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Abstract

The Thesis investigates the possible case that the Electroweak Symmetry Breaking is

not due to a light, weakly interacting Higgs boson, but instead the Symmetry is broken

by strongly interacting heavy resonances. In that case, the formalism of the Electroweak

Chiral Lagrangian can be used as a model-independent way to construct a low-energy

effective theory for the electroweak interactions and using the Padé unitarisation protocol,

certain resonances can be predicted. The scattering of longitudinally polarized W bosons,

one of which decays leptonically and the other hadronically, is used as a channel to probe

the mechanism of the Electroweak Symmetry Breaking in the mass range of 600 GeV

up to 2.4 TeV and for different resonance scenarios, including the case that there is no

resonance in the spectrum. The reconstruction of the vector bosons is described and it is

demonstrated that, by exploiting key features of the hadronic environment, the contribution

from the background processes can be reduced in such a way that the ATLAS detector will

be able to see interesting WW scattering events within the above mass range with 30 fb−1

of data and it will be also possible to distinguish among the different resonance scenarios.

A key study of the present research is the measurement of the WW scattering cross-section

and it has been calculated that a significant measurement will be achieved, for the most

pessimistic scenario, with 80 fb−1 of data.

Regarding the performance of the ATLAS detector, the Thesis focuses on the Level-2

Trigger for selecting interesting physics events. After a short introduction to the Trigger

system of the detector, the concept of the Region of Interest is explained and a method for

reducing its geometrical size is presented. The method is based on the information from the

Electromagnetic Calorimeter and it will be demonstrated that the reduced size can improve

the performance of the Level-2 Trigger in terms of execution time (58% faster) but also for

track reconstruction (6% more efficient) in the Inner Detector, especially during the high

luminosity phase of the LHC.
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Chapter 1

The Large Hadron Collider and the

ATLAS Detector

This chapter is an introduction to the Large Hadron Collider (LHC) machine. It starts with

the physics motivation for building this machine and then describes the specific features

of it, emphasizing the challenges, since LHC will provide the highest center of mass energy

ever achieved. Next, the ATLAS detector will be described in detail. Due to the challenges

arising from the harsh LHC environment, ATLAS has to employ fast, accurate and robust

systems, the features of which will be discussed in details.

1.1 The LHC

1.1.1 Motivation for the Large Hadron Collider

The physics motivation provides the guidance for the construction specifications of the

LHC machine together with the individual detectors themselves. At the new frontier of

the High Energy Physics, the areas that we (primarily) aim to study with the Large Hadron

Collider can be summarized as follows:
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Figure 1.1: One-loop fermionic correction to the Higgs mass. The loop of the top quark is the one which
contributes the most.

• Explore the mechanism of the electroweak symmetry breaking: Although

the Standard Model (SM) of the electroweak interactions provides a successful de-

scription of particle physics phenomenology (its predictions have been verified at

the level of 0.1% or better by the experiments (mainly) at LEP and Tevatron - see

[1, 2, 3]), the mechanism of the electroweak symmetry breaking has not yet been

tested. The SM and the electroweak symmetry breaking will be discussed in details

in the second part of the thesis, but at the moment it is sufficient to mention that,

within the SM, the electroweak symmetry breaking is explained by the Higgs mech-

anism, introducing a scalar particle, the Higgs boson. The mass of the particle is

not predicted by the theory. Direct searches in the previous experiments (mainly at

LEP2) set a low mass limit of 114.4 GeV at 95 % confidence level [4]. This limit can

be indirectly constrained from global fits to high precision electroweak data, which

suggest a mass of mH = 89+42
−30 GeV [5]. If we also assume that there is not physics

beyond the SM up to a large scale Λ, then, on theoretical grounds, the upper limit

on the Higgs mass can be set to ∼1 TeV [6]. Therefore, there is a need for a machine

that can probe the whole mass range and LHC has been designed for that.

• Physics Beyond the Standard Model: There are several arguments which in-

dicate that the SM is not the final and complete theory. One of these, probably

the strongest, is the so-called hierarchy problem: if the Higgs particle exists, then

fermionic radiative corrections to its mass will be described (at one-loop) by the

diagram in Figure 1.1.
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Then, the (renormalized) mass of the Higgs particle would be:

M2
H,Ren = M2

H,0 + δM2
H / (1 TeV)2 (1.1)

where MH,0 is the bare Higgs mass that enters at the SM Lagrangian and the upper

limit comes from theoretical reasons mentioned before. But the mass correction δMH

depends quadratically on the cut-off Λ for the momentum in loop:

δM2
H ∼

∫ Λ

0

d4k

k2
∼ Λ2 (1.2)

Finally, if we assume that there is not new physics beyond the Planck scale, then

Λ ' MP lanck ' 1019 GeV, which leads to:

M2
H,Ren ≫ (1 TeV)2 (1.3)

Since this value does not agree with Equation 1.1, we start to believe that possible

new physics must demonstrate itself at the TeV scale. More general theories (like

SUSY - see [7]) give a solution to this problem by introducing new particles and by

suggesting a new phenomenology, both of which are feasible to explore with the LHC.

• Electroweak precision measurements: Because of the high energy and the lumi-

nosity achieved, the LHC will be a factory of W and Z bosons as well as of top and

bottom quarks1. The large statistics of the events will make it possible, despite the

harsh hadronic environment, to improve the accuracy of the current values for many

electroweak parameters. This goal becomes more important and gets connected to

the previous one just by bringing into mind that any observed deviation from the

predicted values for SM observables is a signal for new physics.

1It is estimated that the LHC, during the first year of operation, will give 108 W → eν, 107 Z → eν,
107 tt̄, and 1012 bb̄ events.
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Figure 1.2: Diagram of the CERN accelerator complex.

1.1.2 Construction of the Large Hadron Collider

The Large Hadron Collider [8] is currently being constructed in the already existing LEP

tunnel of (approximately) 27 km circumference. The machine will provide mainly proton-

proton collisions, but it is also scheduled to provide heavy ion collisions as well.

The colliding proton beams will acquire energy of 7 TeV each, thus providing 14 TeV

centre of mass energy (7 times bigger than the centre of mass energy provided by Tevatron,

at Fermilab). Before the protons are injected into the LHC, they will be pre-accelerated in

different facilities acquiring in each step more and more energy. The whole injector chain

is given in Figure 1.2. Protons will be produced and initially accelerated by the proton

linear accelerator (linac) to the energy of 50 MeV. At the next stage, they will be boosted

to 1.4 GeV before they are injected in the Proton Synchrotron (PS), where they will reach

the energy of 25 GeV, having a linear velocity almost 87% of the speed of light (0.87c).

Finally, they will reach the energy of 450 GeV by accelerating inside the Super Proton

Synchrotron (SPS). After this stage, the LHC will provide them with the final energy of 7

TeV each, with a relativistic speed of 0.9999997c.

One of the most important parameters of an accelerator is the luminosity that it

delivers. The luminosity plays a crucial role for the physics programme of the LHC,
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because it determines the rate dN/dt of a physics process with cross-section σ:

dN

dt
= σL (1.4)

The luminosity is calculated by the number of particles inside the bunch Ni of the

colliding beams (i = 1, 2), the number of bunches of the particles B and the revolution

frequency fo:

L =
B · N1 · N2 · fo

Aeff
(1.5)

where Aeff is the effective cross sectional area of the colliding beams. There are two

phases that are foreseen for the LHC: the first years the machine is planned to run at low

luminosity with L = 2×1033 cm−2sec−1 and there will be a gradual upgrade to the design

luminosity (high luminosity) of L = 1034 cm−2sec−1. Most commonly, the integrated

luminosity L is used, which is the integral of the instantaneous luminosity over time:

L =

∫

Ldt (1.6)

For example, integrated luminosity of L = 10 fb−1 corresponds to 1 year running at low

luminosity, where L = 100 fb−1 corresponds to 1 year of high luminosity.

The two bunches of protons will collide every 25 nsec. Taking into account the cross

section for the inelastic proton-proton collision (σinel
pp = 60 mb), we expect to have ∼ 1011

proton interactions per second, which is an unprecedent collision rate 2.

In order to bend the accelerated protons, super-conducting magnets will be used to

provide a magnetic field of 8.39 T. It is one of the LHC characteristics the fact that, due

to lack of space in the tunnel to accomodate two separate magnets, there will be a single,

twin-aperture magnet with two coils accelerating the beams in opposite directions. The

magnet coils are made of copper-clad niobium-titanium cables and in order to achieve the

super-conducting properties, these should be cooled to a temperature of 1.9 K.

2The total proton-proton cross section at 7 TeV is approximately 110 mb. This comes in contribution
from the inelastic (60 mb), single diffractive (12 mb) and the elastic (40 mb) collisions.
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Figure 1.3: The LHC dipole magnet and cryostats setup. The two beams will lie next to each other
under the same dipole magnet.

The cooling is done by a huge cryogenic system, common to both proton beams. It

uses super-fluid helium, which has efficient heat transfer properties, allowing kilowatts of

refrigeration to be transported over more than a kilometer with a temperature drop of less

than 0.1 K.

The final setup of the LHC is illustrated in Figure 1.3.

1.2 The ATLAS Detector

The general overview of the ATLAS detector is given in Figure 1.4. It is a multi purpose

detector and has the typical structure of any collider physics detector, built with a 4π

coverage.

From the innermost towards the outermost layer, it consists of three parts:

• Inner Detector [9]: It is inside the solenoid magnetic field [10] of 2 T and it is

used to detect charged particles and also to identify secondary vertices. In order to

perform also pattern recognition, the Inner Detector employs sub-detectors of high

12



Figure 1.4: General overview of the ATLAS detector.

precision.

• Calorimeter [11, 12]:It is used to measure the energy and the position of the elec-

trons and photons (EM Calorimeter) and of the hadrons and jets (Tile Calorimeter).

From the energy deposited at the Calorimeter and due to the fact that the protons

have negligible transverse component of momentum, one can calculate the missing

transverse energy (Emiss
T ), which accounts for the energy of the particles that haven’t

interacted with any part of the detector.

• Muon Spectrometer [13]: It is used to identify the muons. For a precise mea-

surement of their momentum, the muon spectrometer is located outside the super-

conducting air-core toroid magnets [14, 15].

Figure 1.5 shows the general coordinate system used for the detector. It is a right-

handed system with the x-axis pointing towards the center of the LHC ring. The beam

axis defines the z-axis, while the y-axis points upwards. The azimuthal angle φ is defined

in the XY plane, with φ = 0 being the positive x-axis and it runs clock-wise. The polar

angle θ is defined with respect to the beam pipe, with θ = 0 being the positive z axis.
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Figure 1.5: The coordinate system of the ATLAS detector.

For highly relativistic particles (P >> m), the term of pseudorapidity η is used,

instead of the polar angle θ. The reason for doing so is the property that differences in

pseudorapidity are invariant under boosts along the beam axis [16] and this is very helpful,

since the Pz component of the interacting partons is not known, and therefore we can’t

actually use the rapidity 3 as a variable. The pseudorapidity is related to the polar angle

through the equation:

η ≡ − ln

[

tan

(

θ

2

)]

(1.7)

Equation 1.7 is plotted in Figure 1.6. Particles which are traveling close to the beam

pipe (θ → 0) will correspond to high values of pseudorapidity (η → ±∞), whereas particles

emitted vertical to the beam pipe (θ = π
2
) will correspond to zero pseudorapidity (η = 0).

The detailed description of the characteristics of the detector’s parts may be found in

the individual Technical Design Reports and beyond the scope of this Thesis. However, it

is essential to give a basic information about the construction of the different parts, their

principle of detection and the accuracy they are expected to achieve.

3The rapidity is defined by y = 1
2

ln
(

E+Pz

E−Pz

)

.
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Figure 1.6: The relation between the pseudorapidity η and the polar angle θ (Equation 1.7).

1.2.1 The Inner Detector

The layout of the Inner Detector (ID) is given in Figure 1.7, while Figure 1.8 shows the

transverse projection. It is 7 m long with 1.15 m outer radius, located inside the solenoidal

magnetic field. Mechanically, it consists of the barrel part, which extends ±80 cm and the

two endcap parts covering the rest of the cylindrical cavity over the full pseudorapidity

range. The purpose of the ID is to achieve high-precision measurement of the momentum

and trajectory of charged particles.

Given the harsh environment of the LHC, sub-detectors with fine granularity must be

used. To fulfill these requirements, high-precision detectors are used close to the beam pipe.

The total number of the precision detector elements is limited not only by their high cost,

but also by the amount of material that they will introduce. Based on these criteria, the

optimum layout for the barrel part consists of three pixel layers and eight silicon micro-

strip detectors (semi-conductor tracker) arranged in four layers. For the endcap, there

are five discs of pixel detectors, whereas the semi-conductor tracker is formed by rings of

wedge-shaped modules.

Furthermore, to improve the momentum resolution, the Transition Radiation Tracker

15



Figure 1.7: 3-D prospect of the Inner Detector.

Figure 1.8: Projection of the Inner Detector on the transverse plane. The length units are expressed in
mm.
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Figure 1.9: A pixel module.

(TRT) is used at the outer radii. Although the signals from the TRT provide a less pre-

cise trajectory measurements compared to the silicon detectors, this is compensated by the

large number of measurements, obtained using much less and much cheaper material.

Pixel Detector

The purpose of the Pixel Detector is to provide a set of high precision measurements close

to the interaction point. The barrel part consists of three concentric cylindrical layers at

average radii of ∼ 5 cm, 9 cm and 13 cm. The inner most layer (so-called B layer) is a

removable one and can be replaced to maintain the highest performance throughout the

experiment’s lifetime. The endcap part consists of three disks at each side, perpendicular

to the beam pipe and with z position of their centers between 11 and 20 cm. Each pixel

element (Figure 1.9) has its own readout chips and buffering units for storing the data,

while awaiting the decision from the trigger chain. The whole system contains 140 × 106

readout channels, which provide measurements with a resolution of about 12 µm in the Rφ

plane, 66 µm along the z direction (barrel part) and 77 µm along the R direction (endcap

part).

Semiconductor tracker (SCT)

The SCT detector contributes to the measurement of both the momentum and the position

of charged particles. Due to its high granularity, a very good pattern recognition is feasible.
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Figure 1.10: An SCT module.

Each silicon detector has an area of 6.36×6.40 cm2 consisting of 768 readout strips of 80 µm

pitch between them. Two such detectors are wire-bonded together to form 12.8 cm long

strips. Two such detector pairs are then glued together back-to-back to form a module

(Figure 1.10). The two layers of the module are rotated by 40 mrad stereo angle with

respect to each other, thus providing the z-coordinate. The barrel modules of the SCT are

arranged again in concentric cylinders of radii 30.0, 37.3, 44.7 and 52.0 cm. The endcap

modules are mounted up to three rings onto nine wheels starting at z ∼ 81 cm up to

z ∼ 280 cm. There are 6.2 × 106 readout channels and the designed spatial resolution

is 16 µm in the Rφ plane and 580 µm for the second position coordinate. Two different

tracks are detected as one only if they are separated by less than ∼ 200 µm.

Transition Radiation Tracker (TRT)

The edge of a TRT barrel module is shown in Figure 1.11. The main detector element of

a TRT is a straw of 4 mm diameter and a maximum length of 144 cm in the barrel. The

straw is filled with a gas mixture (Xe : CO2 : CF4 = 70 : 20 : 10). In the centre of the

straw, there is a gold-plated W-Re wire of 30 µm diameter, which measures the drift time

of the ionizing particles through the gas. The barrel part consists of about ∼50,000 axial

straws, arranged in 3 cylinders. Each straw is divided into two at the center and their

readouts are at both ends. The endcap part consists of ∼320,000 radial straws arranged

18



Figure 1.11: The end of one of the TRT barrel modules.

in 18 wheels on each side, with the readout at the outer radius. A track hits, in average,

36 straws and the designed resolution in the position of the hit, for both parts, is 170 µm.

Apart from very good pattern recognition, the TRT is used also for particle identifica-

tion. This is due to the fact that between the straws there is a material (polypropylene

foils), so that charged, ultra-relativistic particles emit radiation (photons) when they cross

the boundary between materials with different dielectric constant. Light particles (like

electrons) start producing transition radiation at low momentum (approximately 1 GeV)

compared to heavy charged particles (like pions), which emit transition radiation at high

momenta (approximately 100 GeV) [17]. Therefore, by tuning the readout threshold of

each straw, one can identify and select particles.

1.2.2 The Calorimeters

The purpose of a Calorimeter is to measure the energy of the particles that travel through it.

Schematically, the principle of a sampling calorimeter, such as the ATLAS ones, is given

in Figure 1.12. By letting the particles interact with a material of high density (absorber),

they deposit all of their energy inside the detection volume. Between the absorber plates,

there is an active material (liquid argon (LAr) in the case of the ATLAS electro-magnetic

calorimeter), which gets ionized by the charged particles produced in the absorber. Finally,

under an applied electric field, the ions drift towards the electrodes, which give a signal

proportional to the energy of the primary particle.
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Figure 1.12: The detection principle of a sampling calorimeter. The materials given are for the ATLAS
electromagnetic calorimeter.

The ATLAS detector has both an Electromagnetic Calorimeter, for electromagnet-

ically interacting particles (electrons, positrons and photons), and a Hadronic Calorime-

ter for hadrons (like pions and kaons). The overall layout of the ATLAS Calorimeters is

given by Figure 1.13. The electromagnetic calorimeter (barrel and endcap part) covers

the pseudorapidity range of |η| < 3.2, with a gap in the range 1.3 < |η| < 1.5. The

hadronic barrel and ’extend barrel’ part covers |η| < 1.7 and the hadronic endcap part

1.5 < |η| < 3.2. For the whole calorimeter to be hermetic (so as to achieve a good mea-

surement of the missing energy of the events and the detection of very forward jets), there

is a fourth part, the very forward, which covers the range of 3.1 < |η| < 4.9.

The Electromagnetic (EM) Calorimeter

The EM Calorimeter has an accordion shape, as shown in Figure 1.14. The absorber

plates are made of lead and the electrodes, also accordion-shaped, are made of kapton.

The modules are placed in the barrel and in the endcap in such way, that the absorber

plates and the electrodes are perpendicular to the direction of the incident particle.

The barrel part consists of two identical halves, which are separated by a small gap

(6 mm) at z = 0. The deposited energy is sampled by 3 samplings. The first sampling has

a granularity of ∆η × ∆φ = 0.003 × 0.1. 4

4The pseudorapidity η is a dimensionless quantity and the angle φ is measured in rads.
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Figure 1.13: The Calorimetry of the ATLAS Detector.

The narrow strips in the η direction enhance the particle identification, since for in-

stance, a very good γ/πo and e/π separation can be achieved by looking at the shower

profiles developed in the first sampling (for an example, see [18]). This high granularity

helps also in identifying photons and electrons which originated from secondary decays,

rather than the primary interaction point. The second sampling is segmented into square

towers with dimensions ∆η×∆φ = 0.025×0.025 and the bulk of the EM energy is deposited

here. This is why the last sampling has a coarse granularity of ∆η × ∆φ = 0.05 × 0.025.

The endcap part is divided into two coaxial wheels (Figure 1.15): the inner wheel

which covers the region 2.5 < |η| < 3.2 and the outer wheel which covers the region

1.36 < |η| < 2.5. Even though the energy is also sampled by three compartments, the

difference between the two wheels is the granularity, which, for the inner wheel, is coarser.

For example, the first sampling in the outer wheel has a granularity of ∆η×∆φ = 0.025×0.1

(approximately, since there is a strong η dependence), whereas in the inner wheel it is

segmented into ∆η ×∆φ = 0.1× 0.1. The second sampling has granularity of ∆η ×∆φ =

0.025 × 0.025 in the outer wheel and ∆η × ∆φ = 0.1 × 0.1 in the inner. Finally, the third

sampling is equally segmented for both wheels (∆η × ∆φ = 0.05 × 0.025).

21



Figure 1.14: A module of the barrel LAr EM Calorimeter with the accordion shape.

A component of the electromagnetic calorimeter is the presampler. This is located

in front of the LAr part, in the space with |η| < 1.8 and it has granularity of ∆η × ∆φ =

0.025× 0.1. It is installed immediately after the cryostat wall and its purpose is to correct

for the energy loss in the material in front of the calorimeter (inner detector, coil and

cryostats) on an event-by-event basis. The principle is that particles, which shower in

the material in front of the presampler, lead to an increased particle multiplicity, which is

measured by the presampler. It is then the combined information from the presampler and

the calorimeter which allows the event-by-event measurement of the energy loss in front of

the calorimeter.

Figure 1.16 shows the energy deposited by an electron into the four compartments of

the EM Calorimeter. The blue lines are drawn to demonstrate the dimensions of each cell

at each sampling and the energy measured in each cell is propotional to the yellow area

inside this cell. One can see that the electron deposits the bulk of its energy at the first

and second samplings, without energy spread in the last compartment.

The Hadronic Calorimeter (HCAL)

The HCAL has to be able to contain in its volume the hadronic showers of all the particles

that have passed through the EM calorimeter (apart from the muons) and stop as many
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Figure 1.15: The endcap part of the EM Calorimeter.

Figure 1.16: Energy deposition of an electron as it passes through the EM sampling Calorimeter. The
figure has been created using the ATLANTIS event display [19].
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as possible of them from passing to the muon spectrometer. It is also important to ensure

that it covers a large range in η, providing a good measurement of the Emiss
T . Therefore,

the hadronic calorimeter covers the range up to |η| = 4.9 and it consists of three parts.

The first part is the hadronic tile calorimeter. The barrel part (|η| < 1.0) and the

extended barrel part (0.8 < |η| < 1.7) are sampling calorimeters which use iron as the

absorber and scintillating tiles as the active material. The granularity is ∆η×∆φ = 0.1×0.1

in the first two samplings and ∆η×∆φ = 0.2×0.1 in the third. Azimuthally, the barrel and

the extended part are divided into 64 modules, a view of which is given in Figure 1.17. The

signal from the scintillating plates is collected by the Wavelength Shifting (WLS) fibres.

The WLS fibres are configured radially and collect the light from both of the plates’ edges.

The fibres are grouped together into cells according to the sizes mentioned before and they

are driven onto a single photo-multiplier.

The second part is the hadronic LAr calorimeter, which covers the range 1.5 < |η| < 3.2

with granularity of ∆η×∆φ = 0.1×0.1 up to |η| = 2.5 and ∆η×∆φ = 0.2×0.2 for the rest.

It consists of 32 triangular shaped modules (Figure 1.18-a) arranged in two independent

wheels (Figure 1.18-b). Each module is made of several copper plates which are 25 mm

thick at the inner wheel and 50 mm thick at the outer one. In both wheels, the plates are

positioned 8 mm apart in a bath of LAr that is subjected to high voltage, induced by three

parallel electrodes, the middle of which provides the readout.

The third part is the LAr forward calorimeter (FCAL). It covers the very forward

region for 3.1 < |η| < 4.9 with a granularity of ∆η × ∆φ = 0.2 × 0.2. Due to the extreme

particle and energy flux environment at these high values of rapidity, speed of response and

radiation hardness are very important requirements. Another challenge is the limitations

of the space provided for the FCAL. This is why this part must be of high density in order

to ensure no energy leakage to the surrounding parts. The FCAL consists of three sections,

the first being made of copper, the other two of tungsten. In each section the calorimeter

consists of a metal matrix (Figure 1.19-a) in which hollow tubes of 5 mm inner diameter are

embedded. Metal rods of 4.5 mm diameter (Figure 1.19-b) are centered inside the tubes
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Figure 1.17: A module of the barrel tile HCAL.

and the LAr fills the small gaps between rod and tube wall. A few hundred volts between

rod and tube produces the electric field to make electrons drift in the argon-filled gap.

Resolution of the Calorimeter

The energy resolution of a sampling calorimeter is given by the equation [20]:

σ(E)

E
=

a√
E

⊕ b

E
⊕ c (1.8)

where E is expressed in GeV. The first term is the sampling term coming from the sampling

fluctuations. The second term is the noise term which is associated with the electronic noise

and the noise from the pile-up events and dominates at low energies (below 20 GeV). The

third term is the constant term which is due to the mechanical imperfections, calibration

etc. and dominates the resolution at high energies (above 40 GeV). To achieve the physics

requirements, the designed resolution is expected to be [11]:

σ(E)

E
=

10%√
E

⊕ 0.3 GeV

E
⊕ 0.7% (1.9)

The above parameters depend on η, but all the regions (with the crack region being the

only exception) give values close to the designed ones. The behavior of the Calorimeter has
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Figure 1.18: A module (a) and a wheel (b) of the endcap HCAL.

Figure 1.19: A matrix (a) and a rod (b) of the FCAL.
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Figure 1.20: Fractional energy resolution as a function of the beam energy for electrons incident at
η = 0.28 (closed circles), η = 0.9 (open circles) and η = 2.66 (triangles).

been extensively studied with test-beams and the response is in good agreement with the

predicted one [21]. As an example, the graph in Figure 1.20 (from [22]) gives the energy

resolution of a prototype as a function of the energy of incident electrons, at three different

η positions.

It is also important to know the angular resolution of the Calorimeter since this is needed

to accurately reconstruct invariant masses of purely neutral states (e.g. H → γγ). Due to

the narrow strips in the first sampling, the angular measurement with the calorimeter alone

gives a resolution of about 80 mrad/
√

E(GeV). The use of a finely segmented presampler

improves this performance by a factor of 2.5, bringing it down to the desired level of

40 mrad/
√

E(GeV) [11].

Finally, for the hadronic calorimeter, the jet and Emiss
T resolution are:

σ(E)

E
=

50%√
E

⊕ 3% (1.10)

for |η| < 3.0 and

27



End-cap
toroid

Barrel toroid
coils

Calorimeters

MDT chambers
Resistive plate chambers

Inner detector

Figure 1.21: Transverse view of the Muon Spectrometer.

σ(E)

E
=

100%√
E

⊕ 10% (1.11)

for 3.0 < |η| < 4.9 .

1.2.3 The Muon Spectrometer

The Muon Spectrometer is shown in Figure 1.21 and in Figure 1.22. The purpose of the

muon spectrometer is to precisely measure the position (and the momentum from the

track curvature) of high energy muons, which, due to their insignificant interactions with

the matter, managed to escape the rest of the detectors. Since the muons lose energy by

ionization, the gas technology is widely used.

The measurement of the position is performed using the precision chambers, which

are arranged in such a way that particles from the interaction point cross three layers

(stations).

For the region |η| < 2.0, the technology of the Monitored Drift Tubes (MDTs) is

employed. The basic detection element of the MDT is aluminum tube of 30 mm diameter
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Figure 1.22: Side view of one quadrant the Muon Spectrometer, where the four chamber technologies
employed are shown.

Figure 1.23: Schematic drawing of a rectangular MDT chamber.

and 400 µm wall thickness, with a 50 µm diameter central W-Re wire. The tubes are filled

with a non-flammable Ar−CH4 −N2 mixture at 3 bar absolute pressure. The single-wire

resolution is typically 80 µm, except very close to the anode wire, where the resolution can

reach the 200 µm. An MDT chamber consists of two multilayers of three or four dift tube

layers, as is given by Figure 1.23.

For the innermost ring of the inner station at the end-caps (2 < |η| < 2.7), where

particle fluxes are higher, the Cathode Strip Chambers (CSCs) (Figure 1.24) are used.

The CSCs are multi-wire proportional chambers with a pitch of 2.54 mm between the anode

wires and 5.08 mm between the cathode readouts. The second cathode of the chamber

is placed perpendicular to the anode wires, providing a measurement of the transverse

coordinate. The spatial resolution achieved by the CSCs is approximately 60 µm.

An interesting feature of the muon spectrometer is also the fact that it has its own

triggering system, which faces the challenge of good time resolution (less than 25 nsec),
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Figure 1.24: Schematic diagram of the Cathode Strip Chamber.

in order to enable bunch crossing identification. The muon trigger system is also designed

to measure the second coordinate in a direction orthogonal to the one measured in the

precision chambers with a typical resolution of 5-10 mm. To fulfil the above requirements

while keeping the cost low, there are two technologies employed for the muon triggering

system: The Resistive Plate Chambers (RPCs) are used over the barrel region and

the Thin Gap Chambers (TGCs) for the end-cap part of the detector (Figure 1.22).

The RPCs are gaseous detectors which provide spatial resolution of 1 cm in a period of

time less than 1 nsec. For each MDT station, there are four RPCs, which are located at

both sides of the middle MDT station, at the outer side of the outer MDT station and at

the inner side of the inner MDT station. On the other hand, TGCs are designed in a way

similar to multi-wire proportional chambers, but with the difference that the anode wire

pitch is larger than the cathode-anode distance.There are three stations of TGCs placed

near the middle MDT station. One of the most important characteristics of a TGC is its

fast response (typical rise-time of 10 nsec) and the time resolution that is of the order of

5 nsec.

Momentum resolution of the Muon Spectrometer

The measurement of the momentum is based on the magnetic deflection of muon tracks.

The magnetic field is induced by the large superconducting air-core magnets, the toroidal

configuration of which is such that the field is mostly perpedicular to the muon trajectories,

while minimising multiple scattering. Together with its own triggering system, the muon

spectrometer can perform stand-alone muon reconstruction, which can be combined with
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|η| < 1.5

Figure 1.25: Contributions to the momentum resolution of the muon spectrometer, averaged over
|η| < 1.5 and azimuthal angle, in a standard sector.

the information from the Inner Detector to achieve a better perfomance.

Figure 1.25 (from [13]) gives the momentum resolution (∆PT /PT ) as it has been com-

puted for the barrel part of the Spectrometer. At low momenta (< 20 GeV), the resolution

is limited by energy loss fluctuations, where at high momenta (∼ 1 TeV) the detector

resolution dominates. The multiple scattering effect is almost constant at 2% all over the

momentum spectrum. The total momentum resolution is typically 2-3% over most of the

kinematic range apart from very high momenta, where it increases to approximately 11%

at PT =1 TeV.

1.3 The Trigger System

1.3.1 Overview

The task of the ATLAS Trigger System [23] is to efficiently select the interesting (hard-

scattering) events, which come from the proton-proton collisions over the background ones,

mainly from soft QCD interactions. After selecting these events, the Data Acquisition
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Figure 1.26: Overview of the Trigger and DAQ system.

(DAQ) System is responsible for transferring the data from the individual sub-detectors to

the permanent storage elements for the offline analysis.

The ATLAS Trigger consists of three levels, the architecture of which is given in Fig-

ure 1.26 and the event rate at each one, together with the available processing time are

presented in Figure 1.27.

The first level trigger (LVL1)[24] is a hardware based trigger in contrast with the

second level (LVL2) and the last level (normally named Event Filter-EF), which are

based purely on software. Together the LVL2 and EF consist what is called the High

Level Trigger (HLT)[25]. The trigger chain is designed to reduce the event rate of

40 MHz down 100-200 Hz within few seconds. That practically means that only around

five in every million bunch crossings will be selected and eventually stored. The final size

of each event is expected to be at the order of 1.5 MB and the total amount of data to be

stored is estimated to be around 1 PB per year.
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Figure 1.27: Trigger rates and the available processing time for each trigger level.

An important concept of the Triggering system is the trigger menus. The trigger

menus are combinations of objects, which pass different thresholds and finally are grouped

together in a coincidence or in a veto, according to the physics they aim to cover. The

current state of the trigger menus is given in [26] and an example is presented in Table

1.1. For instance, 2e15i means that 2 isolated electrons with PT > 15 GeV are required.

The trigger menus are designed so as to make sure that they include all the interesting

physics that is known or expected. On the other hand these menus should be inclusive to

the unexpected physics. It is essential to mention that the trigger menus are constantly

evolving in order to achieve the optimal final efficiencies and rejection factors, but they

will also be updated during the running of the experiment, once the performance of the

detector is well understood.

1.3.2 The LVL1 Trigger

As it can be seen by Figure 1.27, the LVL1 Trigger is designed to reduce the bunch crossing

of 40 MHz down to approximately 100 kHz. The designed time for LVL1 to take and pass

the decision (usually called latency) is 2.0 µs with 0.5 µs safety margin.
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Trigger Objects Trigger Items Examples of physics coverage

Electron e25i, 2e15i Higgs (SM, MSSM), new gauge bosons
extra dimensions, SUSY, W, top

Photon γ60i, 2γ20i Higgs (SM, MSSM), extra dimensions, SUSY
Muon µ20i, 2µ10 Higgs (SM, MSSM), new gauge bosons

extra dimensions, SUSY, W, top
Jet j400, 3j150, 4j100 SUSY, compositeness, resonances

Jet + Missing ET j60 + xE60 SUSY, leptoquarks
Tau + Missing ET τ30 + xE40 Extended Higgs models (e.g. MSSM), SUSY

Table 1.1: Example of trigger menus and the corresponding physics signatures. The required values for
PT and ET are given for LVL2 and for the low luminosity phase.

The LVL1 Trigger is illustrated by a block diagram in Figure 1.28. It uses the reduced

granularity data from the Muon Spectrometer Trigger System (RPCs for the the barrel

and TGCs for the endcap) and from the Calorimeter to identify muons of high PT , jets,

large missing transverse energy and (isolated) electromagnetic clusters, which come from

electrons, photons and taus decaying into hadrons.

The detailed technical description and the performance of the LVL1 Trigger can be

found in [27]. It is, however, essential to comment on how the Calorimeter is used for the

LVL1 Trigger. All of the Calorimeter components are divided into Trigger Towers, which

have granularity of ∆η × ∆φ = 0.1 × 0.1 for |η| < 2.4. Signals from the more forward

calorimeters, required for the trigger, are used with a coarser granularity. The signal of

each tower is simply the summation of all the signals from the cells belonging to this tower

and then front-end preprocessors digitize the signal.

The output of the Calorimeter and Muon Trigger is passed to the Central Trigger

Processor (CTP), which makes the decision according to the Trigger Menus, specially

designed for this level. The CTP passes then the decision to the Timing, Trigger and

Control (TTC) system, which is responsible for distributing the signals to the front-end

system. During the time that LVL1 needs to take the decision, the data are stored in

pipelined memories, until they are either passed to the next level trigger or deleted once and

for all. A positive result from LVL1 contains information about the type and the thresholds

of the accepted trigger and also the geometrical position of the interesting activity. The

latest piece of information is used by LVL2 to construct the Region of Interest, as it will
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Figure 1.28: Block diagram of the LVL1 trigger system

be discussed during the next section.

A major requirement of the LVL1 is that it should be able to uniquely identify the time

of the bunch crossing. For this reason the processors at this level are synchronized with the

40 MHz LHC Clock, which gives the signal for the data acquisition. LVL1 also accepts the

bunch-zero signal, which identifies the number of the bunch crossing in the LHC machine.

1.3.3 The LVL2 Trigger

Overview

LVL2 has to reduce the rate coming from LVL1 (maximum of 100 kHz) down to approxi-

mately 2 kHz, within a period of time of about 10 ms.

When an event is accepted by LVL1, the data for this event are moved from the pipeline

memories to the specially designed Read-Out Buffers (ROBs), where they are stored

for the whole processing time of LVL2. LVL2 can access event data from all the ATLAS

sub-detectors with the full granularity and precision and in the case of a positive decision,

the whole event is passed to the next level. Since the available time is not sufficient for a

full event reconstruction, LVL2 is looking only into the specific interesting regions identified
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by LVL1. These regions are called Regions of Interest (RoIs).

An example of the shape of the RoI is given in Figure 1.29. It is the region at which

LVL1 has found high PT muons, electrons/photons, taus/hadrons and jets and it is passed

to LVL2 in the form of its position in η − φ space together with the LVL1 thresholds. The

RoI plays a key role, since the LVL2 processors need to access data fragments only from a

small fraction of the ROBs, as explained by Figure 1.30. This mechanism (selecting and

transferring only the important data) reduces the required network bandwidth and the

computing load on the LVL2 system. The dimensions of the RoI and how it is constructed

will be explained in the next Chapter, but it should be mentioned here that the typical size

of an RoI containing an electromagnetic cluster is ∆η × ∆φ = 0.2 × 0.2. This size and

the location of the RoI can be further defined more accurately after each LVL2 processing

step, resulting in a further reduction of the required CPU resources.

At LVL2, the event processing can be divided into the following steps:

• The Feature Extraction (FEX): At this stage, for each RoI, the data from the

detectors are grouped together to form physics-like quantities. For example, in the

case of the calorimeter, that would mean that the cells are grouped to give the

clusters.

• The Object Building: The elements constructed by the previous step are com-

bined, for each RoI again, to give the particle parameters and the particles’ type,

wherever that is possible. For instance, the shape of an EM cluster can be combined

with the absence of a track in the ID to form a photon.

• The Trigger Type Selection: At this phase, all the objects found inside all RoIs

are combined with the rest of the event topology (missing ET for instance) and the

resulting combinations are checked against the Trigger Menus (Table 1.1). For each

Trigger Menu a flag is set.
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Figure 1.29: Geometrical shape of the Region of Interest.

Figure 1.30: For each RoI, only the Detectors Elements which are located inside are transfered from the
ROB and analyzed by the LVL2 algorithms.
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Event Selection

The event selection at LVL2 [28] uses the Trigger Menus in the same way as they were

used at LVL1: Trigger Objects such as muons, electrons, photons 5, charged hadrons, taus,

jets and missing ET are combined in Trigger Items together with the Trigger Conditions

(number of Objects, Isolation criteria, PT and/or ET thresholds etc). The difference is that

the Trigger Objects are constructed with a better accuracy and using the full granularity,

but also the Trigger Items include tighter cuts compared to the previous level. At the

same time, LVL2 consists of selection criteria that are looser than those used for the final

analysis, since the resolution of the reconstructed objects is not as good as the one achieved

using the more sophisticated offline algorithms. It is important to stress once again that

the Trigger Menus will evolve with the first analyses of the data and that different sets are

foreseen according to the luminosity of the LHC machine.

An important feature for the event selection at LVL2 (but also at the EF) is the

sequential approach to signature validation. After each feature extraction step, the result is

checked against each individual trigger item and therefore uninteresting events are rejected

at the earliest possible step. For example, for an event that has been accepted by LVL1

due to an electromagnetic RoI, LVL2 tries first to reconstruct the EM cluster, at the FEX

stage. If at that point the shape of the cluster does not match to that of an electron or

photon, the event is rejected without even attempting to perform track reconstruction and

matching with the ID.

Finally, the geometrical limits for the acceptance of trigger objects are given by the de-

tector: the limits of the LVL2 muon triggers are constrained by the muon trigger chambers

(|η| ≤ 2.4), the tracking and electromagnetic calorimeter triggers are limited to |η| < 2.5 by

the inner detector and the calorimeter geometry and the jets triggering will use information

up to |η| < 3.2.

5At this stage, in contrast with LVL1, it is possible to distinguish between electrons and photons.
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1.3.4 The Event Filter

The last level of the Triggering System (EF) is the stage just before the whole information

from all the detectors is stored to the permanent storage. It receives the approximately

2 kHz of the previous LVL2 Trigger and it has to reduce it further to the order of 100 Hz

within few seconds. Since there is enough time, more sophisticated algorithms are used,

often similar to those used for the offline analysis, allowing thus a direct comparison.

The selection algorithms are seeded by the LVL2 result and they have access to the

data from all the detector systems, to the full detector geometry and calibration databases.

Together with the primary task of the event filtering, the EF will also perform monitoring

and calibration/alignment tasks. This is feasible due to the long available processing time,

but also due to the access to the complete events.

The time for data transfer at the EF will be a very small fraction of the total latency.

The rest will be spent on the data processing. Therefore EF will be using intensively the

available CPU, which -most likely- will be in a farm of commercial processors.
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Chapter 2

Reduction of the Region of Interest

size using the EM calorimeter

This chapter is the work which has been reported in [29] and presents the study for op-

timizing the size of the EmTau Region of Interest (RoI) using the pointing information

from the Electromagnetic Calorimeter. The benefits from the reduced RoI size in terms

of timing and performance for track reconstruction in the Inner Detector at LVL2 Trigger

using the IDSCAN package are discussed in detail.

2.1 Introduction

As was explained in the previous chapter, the concept of the Region of Interest (RoI)

plays a crucial role in the Trigger System of ATLAS since it defines a geometrical area in

which the LVL1 trigger identified some activity based on which it accepted the event. It

has also been mentioned that at the LVL2 trigger stage, only the data within the RoIs

in the event are transfered from the readout buffers (ROBs) to the LVL2 processors, to

reduce CPU and network usage [30]. Each event can have more than one RoI, depending

on the event topology. There are, on average, 1.4 RoIs per LVL1 accepted event and each
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RoI represents ∼ 2% of a complete event data volume [31]. As a result the dimensions of

the RoI are of major importance, having a direct impact on the network data volume and

CPU processing resources required to handle the event, and therefore to the effectiveness

of the LVL2 trigger.

There are several types of RoI, including electromagnetic, muonic and jet RoIs. The

study presented in this note refers only to the electromagnetic RoIs, which include e/γ and

τ objects, and so are referred to as EmTau RoIs [25]. Information for the EmTau RoI

comes only from the calorimeter at LVL1, in the form of an electromagnetic cluster.

2.1.1 Dataset and event selection

The subsequent study was performed using single electron Monte Carlo events generated

with PT = 20 GeV and added to pile-up events at low luminosity (L = 1033 cm−2sec−1)

and a sample of single electrons generated with PT = 30 GeV and added to pile-up events

at high luminosity (L = 1034cm−2sec−1). The events were then reconstructed using the

9.0.4 ATLAS Offline software release, with the noise in the LAr calorimeter switched on.

For the reconstruction inside the calorimeter during the LVL2 trigger, the T2Calo package

was used. For each event, the number of RoIs, the clusters reconstructed by T2Calo (online

clusters) together with the clusters reconstructed by the offline calorimeter package (offline

clusters) were used.

Since the modified RoI description is intended for use online during the trigger chain,

the online clusters are appropriate. However, for release 9.0.4 the LVL2 clusters were

missing important information, such as the energy deposited in each sampling, due to the

fact that this information had not been required before1. Consequently, for the current

study, the offline clusters were used instead.

1The work to introduce the required information to the LVL2 clusters was underway by the time of
preparing this Thesis.
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2.2 The shape of the Region of Interest

2.2.1 The current RoI

Processing of an EmTau RoI at LVL2 starts from the calorimeter. The LVL2Calo code [32,

33, 34, 35] has access to the ηLVL1 and φLVL1 information and it uses the full calorimeter

granularity. Based on this information, LVL2Calo determines with better precision than

LVL1 processing the position of the RoI and passes it on to LVL2 tracking.

ρ

calorimeter face

+/− 168 mm

+/− 0.1

η
LVL1

Z

Figure 2.1: Construction of the RoI in the ρ − z plane at LVL2 trigger level. The quantity ρ is defined
as ρ =

√

x2 + y2, in the coordinate system given by Figure 1.5.

The currently implemented shape of the EmTau RoI, used by the LVL2 tracking al-

gorithms, is described in Figure 2.1. LVL1 gives the η position (with respect to the

origin of the detector) of the accepted EM Cluster. The RoI is shaped by opening by

∆η × ∆φ = 0.2 × 0.2 around this direction. The resulting pyramid is extended at its

tip, near the beam line, by ∆z = ±168 mm to take account of the spread in the posi-

tion of the interaction vertex along the beam direction. Figure 2.2 gives the distribution

of the z coordinate of the primary proton-proton interaction in single electron simulated

events. The interaction vertex has been randomly selected from a normal distribution with

σ = 5.6 cm. Therefore, the extension of the RoI along the beam line corresponds to ±3

standard deviations of the vertex spread.
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Figure 2.2: Distribution of the vertex of the primary proton-proton interaction along the z-direction.
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Figure 2.3: Proposed improvement of the RoI in the ρ− z plane at LVL2 trigger level. The value of σ is
taken from the gaussian distribution of Figure 2.2.

2.2.2 An improved RoI

In this study we aim, using the information from the different samplings of the electro-

magnetic calorimeter, to obtain an estimate of the z-position of the primary interaction to

allow the reduction of the size of the RoI in η. This is illustrated in Figure 2.3. Because

of the improved estimate of the vertex position, the required window in z need not cover

the entire interaction region. In addition, allowing the opening of the window in pseudora-

pidity to be independent at either end, i.e. allowing ηF and ηB to be independent, allows

the trapezoid search window in the ρ − z plane to be closed at the calorimeter face using
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the position resolution of the calorimeter, since this is likely to be better known than the

extrapolated vertex position. However, for this study, we use ηF = ηB = η.

Since tracks of interest are most likely to come from near the beam line, we retain the

simple φ0 − ∆φ < φ < φ0 + ∆φ window used in the current RoI definition. However, we

also study the degree of bending of tracks in φ due to the magnetic field, in order to choose

an optimal value for the φ opening of the RoI.

2.2.3 The reduction of the RoI in the ρ − z plane

The reduction of the RoI in the ρ−z plane relies on effectively estimating the z position of

the primary interaction vertex using the first and second samplings of the LAr calorimeter.

Since the trajectory of a high transverse momentum charged particle is approximately

linear in the ρ − z plane, the z position of the primary vertex, Zvertex, can be estimated

by simple linear extrapolation, given the (ρ, z) coordinates from the two samplings of the

calorimeter. This is illustrated in Figure 2.4. For a cluster in the barrel calorimeter, the

ρ1,2 are known, while the z1,2 can be calculated from the equation:

z

ρ
= sinh η (2.1)

where the index refers to 1st or 2nd sampling and the η is calculated with respect to the

origin of the detector. For a cluster in the calorimeter endcap, the z1,2 are known and the

ρ1,2 are calculated from equation 2.1. The primary vertex position can then be calculated

from the coordinates of the two points using:

Zvertex =
z1ρ2 − z2ρ1

ρ2 − ρ1

. (2.2)

From the geometry of the LAr calorimeter, one can get the maximum radius of the 1st

and 2nd barrel samplings and the maximum z of the 1st and 2nd endcap samplings. This

is plotted in Figure 2.5. For the barrel (endcap) coordinates ρ1,2 (z1,2), it is clear that there

is no obvious choice for which values to actually use. The following options were studied
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Figure 2.4: Definition of the quantities given in eq. 2.1 and eq. 2.2.

and, for each one, the resolution for Zvertex was checked.

• Option 1: The maximum values of ρ1,2 (barrel samplings) and z1,2 (endcap samplings),

as given by Figure 2.5. The resolution achieved was 49.76 mm.

• Option 2: The geometrical centre of each sampling with fixed values of ρ1=1545.3 mm,

ρ2=1759.2 mm, z1=3766.0 mm and z2=3980.0 mm. The resolution achieved was

55.53 mm.

Therefore, the outermost points of the samplings were used and the analytical equations

of the parametrisation functions used are given in Appendix A.

After this calculation, we have an estimation of the vertex position in z making use

only of the calorimeter information. The RoI can then be extended along the z-axis by an

amount depending on the Zvertex resolution, parameterized as a function of η. The window

used throughout this study is ±3σ of the Zvertex resolution.

2.2.4 The crack region in the LAr Calorimeter

The information for the energy deposited in a cluster comes in a sequence of 2 blocks.

The first block includes the energy deposited in the presampler and the first, second and

third samplings of the barrel part of the Calorimeter, whereas the second block refers to
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Figure 2.5: The maximum radius of the 1st and 2nd barrel samplings (left) and the maximum z of the 1st
and 2nd end-cap samplings (right). The break at |η| = 0.8 is due to the thinner lead used in the absorber

plates.

the same quantities for the endcap part. Thus, a cluster is regarded as a pure barrel

when the second block has zero values and as a pure endcap when the first block has zero

values. Whether the cluster is barrel or endcap, either the ρ or the z coordinate is known

from the geometry, with the other coordinate being calculated from the cluster position, as

discussed previously. However, in addition, there are cases where the energy of the cluster

is deposited in both the calorimeter barrel and endcap, which results in both blocks having

non-zero values. The majority of such “transition region” events can be treated as barrel

events, since most of their energy is deposited in the barrel, as demonstrated by Figure 2.6.

Events where more than 90% of the energy is in the barrel (endcap) are treated as

barrel (endcap) events. Studies showed that when the energy is split more evenly between

barrel and endcap, the determination of Zvertex is unreliable, so the reduction of the RoI

size in η is not applied to these events. The number of events in each category is shown in

Table 2.1.

2.3 Implementation and results

In order to evaluate the effectiveness of the proposed method and determine the optimal

values for the different parameters (for example of the ∆φ window), the LVL2 tracking
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Figure 2.6: Fraction of the energy deposited in the barrel samplings from a transition region cluster.
Most of the energy is deposited at the barrel part, since this is before the endcap one.

Low Luminosity High Luminosity

Events Processed 4,720 9,647
Barrel Events 2,650 (56.1%) 5,164 (53.5%)
Endcap Events 1,870 (39.6%) 3,751 (38.9 %)
Transition Events 200 (4.2%) 732 (7.6%)
η reduction wasn’t applied 92 (1.9%) 441 (4.6%)

Table 2.1: Event Statistics for optimizing the RoI size.

package IDSCAN was used. The architecture and performance of IDSCAN are described

elsewhere [36, 37]. Using three-dimensional space points from the Pixel and the SCT

detectors, IDSCAN starts by finding the vertex of the primary interaction and uses this

to reconstruct tracks in the Inner Detector. This first step is performed using the ZFinder

algorithm [38].

For comparison purposes, IDSCAN was seeded first with the space points contained

in the original RoI as defined in Section 2.2.1. The RoI was subsequently defined in η

and φ according to the prescription described above and IDSCAN was executed over the

same events, seeded this time with the space points contained in the reduced RoI. The

performance was evaluated each time in terms of the efficiency for determining the vertex
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Figure 2.7: Calorimeter pointing resolution as a function of η, fitted with a parabola.

of the primary interaction, where correct determination was defined to be when:

|Zvertex − Ztrue| ≤ 2 mm (2.3)

2.3.1 The Zvertex resolution and reduction of RoI extent in z

In order to open a window around the z position which is calculated using the calorimeter,

it is first necessary to know the resolution with which Zvertex can be determined. This

is shown in Fig.2.7 as a function of the absolute value of the η of the cluster and it was

checked that it does not depend on the luminosity. The absolute value of η is used here to

increase the statistical significance, since the distribution was seen to be symmetric in η.

Both the dependence of the resolution for the high and low luminosity samples are similar

indicating that the resolution is not significantly influenced by the additional pp pile-up

interactions in the bunch crossing and the different electron transverse momenta.

For the very central region, the resolution is of the order of 25 mm, rising to approxi-

mately 80 mm in the forward region. The drop of the resolution around |η|=0.8 is caused

by the thinner lead used in the absorber plates 2.

2In the barrel region, the particles travel through more passive material at higher η values To compensate
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The resolution is worse for η approximately in the range 1.4-1.6, which is due to the tran-

sition region. The data were fitted using a second order polynomial with the parametrised

form:

σ = 7.16 · |η|2 + 8.72 · |η| + 24.84 (mm) (2.4)

Although a symmetric function is really desired to reflect the symmetry of the detector and

the observed variation of the resolution, the small difference with respect to this around

|η| ∼ 0 is of minor significance since the spread of the resolution at any |η| itself is large,

and variations in the calorimeter granularity might cause differences from the smooth

functional form if greater statistics were available.

2.3.2 The φ resolution and reduction of RoI extent in φ

The residuals in φ of the true electron position with respect to the calorimeter cluster

position are shown in Figure 2.8 for both low and high luminosity events with no corrections

for bremsstrahlung and no extrapolation from the calorimeter back to beam axis. The

different PT of the electrons in the two samples is responsible for the difference in the

overall shift of the peaks – the higher momentum of the high luminosity sample meaning

the track bends less in the magnetic field.

The degree of curvature in φ is additionally different for particles in the barrel and

the endcap regions due to the weaker magnetic field towards the endcaps [39]. It is worth

noting that the form of the φ residual has contributions from several sources. Although

the position of the peak would be in principle calculable from the bending of the track

in the magnetic field, the position will also be smeared by the calorimeter resolution in φ

and smeared to larger |∆φ| by bremsstrahlung and energy loss as the track travels through

the material of the detector. For this reason, optimizing the φ window of the RoI merits

a study, where the effects of both calorimeter resolution and bremsstrahlung are properly

taken into account.

for this problem, for the barrel region with |η| > 0.8, the thickness of the lead used for the absorber plates
is reduced and this is demonstrated as a discontinuity in the border where the two regions meet.
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Figure 2.8: The φ resolution of the electromagnetic clusters in the barrel region (top) and in the end-cap
region (bottom) for low and high luminosity.

Since for electrons with PT > 20 GeV the |∆φ| residual is always less than 0.04 rad it

is clear that the ±0.1 rad window in φ used until now is too large for these RoIs. Although

this would not näıvely be expected to affect the efficiency, if all the hits are included within

the RoI, the large extent of the RoI means that a significant number of pile-up hits at large

∆φ, not associated with the electron will be included in the pattern recognition stage of the

algorithm. This will increase the number of unwanted, incorrect combinations that have

to be considered (therefore extending the execution time of the algorithm) and increase

the possibility of an incorrect assignment being made, so reducing the efficiency.

In order to find the optimal size in φ for each region of the calorimeter, and for each

data set, we applied different windows around the reconstructed φ position of the cluster,

and studying the effect on the Zvertex efficiency of the IDSCAN ZFinder.
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Figure 2.9: Effect of the φ window around the cluster on the ZFinder efficiency for low (open squares)
and high (solid squares) luminosity events.

The results are illustrated in Figure 2.9. As the ∆φ window increases from 0, more of the

space points from the tracks are included so that the efficiency approaches its maximum.

As we move out from the peak to include the entire distribution within the window, the

efficiency falls: further increasing the window, allows more and more background space

points to be included, but with no additional space points from the tracks themselves, so

increasing the chance of an error in the pattern recognition.

In our case, the positions of the maxima in the residuals lie at different ∆φ for the high

and low luminosity samples, so the position of the maxima on the efficiency curves are

different – for example, for the barrel samples the maxima lie near 0.03 rad for the high

luminosity sample and 0.04 rad for the low luminosity sample.

Of course, during real data taking conditions, the trigger would have to deal with the

full spectrum of electron momentum, and as such, the window size would be dependent on

the lower threshold of PT of electrons that were required to pass the trigger. A common
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window of ∆φ = ±0.04 rad around φcluster should therefore be sufficient for electrons with

PT > 20 GeV and this has been applied for the results presented here.

In contrast to the reduction in the ρ − z plane, the reduction in φ was also applied

to electrons in the calorimeter transition region as well as those in the barrel and endcap

regions.

2.3.3 Improvement on the ZFinder efficiency

The efficiency for reconstructing the correct primary vertex as a function of |η| for both

high and low luminosity is given in Figure 2.10. Figure 2.11 and Table 2.2 summarize the

efficiencies for each of the barrel, endcap and transition regions of the detector as well as

the overall efficiency. It can be seen that the efficiency achieved using the new reduced

RoI is higher than that obtained using the original RoI description. Since the ZFinder

is a combinatorial algorithm, reducing the size of the RoI leads to fewer combinations

of random background space points. This means the likelihood of obtaining an incorrect

combination of hits is reduced, while that for finding a correct combination should remain

unchanged. For exactly this reason, the observed improvement is larger with the high

luminosity events (6%) than in the low luminosity case (1.3%).

Low Luminosity High Luminosity
Original RoI Reduced RoI Original RoI Reduced RoI

Barrel 96.11 ± 0.38 97.36 ± 0.31 90.12 ± 0.42 96.69 ± 0.25
Transition 95.00 ± 1.54 94.50 ± 1.61 92.62 ± 0.97 95.63 ± 0.76
End-cap 93.96 ± 0.55 95.35 ± 0.49 88.24 ± 0.53 92.59 ± 0.43

Overall 95.21 ± 0.31 96.44 ± 0.27 89.58 ± 0.31 95.01 ± 0.22

Table 2.2: ZFinder efficiencies.

2.3.4 Improvement on the ZFinder execution time

The design of the ZFinder algorithm means that the execution time is found to scale almost

linearly with the number of space points in the RoI so that a reduction in the size of the
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Figure 2.10: ZFinder efficiencies as a function of |η| for low (up) and high (down) luminosity using the
original RoI (solid markers) and the reduced RoI (open markers).
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Figure 2.11: ZFinder efficiencies for the barrel, transition and end-cap regions of the detector for low (up)
and high (down) luminosity using the original RoI (solid markers) and the reduced RoI (open markers).

The overall efficiency is also given at the right of the graphs.
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Low Luminosity High Luminosity
ZFinder mean Mean number ZFinder mean Mean number
execution time of space points execution time of space points

Original RoI 0.32 ms 43.06 0.81 ms 156.2
Reduced RoI 0.23 ms 18.12 0.34 ms 44.07

% difference -28.13% -57.92% -58.02% -71.79%

Table 2.3: Improvement on ZFinder mean execution time and on the mean number of space points.

RoI would be expected to lead to an improvement, not only in the transfer time of the

data, but also in the execution time of the algorithm itself.

For this study, the execution time of the ZFinder was measured using a 2.4 GHz

Pentium-IV processor. Table 2.3 shows the results for execution time of the ZFinder

obtained using both the original and the reduced RoI definitions for both high and low

luminosity samples. The mean execution time is reduced by ∼28% in low luminosity RoIs

and by ∼58% in high luminosity RoIs.

In the same table, the number of space points contained in the reduced RoI is also

shown and is almost a factor four smaller compared to the original RoI at high luminosity,

which directly reflects the actual reduction of the RoI size. At high luminosity, the number

of space points from the true electron is essentially negligible compared to the total so the

execution time is dependent purely on the data volume.

This result is particularly important, because the average execution time for LVL2

tracking is dominated by the data preparation, i.e. the unpacking of the Pixel/SCT byte-

stream, the clustering and the space point formation. Therefore, a significant improvement

in the overall execution time is expected when the whole LVL2 tracking chain is performed

inside only this reduced RoI. Moreover, this will also reduce the amount of data required to

be transfered from the Readout Buffers to the LVL2 processors, hence reducing the overall

network traffic with the DAQ system.
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2.4 Conclusions and prospects

This study has shown that the performance of the LVL2 tracking can improve significantly

both in terms of increased efficiency and in reduced latency, by using an optimized descrip-

tion of the size of RoI. To achieve this, it is necessary to use all the information available

from the LVL2 calorimeter reconstruction. By the time these lines were written, work

to implement the calculations necessary to obtain this information for LVL2 clusters was

underway. Also underway was work to introduce the proposed RoI shape into the Region-

Selector, which is the mechanism for providing the detector elements (and thus access to

the relevant data) inside a given RoI. This is the way to properly integrate the new RoI

shape in the LVL2 trigger software chain.

In order to exploit the full potential of the proposed improvement, it would be interest-

ing to test it using a broader PT spectrum. Since the electrons used here have essentially

the minimum PT currently required in every trigger menu, the improvements obtained

using a full spectrum of momenta might be expected to be similar or even better. Also,

samples with more than one electron (for instance for the 2e15i trigger menu) would be

important to be studied.

Several improvements might still be envisaged, such as better treatment of the transition

region and further optimization of the ρ and z position of the calorimeter samplings in the

barrel and endcap regions respectively. It is also possible to study the resolution of the

cluster position on the face of the calorimeter, so that the RoI can become narrower while

going towards the cluster. All these enhancements might be expected to allow further

improvements in the performance of LVL2 tracking, although the bulk of the improvement

is achieved with the work presented here.

56



Part II

The Physics
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Chapter 3

Vector boson scattering in the Chiral

Lagrangian Framework

In this Chapter, the motivation for exploring the scattering processes of vector bosons is

discussed. Since it is beyond the scope of this Chapter to address the issue within its full

mathematical background, a more descriptive and quantitative way has been chosen in-

stead. Following a short introduction to the Electroweak Symmetry Breaking (EWSB), the

theoretical framework of the Electroweak Chiral Lagrangian will be presented, providing

at the same time the link to the analysis carried out and which is given in the following

Chapters.

3.1 Motivation for studying vector boson scattering

at high energies

3.1.1 The problem of the EWSB and the Higgs mechanism

For the past years, the Standard Model (SM) has been a successful theory, since it is in

agreement with the recent precision data (see for example [1]). The SM is based on the
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SU(3)C

⊗

SU(2)L

⊗

U(1)Y gauge symmetry, which provides the basis for describing the

electroweak and strong interactions. The requirement of a given Lagrangian to exercise a

local gauge invariance under U(1) or SU(3) transformations has led to the well known gauge

fields of the photon and the gluons, which are massless, as predicted. But the problem

arises when we study SU(2) transformations, simply by the fact that the weakly interacting

gauge bosons W± and Z are not massless at all.

The SM way to give masses to those particles is to apply the mechanism of the spon-

taneous symmetry breaking to the electroweak interaction. This mechanism is just a

way to identify the ground state of the given Lagrangian.

Within the SM, the EWSB is implemented via the Higgs mechanism, the formalism

of which can be found in many text books (see for example [40]). The result of the Higgs

mechanism is that the gauge bosons acquire their masses but also a massive, scalar particle

(the so-called Higgs particle) is introduced.

3.1.2 The vector boson scattering as a way to probe the EWSB

The formalism of the spontaneous symmetry breaking uncovers from a Lagrangian the

hidden mass terms by giving to the ground state (the vacuum) a specific non-zero value.

But, according to Goldstone’s theorem, any such process is always accompanied by the

appearance of one or more massless particles, the Goldstone bosons.

The Higgs mechanism, together with the Higgs particle, produces 3 Goldstone bosons,

which eventually, by picking up the correct gauge, are swallowed by the-previously massless-

W± and Z. Eventually, the vector fields can be polarized not only on the transverse plane,

but also they can now have longitudinal polarization. Therefore, since the longitudinal

components of the gauge bosons W± and Z are really the Goldstone bosons in disguise,

the way to probe the EWSB sector is the study of processes which involve the longitudinally

polarized modes of these gauge bosons. Things become more clear when we go to energies

much greater than their masses where, according to the Equivalence Theorem [41, 42, 43],

the W±
L and ZL behave more and more like the original swallowed degrees of freedom.
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3.2 The Electroweak Chiral Lagrangian

To explain the origin of EWSB several theoretical models have been proposed in the lit-

erature. From a phenomenological point of view, these models can be (roughly) divided

into two categories, according to the strength of their interactions: (i) the weakly coupled

models, which contain a few light particles below the TeV scale. Typical examples are the

Minimal Standard Model with just one doublet of the Higgs boson and the supersymmetric

models with more than one doublet, (ii) the strongly coupled models, which are charac-

terized by the absence of light particles. In that case, perturbative calculations are not

valid any more and the tree-level amplitude for the scattering of gauge bosons will violate

unitarity at the TeV region. To restore the unitarity, specific unitarisation proceedures

should be applied, resulting in the appearance of heavy resonances.

The Minimal Standard Model with a heavy Higgs doublet or Technicolor with composite

heavy particles are examples of such strongly interacting models [44]. Even though from

very general symmetry considerations all of these models share the same dynamics at

low energies, their predictions at high energies can vary greatly from one another. The

Electroweak Chiral Lagrangian (EWChL) provides a general way to describe those different

strongly interacting models as a low energy effective theory without making any assumption

about the detailed interactions of the underlying theory.

The EWChL is based on the Chiral Perturbation Theory [45, 46] of low energy pion

dynamics in QCD and it is an expansion in derivatives of the Goldstone boson fields. The

construction takes into account only symmetry considerations, which are common to any

strongly coupled EWSB model.

3.2.1 Formalism

The details of constructing the EWChL can be found in [47, 48]. To obtain the lowest-order

term, one can start by requiring that the the most general Lagrangian should employ the

spontaneously broken SU(2)L

⊗

U(1)Y symmetry down to U(1)em and therefore it should

involve three Goldstone bosons. The building block of the chiral Lagrangian is the matrix
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field:

U = exp

(

i
ωατα

uv

)

(3.1)

where τα (α = 1, 2, 3) are the Pauli matrices, ω are the three Goldstone bosons and

uv ' 246 GeV is the vacuum expectation value of the Higgs field1.

The second requirement is set by the fact that the system presents a global chiral

SU(2)L

⊗

SU(2)R symmetry that is broken to SU(2)L. This residual symmetry is respon-

sible for ensuring the masses of the gauge bosons (custodial symmetry) satisfy the equation

M2
W = M2

Z cos2 θW
2. The only remaining term of order-2 is:

L(2) =
u2

v

4
Tr{DµUDµU †} (3.2)

and the SU(2)L

⊗

U(1)Y covariant derivative of U is defined as:

DµU ≡ ∂µU + ig
τα

2
W α

µ U − ig′U
τ 3

2
Bµ (3.3)

At the next order in the derivative expansion (p4 or equivalently ŝ2), there are many

operators of dimension-4. But, in order to describe genuine vector boson interactions, one

should focus on pure quartic vertices, ignoring diagrams which include anomalous triple

gauge-boson vertices. With this consideration, the EWChL is expressed by the following

equation:

LEWChL = L(2)+L(4)+... =
u2

4
Tr{DµUDµU †}+α4

(

Tr{DµUDµU †}
)2

+α5

(

Tr{DµUDνU †}
)2

(3.4)

The dependence on the underlying model is introduced via the dimensionless param-

eters α4 and α5: different choices of the value and the sign of those parameters would

correspond to different models of the strongly interacting electroweak symmetry breaking

sector. Moreover, in the case that the scattering amplitudes ought to be calculated at

1The vacuum expectation value of the Higgs field is related to the Fermi constant GF : u2
v = 1√

2GF

2This argument is explored usually by defining the parameter ρ as ρ = M2
W /M2

Zcos2θW .
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the order of ŝ2, one should also include one-loop correction to the L(2) term, since those

are of the same order. The main effect when doing so, is to introduce a scale dependence

of the chiral couplings α4, α5 so they actually become α4(µ), α5(µ), where µ is the re-

normalization scale. A detailed discussion is given in [47]. It is important to mention that

the values of the parameters can be constrained by fits to the electroweak precision data

and, for this analysis, they are considered to vary in the range [-0.01, 0.01] [49].

3.2.2 Scattering amplitudes

Since we have an SU(2)L+R symmetry, it is convenient to work within the weak isospin

space. The scattering amplitude can be written as:

M(V a
L V b

L → V c
LV d

L ) ≡ A(s, t, u)δabδcd + A(t, s, u)δacδbd + A(u, t, s)δadδbc (3.5)

where V i
L = W+

L , W−
L , ZL and:

W±
L =

1√
2

(

W 1
L ∓ iW 2

L

)

(3.6)

ZL = W 3
L (3.7)

The quantities s, t, u are the usual Mandelstam kinematical variables and the indices

a,b,c are the weak isospin indices with values 1,2,3. Equation 3.5 can describe the dynamics

of any vector boson scattering process [50]. For example, for the W±
L W±

L scattering, this

becomes:

M(W±
L W±

L → W±
L W±

L ) = A(t, s, u) + A(u, t, s) (3.8)

The function A(s, t, u) is calculated up to the order of s2 and is given by the expression:

A(s, t, u) =
s

u2
+

1

4πu4

(

2α4(µ)s2 + α5(µ)(t2 + u2)
)

+

+
1

16π2u4

(

− t

6
(s + 2t) log

(

− t

µ2

))

−

− 1

16π2u4

(

u

6
(s + 2u) log

(

− u

µ2

)

− s2

2
log

(

− s

µ2

))

(3.9)
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3.3 Unitarisation of the Electroweak Chiral Lagrangian

The EWChL, as it has been presented so far, is an effective low-energy approach, which

demonstrates a major problem: the scattering amplitudes violate unitarity for vector

bosons’ invariant masses around 1-2 TeV. The standard treatment to overcome this obsta-

cle is the unitarisation of the scattering amplitudes, using a specific unitarisation protocol.

Most commonly, the Padé (or Inverse Amplitude) [51] and the N/D [52] protocols

have been used in the literature. The formalism of these unitarisation protocols is beyond

the studies of this Thesis, but a detailed description and comparison between those two

approaches is given in [53].

3.3.1 Resonance scenarios

An important result of the unitarisation procedure is that the final, unitarised scattering

amplitudes can reproduce a resonant behavior. The mass and the type of the resulting

resonances depend on the values of the effective couplings α4, α5, but also on the applied

unitarisation protocol. For the analysis presented here, the Padé protocol was used, which

predicts the following mass and width for a scalar (spin-0) resonance:

M2
S =

12u2
v

16[11α5(µ) + 7α4(µ)] +
101−50 log(M2

S
/µ2)

48π2

, ΓS =
M3

S

16πu2
v

(3.10)

and

M2
V =

u2
v

4[α4(µ) − 2α5(µ)] + 1
144π2

, ΓV =
M3

V

96πu2
v

(3.11)

for a vector (spin-1) resonance.

By fixing the renormalisation scale to the value µ = 1 TeV, we construct the α4 − α5

parameter space illustrated in Figure 3.1. We notice that certain combinations of the chiral

parameters are excluded theoretically [54]. Any straight line which is drawn parallel to

the blue or to the red lines would correspond to resonances of equal masses. Points which

lie at the region from the red line and upwards right will correspond to scalar resonances,

whereas points inside the region from the blue line and upwards left will result in vector
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Figure 3.1: The α4 − α5 parameter space as predicted using the Padé protocol. From [53].

resonances. Point A is an example of a scalar resonance of mass ∼1 TeV and point B is

an example of a vector resonance with mass of ∼ 1.4 TeV. There is also a common area

between these two regions, where one can find both a scalar and a vector resonance. Point

C is an example of this scenario. Finally, there is an interesting region, where no resonances

will be produced (Point D). In that case, the invariant mass of the vector bosons will have

a continuum spectrum. The values of the α4, α5 parameters for the four example scenarios

are summarized in Table 3.1. Figure 3.2 shows the dependence of the resonance mass on

the combination of the chiral parameters.

In order to study those different scenarios, the PYTHIA Monte Carlo generator [55]

has been modified to include the EWChL approach. The parton-level predictions for the

differential cross-section are given in Figure 3.3 for the process pp → W+W−qq+X, where

one of the bosons decays leptonically and the other decays hadronically.

Scenario α4 α5 Resonance Mass (GeV)

Scalar(A) 0.0 0.003 989.8
Vector(B) 0.002 -0.003 1360.3

Scalar + Vector (C) 0.008 0.0 809.6 + 1360.3
Continuum (D) 0.0 0.0 NA

Table 3.1: Values of the α4 and α5 parameters and the mass of the predicted resonance for the A, B, C
and D scenarios. The values have been calculated at µ = 1 TeV.
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Chapter 4

Studying WW scattering with the

ATLAS Detector

The aim of this Chapter is to present the tools for the generation and the simulation

of the data samples, defining at the same time the signal and the background processes.

Since we will use W bosons, which decay into leptons and hadrons, the methodology for

reconstructing those bosons will be described in detail. The reconstruction of a hadronically

decaying W is a great challenge, therefore some important aspects of this issue will be

discussed.

4.1 Generation of the Monte Carlo samples

As mentioned in the previous Chapter, the EWChL framework, followed by the unitari-

sation according to the Padé protocol, has been included in the PYTHIA (version 6.226)

event generator.

A typical diagram of a vector boson scattering is given in Figure 4.1. By controlling the

chiral parameters α4 and α5, 600,000 WW scattering events of the A,B,C and D scenarios

have been generated for each one. The scattering of the vector bosons includes any charge
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combination and all the possible decays of the W boson are allowed.1 For the following, we

focused of the events where one of the Ws decays leptonically and the other hadronically.

The dominant backgrounds are the QCD tt̄ and W+jets production, where the jets fake

the hadronically decaying W.

The corresponding diagrams are given in Figure 4.1. In order to improve the generation

efficiency, the minimum transverse momentum of the hard scatter has been set to 300 GeV

for the tt̄ process and to 250 GeV for the W+jets.

Q
Q

Qg

±W g

g

g t

t

Q

q

+W

-W

q q’

Q

Q’

±W

±W

±W

±W

Figure 4.1: Typical diagrams for the W+jets (red) and tt̄ (blue) production and for the WW scattering
(black). The production of the tt̄ pair via the gluon-gluon fusion dominates the production via quark-quark

annihilation.

The cross sections for each of the signal scenarios and the background processes are

given in Table 4.1. We notice that the W+jets is the dominant background with 4 times

higher event rate than the tt̄ process. The cross sections have been obtained by using

the Leading Order (LO) calculations of the generator. More accurate calculations, at the

Next-to-Leading Order (NLO), are expected to affect the processes, which involve gluons

and the tt̄ production via the gluon fusion has the largest uncertainty. Even though the

quality of our modeling of this effect, as it is implemented in the generator will be tested

against the collected data, estimations give a K-factor 2 in the range from 1.5 up to 2.0

(see for example [57]).

Finally, while almost all of the PYTHIA parameters were set to their default values, a

set of parameters, controlling mainly the Underlying Event model, have been modified in

accordance with the settings adopted by the ATLAS Collaboration (Rome Tuning [58]).

These parameters, together with their values, are listed in Table 4.2.

1The branching ratio for the leptonic decay of the W boson (W → `ν, ` = e, µ, τ) is (10.80 ± 0.09)%,
where for the hadronic decay (W → qq̄) is (67.60 ± 0.27)% [56].

2The K-factor is defined as the ratio σNLO

σLO
.
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Process σ (fb)

Scalar Signal (A) 74.9
Vector Signal (B) 52.4

Scalar + Vector Signal(C) 118.2
Continuum Signal(D) 44.0

tt̄ Background 15640
W+jets Background 62600

Table 4.1: Cross-sections for the signal and background processes obtained from PYTHIA within the
EWChL framework. For the signals, the values for α4 and α5 are those given in Table 3.1.

Parameter Value

MSTP(82) 4
MSTJ(11) 3
MSTJ(22) 2
PARJ(54) -0.07
PARJ(55) -0.006
PARP(82) 1.8
PARP(84) 0.5

Table 4.2: Values of the PYTHIA input parameters according to the Rome-tuning [58].

4.2 Simulation and Reconstruction

The generated events were simulated and reconstructed in a single step, using the fast

simulation package for the ATLAS detector, ATLFAST [59]. ATLFAST parametrises the

response of the detector according to studies done by the full simulation. It is an inter-

mediate level between the simple, but often misleading parton-level analysis and the very

sophisticated but time and CPU consuming full detector simulation. The results from

ATLFAST have been validated in the past using specific physics channels, but a big ef-

fort is currently under way to evaluate its performance against the latest fully simulated

samples [60].

ATLFAST starts from the generated event. By assuming a homogeneous, solenoidal

magnetic field of 2 T, all the stable, charged particles which have PT > 0.5 GeV are

extrapolated to the entrance of the Calorimeter. It is assumed that there is no separation

between the EM and the Hadronic Calorimeters and no simulation of the Inner Detector

or the Muon Spectrometer is performed. Also, the particles do not interact with any
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material and the Bremsstrahlung (for electrons) or pair production (for photon) effects are

not simulated. This means that all the particles reach the calorimeter having their initial

energies. The following physics objects are then constructed:

• ATLFAST Calorimeter clusters: The Calorimeter is divided into cells of di-

mensions ∆η × ∆φ = 0.1 × 0.1, for 0 ≤ |η| < 3.2 and ∆η × ∆φ = 0.2 × 0.2, for

3.2 ≤ |η| < 5. Each of the particles deposits its energy inside the associated cell.

For a simple cone-type algorithm, each cell with ET > 1.5 GeV (initiator) is scanned

to verify whether the total ET summed over all cells inside a cone ∆R = 0.4 ex-

ceeds the minimum required threshold for a reconstructed cluster (typically Emin
T =

5 GeV). If so, those cells are grouped into a cluster, the coordinates of which are

taken to be the coordinates of the barycenter.

• ATLFAST Electrons: Each true electron is selected according to selection criteria

(typically PT > 5 GeV and |η| < 2.5) and a reconstructed cluster within a distance

∆Re−cluster < 0.15 is searched to associate with the true electron. In order for a

cluster to be identified as an electron, isolation criteria are applied. These include

the distance from other clusters (typically ∆R > 0.4) and the total transverse energy

deposited in a cone around the cluster axis (typically, it is required that
∑

ET <

10 GeV of all the un-clustered cells inside a cone of ∆R = 0.2 around the cluster

axis). If a cluster is taken to come from an electron, the particle’s four-vector is

smeared according the resolution function (all the smearing functions can be found

in Appendix C).

It is important to stress the fact that ATLFAST does not take into account effi-

ciencies for identifying electrons (that is assumed to be 100%) or misidentifying jets

as electrons (it is assumed 0%). This is also the case for the photon and muon

reconstruction.

• ATLFAST Photons: The photons are reconstructed by applying the same selec-

tion and isolation criteria as for the electrons. The photon’s four-vector is smeared
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using again a resolution function.

• ATLFAST Muons: For the muons, similar selection and isolation cuts are ap-

plied. The interesting point is that the energy is smeared according to a resolution

which depends on the muon PT , |η| and φ. Also, there are three different resolution

functions, depending on which sub-detectors are assumed to be used for the muon

reconstruction: the stand alone Muon Spectrometer, the stand alone Inner Detector

or the combination of the two systems.

• ATLFAST Jets: All the clusters which have not been associated with isolated

electrons, photons or muons are used to reconstruct the jets. At first stage, their en-

ergies are smeared according to a resolution function. Furthermore, the energy of the

non-isolated muons which are found inside the cluster cone is added to the smeared

energy of that cluster. If the resulting jet passes the selection criteria (normally

ET > 10 GeV and |η| < 5.0), then it is labeled as a reconstructed jet.

ATLFAST also performs the jet tagging for tau-jets, b-jets or c-jets using the special-

ized package ATLFAST-B. The technique for doing so is analytically explained in [59]

and since the current analysis does not require any jet-tagging information, details

are not given. It is essential to mention though that, during the jet-labeling proce-

dure, efficiencies for jet identification or jet misidentification are taken into account

for all the types of jets, parametrised as a function of their PT .

• ATLFAST Emiss

T
: By summing up the transverse momenta of the identified isolated

electrons, photons and muons, the jets, the remaining clusters (not identified as jets)

and of the no-isolated muons which were not used in any jet cluster, the Eobs
T is

calculated. In this quantity, the transverse energies of all the cells not used in clusters

are added, after smearing with the resolution function. The missing transverse energy

is Emiss
T = Eobs

T and its components are given by the relations: P miss
x = −P obs

x and

P miss
y = −P obs

y .

ATLFAST uses parametrisations for both the low and high luminosity scenarios. For
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the current studies, all of the ATLFAST parameters were used with their default

values for low luminosity.

4.3 Event Reconstruction

The following sections describe the methodology for reconstructing the physical objects.

In our case, since we are interested in the events where one W decays leptonically and the

other hadronically, we will try to reconstruct the leptonically decaying W (Wlept ) and the

hadronically decaying W (Whad ). The WW system is simply reconstructed by adding the

Lorentz vectors of Wlept and Whad :

WWµ = W lept
µ + W had

µ (4.1)

Concerning the triggering of the signal events, that will not be an issue, since, as it will

be described in the following sections, we will require final state objects with energies far

more greater than those set by the triggering menus.

Finally, for the Signal, the Continuum scenario was used as a case study.

4.3.1 Reconstruction of the Leptonic W

The leptonic W is reconstructed using the leading lepton (electron or muon) and the

Emiss
T of the event. The Emiss

T accounts for the neutrino in the decay channel and since the

z-component of its momentum is unknown, only the transverse parameters of the Wlept can

be calculated directly. To overcome this problem, the neutrino’s Pz can be calculated by

fixing the mass of Wlept and using the equation:

M2
W =

(

Elept +
√

P ν2
T + P ν2

z

)2

−
(

P lept
x + P ν

x

)2 −
(

P lept
y + P ν

y

)2 −
(

P lept
z + P ν

z

)2
(4.2)

The mass of the Wlept has been set to 80.4 GeV and the algebraic solution of the above

equation is derived in the Appendix B.
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Since it is a quadratic equation in Pz, two possible solutions are foreseen. In that

case, two possible Wlept can be constructed with the same PT and mass, but different Pz.

Figure 4.2 gives the distance in the η−φ space between the true Wleptand the reconstructed

Wlept in the case of using the solution with the minimum |Pz| (W lept
slow) or with the maximum

Pz (W lept
fast). Most of the times, the W lept

slow is closer to the true Wlept . Since there are no

physical reasons to predict the best reconstructed solution, based purely on this statistical

argument, the Wlept with the minimum Pz is used.

Events which don’t have any isolated reconstructed leptons (∼62% of the generated

events) or for which there is not a neutrino solution (∼10% of the generated events) are

rejected.
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Figure 4.2: Distance in the η−φ space between the true and the reconstructed Wlept for the two neutrino
solutions.

4.3.2 Reconstruction of the Hadronic W

To reconstruct the hadronic W, we notice that, for a highly boosted W, the quarks from its

decay will be very close to each other. This is demonstrated by the left histogram in Figure

4.3, which gives the distance ∆R in η−φ space between the emerged quarks and the PT of

the W that they originated from. As the W becomes more boosted, the distance between

the quarks becomes smaller. For very energetic bosons (transverse momentum more than

300 GeV), the distance of the two partons is given on the right histogram of Figure 4.3.
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The mean value is close to 0.5 and the most probable value can be found around 0.4.
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Figure 4.3: Left: Distance in the η −φ space between the quarks that originate from a W versus the the
PT of the W. Right: Distribution of the distance between quarks emerging from a highly boosted W.

As a consequence, the observed jets, which come from the two partons, will overlap.

Therefore, very energetic Whadcan be reconstructed as a single jet3. This is demonstrated in

Figure 4.4. For a Whad with PT more than 300 GeV, the reconstructed W with mass closer

to the nominal mass (∼ 80 GeV) is more often achieved by using a single jet. Therefore,

for the rest of the analysis, the most energetic jet of the event is taken to be the Whad .
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Figure 4.4: The reconstructed mass of the hadronic W versus its reconstructed PT , when the W is
reconstructed by a single jet (left histogram) or by two jets (right histogram).

3The jets were reconstructed using the k⊥ algorithm, as it will be discussed later.
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Hadronic W reconstruction with the k⊥ algorithm

At present, there are essentially two classes of jet algorithms: (i) the cone-type algorithms,

where jets are defined by maximizing the amount of energy which can be covered by cones

of fixed size and (ii) the clustering algorithms, where the final state particles are grouped

together into jets where a given energy-angle resolution variable exceeds a fixed resolution

parameter.

Regarding the first class, the jet clustering using the Cone algorithm has been exten-

sively studied [61] and it was found that the best Whad reconstruction as a single jet is

achieved using a cone radius of 0.7.

For the current analysis the k⊥ algorithm [62, 63], which is a representative example

of the second class of jet algorithms, has been used throughout and a generic introduction

to its formalism is presented in Appendix D. The major motivation for doing so was the

fact that one can apply the algorithm on a single jet and, once the constituents of the jet

are available, its structure can be investigated. This procedure (called sub-jet analysis) is

particularly useful in our case, where the Whad is reconstructed as one single jet, since one

could look inside that jet and find the original two jets, which came from the W decay.

Another advantage of the k⊥ approach is the feature that it is invariant under boosts along

the W direction and this is important, when one wants to study the shape of a quantity

(like a cross-section, as it will be discussed later) as a function of the WW centre-of-mass

energy. This feature does not appear in the simple cone algorithms, in which case the

applied cone radius should be dependent on the PT of the W.

With the leading jet of the event, the sub-jet analysis, as it is analytically explained in

[63], was carried out: requiring n+1 jets to merge to n, a resolving parameter yn+1,n can

be calculated. For our case, the resolving parameter y21 was used and for convenience, we

define the quantity:

Y scale ≡ log
(

P HadW
T ×√

y21

)

(4.3)

Given the way in which the resolving parameter y21 is defined and due to the fact that

the parameters are defined in the centre-of-mass frame of the hadronic W, the Y-scale is
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expected to be at the order of log(MW ), for a highly boosted genuine decaying W. This

distribution is given in Figure 4.5 for both the signal and the background processes. For

the signal and the tt̄ samples, where there is a genuine Whad , the distribution gives a peak

around 1.8, which is not the case for the W+jets sample, where the jets fake the Whad .

This distribution will be later shown to be a strong cut for rejecting the bulk of the

W+jets events.

The k⊥ algorithm depends on a parameter R, which is analogous to the cone size

parameter in the Cone algorithm. To decide upon the optimum value, the algorithm was

used with five different R-parameters: 0.2, 0.4, 0.5, 0.8 and 1.2. The effect on the mass

of the reconstructed Whad is shown in Figure 4.6. As the R-parameter increases, the peak

moves towards high masses and with R=1.2 an asymmetric tail appears. This is caused

by adding to the leading jet other jets, not associated with the hard scatter process. With

R=0.2 and with small values in general, a second peak at low masses emerges, due to the

fact that the Whad is resolved into two jets, therefore it cannot be reconstructed by a single

one. The best resolution of the mass is achieved using R-parameter=0.5, which is the value

used for the rest of the analysis. The distribution of the mass, after imposing a cut on

the Y-scale, is shown on the right histogram of Figure 4.6. A fit with a gaussian function

in the range 70 GeV - 95 GeV gives a resolution σ = 7.16 GeV, which will be used later

for selecting the Whad candidates. The mean value is shifted approximately 4 GeV with

respect to the nominal mass of the W, but this doesn’t cause any problems, since an offline

jet calibration will bring the distribution at the correct position.

4.3.3 Selection criteria

In order to estimate whether and to what extent it is possible to see the different strongly

interacting processes over the expected backgrounds, we first apply initial selection cuts on

both the leptonic and hadronic W distributions. The order in which the cuts are applied

is given by the sequence they are presented.

Figure 4.7 gives the distributions of the PT and η of the leading lepton in the event,
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the Emiss
T and the PT distribution for the finally reconstructed Wlept for both the signal and

background samples. Since we are interested in the relative shape of the distributions, each

of the histograms has been normalized to its area.

For the signal and the tt̄ background, the lepton is distributed mainly in the central

region of the detector, whereas the W+jets sample gives a lepton which is distributed over

a larger area of the detector. The Wlept , for all the cases, is found predominately in the

central region and the signal process gives harder PT spectrum than the background ones.

For an event to be processed, the reconstructed Wlept is required to have PT > 320 GeV.
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Figure 4.7: Normalized distributions of the leading lepton, the Emiss
T and the Wlept for the Continuum

signal sample (black), W+jets (red) and the tt̄ (blue) background samples.
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Figure 4.8: Normalized distributions of the PT , η and mass of the Whad for the Continuum signal sample
(black), W+jets (red) and the tt̄ (blue) background samples.

Figure 4.8 gives the PT , the η and the mass distributions of the Whad . Again, the signal

has a harder PT spectrum than the background and the selection cut PHadW
T > 320 GeV is

applied. In terms of the geometry, the very energetic Whad is found in the central region of

the detector, for all the samples. For the mass spectrum, a clear peak around the W mass

is seen for the signal and the tt̄ samples, where there is genuine hadronically decaying W.

Also, for the tt̄ distribution, the peak around the top mass can be identified. The W+jets

sample gives a continuum mass spectrum, since there is no genuine Whad involved. Selected

events were those which give mass in the range ±2.5σ around the mean reconstructed

mass, as taken from the gaussian fit of the distribution in Figure 4.6 (σ = 7.16 GeV, µ =

83.99 GeV).

The last selection cut is applied on quantity Y-scale, which was defined in Section 4.3.2

and it is plotted in Figure 4.5. Selected events where those which give 1.55 <Y-scale< 2.0.
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4.3.4 Background rejection

To reduce further the contribution from the background processes, we investigate the fea-

tures of the hadronic environment. Their distributions are given in Figure 4.9.

1. Top Veto: The jets (excluding the one used of the Whad) are combined together with

each of the vector bosons. For the tt̄ sample that would result in reconstructing the

top quark and that is the case seen by histograms (a) and (b). Events with at least

one combination with invariant mass in the region 130 GeV < MW+jet < 240 GeV

are rejected.

2. Tag Jets: In that case we look for the quarks which emitted the two vector bosons.

For the signal, these are expected to occupy the very forward regions of the detector.

A forward(backward) tag jet is defined as the most energetic jet, which is more

forward (backward) than the most forward (backward) W. The η distribution of those

jets is given by histogram (c). Accepted events are those which have at least one tag

jet (both forward and backward) with PT more than 20 GeV and E > 300 GeV in

the region 2.0 < |η| < 4.5.

3. Hard PT : For the signal process, the system of the two tag jets combined with

the two vector bosons should not have transverse momentum, as can be seen from

Figure 4.1. The PT distribution of the system is given by histogram (d). Events with

PT >50 GeV are rejected.

4. Mini-jet veto: The mini-jets are defined as all the jets with PT >15 GeV inside

the region |η| < 2.0. Since there is no color exchange between the quarks which

emitted the W bosons and the bosons themselves, signal processes are expected to

give no mini-jets. The distribution of the number of mini-jets is given by histogram

(e). Events which have mini-jets are rejected.

Table 4.3 summarises all the selection cuts and theirs values.
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Figure 4.9: Distributions of the features from the hadronic environment, as described in the text, for
both the signal and background samples: (a-b) Mass of the Wlept and the Whad combined with each of the
jet in the event, other than the Whad . (c) η distribution of the tag jets. (d)PT distribution of the system

WleptWhad+tag jets (e) Number of mini-jets.
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Cut Value for keeping events

Leptonic W PT PT > 320 GeV
Hadronic W PT PT > 320 GeV

Hadronic W mass 66.09 < M < 101.89 GeV
Y-scale 1.55 < Y − scale < 2.0

Top veto 130 < MW+jet < 240 GeV
Tag Jets PT > 20 GeV, E > 300 GeV, 2.0 < |η| < 4.5

Hard Scatter PT PT < 50 GeV
Number of mini-jets (PT > 15 GeV with |η| < 2.0) 0

Table 4.3: Summary of the cuts applied for selecting the signal events.
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Chapter 5

Results

The final Chapter presents the results of the analysis, focusing on the potential of the

ATLAS detector to see strong vector scattering signals above the background and to dis-

tinguish the different spin states of the possible resonances. The WW scattering cross

section will be an important measurement, therefore the methodology for doing so will be

presented. Beyond that, a comparison between ATLFAST and the GEANT (Full) simula-

tion of the detector will demonstrate the very good agreement between the two. Finally,

issues such as the effect of the underlying model and of the pile-up will be also discussed.

5.1 Final significance

The effect of each one of the previous cuts on the cross section for both the signal and

background samples is presented in Table 5.1. The Y-scale cut has an important effect on

the W+jets background, with a rejection factor of 45%, while for the signal sample, this is

15%, coming mainly from the misidentified Whad , which survived the previous mass cut.

The top-veto reduces most of the tt̄ events, as expected, with a rejection of 95%, while

keeping the rejection of the signal low, around 9%. The rest of the hadronic cuts have

very small effect on the signal sample. For instance, the cut on the hard scatter gives a
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Cross-section σ (fb) Signal tt̄ W+jets Significance

Generated 44 15640 62600 0.86
Cuts

PT Leptonic W 3.301±0.011 387.481±0.992 2879.670±5.354 0.32
PT Hadronic W 2.579±0.009 174.524±0.671 1813.100±4.285 0.32

Mass Hadronic W 2.038±0.008 80.739±0.456 208.354±1.472 0.66
Y Scale 1.735±0.008 65.839±0.413 114.015±1.090 0.71

Top Veto 1.585±0.007 3.308±0.092 52.782±0.742 1.16
PT , E, η Tag Jets 0.449±0.004 0.039±0.010 0.490±0.071 3.38
PT hard scatter 0.439±0.004 0.018±0.007 0.292±0.055 4.32

Number of Mini-jets 0.434±0.004 0.013±0.006 0.240±0.050 4.73

Table 5.1: The effect of the applied cuts (see text) on the cross section for both the signal (continuum
scenario) and background samples. The errors are due to statistics only and the significance is given for

integrated luminosity of L = 30 fb−1.

Cross-section σ (fb) Continuum Vector Scalar Scalar + Vector

Generated 44.0 52.4 74.9 118.2
Cuts

PT Leptonic W 3.301±0.011 4.696±0.014 7.666±0.021 11.548±0.032
PT Hadronic W 2.579±0.009 3.773±0.012 5.853±0.018 7.590±0.026

Mass Hadronic W 2.038±0.008 3.037±0.011 4.692±0.017 5.922±0.024
Y Scale 1.735±0.008 2.595±0.010 4.096±0.016 5.243±0.022

Top Veto 1.585±0.007 2.351±0.010 3.692±0.015 4.660±0.021
PT , E, η Tag Jets 0.449±0.004 0.680±0.005 1.025±0.008 1.267±0.011
PT hard scatter 0.439±0.004 0.665±0.005 0.100±0.008 1.233±0.011

Number of Mini-jets 0.434±0.004 0.658±0.005 0.990±0.008 1.226±0.011

Table 5.2: The effect of the applied cuts (see text) on the cross section for all signal scenarios.The errors
are due to statistics only.

rejection only 2% on the signal, 40% on the W+jets and almost 54% on the tt̄ sample. It

is important to mention, though, that the MC statistical errors, while small in the case of

the signal sample (1% for the final cross section), they can not be ignored in the case of

the W+jets and the tt̄ samples (21% and 50% respectively).

Table 5.2 presents the effect of the cuts on the cross section for all the signal scenarios.

The significance S for an integrated luminosity L is computed with the formula:

S =
Nsignal

√

Nbackground

=
σsignal√

σbackground
·
√

L (5.1)
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Scenario Final Significance

Scalar Resonance (A) 10.78
Vector Resonance (B) 7.16

Scalar+Vector Resonance (C) 13.35
Continuum (D) 4.73

Table 5.3: Final significance for integrated luminosity of L = 30 fb−1 for the scenarios A, B, C and D.

where σsignal and σbackground = σW+jets + σtt̄ are the signal and background cross sections

respectively. For an integrated luminosity of 30 fb−1, the effect of the cuts on the sig-

nificance is given in the last column of Table 5.1, where Table 5.3 summarizes the final

significance for the scenarios A, B, C and D. All scenarios, apart from the Continuum, give

significance more than 5σ and we could support that a resonance of any type could be seen

above the background. The continuum scenario is the most pessimistic one. It gives very

low significance compared to the rest.

Finally, to get the expected number of events for the signal and the background pro-

cesses for integrated luminosity L and as a function of the WW invariant mass, one should

scale the final histogram by a factor of:

F =
L · σ
NMC

(5.2)

where NMC is the number of generated events. For the different resonances and the con-

tinuum scenario this is shown on the plot (a) of Figure 5.1. The error bars at each entry

come from the Monte Carlo statistical errors, scaled at the desired luminosity.

Since the experimental data will include both processes, it is more realistic to plot the

sum of the signal and the background expected events. This is shown at plot (b) and now

the error bars come from the statistical errors of each bin:

Ni = Si + Bi

σNi
= ±

√

Ni (5.3)

If we want to get the actual number of the signal events, then the background should be
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subtracted from the last distribution. The background estimation comes from the Monte

Carlo simulation and its reliability should be checked against a set of reference data. For

this analysis, we assume that the background processes are well described by the generator.

The number of the signal events and the expected error will now be:

NSignal
i = Ni − Bi

σNSignal
i

= ±
√

σ2
Ni

+ σ2
Bi

(5.4)

The final expected number of signal events after the background subtraction is shown

at plot (c) of Figure 5.1, where Figure 5.2 gives the same distribution for three values of

integrated luminosity: 30, 100 and 1000 fb−1. As more and more data is collected, the

statistical errors become smaller, allowing an increase of the significance of the observation.
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Figure 5.1: Expected number of events for integrated luminosity of L = 30 fb−1 as a function of the
invariant mass of the WW system:(a) for the signal and background samples (with MC statistical errors)

(b) for the sum of the signal and background (c) for the signal after background subtraction.
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Figure 5.2: Expected number of events (after background subtraction) for integrated luminosities of 30,
100 and 1000 fb−1 as a function of the invariant mass of the WW system.

5.2 Scan of the parameter space

Even though the discovery potential has been investigated for certain values of the α4 and

α5 parameters, it is possible to extend our conclusions by looking at the rest of the allowed

parameter space.

As demonstrated earlier, changing the two effective couplings, different (possible) res-

onances of certain type, mass and width can be predicted, resulting in a different cross-

section for each process. It is expected that this will be followed by a change in the shape

of the kinematical distributions of the final state particles, therefore a new set of optimized

cuts will be needed. However, at first approximation, we could assume that a selection

of different (α4, α5) pairs, within a given region of the parameter space, will affect the

distributions only by a scale factor, proportional to the cross-section.

Figure 5.3 shows the cross-section for WW scattering for different values of the effective
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couplings. The scan of the parameter space is based on the range of values, specified in

Figure 3.1. The top graph includes all the allowed pairs of the couplings, whereas the rest

of the graphs have been done for the four possible sets of scenarios. The highest cross-

section is around 250 fb and it happens when the couplings get their highest values, as

expected. In that case a scalar resonance is predicted.

It is interesting to study the significance of our signal over the background for the

lowest predicted cross-section of each type of scenario. We notice that for the Vector and

the Continuum scenarios, the so far chosen α4, α5 values predict a cross section already

low (52.4 fb and 44.0 fb respectively) for their region. The final significances that were

reported on Table 5.3 are the minima we expect to observe.

On the other hand, the cross-sections for the Scalar and the Scalar+Vector scenarios

(74.9 fb and 118.2 fb respectively) can be extended even lower and a cross-section of 50 fb

for the Scalar scenario and 60 fb for the Scalar+Vector have been chosen. For these values of

the cross-section, it is easily calculated that the final significance for integrated luminosity

of L = 30 fb−1 is 7.19 for the Scalar and 6.78 for the Scalar+Vector scenarios, again higher

than 5σ with respect to the background. To extend that over the whole parameter space,

the required integrated luminosity for 5σ observation of WW events above the expected

background is plotted in Figure 5.4 and with approximately 32 fb−1 the ATLAS detector

will be in position to say whether the observed WW events are coming from expected SM

processes or not.

5.3 Observation of Resonances above the Continuum

To distinguish a resonance spectrum from the Continuum, one should start by understand-

ing the shape of the Continuum distribution: a monotonically decreasing distribution with

a peak, introduced by the kinematic cuts on the reconstructed objects. For this reason we

parametrize the whole shape using a Landau function of the form:

P (x; m, s) =
1

x
√

2πs2
e−(lnx−m)2/2s2

, x > 0 (5.5)
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Figure 5.3: WW scattering cross-sections (with the coloured scale on the right in fb) for different values
of the α4, α5 couplings in all the allowed parameter space (top) and more specifically for regions of a
Scalar, Vector, Scalar+Vector and a Continuum scenario. For the Scalar and the Vector scenarios the lines

of equal masses are drawn.
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Figure 5.4: Required integrated luminosity, measured in fb−1, for 5σ observation of WW events above the
expected background for the Scalar, Vector, Scalar+Vector and Continuum scenarios. The star markers

indicate the α4, α5 values used as a case study.
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where m is the Most Probable Value and s is the width of the distribution, in which the

integral of this function is normalized:

∫ ∞

0

P (x; m, s)dx = s (5.6)

Figure 5.5 shows the fit of the expected Continuum spectrum with 30 fb−1 integrated

luminosity. Since we expect the Continuum shape to be well understood, it is resonable to

fix the parameters of the Landau distribution to their values obtained from the shown fit:

m = 1000 GeV ; s = 140 GeV

These values should not depend on the integrated luminosity. On the contrary, the nor-

malization factor (Landau constant) depends on the amount of data collected, therefore it

is different for each integrated luminosity and it should be scaled by a simple factor.

If a resonance is present, the peak can be described by a relativistic Breit-Wigner (BW)

function of the form:

f(M ; mo, Γ) =
C

(M2 − m2
o)

2 + M2Γ2
(5.7)

where mo is the mass of the resonance and Γ its width. Therefore, a given spectrum with

a resonance part can be fitted with the sum of a Landau+BW function, to accomodate

for both the continuum and the resonance part. As an example, a fit of the distribution

of the Vector scenario is shown in Figure 5.5. In order for the fitting proceedure to give

reasonable output parameters, the following limits are set on the BW mass and width:

mo = 600 − 2400 GeV ; Γ = 200 − 700 GeV

The mass limits are set such that they cover the whole measurable range. The lower limit

on the width is selected to accomodate for the binning of the histograms (100 GeV/bin),

whereas the upper limit comes from the relation between the mass of the resonance and

its width (Equation 3.11).
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Finally, in order to estimate the probability of observing a resonance peak above the

Continuum, we use a Toy Monte Carlo method based on the expected distributions. The

principle of this technique is that, for each bin i, we use the expected value Ei of a specific

scenario (continuum, vector or scalar) to generate a random number Oi from a Poisson

distribution with mean µ = Ei. The resulting MWW distribution is fitted with a function,

which is the sum of the Landau and the BW. After the fit, the significance of the BW

constant parameter is checked, since the Continuum spectrum is expected to have no BW

component. One can find in Appendix E examples of such fits for each luminosity phase

and for the Vector and the Continuum scenarios.

For integrated luminosities of 30, 100 and 1000 fb−1, Table 5.4 shows how often the

BW constant has significance more than 2σ, 3σ or 5σ in the case of the Continuum, the

Scalar and the Vector scenarios.

For 30 fb−1, only 2% of the fits of a Continuum spectrum give BW constant greater

than twice its error, whereas this is almost 64% for fits of a Scalar resonance and 46%

for a Vector resonance. If we further require significance greater than 3σ, then there are

(almost) no such cases for the Continuum scenario but 41% of the fits of a Scalar scenario

and 7% of a Vector will satisfy this requirement. Finally, there are no cases where the BW

constant will have more than 5σ significance.

As we increase the integrated luminosity, a resonance peak will be distinguished above

the Continum. At this point, it should be stressed that, while more data is collected,

statistical errors of the distributions become smaller, therefore a better description of the

Continuum spectrum will be feasible. Since for the 30 fb−1 the statistical errors are not

negligible, a Landau function fits the data with resonably well. But this is not the case

for higher integrated luminosities, where the fit of a Landau function was not always of a

good quality.

The small number that we get for the Vector resonance at 100 fb−1 is due to the fact

that, since this particularly chosen scenario has a small cross-section, it is very difficult

to spot the resonance with 5σ significance at an early stage. It will require more than

91



 / ndf 2χ  0.1648 / 15
Landau_MPV  113.6±  1009 
Landau_sigma  52.2± 138.6 
Landau_constant  5.6±  10.3 

 Invariant Mass (GeV)hadWlepW
600 800 1000 1200 1400 1600 1800 2000 2200 2400

-1
E

ve
n

ts
 / 

10
0 

G
eV

 f
o

r 
30

 f
b

-1

0

1

2

3

 / ndf 2χ  0.1648 / 15
Landau_MPV  113.6±  1009 
Landau_sigma  52.2± 138.6 
Landau_constant  5.6±  10.3 

 / ndf 2χ  0.5731 / 12
BW_mass   50.4±  1313 
BW_width  114.7±   190 
BW_constant  27.30± 27.47 
Landau_MPV  184.7± 982.2 
Landau_sigma  87.57± 93.84 
Landau_constant  8.943± 7.414 

 Invariant Mass (GeV)hadWlepW
600 800 1000 1200 1400 1600 1800 2000 2200 2400

-1
E

ve
n

ts
/1

00
 G

eV
 f

o
r 

30
 f

b

-1

0

1

2

3

4

5

6

 / ndf 2χ  0.5731 / 12
BW_mass   50.4±  1313 
BW_width  114.7±   190 
BW_constant  27.30± 27.47 
Landau_MPV  184.7± 982.2 
Landau_sigma  87.57± 93.84 
Landau_constant  8.943± 7.414 

Figure 5.5: For 30 fb−1, the expected Continuum spectrum fitted with a Landau distribution (left)
and the scenario of a Vector resonance fitted with a Landau+BW distribution (right), where the Landau

component is shown in red.

100 fb−1 to significantly see peaks of low cross-sections.

L = 30 fb−1 L = 100 fb−1 L = 1000 fb−1

Continuum
2σ 1.9 ± 0.4 % 5.9 ± 0.7 % 6.7 ± 0.8 %
3σ < 10−3 % 1.3 ± 0.4 % 0.4 ± 0.2 %
5σ < 10−3 % < 10−3 % < 10−3 %

Scalar
2σ 63.5 ± 1.5 % 98.3 ± 0.4 % 100.0 %
3σ 41.0 ± 1.6 % 72.9 ± 1.4 % 100.0 %
5σ < 10−3 % 57.9 ± 1.6 % 100.0 %

Vector
2σ 45.6 ± 1.6 % 92.2 ± 0.8 % 100.0 %
3σ 7.0 ± 0.8 % 69.2 ± 1.4 % 100.0 %
5σ < 10−3 % 1.6 ± 0.4 % 100.0 %

Table 5.4: Frequencies of the significance of the BW constant for 30, 100 and 1000 fb−1 integrated
luminosity and for Toy Monte Carlo distributions from the Continuum, Scalar and Vector scenarios.

5.4 Distinguish among different scenarios

Once we can see a resonance, it is important to investigate whether it is a vector (spin-1)

or a scalar (spin-0) particle.

The difference between the spin states is demonstrated by the distribution of the helicity

angle θ∗, which is defined by the angle between one of the vector bosons, boosted in
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the centre-of-mass (CM) frame of the resonance and the direction of the resonance , as

explained in Figure 5.6. At generation level, the distribution of the | cos θ∗| is plotted in

Figure 5.7.

After the applied cuts, the expected number of events (again for an integrated lumi-

nosity of 30 fb−1) as a function of the | cos θ∗| is plotted in the left histogram of Figure

5.8 for all the signal and the background samples. After the background subtraction, this

distribution is expected to be as on the right histogram of Figure 5.8. The suppression at

high values of cos θ∗ is due to the applied PT cuts, since by requiring high values of PT , we

bias towards high values of θ∗.

In order to see our potential to assign an observed distribution to a scalar or to vector

particle, we use a Toy Monte Carlo method, as explained in the previous section.

The next step is to check how often a given hypothesis Ho will be rejected at a given

confidence level (CL). The hypothesis is checked using the the χ2 test [64], where the χ2

variable is constructed as follows:

χ2 =
∑

i

[

Ei − Oi

σEi

]2

(5.8)

For the above equation, Ei and σEi
are both taken from the right distribution of Fig-

ure 5.8 and Oi is taken from the Toy Monte Carlo. The χ2 variable will follow a χ2

distribution with NDoF degrees of freedom and if χ2 > χ2(α ; NDoF ), then Ho is rejected

at α% CL.

This method has been applied using the hypothesis Ho that the observed distribution

comes from a resonance of type R. The outcome of the χ2 test with NDoF = 10 is given on

Table 5.5 using the scalar expected values as input to our Toy Monte Carlo and on Table

5.6 using the expected values from the vector resonance.

For example, if an observed distribution is due to a scalar particle, then, at 95% CL,

there is only ∼ 4% chance to reject the hypothesis that it is a scalar and ∼ 72% of the times

we will reject the hypothesis that it comes from a vector. On the other hand, if the observed

resonance is a vector particle, then, with the same CL, we will reject the hypothesis that
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it is vector with almost 5% probability and we will reject the wrong hypothesis of a scalar

only ∼ 58% of the time. In this sense, we will be more confident that the decision that

will be made is the correct one, if the particle is scalar.

To approach the problem in a more realistic way, instead of using the case in which

we know there is one single resonance for the whole WW mass spectrum, we look at the

angular distribution when the WW mass is within a certain window. For this, we use the

scalar+vector sample, where there are two peaks: the low mass peak due to a scalar particle

and the high mass peak due to a vector particle, as it is given by Table 3.1. The distributions

we get by looking at events with MWW < 1.1 TeV and with 1.1 TeV < MWW < 1.6 TeV

are presented in Figure 5.9. By doing so, it can be seen that we manage to isolate the two

components of the scalar+vector angular distribution: on the left histogram, the purple

distribution falls at high values of | cos θ∗|, with the same behavior as with a scalar, whereas

on the right histogram, it rises before it falls, which is a feature of a vector particle.

Hypothesis 68% CL 95% CL 99% CL

Ho =Scalar 12.83 ± 0.03 3.86 ± 0.02 2.49 ± 0.02
Ho =Vector 92.57 ± 0.03 72.29 ± 0.04 55.11 ± 0.05

Table 5.5: Frequencies (expressed in %) of rejection the hypothesis Ho at three different confidence levels
using the χ2 test. The true distribution came from a scalar.

Hypothesis 68% CL 95% CL 99% CL

Ho =Scalar 87.03 ± 0.03 57.80 ± 0.05 41.77 ± 0.05
Ho =Vector 10.78 ± 0.03 4.75 ± 0.02 4.09 ± 0.02

Table 5.6: Frequencies (expressed in %) of rejection the hypothesis Ho at three different confidence levels
using the χ2 test. The true distribution came from a vector.

5.5 Measuring the WW scattering cross-section

The measurement of the cross-section for the WW scattering will be a key analysis with the

LHC data. Since this cross-section is predicted by the Standard Model with the existence

of a scalar Higgs particle, this measurement will be a first check for the validity of the
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Figure 5.6: Definition of the angle θ∗.
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Figure 5.7: True distribution of the quantity | cos θ∗| for different signal scenarios.
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Figure 5.8: Expected number of events as a function of | cos θ∗| for the signal and background samples
(left) and for the signal samples after the background subtraction (right).
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Figure 5.9: Expected number of events (after background subtraction) as a function of | cos θ∗| for the
signal scenarios when MWW < 1.1 TeV (left) and 1.1 TeV < MWW < 1.6 TeV (right).

Standard Model. Also in the case of a heavier resonance (of any model), the measurement

of the WW cross-section will be of great importance.

The process for which the cross-section will be measured is defined as:

pp → W±W± + 2jets + X (5.9)

and the following requirements should be satisfied:

1. One of the vector bosons decays into a lepton (electron or muon) and a neutrino,

where the other vector boson decays into hadrons.

2. Both vector bosons should have transverse momentum more than 320 GeV.

3. Two tag jets, more forward (backward) than the most forward (backward) W. These

tag jets should have PT > 20 GeV, E > 300 GeV and |η| > 2.0.

One could add more conditions to be satisfied, but those are the minimum ones which

keep the definition simple, while at the same time excluding the production of vector bosons

by Drell-Yan process.

The efficiency E and the purity P are defined as follows:

E =
pass MC && pass Reco

pass MC
(5.10)
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P =
pass MC && pass Reco

pass Reco
(5.11)

where ′′pass MC ′′ is the number of events that pass the above requirements at generation

level and ′′pass Reco′′ is the number of events that pass the reconstruction and selection

criteria, as described previously. The number of events that pass both sets of requirements

is expressed by the ′′pass MC && pass Reco′′ quantity.

In the above definition, the contribution from the background processes should be taken

into account. More specifically, the number of tt̄ events should be included in both the

efficiency and purity calculations, but the number of W + jets events can be only included

in the denominator of the purity, since there is only one W produced. It is important

that the number of signal and background events are expressed for the same integrated

luminosity.

Table 5.7 gives the overall efficiency and purity for the four scenarios, computed for

30 fb−1 integrated luminosity. Both the efficiency and the purity are rather low, not because

of the contribution of the background sample (which is negligible after the reconstruction

cuts), but due to the fact that the reconstruction of a signal event does not always agree

with the generated one.

Scenario Overall efficiency (%) Overall purity (%) Ratio P/E

Scalar Resonance (A) 16.56 ± 5.04 24.19 ± 7.02 1.46
Vector Resonance (B) 12.51 ± 5.16 18.92 ± 7.51 1.51

Scalar+Vector Resonance (C) 15.31 ± 4.47 22.38 ± 6.26 1.46
Continuum (D) 12.00 ± 5.83 18.39 ± 8.60 1.53

Table 5.7: Overall efficiency and purity as defined by Equations 5.10 and 5.11. The statistical errors are
calculated for L = 30 fb−1.

For a given integrated luminosity L and assuming Nobs observed number of events of

the process 5.9, the cross section is calculated by the formula:

σ =
Nobs × P

E × L
(5.12)

To be able to calculate the required luminosity for a significant measurement of the above
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cross-section (σ > 5∆σ), we use the last equation to express the expected error on the

cross-section as a function of the errors on the quantities involved. Assuming Gaussian

errors, the uncertainties are propagated and it results that:

∆2σ

σ2
=

P

E × L × σ
+

∆2(P/E)

(P/E)2
+

∆2L

L2
(5.13)

where ∆(P/E), ∆L are the estimated errors on the ratio of the overall efficiency versus

purity and on integrated luminosity.

The issue of how well we know the efficiency and the purity will be addressed by

comparing the LHC data to our control MC samples, since those variables are strongly

associated with how well we can reconstruct the jets and identify the vector bosons. For

low luminosities, the statistical uncertainties will dominate the error on the measured cross-

section, but as more data is collected, it is necessary to set an error on the efficiency and

purity values. In order to estimate this error we notice, using Table 5.7, that the ratio

P/E, which is used in Equation 5.13, has a value almost constant for all the scenarios and

the relative difference between its maximum and minimum values is almost 5%. For the

rest of this section, to account for the errors on the ratio P/E, a convervative value of 10%

will be used.

The error on the luminosity is expected to be around 5% of its value [39, 65].

For each scenario of the parameter space, the required luminosity for 5σ measurement

of the WW cross-section is calculated by solving Equation 5.13 for L and the results are

presented in Figure 5.10. In the case of the existence of a resonance, a significant measure-

ment can be achieved with around 60-70 fb−1 of data, whereas in the most pessimistic case

of a continuum spectrum, approximately 80 fb−1 of integrated luminosity will be required.

Finally, the efficiency and purity can be calculated as a function of the WW mass. This

has been done only for the signal samples and in the range of 600 GeV up to 2.4 TeV in

steps of 200 GeV (9 bins in total) and counting the number ′′pass MC ′′ and ′′pass Reco′′

for each bin of the generated (or reconstructed) WW mass. Only events in which both

the generated and reconstructed WW mass belong to the same bin are counted for the
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′′pass MC && pass Reco′′ number. The final result is presented in Figure 5.11.

We first notice that the efficiencies and purities are mostly independant of the under-

lying scenario. The low value of the efficiency and purity for the first bin is due to the PT

cut on the reconstructed W bosons as can be seen in Figure 5.12 which shows the change

in the efficiency after each cut, compared to its previous, as a function of the WW mass.

The graduate decrease in the efficiency at high WW masses is mainly due to two reasons:

(i) the cut on the mass of the Whad . Figure 5.13 demonstrates that only for masses of the

WW system up to ∼1.4 TeV, the mass of the Whad is reconstructed close to the nominal

value. Therefore, with the constant window cut on the Whadmass, the efficiency is expected

to fall for higher WW masses. (ii) the resolution of the WW mass. As will be discussed in

the next section, the fractional resolution of the WW mass is constant, approximately 4%.

The absolute resolution is ∼36 GeV for WW masses in the range of 600-800 GeV and it

rises up to 72 GeV for masses 1.8-2.4 TeV. Consequently, a bin size of 200 GeV used for

the efficiency and purity graphs is not enough to take into account the resolution at higher

masses.

5.6 Resolutions

It is important to check the resolution that is achieved on major kinematic variables, since

this will give an estimate on how well the cuts are tuned for the specific analysis. Once

again, it should be stressed that the tuning will be effectively done with the LHC data and

it may well be the case that they are different than those chosen here. However, it is still

important to know the accuracy of the reconstruction in order to support the validity of

the physics results.

It is interesting to see the achieved resolution and any systematic shifts as a fraction of

the quantity of interest. Therefore, for the following, the resolution will be defined as:

Resolution =
True Quantity − Reconstructed Quantity

Reconstructed Quantity
(5.14)
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Figure 5.10: Required integrated luminosity for 5σ measurement of the cross-section for the process 5.9
and for the Scalar, Vector, Scalar+Vector and Continuum scenarios.
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Figure 5.12: Change of the efficiency after each cut compared to its previous, as a function of the WW
mass, using the Scalar scenario.
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The only exception is for the η and φ distributions, where the resolution is defined only as

the deviation of the reconstructed quantity from the true one (thus it is not dimensionless).

The final distributions are fit with a gaussian function within a reasonable range.

In Figure 5.14, some representative distributions are shown, whereas Table 5.8 summa-

rizes the resolutions for all the important kinematic variables 1. In all cases, the mean value

is consistent with zero, which means that there are no significant systematic shifts. The

only exception is for the hadronic W mass, where the 4% shift of the mean value indicates

a potential jet miscalibration. The 1% shift of the energy of the leptonic W reflects the

systematic error that is introduced by selecting the wrong neutrino solution. As far as the

gaussian sigma is concerned, this is around 4% of the PT of the bosons and the mass of the

WW system. However, since the gaussian fit was applied for a specific, rather small range,

the actual shape of the distributions should be looked at more carefully. For instance, the

resolution distribution of the PT of the tag jets has long, uniformly distributed tails on

both sides, which indicates that the reconstruction of the tag jets could be almost 50%

away from the true ones. Finally, it is also important to notice the asymmetry in the

distribution for the WW mass resolution: reconstruction tends to underestimate the true

WW mass.

5.7 Comparison between the Full and ATLFAST sim-

ulation

In order to check the reliabilty of the ATLFAST simulation, a sample of ten thousand

Continuum events were simulated with the GEANT4 toolkit [66]. The material and the

geometry of the ATLAS detector have been taken into account in order to simulate ac-

curately the passage of all the generated particles through the detector. The digitization

of the produced hits, where the expected output from electronics is simulated, has been

performed using the ATLAS-DC3-02 detector description, without including mininum bias

1The forward and backward jets demonstrate the same behavior.
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Figure 5.14: Resolution distributions (as defined by Equation 5.14) for representative kinematic quanti-
ties.
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Quantity Range Mean Sigma

PT leptonic W (-0.05, 0.05) 0.00 0.04
E leptonic W (-0.05, 0.05) 0.01 0.05
φ leptonic W (-0.03, 0.03) 0.00 0.02
η leptonic W (-0.015, 0.015) 0.00 0.01

PT hadronic W (-0.04, 0.04) 0.00 0.04
E hadronic W (-0.05, 0.05) 0.00 0.04

Mass hadronic W (-0.2, 0.1) 0.04 0.08
φ hadronic W (-0.06, 0.06) 0.00 0.01
η hadronic W (-0.03, 0.03) 0.00 0.01

PT tag jets (-0.07, 0.07) 0.00 0.05
E tag jets (-0.1, 0.1) 0.00 0.06
φ tag jets (-0.03, 0.03) 0.00 0.02
η tag jets (-0.003, 0.003) 0.00 0.02

Mass WW (-0.03, 0.06) 0.00 0.04

Table 5.8: The mean and sigma after a gaussian fit of the resolution distributions. The second column
gives the range of the fit and the φ distributions are expressed in radians.

events. Finally, the output digits have been reconstructed using the 11.0.41 offline software

release. The reconstructed objects were produced in both Event Summary Data (ESD) and

Analysis Object Data (AOD) form, the concept and the architecture of which is explained

in [67]. The whole chain of simulation-digitization-reconstruction was carried out using the

GRID technology [68, 69].

Figure 5.15 compares the distributions of the PT and η of the leading lepton, the

Emiss
T and the PT of the Wlept and, within the statistical uncertainties, the two methods are

in agreement.

Figure 5.16 gives the distributions for the PT , η and mass of the Whad . A major

feature to be considered is that ATLFAST uses the k⊥ algorithm with R=0.5, whereas for

the full simulation the Cone algorithm with ∆R = 0.7 (ConeTower-default) and ∆R = 0.4

(Cone4Tower) and the k⊥ with R=0.5 were used. Therefore, for the mass histogram, only

the black and the red distributions are directly comparable to each other. These two

distributions peak at different positions. This is explained by the fact that ATLFAST uses

jet calibration constants which obtained with a Cone algorithm of ∆R = 0.4, whereas for

the full reconstruction, the calibration constants were obtained using the Cone algorithm
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with ∆R = 0.7.

To compare the performance of the two methods regarding the jet reconstruction, one

should compare the GEANT4-simulated jets reconstructed using Cone with ∆R = 0.7

with the jets which were reconstructed using the same algorithm with the generator final

state stable particles (so called particle jets). That step can be repeated by comparing

the ATLFAST jets made with Cone ∆R = 0.4 with the particle jets made by the same

way. Figure 5.17 shows the mean value of the distribution P Rec
T /P True

T as a function of the

P True
T

2 for both the Full and ATLFAST simulation. With the Full simulation, the energy

of the jets is overestimated, where with ATLFAST is underestimated but there is a slight

tendency for both approaching the true value at high PT . The Full simulation appears

to have a more stable behaviour over the PT range with no more than 2% deviation from

the true value and with relatively small RMS. In constrast, ATLFAST gives significant

fluctuations of the mean value (almost 5%) together with high RMS. The RMS values

become comparable again at high PT .

The task of comparing the Full and ATLFAST simulation requires definitely a more

sophisticated approach (for instance, a detailed comparison is reported in [60]). Moreover,

the jet calibration is a big issue itself, which will not be addressed here. As far as the

present analysis is concerned, a significant impact must be expected on the Whad mass

and on the Y-scale distributions3. Therefore, the applied cuts should be reconsidered and

tuned. It is important to stress that the proper jet calibration will be carried out with the

available LHC data, using well-controlled physics channels.

5.8 Effect of the Underlying Event Model

The underlying event (UE) is defined as the particles and the energy flow which come

from a single proton-proton collision, except the process of interest. Such interactions are

characterised by low PT transfer and therefore the pertubative QCD calculations cannot

2The distributions were made for values of the PTrue
T in the bins: [200,300), [300,400), [400,500),

[500,600), [600,900) and ≥900 GeV.
3The comparison of the Y-scale was not feasible for technical reasons.
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Figure 5.15: Comparison of the leptonic distributions between the Full (GEANT4) and Fast (ATLFAST)
simulation.
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be applied. The UE is one of the most important but also most uncertain aspects of the

hadronic environment, affecting all the physics studies and it is essential to include into

the simulation sensible models which are tuned based on current data and which will be

better understood and constrained using the LHC data.

In PYTHIA, the UE model is controlled by the MSTP(82) parameter and the default

value (MSTP(82) = 4) has been used. This corresponds to a smooth transition between

the high and low PT regions using a double gaussian distribution for the overlap of the

hadronic matter. This option has been found to agree with data from several experiments

[70].

To study the effect of the UE model in our analysis, the multiparton interactions were

turned off (MSTP(81)=0) and the shape of the leptonic distributions were found to be

unaffected, as expected.

In Figure 5.18 the distribution of the Y-scale is shown for the Continuum signal with

the default UE model and with no UE model included. The position of the peak and

the shape of the distribution are not significantly affected, implying that the cut on this

variable should be robust against such uncertainties.

The effect of the UE model on the reconstruction of the Whad is demonstrated in Fig-

ure 5.19. The PT and the η distributions are not affected, but there is a significant shift of

the mass distribution towards higher values when the UE model is added. A gaussian fit

in the range of 70 - 90 GeV indicates a rise of 1.7% in the mean value (from 82.58 GeV to

83.99 GeV) and almost 6% in the width (from 6.76 GeV to 7.16 GeV).

The UE model is expected to influence the number of mini-jets, which have been defined

in Section 4.3.4 as those jets with PT > 15 GeV and |η| < 2.0. It has been demonstrated

in [53] that the PT distribution of the mini-jets is sensitive to the UE below ∼20 GeV.

Figure 5.20 shows that adding the UE results in getting more events with mini-jets and

this effect will become more intense as the PT cut gets lower. Since a better knowledge of

the UE is required, the cut of the mini-jets contributes large systematic uncertainties to

our analysis, especially for the background estimation.
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Figure 5.18: Effect of the underlying event model on the Y-scale variable.

default ATLAS UE Without UE

Cuts
PT Leptonic W 7.502 ± 0.024 7.587± 0.024
PT Hadronic W 78.135 ± 0.138 78.089 ± 0.137

Mass Hadronic W 79.010 ± 0.154 79.871 ± 0.150
Y Scale 85.142 ± 0.151 84.671 ± 0.151

Top Veto 91.351± 0.129 93.927 ± 0.109
PT , E, η Tag Jets 28.315 ± 0.217 27.470 ± 0.210
PT hard scatter 97.835 ± 0.132 97.687 ± 0.135

Number of Mini-jets 98.906 ± 0.095 99.786 ± 0.042

Final Efficiency 0.987±0.009 1.008±0.009

Table 5.9: The effect of the UE on each of the applied cuts for the Continuum signal. The figures show
the % drop after each cut compared to its previous and the last row gives the final efficiency after the

applied cuts.

Finally, Table 5.9 summarizes the effect of the UE on the efficiencies after each indi-

vidual cut for the Continuum signal. When the default ATLAS UE is added, the final

efficiency drops by 2% relative to the case without UE. Since the background samples

were generated using only the UE model, it is not possible to estimate the effect on the

significance.

5.9 Effect of the Pile-up

The term ’pile-up’ is used to describe all the interactions in a bunch crossing, apart from

the interesting hard process between two partons. At high luminosity, it is expected to
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Figure 5.19: Effect of the underlying event model on the Whad .
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have 20-25 proton-proton collisions for each bunch crossing. The main feature is the fact

that those interactions are usually very soft and produce particles with very low transverse

momentum (around 1 GeV).

To ensure that we record as little as possible of the pile-up activity, it is essential to set

a resonable cut-off threshold on the produced signal of all the detector elements. By doing

so, not only the effect of the pile-up will be minimised, but also noise fluctuations from the

electronics will be controlled. For the low luminosity period, it is expected [71, 72] that

the average pile-up ET in ∆η × ∆φ = 0.1 × 0.1 towers will be in the order of 300 MeV at

the EM Calorimeter and around 100 MeV at the Hadronic Calorimeter. The electronics

noise is expected to be at the order of few MeV.

Since there was not a reliable and validated set of pile-up events to use, the present

study relies on observing the impact of the ET threshold that is applied to the ATLFAST

cells.

The minimum ET was set at 0, 1, 2 and 3 GeV. It is expected that this will affect

the clustering of the cells, since cells with energy less than the cut-off are not taken into

account (unassociated cells). Figure 5.21 shows the final cross-section for the Continuum

signal and the two background processes as a function of the ET threshold. For the signal,

the effect becomes significant after the 1 GeV and it drops by 16% at 3 GeV cut-off. For

the background, the tt̄ sample is almost unaffected, but the effect is severe for the W+jets

with more than 60% drop. This is explained by the fact that the jets for this sample are

mainly soft QCD jets. Therefore, a cut on the cell energy will result in jets with softer PT

spectrum which will fail cuts in the analysis. In the case of the Continuum and tt̄ samples,

the jets have harder spectra, even after the cut on the cells’ energy. Figure 5.22 shows

the final significance for the four values of the cut-off. Due to the sharp drop of the final

W+jets events as the cut increases, the significance increases, almost by 23% when the

threshold is set to 3 GeV.

The decision upon the energy threshold on the calorimeter cells (and the thresholds of

the rest of the detector elements in general) will be made and the values will be tuned once
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Figure 5.21: Final cross-sections for the signal and background samples for different cell thresholds.
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Figure 5.22: Final significance for 30fb−1 for different cell thresholds.

the LHC data is available. These thresholds will be strongly dependent on the luminosity

of the beams. The estimation that we get using the ATLFAST cells demonstrate that the

appropriate cut on the energy of the cells will have bigger effect on the the background

processes and less on the signal, thus increasing the final signal-to-background ratio.
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Chapter 6

Conclusions

Without significant delays, the LHC machine is scheduled to start in September 2007

and by that time most of the ATLAS detector will be completed. After commissioning

with cosmic rays, a phase with a single proton beam is predicted and, in November 2007,

LHC will collide proton beams at 900 GeV centre-of-mass energy and with a luminosity of

approximately 1029 cm−2sec−1. The full centre-of-mass energy at 14 TeV with a significant

increase of the luminosity is planned for spring 2008.

The ATLAS detector will identify, in the harsh hadronic environment, the interesting

physics events and record them in a period of time less than 2 sec. The Trigger system and

particularly the Level-2 has been the subject of the first part of this Thesis. The concept of

the Region of Interest has been introduced and its mechanism has been presented. It has

been demonstrated that its size can be optimized using the available information from the

1st and 2nd samplings of the Electromagnetic Calorimeter in order to have an estimation

of the vertex of the primary proton interaction. The method has been tested using single

electron events of PT = 20 GeV with low luminosity pile-up and of PT = 30 GeV with high

luminosity pile-up. In order to evaluate the results, we have focused on the performance of

the IDSCAN package both in terms of execution time and of efficiency in reconstructing the

correct primary vertex from the Inner Detector. The study has concluded that the mean
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execution time can be reduced by 28% at low luminosity and by 58% at high luminosity,

where at the same time, the overall efficiency can be increased by 1% at low luminosity

and by 6% at high luminosity. Further improvements, together with integration of the

methodology in the official software, can be done for a broader PT spectrum and using other

parts of the detector, such as the information at Level-2 from the Muon Spectrometer.

In the second part of the Thesis, the physics of WW scattering has been studied in the

case that no light, weakly-interacting Higgs is found to explain the Electroweak Symmetry

Breaking. The motivation and theoretical formalism of the Electroweak Chiral Lagrangian

has been presented which, under a specific unitarisation protocol, leads to resonances

according to the values of two effective couplings, α4 and α5. For certain values of those

parameters, a WW spectrum with no resonance is also predicted.

The event reconstruction has been done with the fast simulation package for the ATLAS

detector. Using the kT jet algorithm, the W-candidate jet was decomposed into sub-jets

and the splitting scale was used to identify the cases where the jet comes from a decaying

W, thus suppressing the W(→ `ν)+jets background. This proposed technique can be used

in a wide range of physics channels which include highly boosted objects.

For the whole allowed space of the α4, α5 parameters, it has been demonstrated that

ATLAS will be able to see, with more than 5σ significance, signal WW events above the

expected background with 30 fb−1 of integrated luminosity, even in the most pessimistic

scenarios. With the observed WW scattering events, A Toy Monte Carlo technique has

been used to estimate the potential of identifying the existence of a resonance among the

observed WW scattering events and to derive the type of the resonance, by exploiting the

angular distribution of the decaying products.

As more data is collected, a significant measurement of the WW cross-section will be

feasible. It has been demonstrated that the ATLAS detector will be able to measure

the WW scattering cross-section in the kinematic region of 600 GeV up to 2.4 TeV of

the WW mass with 80 fb−1 in the case that no resonance is present, whereas with an

observed resonance, integrated luminosity of 60-70 fb−1 will be enough for a significant
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measurement.

The high energy mass region that was studied ensures the very energetic objects in

our events, therefore there are no triggering issues involved. Finally, the current study

has not taken into account any theoretical or other experimental uncertainties, currently

contributing to the systematics errors and, by that sense, further improvements could be

envisaged and will be certainly guided by the early LHC data. However, for the first years

of the LHC operation, the results will be statistically limited, therefore the conclusions

from this study will provide a good measure of what ATLAS will be able to achieve.
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Appendix A

Parametrisation equations for the 1st

and 2nd EM Samplings

Barrel

Maximum position of the 1st barrel sampling

R1(mm) =











































































1586 , if |η| ≤ 0.27

1599.6 − 46.8|η| , if 0.27 < |η| ≤ 0.6

1570.7 , if 0.6 < |η| ≤ 0.8

1545.3 , if 0.8 < |η| ≤ 1.0

1548.2 , if 1.0 < |η| ≤ 1.15

1629.5 − 72.0|η| , if 1.15 < |η| ≤ 1.35

1532.3 , if |η| > 1.35

(A.1)
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Maximum position of the 2nd barrel sampling

R2(mm) =


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
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





1927.2 , if |η| ≤ 0.5

2031.8 − 238.4|η| , if 0.5 < |η| ≤ 0.8

1759.2 , if 0.8 < |η| ≤ 1.0

2164.1 − 295.1|η| , if 1.0 < |η| ≤ 1.5

1719.6 , if |η| > 1.5

(A.2)

Endcap

Maximum position of the 1st endcap sampling

Z1(mm) =



































3782.0 , if |η| ≤ 1.7

3778.4 + 2.3|η| , if 1.7 < |η| ≤ 2.1

3776.3 + 3.4|η| , if 2.1 < |η| ≤ 2.27

3833.3 − 30.9|η| , if |η| > 2.27

(A.3)

Maximum position of the 2nd endcap sampling

Z2(mm) =











4289.3 − 100.4|η| , if |η| ≤ 2.2

4448.1 − 179.2|η| , if |η| > 2.2
(A.4)
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Appendix B

Calculation of the neutrino Pz for the

decay W → `ν

Using Natural Units, the relativistic equation for the W mass is:

M2
W = E2

W − ~P 2
W = (E` + Eν)

2 − (~P` + ~Pν)
2 (B.1)

where (E`, ~P`) and (Eν , ~Pν) are the 4-vectors for the lepton and the neutrino respec-

tively. For energies much greater than the mass of the lepton, the masses of the lepton and

of the neutrino can be safely ignored. The two terms on the right-hand side of Equation

B.1 can be written:

(E` + Eν)
2 = E2

` + E2
ν + 2E`Eν ' P 2

` + P 2
ν + 2P`Pν

= P 2
` + P 2

z,ν + P 2
T,ν + 2P`

√

P 2
z,ν + P 2

T,ν (B.2)

where ~PT,ν = (Px,ν , Py,ν) and Pz,ν are the transverse and z component of the neutrino’s
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momentum.

(~P` + ~Pν)
2 = P 2

` + P 2
ν + 2~P`

~Pν

= P 2
` + P 2

T,ν + P 2
z,ν + 2~PT,`

~PT,ν + 2Pz,`Pz,ν (B.3)

Replacing Equation B.1 using Equations B.2 and B.3, we get:

M2
W = 2P`

√

P 2
z,ν + P 2

T,ν − 2~PT,`
~PT,ν − 2Pz,`Pz,ν ⇒

M2
W + 2~PT,`

~PT,ν + 2Pz,`Pz,ν = 2P`

√

P 2
z,ν + P 2

T,ν (B.4)

We now let:

κ = M2
W + 2~PT,`

~PT,ν

λ = 2Pz,` (B.5)

By setting the mass of the W and using the reconstructed kinematical variables for the

lepton and the neutrino (Emiss
T ), the quantities κ and λ are easily calculated. Using κ and

λ, Equation B.4 gets the form:

κ + λPz,ν = 2P`

√

P 2
z,ν + P 2

T,ν ⇒

κ2 + λ2P 2
z,ν + 2κλPz,ν = 4P 2

` (P 2
z,ν + P 2

T,ν) (B.6)

By re-arranging, the last equation becomes:

[4P` − λ2]P 2
z,ν − 2κλPz,ν + [4P`P

2
T,ν − κ2] = 0 (B.7)

If we finally set:

a = 4P` − λ2

b = −2κλ
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c = 4P`P
2
T,ν − κ2 (B.8)

the Equation B.7 gets the familiar quadratic form:

aP 2
z,ν + bPz,ν + c = 0 (B.9)

with solution:

Pz,ν =
b ±

√
b2 − 4ac

2a
(B.10)

when b2 − 4ac ≥ 0
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Appendix C

Resolution functions used by

ATLFAST

For the following RN will indicate a random number taken from a gaussian distribution

centered at zero and with a unit variance. It should be assumed that it has different value

each time it appears.

C.1 Electron smearer

Sampling Term (ST ):

ST = RN × 0.12√
E

(C.1)

Noise Term (NT ):

PT = RN ×











0.245
PT

, if |η| < 1.4

0.306[(2.4−|η|)+0.228]
E

, if |η| ≥ 1.4
(C.2)

Constant Term (CT ):

CT = RN × 0.07 (C.3)
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The Smearing Factor (SF ) is:

SF = ST + NT + CT (C.4)

Each of the four-components is smeared by the same (positive) amount of 1 + SF .

In the case of High Luminosity, a Pile-up Term (PT ) is added to the SF :

PT =
RN

PT
×























0.32 , if |η| < 0.6

0.295 , if 0.6 ≤ |η| < 1.4

0.27 , if |η| ≥ 1.4

(C.5)

C.2 Photon smearer

For the photons, the angle θ is first smeared by a factor F :

F =
RN√

E
×



































0.065 , if |η| < 0.8

0.050 , if 0.8 ≤ |η| < 1.4

0.040 , if 1.4 ≤ |η| < 2.5

0.000 , if |η| ≥ 2.5

(C.6)

This affects the Pz component of the momentum and the pseudo-rapidity, which are

re-calculated. The rest of the smearing and pile-up factors are the same with those from

the Electron Smearer, apart from the ST , which has the form:

ST = RN × 0.10√
E

(C.7)

C.3 Muon smearer

For the smearing of the muon’s four-vector, the expected resolution from both the Inner

Detector and the Muon Spectrometer have been considered.

For the Inner Detector, the two smearing quantities are:
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ID1 = 0.0005 × RN ×
(

1 +
|η|10
7000

)

× PT + 0.012 × RN (C.8)

ID2 =

√

[

0.0005 × PT ×
(

1 +
|η|10
7000

)]2

+ (0.012)2 (C.9)

For the Muon Spectrometer, the two smearing quantities are:

MS1 = 0.01 × RS (C.10)

MS2 = RN × 0.01 × RS (C.11)

where RS is the stand-alone muon spectrometer resolution for a muon of given momen-

tum, pseudo-rapidity and phi. This is calculated by a FORTRAN interpolation between

tables at PT = 100 and 1000 GeV.

Based on the previous quantities, the weights for each part of the detector are:

Wms =
1

MS2
1

(C.12)

Wid =
1

ID2
1

(C.13)

And the total weight is:

Wtot = Wms + Wid (C.14)

The Correction Factor (CF) is:

CF =
Wms(1 + MS2) + Wid(1 + ID1)

Wtot
(C.15)

Each of the four-components is smeared by the same (positive) amount of 1/CF .
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C.4 Jet smearer

For Low Luminosity, the SF is:

SF =











RN × 0.5√
E

+ RN × 0.03 , if |η| < 3.2

RN × 1.0√
E

+ RN × 0.07 , if |η| ≥ 3.2
(C.16)

For High Luminosity, an extra pile-up term of the form

RN × 7.5

PT
(C.17)

is added to the above SF .

Each of the four-components is smeared by the same (positive) amount of 1 + SF .
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Appendix D

The clustering procedure of the k⊥

algorithm

Pre-clustering procedure

During the pre-clustering procedure the final hadrons are separated into ’beam jets’ and

’hard final state jets’ (exclusive mode of running). For each final state hadron hk and

for each combination of hadrons hk, hl, the algorithm starts by computing the resolution

variables dkB and dkl, which are defined as:

dkB = 2E2
k(1 − cos θkB)

dkl = 2min(E2
k , E

2
l )(1 − cos θkl) (D.1)

where Ek, El are the energies of the hadrons hk and hl respectively, θkB is the angle of the

hadron hk momentum with respect to the beam direction and θkl is the angle between the

momenta of the two hadrons.

In the small-angle limit, where θkB → 0 and θkl → 0, expanding the trigonometric
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function, we get:

dkB ' E2
kθ

2
kB

dkl ' min(E2
k , E2

l )θ
2
kl (D.2)

The transverse momentum k⊥, in the small angle limit and for high relativistic hadrons,

can be written as:

k⊥ = k sin θ ' E sin θ ∼ Eθ (D.3)

Therefore, the resolutions variables dkB and dkl can be reduced to the transverse mo-

mentum of the hadron with the respect to the beam and to the minimal relative transverse

momentum of one hadron with respect to the other:

dkB ' k2
⊥ kB

dkB ' k2
⊥ kl (D.4)

The variable dkB is finally scaled by the dimensionless parameter R2, which is externally

defined. Then, the minimum between the resolution variables is found. If dkl is the smallest,

then the hadrons hk and hl are combined together into a single object according to a

specified recombination scheme, whereas if dkB is the smallest, the hadron hk has to be

included in the beam jets.

The algorithm is repeated until all particles and objects have dkl, dkB larger that some

stopping parameter dcut. This stopping parameter can be either fixed to a value for all the

events, or it can be defined on an event-by-event basis by the minimum value of dkl, dkB

when the event contains a fixed number of hard final state jets.

Resolving into sub-jets

This procedure can be applied for the whole event using the final state jets and/or for a

single jet with the following steps:
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1. The resolution parameter ycut is defined as:

ycut =
Q2

o

dcut
(D.5)

where the parameter Q2
o fixes the fragmentation scale of the jets.

2. For each pair of hadrons (or objects more general), the variable dkl as defined before

is rescaled:

ykl =
dkl

dcut
(D.6)

3. From all the ykl values, the smallest, yij, is defined. If yij < ycut, then the objects i,j

are combined into a single cluster according to a specific recombination scheme.

4. The procedure is repeated till all pairs of objects have ykl > ycut. The remaining

objects are called sub-jets.

Again, as for the dcut variable in the pre-clustering procedure, the ycut can be defined

when a desired number of sub-jets have been constructed.
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Appendix E

Examples of BW+Landau fits to Toy

MC distributions

The following distributions are examples of a Toy Monte Carlo for the Vector (top row) and

the Continuum (bottom row) scenarios for 30, 100 and 1000 fb−1 integrated luminosity.

Each distribution has been fitted with the sum of a Breit-Wigner and a Landau function

(black line), as described in Chapter 5. The Breit-Wigner component is drawn in blue and

the Landau component is drawn in red.
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