. By

adjusting the cavity frequency to the average TOF of this parabola the entire

energy range can experience a positive accelerating voltage in the cavity. The

TOF variation with energy depends on the magnet strengths responsible for the

bend of the trajectories. It also depends on the transverse positions of the magnets
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Figure 6.11: Mean horizontal position for three closed orbits of differing energy in
one EMMA cell. The transverse co-ordinates at the entrance of the cell
are equal to those at the exit after a rotation of 2π/42, not represented
in this figure.

since, by moving one magnet with respect to the other, the magnetic field in the

cell is changed and the closed orbits are different.

After initial commissioning of the machine was complete, experimental runs

were initiated to measure the beam position and orbital period as a function

of energy. The TOF is measured using beam position monitors (BPMs), each

composed of four electrodes located on the beam pipe. When a bunch passes

through that section of the beampipe each electrode measures a change in potential,

with a larger gradient indicating a closer beam. The TOF is measured as the time

between signals observed by one electrode. To increase the precision the TOF is

measured over multiple turns, with 10 turns being the default in this analysis.
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Figure 6.12: Orbital period of the EMMA ring as a function of energy, averaged over
10 turns, output at the end of each revolution.

Each TOF measurement is taken on an oscilloscope and then processed on a

computer. Phenomena such as radio frequency jitter or variations in electron gun

conditions may lead to a slightly different nominal momentum in each case. To

mitigate these potential errors several scope signals are saved for each TOF, with

an average and standard deviation calculated for each energy.

The energy recovery linac ALICE used to inject into EMMA is a well-documented,

flexible machine with achievable energies up to approximately 27.5 MeV. ALICE

could therefore inject into EMMA across the full 10− 20 MeV energy range. How-

ever, in terms of technical reproducibility it was decided that ALICE would inject

with a fixed energy of 12 MeV, with EMMA creating an equivalent momentum

range by changing the quadrupole strengths.
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Using the beam dynamics relation that a decrease in magnetic strength is

equivalent to an increase in beam momentum, it is possible to characterise the

EMMA lattice over an equivalent momentum range. In application this equivalence

is only valid if the ratio of the quadrupole strengths is kept constant, with equivalent

momenta achieved by scaling the coil currents up or down according to the fixed

ratio. For example, if the current coils are reduced by 20% then the equivalent

momentum increases by 20%. The baseline lattice configuration for an optimised

injection energy of 12 MeV is predicated on nominal magnet currents of 350 A

for the defocusing magnet and 320 A for the focusing magnet. All equivalent

momenta are therefore scaled according to the ratio of these values, r = 1.094.

Fig. 6.13 shows the experimental data for a range of equivalent momenta, where

the data has also been fitted with a second order polynomial. The error in the

orbital period is the standard deviation of eight measurements at that momenta.

It is slightly misleading to plot these two curves concurrently: the GPT simulation

is created using a fixed fieldmap with a baseline lattice configuration but a range

of injection energies; the experimental data is derived from creating an equivalent

momentum range by altering the magnet strengths. It is therefore necessary to

recreate the experimental data by implementing an equivalent momentum range

in the GPT simulation.

In order to scale the quadrupole strengths the fieldmap has to be removed

and GPT magnetic elements reimplemented, analogous to the method described in

Sec. 6.3.1. The geometry of the cell remained the same except for an additional

2 mm increase in the quadrupole offsets. This was performed in the experimental

runs to make it easier to inject at low equivalent momenta. Using this refined

geometry, the equivalent momenta method, and giving the beam a bunch-charge

of 40 pC as recorded experimentally, a data set was created. This is shown in

Fig. 6.14 along with the previous simulated lattice.

The beam was initiated and matched to the baseline lattice design at each

scaling of the quadrupole strengths. The baseline parameters were originally
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Figure 6.13: Comparison between measurements and the GPT field map simulation of
the orbital period variation with energy. A second order polynomial fit
is also shown.

optimised using a number of different simulation packages (described in further

detail in Sec. 6.3.2) such that the GPT simulated TOF curve was symmetrical around

its minimum at 15 MeV. As can be seen in Fig. 6.14 the output demonstrates

this property. However, for this reason the parabola shows discrepancies at the

upper extreme of the effective momentum range. The experimental lattice has a

minimum TOF of approx. 55.30 ns (14 MeV), whereas the equivalent simulated

lattice has a minimum TOF of approx. 55.27 ns (15 MeV). Despite the offset

at higher energies, the shape of these two curves is similar after their respective

minima. It is concluded that this discrepancy arises from errors in the actual lattice

that are not accounted for in the simulation: e.g. inconsistencies in individual

magnet strengths; misalignment errors across the different cells; etc.
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Figure 6.14: Comparison between measurements and simulations of the orbital period
variation with energy. As well as the simulation employing the baseline
field map a simulation with the GPT quadrupole elements, scaled to
produce an equivalent momentum range, is also plotted.

The simulation was further optimised by adjusting the four lattice variables

(quadrupole strengths and offsets). It remained necessary to maintain a constant

ratio between the quadrupole strengths to produce an equivalent momentum range,

but the ratio itself was optimised. The baseline offsets were scaled by the same

distance as in the experimental lattice i.e. an increase of 2 mm. The optimisation

was performed using the GPT numerical solver, with the closest approximation of

the experimental lattice produced by the ratio r = 1.108± 0.007 and 2± 0.02 mm

offset (back towards the central beam axis), with the error range derived from the

variation in results after 100 simulations. The results of this matching are shown

in Fig. 6.15.
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Figure 6.15: Comparison between measurements and simulations of the orbital pe-
riod variation with energy. The additional curve is produced using the
GPT quadrupole definitions, with the relative magnetic strength and
quadrupole offsets optimised to mimic the experimental data.

The numerical solver in GPT requires an accuracy for each variable to be

matched. This accuracy affords the solver a tolerance range for faster calculation

but gives the values an intrinsic uncertainty. The accuracy required for the four

quadrupole variables is one per cent. These errors are non-correlated so, as such,

are combined in quadrature. The error range of the matching for the TOF curve

is shown by the shaded region in Fig. 6.15. As can be seen, the simulated lattice

agrees with the experimental data to within the error range arising from matching.

In addition to the uncertainties in the simulation from the GPT solver, the

experimental data itself also has a variance from a number of factors with hysteresis

in the magnets being the main contribution. There is an associated 0.7% error

in the magnet strength due to hysteresis. If this is taken into account then the
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experimental scaling ratio becomes r = 1.108± 0.015. The GPT solution lies just

within this range.

Tune calculations

As previously described, the EMMA lattice is a repeating structure of 42 identical

magnetic cells and is thus intrinsically periodic; the beam encounters the same

magnet structure once every full revolution, therefore experiencing periodically

repeating forces. For this reason the focusing function k(s) is periodic with the

circumference of the ring, resulting in the same solution to Hill’s equation as in

Eq. 2.11,

x(s) =
√
εxβx(s) cos (ψx(s) + φx) . (6.4)

In this solution however the beta function β(s) is also periodic, with the same

periodicity as k(s). The resonance arising from this repeating lattice is dependent

on the betatron phase,

∆ψ = ψ(s+ L)− ψ(s) , (6.5)

integrated over one complete revolution. The tune is thus defined as

νx,y =
∆ψx,y

2π
=

1

2π

∮
ds

βx,y(s)
, (6.6)

describing the number of betatron oscillations a particle undergoes per revolution

[23].
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The tune may be approximated using a ‘smoothing’ method by taking the

average beta value, β̄, and utilising the relation

β̄ =
R

ν
. (6.7)

Eq. 6.7 is very accurate for most accelerating rings but ns-FFAGs have an average

off-axis horizontal beam position so it is not a robust enough method for EMMA

tune calculations.

If the position of the beam is known during revolution - either experimentally

using beam position monitors or, in this case, using virtual screens in the simulation

placed at the end of each magnetic cell - then a fast fourier transform (FFT)

may be performed. An FFT decomposes a series of values into components of

different frequencies. FFTs are a type of discrete fourier transform which reduce

the computation time from N2 down to N logN by approximating the integral

as a summation, either in frequency or time. The algorithm used for the FFT

calculation is that included in MATLAB [66]. In this case the FFT dissolves the

average beam position at the end of each magnetic cell (outputted by GPT) into

the tune.

Fig. 6.16 shows an example output of the FFT function, demonstrating clear

central resonant tunes in both planes. The plots also show two small adjacent

resonances. These resonances define the synchrotron tune νs and are positioned

at νx,y ± νs. For a 15 MeV electron beam νs = 0.0234. The method used to create

the plots in Fig. 6.16 is then repeated across the 10 − 20 MeV EMMA energy

range, with the initial Twiss parameters rematched at each energy. The result of

these calculations can be seen in Fig. 6.17. These results were produced using the

initial baseline field map model described in Sec. 6.3.2.

Tune calculations have been produced using a number of different codes, all

modelling EMMA with the baseline parameters: MAD (with displaced quadrupoles),

BERG [67], and Zgoubi [68]. The tune calculation results for these different codes
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Figure 6.16: Cell tune plots for both the a) horizontal, and b) vertical transverse
planes of a single reference particle taken across 100 turns of the ring.
The beam is injected with an initial energy of 15 MeV. The y-axis is
arbitrary in each case.



EMMA 189

Energy [MeV]
10 12 14 16 18 20

x,
y

ν

0.10

0.15

0.20

0.25

0.30

0.35

0.40 xν
yν

Figure 6.17: Horizontal and vertical cell tunes across the EMMA injection energy
range, calculated from 100 turns of the machine.

can be seen in Fig. 6.18. All the models demonstrate good agreement, including

the GPT simulation: the horizontal tune sits slightly higher than the other codes

but shows the same shape; the vertical tune lies in the middle of the other codes

but is slightly skewed at lower energies.

Fig. 6.19 shows the tune equivalent plot of TOF from Fig. 6.13, comparing

the simulated and experimental lattice. As with Fig. 6.13 it is misleading to plot

them on the same axes as they represent different lattice setups. However, as with

the TOF results, they are broadly in agreement.

The GPT simulation was then set up to include the quadrupole elements. The

matched quadrupole ratio r = 1.108 and 2 mm offsets derived in Sec. 6.3.2 were

included in the simulation. The tune across the EMMA energy range was then
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Figure 6.18: Comparison of the a) horizontal, and b) vertical tune produced by
different codes modelling the EMMA ring with baseline parameters.
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Figure 6.19: Comparison between the tune variation of a cell with energy for the
experimental and simulated lattice. The simulation uses the measured
field map of the EMMA baseline parameters.

calculated using the method previously described. The results are shown in

Fig. 6.20.

Again the simulation with the optimised cell variables demonstrates good

general agreement with the experimental data. The simulated lattice shows a

slight misalignment at the extremities of the energy range in both transverse

planes. However, this misalignment lies within the allowed error range of the

simulated lattice.
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Figure 6.20: Comparison between the cell tune’s variation with energy for the experi-
mental and simulated lattice. The simulation employs the GPT quadrupole
elements with the matched scaled strengths and offsets optimised in
Sec. 6.3.2. The equivalent momentum method is used to create an
effective energy range.

6.4 Space-charge calculations

The Coulomb forces between the charged particles of a high-intensity beam in

an accelerator create a self-field which acts on the particles inside the beam like

a distributed lens, defocusing in both transverse planes. A beam moving at a

certain velocity is accompanied by a magnetic field which partially cancels the

electrostatic defocusing effect, with complete cancellation at the speed of light.

The effect of this direct space-charge alters the number of betatron oscillations per

machine turn, ν, by ∆ν. The space-charge limit of a synchrotron (approximately
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∆ν = 0.5) may be overcome by increasing its injection energy, thus raising γ to a

level where space-charge losses are no longer dominant.

The concept of self fields is most easily represented by two particles of equal

charge which, at rest, repel one another due to the Coulomb force. However, when

travelling with speed v = βc, they represent two parallel currents which attract

one another by the effect of their magnetic fields. The net effect of these currents

is still repulsive but decreases with speed, and thus energy.

Accelerators typically bunch together billions of particles with a simplified

circular cross section shown in Fig. 6.21. The Coulomb force serves to push

the highlighted reference particle away from the centre of the beam, with the

defocusing force increasing towards the edge. This force is also present in a moving

beam, however the magnetic force vector focuses the reference particle towards

the beam centre.

These radial forces are described by,

Fr = e(Er − vsBφ) . (6.8)

Figure 6.21: The electrostatic and magnetic forces on a reference particle, within a
transverse bunched beam.
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Inserting the definitions for radial electric field, Er, and azimuthal magnetic

field, Bφ, for a uniformly charged cylinder leads to

Fr =
eI

2πε0βc
(1− β2)

r

a2
, (6.9)

where a is the beam envelope size, r the particle radius within the envelope, and I

is the beam current. These may be expressed in transverse co-ordinates, such that

Fx =
eI

2πε0βγ2ca2
x , Fy =

eI

2πε0βγ2ca2
y . (6.10)

Hill’s equation for a FODO cell, defined in Eq. 2.8, may be extended to include

the perturbative effects of these forces, denoted by kSC ,

x′′(s) + (k(s) + kSC(s))x(s) = 0 . (6.11)

kSC may be derived by expressing x′′(s) in terms of the force Fx:

x′′ =
1

β2c2

Fx
m0γ

=
2r0I

ea2β3γ3c
x , (6.12)

where r0 is the classical particle radius, 2.82×10−15 m for electrons. Hill’s equation

with space-charge then becomes

x′′(s) +

(
k(s)− 2r0I

ea2β3γ3c

)
x(s) = 0 , (6.13)

with a negative space-charge term, reducing the net focusing effect of the magnetic

lattice [69]. The incoherent tune-shift may then be calculated by integrating the

weighted gradient errors around the circumference of the ring 2πR:

∆νx =
1

4π

∫ 2πR

0

kSC(s)βx(s)ds . (6.14)
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Taking the definition of kSC from Eq. 6.13 yields

∆νx = − 1

4π

∫ 2πR

0

2r0I

eβ3γ3c

βx(s)

r2
ds =

r0RI

eβ3γ3c

〈
βx(s)

a2

〉
. (6.15)

The term 〈βx(s)/a2(s)〉 is the inverse of the beam emittance, defined in Eq. 2.13,

and thus an invariant. Replacing the beam current I by Neβc/4πR (for a Gaussian

beam), where N is the number of particles in the bunch, leads to the tune shift in

both transverse planes from space-charge induced self-fields,

∆νx,y = − r0N

4πεx,yβ2γ3
. (6.16)

This form of the tune shift is for a constant, unbroken Gaussian beam filling

the entire beamline. In reality the beam is separated into discrete bunches, where

space-charge effects are more profound due to an increase in bunch density. The

tune is therefore multiplied by a bunching factor, leading to the form

∆νx,y = − r0N

4πεNx,yβγ2

C√
2πσrms

, (6.17)

where C is the circumference of the ring and σrms the RMS of the bunch.

GPT has a number of built in space-charge routines, differing in rigour and

therefore computation time. The spacecharge3Dmesh routine is not the most

comprehensive calculation of self-fields but it provides robust results in a realistic

timescale [70]. In this model stochastic effects are correctly assumed to be

negligible so a non-equidistant mesh can be used in conjunction with solutions of

Poisson’s equation in the co-moving frame.
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6.4.1 Injection line

Quadrupole matching of the ALICE to EMMA injection line was demonstrated

in Sec. 6.3.1, with the beta functions outputted from GPT shown in Fig. 6.7. A

study of the beam-size variation has been performed to quantify the effects of

space-charge. Fig. 6.22 shows this equivalent beam-size. It also shows the effect

on beam-size by space-charge-generated self fields within the range of 0− 30 pC.

Fig. 6.23 zooms into the σx plot of the tomography section from Fig. 6.22. This

demonstrates the effect of space-charge on beam-size in more detail. As described

in Sec. 6.4, space-charge has a defocusing effect on the bunch, which can be seen by

the initial increase in beam-size over the first few quadrupoles of the tomography

section. The effect on beam-size increases with an increase in bunch-charge. As

the bunch initially grows in size it pushes particles further off-axis where they

experience a stronger magnetic effect of the focusing quadrupole. This then over-

focuses the bunch leading to a mismatch at the end of the section. One solution

to this would be to rematch the line for each different injected bunch-charge by

making modest quadrupole adjustments.

6.4.2 EMMA ring

The parameters of any circular magnetic lattice are defined by its tune and TOF.

The total tune shift arising from space-charge self fields is defined in Eq. 6.17.

As this relation contains parameters that may not be inputted directly into GPT

i.e. N , β, and γ, it requires a slight modification to accommodate tangible input

parameters for simulation. Using the substitution for β and γ in terms of energy,

β2γ3 = γ
(
γ2 − 1

)
=

E

moc2

((
E

moc2

)2

− 1

)
, (6.18)
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Figure 6.22: Beam-size in the a) x- and b) y-plane for the ALICE to EMMA injection
line, detailing a range of bunch-charges with a spread of 0 to 30 pC.
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Figure 6.23: Beam-size in the x-plane, demonstrating the effect of a range of bunch-
charges on the tomography section of the ALICE to EMMA injection
line.



EMMA 198

and calculating the number of particles by dividing the total bunch-charge by

electron charge,

N =
Qtot

qe

, (6.19)

the tune shift can be calculated using the following equation, where all the variables

are well defined injection parameters of the beam,

∆νx,y = − r0

2πεx,y

[
E

moc2

((
E

moc2

)2

− 1

)]Qtot

qe

C√
2πσrms

. (6.20)

This analytical form can then be used to calculate tune shifts independent of

the tune value at that energy. The shift for an 80 pC bunch at 15 MeV represents

an approximate 3% shift from the nominal value calculated by GPT at this energy

for zero bunch-charge. A 3% shift is more than that which is typically tolerable in

a high intensity proton synchrotron or storage ring and, although the beam stays

in EMMA for only 10 to 20 turns, resonance crossings excited by space-charge are

a concern. Fig. 6.24 shows the relation between the GPT results at 0 pC and an

arbitrary space-charge regime of 80 pC, across the full EMMA injection energy

region.

Lorentz factor γ 20.5

Number of particles N 5×108 (80 pC)

Normalised emittance εNx,y 10 π mm mrad

Bunch length σrms 1.0 mm

Circumference C 16 m

Electron radius r0 2.82×10−15 m

Table 6.3: Bunch parameters for a 15 MeV beam, used to calculate an expected tune
shift arising from space-charge at the EMMA bunch-charge regime.
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Figure 6.24: Theoretical tune shift from an 80 pC bunch-charge, compared with the
tune calculated from GPT simulations with 0 pC.

The FFT routine used to calculate the tune from GPT data sets has a resolution

limit inversely proportional to the number of outputs. In the EMMA simulation

there is a ‘screen’ output at the end of each cell, giving 42 outputs per turn. One

hundred turns of the machine was simulated for each calculation of the tune,

affording 4200 outputs. The beam energy was then fixed to 15 MeV and the

bunch-charge scaled up from zero until a tune-shift was observed. Fig. 6.25 shows

the expected linear decrease in tune shift with an increase in bunch-charge. The

first data point has no associated uncertainty as it is the GPT output for 0 pC,

with all theoretical tune shifts stated relative to this value.

The data generated by GPT’s space-charge procedure agrees with the theoretical

predictions to within the resolution limit of the FFT routine, thus confirming the

validity of the spacecharge3Dmesh routine.
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Figure 6.25: A demonstration of tune shift caused by space-charge over a range of
bunch-charges (within and beyond the EMMA regime), with a fixed beam
energy of 15 MeV. The theoretical data is taken with respected to the
0 pC simulation as performed by GPT, with no uncertainty on this data
point.

6.5 Conclusions

This chapter serves to demonstrate the functionality of the next generation non-

scaling FFAG accelerator, EMMA. Tune and parabolic TOF measurements have

been recorded, with the results as expected of a ns-FFAG accelerator.

As well as experimental data the machine has also been uniquely modelled in

the particle tracking code GPT. Due to the novel nature of the machine this was

a necessary course of action in order to benchmark the code against other more

established simulation packages and ultimately experimental data. The injection
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line was initially used to validate the code, concurring with the hard edged models

of MAD.

The code was successfully adapted to accommodate repeating lattices with

results showing positive correlations with the other pre-existing software packages

of EMMA. These results required optimisation when held up against experimental

data in order to compensate for physical effects unaccounted for by GPT i.e.

hysteresis effects in the magnets.

The ultimate goal of the code was to simulate space-charge effects within the

EMMA energy and bunch-charge regime; a piece of work not studied prior to

this analysis. The validity of the GPT spacecharge3Dmesh routine was ultimately

vindicated through demonstration of a negative transverse tune shift, in agreement

with theory.

The validity of this proof-of-principle machine suggests a number of wide-

ranging future uses both within the particle physics community (muon colliders,

neutrino factories, etc.) and beyond (nuclear waste transmutation, proton therapy,

etc.).



Chapter 7

Conclusions

Charged lepton flavour violation (cLFV) experiments represent a promising avenue

of exploration, complementing those presently being pursued at the LHC. With

the inclusion of beyond Standard Model (BSM) physics such as super-symmetry,

rates of cLFV processes are dramatically increased to the point where observation

may be achieved with near-future experiments. The process of muon-to-electron

conversion presents the most promising route to substantially increasing the

current experimental limits on cLFV, as well as resolving degeneracy between

different BSM models.

The COMET experiment proposes a number of experimental improvements in

order to drastically increase current experimental limits on the µ− +N(A,Z)→

e− +N(A,Z) process. The design of the experiment has been simulated and vali-

dated using a combination of the MARS and GEANT4 software packages. Particular

emphasis has been placed on optimising the experiment such that the number

of stopped muons per proton is maximised, whilst minimising signal energy loss.

A number of geometries have been tested, with the optimal disk-based stopping

target configuration for the full COMET experiment detailed in Tab. 4.1. The

implementation of the 15 cm radius titanium disks gives a 90% confidence level

upper limit on the branching ratio (BR[Punzi]) of 5× 10−16, calculated using the

202
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Punzi sensitivity routine detailed in Sec. 3.1.2. This is an improvement of O(1000)

on the current results for this process presented by the SINDRUM-II experiment.

As well as collimator optimisation, similar studies have been performed for

Phase-I of the COMET experiment, identical to the full design up to the end of

the first 90◦ bend. In this case a shift in the nature of the detector system has

resulted in a similar redesign of the muon stopping target. As such a double-cone

design, analogous to that employed in SINDRUM-II, has been modelled. The

simulation of this conical design has demonstrated an improvement on the disk

design optimised for Phase-II, with a cleaner more distinct signal peak and a

BR[Punzi] of 1.8×10−14 : 100 times better than the current experimental limit of

SINDRUM-II. This calculation demonstrated the most rigorous determination of

the potential reach of the COMET experiment to date. These figures were thus

instrumental in securing funding in early 2013 for the second phase of the COMET

experiment.

Initial results from the MuSIC experiment - a staged prototype experiment

used to test the preliminary technical and experimental ideas of COMET - have

been presented. A simulation framework was developed to aid the design of a

DAQ system for hit count measurements. This package demonstrated a strong

correlation for both 1D and 2D hit count measurements, with χ2/ndf = 1.6

and 1.7 for the two runs respectively. The data sets taken during these two

experimental runs, showing strong statistical similarities to simulation, were key

initial steps towards proof of the predicted particle capture rates of Lobashev’s

superconducting solenoid design of the 1980s.

The EMMA experiment demonstrates the functionality of the next genera-

tion non-scaling FFAG accelerator, EMMA. Tune and parabolic time-of-flight

measurements have been recorded, with the results as expected of a ns-FFAG

accelerator. These measurements have been compared to a novel simulation of the

ring, modelled using the particle tracking software GPT. Minor discrepancies were

shown between simulation and data, with the simulation successfully adapted
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to compensate for physical effects unaccounted for by GPT. The code was chosen

for its inherent ability to model space-charge effects, with the validity of the

spacecharge3Dmesh routine upheld.

The vindication of this proof-of-principle machine opens many doors to further

applications of the machine. One such application touched on is the proposal to

use a non-scaling FFAG for phase rotation of a muon beam for future cLFV ex-

periments. The integration of which, into an extension of the COMET experiment,

PRISM, has already been explored. This liaison of these two projects proposes to

improve on the current limits for cLFV by O(106).
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