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1 Introduction

At hadron colliders, neutral Higgs bosons can be produced via gluon-gluon fusion,
gg → H. The gluons do not couple directly to the Higgs boson, since they are
massless. They do however interact with particles carrying colour charge (quarks
and gluons), of which the quarks have a non-zero mass. The Higgs boson produc-
tion via gluon fusion is therefore possible through a quark loop, with the Higgs
boson coupling to the quarks via a Yukawa-type interaction. The strength of the
Yukawa coupling is proportional to the quark mass. It turns out that the dominant
contribution to the quark loop comes from the top quark, since it is by far the most
massive quark. This is not immediately evident, because while the coupling of the
Higgs boson to a heavier particle is stronger, the probability of producing a heavier
particle in the loop is lower. All other �avours contribute little to the amplitude.
(The top quark is about 35-40 times as heavy as the next heaviest known quark,
the beauty quark.)

The goal here is to calculate and study the cross section of Higgs boson produc-
tion via gluon fusion �rst at leading, then at next-to-leading order.

2 The process gg→ H at leading order

Before doing the next-to-leading order calculation, we calculate the cross section
of the process at leading order.

2.1 Writing the amplitude
At leading order, there are two Feynman diagrams that contribute to the process.
They are shown in Figure 1. While the diagrams are topologically distinct, they
contribute the same amount to the total amplitude by symmetry.
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Figure 1: The lowest (non-trivial) order diagrams for Higgs boson production via
gluon fusion. Their corresponding amplitudes are equal. The labels characterising
the particles in the diagram to the right are the same as to the left.

Feynman rules

External gluon: εµ(p)

External scalar: 1

Fermion loop: −1

Fermion propagator:
i(/p + m)

p2 − m2 + iε

Quark-gluon vertex: igγµta

Yukawa vertex: −iλ

Amplitude
We make the approximation that only the contribution due to the top quark matters.
We denote the mass of the top quark m.

iM = −2
∫

d4k
(2π)4 1(−iλ)

i(/k + /p1 + m)
(k + p1)2 − m2 + iε

(igγµta)

×
i(/k + m)

k2 − m2 + iε
(igγνtb)

i(/k − /p2 + m)
(k − p2)2 − m2 + iε

εµ(p1)εν (p2)
(1)

Because all the fermion lines in the diagrams form closed loops, the amplitude has
no free Dirac indices. This means that we can take the trace of the Dirac matrices,
which simpli�es the expression considerably, since the trace of any odd number of
Dirac matrices vanishes. Writing the trace and reordering the commuting factors
gives

iM = −2λg2 εµ(p1)εν (p2)tatb
∫

d4k
(2π)4 Tr

[ (/k + /p1 + m)
(k + p1)2 − m2 + iε

γµ

×
(/k + m)

k2 − m2 + iε
γν

(/k − /p2 + m)
(k − p2)2 − m2 + iε

]
.

(2)
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2.2 Calculating the loop integral
Denominator of the integrand
The integrand in Equation (2) can be simpli�ed using the method of Feynman
parameters1 to combine the three factors in the denominator. Speci�cally, we use
the identity

1
ABC

=

∫ 1

0
dx dy dz

2!
[x A + yB + yC]3 (3)

to write
1

((k + p1)2 − m2 + iε)(k2 − m2 + iε)((k − p2)2 − m2 + iε)
=

∫ 1

0
dx dy dz

2
D3 ,

(4)
where

D = x(k + p1)2 + yk2 + z(k − p2)2 − (x + y + z)m2 + (x + y + z)iε

= k2 + 2k · (xp1 − zp2) − m2 + iε.
(5)

In simplifying the expression for D the identity x + y+ z = 1 and the fact that gluons
are massless (p2

1 = p2
2 = 0) have been used. Since all values of the momentum k are

integrated over, we can shift it to ` = k + xp1 − zp2. This completes the square in
D, which simply becomes

D = `2 + 2xz p1 · p2 − m2 + iε

= `2 + xzm2
H − m2 + iε

= `2 − ∆ + iε,

(6)

where mH is the mass of the Higgs boson and ∆ ≡ m2 − xzm2
H can be thought of as

an e�ective mass of the fermion loop, if the loop is treated like an e�ective fermion
propagator.

Before moving on, we can already make a simpli�cation. Since ` does not
contain the Feynman parameter y, the integrand I will not depend on y either.
Therefore we can get rid of y right away by making the replacement∫ 1

0
dx dy dz δ(x + y + z − 1)I (x ,z) =

∫ 1

0
dx

∫ 1−x

0
dz I (x ,z) (7)

Numerator of the integrand
Having dealt with the denominator, we now turn to the numerator of the integrand
in Equation (2). We need to express it in terms of the new variable of integration, `.
From the fact that D only depends on the magnitude of ` it follows that2∫

d4`

(2π)4
`µ

D3 = 0; (8)∫
d4`

(2π)4
`µ`ν

D3 =

∫
d4`

(2π)4

1
4g

µν`2

D3 . (9)

1See for instance Peskin & Schroeder, p. 189�.
2Peskin & Schroeder, p. 191
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The second integral is divergent in four dimensions. Therefore we need to modify
it to make it well-de�ned. This is called regularising. We use dimensional regulari-
sation, where the integral is calculated in d energy-momentum space dimensions
(corresponding to d space-time dimensions). After the calculation, we will take
the limit d → 4 to recover our physical space-time. In d dimensions, the analog of
Equation (9) is ∫

dd`

(2π)d

`µ`ν

D3 =

∫
d4`

(2π)4

1
dg

µν`2

D3 . (10)

Based on this, we see that we can bring the integral into the form

A
∫

d4`

(2π)4
`2

D3 + B
∫

d4`

(2π)4
1

D3 , (11)

where A and B are factors that do not depend on ` and can therefore be taken out
of the integrals. Note that the integrands are now Dirac scalars, depending only on
`2, while the entire Dirac structure is contained in A and B.

Making use of the linearity property of the trace and only keeping terms con-
taining an even number of Dirac matrices, we �nd

Numerator = m Tr[/p1γ
µ/kγν − /p1γ

µγν/p2 + /p1γ
µγν/k + /kγµ/kγν

− /kγµγν/p2 + /kγµγν/k − γµ/kγν/p2 + γµ/kγν/k + m2γµγν
]
.

(12)

We insert /k = /̀ − x/p1 + z/p2 into this expression, simplify it using the identity
/pγµ = 2pµ − γµ/p, and discard terms proportional to an odd power of `, which
vanish by virtue of Equation (9). We can also discard terms proportional to pαi pβi
(with i = 1, 2). The reason is the following. Since the matrix element is a Dirac
scalar, all Dirac indices will be contracted. For terms of the form just mentioned,
there are only two ways in which this can be done. They will either be proportional
to p2

i , which is zero because the gluons are massless, or to pi · ε(pi), which is again
zero due to the fact that the external gluons can only have polarizations transverse
to their momentum. All in all, we �nd

Numerator→ m Tr
[
z/p1γ

µ
/p2γ

ν − /p1γ
µγν/p2 − z/p1γ

µγν/p2

+ (/̀ − x/p1 + z/p2)γµ(/̀ − x/p1 + z/p2)γν + x/p1γ
µγν/p2

+ (/̀ − x/p1 + z/p2)γµγν (/̀ − x/p1 + z/p2) + xγµ/p1γ
ν
/p2

+ γµ(/̀ − x/p1 + z/p2)γν (/̀ − x/p1 + z/p2) + m2γµγν
]

→ m Tr
[
`σ`ρ

(
γσγµγργν + γσγµγνγρ + γµγσγνγρ)

− p1,αp2, β
{
−zγαγµγ βγν − xγµγαγνγ β

+ xz
(
γαγµγ βγν + γ βγµγαγν + γαγµγνγ β

+ γ βγµγνγα + γµγαγνγ β + γµγ βγνγα)
+ (1 − z − x)γαγµγνγ β

}
+ m2γµγν

]
.

(13)

Now we can calculate the traces the usual way, leading to the numerator

4m
(
4`µ`ν − `2gµν + (4xz − 1)pν1 pµ2 . + (1/2 − xz)m2

Hg
µν + m2gµν

)
. (14)
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The entire amplitude then becomes

iM = −8mλg2ε1,µε2,νtatb
∫ 1

0
dx

∫ 1−x

0
dz

(
gµν

∫
dd`

(2π)d

`2

(`2 − ∆ + iε)3
4 − d

d

−
(
(4xz − 1)pν1 pµ2 + (1/2 − xz)m2

Hg
µν − m2gµν

) ∫
d4`

(2π)4
1

(`2 − ∆ + iε)3

)
,

(15)

where εi ≡ ε(pi). The values of the integrals can be found in tables. The second
integral is ∫

d4`

(2π)4
1

(`2 − ∆ + iε)3 =
−i

32π2∆
, (16)

which is �nite. The �rst integral might lead to terms diverging in the limit d → 4.
It gives ∫

dd`

(2π)4
`2

(`2 − ∆)3 =
i

(4π)d/2
d
2
Γ(2 − d

2 )
Γ(3)

( 1
∆

)2− d
2

(17)

We expand the gamma function and the factor containing ∆−1 near d = 4, using
the de�nition ε ≡ 4 − d:

Γ(ε/2) =
2
ε
− γ + O(ε), (18)

where γ ≈ 0.58 is the Euler-Mascheroni constant, and( 1
∆

)ε
=

( 1
∆

)0
+

( 1
∆

)0
log

( 1
∆

)
ε + O(ε2) = 1 − ε log∆ + O(ε2). (19)

Using this, we �nd∫
dd`

(2π)d

`2

(`2 − ∆)3
4 − d

d
=

i
(4π)d/2

d
4

( 2
ε
− γ

) (1 − ε log∆) ε
d

+ O(ε)

=
i

2(4π)2 + O(ε),
(20)

which has the �nite value i/32π2 as ε → 0. In the end, there were no divergences
arising in the loop calculation. We simplify the term that we are left with.

i
ε1 · ε2
32π2 + i

(4xz − 1)(p1 · ε2)(p2 · ε1) +
(
(1/2 − xz)m2

H − m2
)
ε1 · ε2

32π2
(
m2 − xzm2

H

)
= i

(4xz − 1)(p1 · ε2)(p2 · ε1) +
(
(1/2 − 2xz)m2

H

)
ε1 · ε2

32π2
(
m2 − xzm2

H

)
=

i
32π2

(
ε1 · ε2

2 m2
H − (p1 · ε2)(p2 · ε1)

) 1 − 4xz
m2 − xzm2

H

=
i

32π2
τ

m2

(
ε1 · ε2

2 m2
H − (p1 · ε2)(p2 · ε1)

) 1 − 4xz
τ − 4xz

,

(21)
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where τ ≡ 4m2/m2
H . With the momentum integral carried out, the amplitude

becomes

iM =
−iτλg2tatb

4π2m2

(
ε1 · ε2

2 m2
H − (p1 · ε2)(p2 · ε1)

) ∫ 1

0
dx

∫ 1−x

0
dz

1 − 4xz
τ − 4xz

. (22)

The integration over the Feynman parameter z can be carried out by parts,∫ 1−x

0
dz

1 − 4xz
τ − 4xz

=

[
(4xz − 1)

log |τ − 4xz |
4x

]1−x

0
−

∫ 1−x

0
log |τ − 4xz |

=
τ − 1

4x
log

[
1 − 4x(1 − x)

τ

]
+ x − 1.

In the integration the fact that τ is positive and greater than 4xz (because m > mH
and x ,z ≤ 1) has been used, so absolute values do not need to be taken explicitly.

The last thing that remains to be done is the integration over the Feynman
parameter x. The integral has three terms, of which two are very easy and one very
di�cult to integrate. The easy terms give

∫ 1
0 dx(x − 1) = − 1

2 . The di�cult integral
can be solved using dilogarithms. The result can also be found in the literature. It is

τ − 1
4

∫ 1

0

dx
x

log
[
1 − 4x(1 − x)

τ

]
=
τ − 1

2 arcsin2
√

1
τ
, (23)

which holds for τ > 1 (as is the case here).

2.3 Result for the amplitude
Colour factors
The amplitude is proportional to tatb, where a and b are indices of the adjoint
representation (describing gluons) of the SU(3) colour symmetry group. Explicitly
writing the indices of the fundamental representation (describing quarks), this
factor is ta

i jt
b
ji due to conservation of colour charge. Repeated indices are summed

over. This corresponds to taking the trace of the matrices t in the fundamental
representation space,

tatb → Tr
[
tatb

]
= C(N )δab =

δab

2 . (24)

The values of the coupling constants
The Yukawa coupling constant is λ = −im/v, where v ≈ 246 GeV is the vacuum
expectation value of the Higgs �eld. The strong coupling constant is αs = g2/4π.

Putting everything together
The �nal result for the amplitude is

iM =
αsδab

4πvm

(
ε1 · ε2

2 m2
H − (p1 · ε2)(p2 · ε1)

)
τ
(
1 + (1 − τ) arcsin2 √

1/τ
)
. (25)
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2.4 Unpolarised cross section
We wish to calculate the absolute value squared of the amplitude, averaging over
the di�erent possible spin polarisation and colour states of the incoming gluons.

The sum over physical spin polarisation states of a gluon is∑
physical polarisations

εµ(k)ε∗ν (k) = −gµν +
kµnν + nµkν

n · k
+ n2 kµkν

(n · k)2 , (26)

where n is a four-vector that is linearly independent of the gluon’s momentum k
but otherwise arbitrary. We take n to be equal to p1 for the gluon with momentum
p2 and vice versa. This is a smart choice, as it will lead to cancellation and vanishing
of terms earlier on in the calculation. The spin polarisation sums in our case are

∑ m2
H

2 ε1,µε
µ
2 − p1,νε

ν
2 p2,ξε

ξ
1

 m2
H

2 ε1,ρε
ρ
2 − p1,σε

σ
2 p2,τε

τ
1

∗
=

m4
H

4
∑

ε1,µε
∗
1,ρ

∑
ε
µ
2 ε
∗ρ
2 − m2

H p1,νp2,ξ
∑

ε
ξ
1ε
∗
1,ρ

∑
εν2ε

∗ρ
2

+ p1,νp2,ξp1,σp2,τ
∑

ε
ξ
1ε
∗τ
1

∑
εν2ε

∗σ
2

=
m4

H

2

(27)

(A remark: this result is the same as we would have obtained if the term proportional
to (p1 · ε2)(p2 · ε1) had not been present in the amplitude, Equation (25). Their
corresponding terms in the polarisation sum vanish separately. Apparently, when
averaging over all possible polarisations, the average projections of polarisations are
zero on average.) After evaluating the polarisation sums, we divide the amplitude-
squared by the square of the number of possible gluon polarisations, 22 to obtain
the averaging factor, m4

H/8.
Averaging over the possible colour states in the amplitude-squared gives a

factor of
δabδab

22 × 82 =
8

4 × 64 =
1
32 . (28)

Thus we obtain the unpolarised, colour-averaged amplitude-squared

|M|2 =

∣∣∣∣∣∣αsm2
H

32πv τ
(
1 + (1 − τ) arcsin2 √

1/τ
)∣∣∣∣∣∣

2

(29)

Kinematics of the decay: phase space integral
In order to arrive at the cross section σ(gg → H) based on the amplitude, the
kinematics of the decay need to be considered, summing all allowed kinematical
con�gurations of the �nal state. This corresponds to calculating the phase space
integral in

σ(gg→ H) =
1
F

∫
d3q

(2π)32EH
(2π)4δ4 (q − p1 − p2) |M|2, (30)
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where q and EH are the momentum and energy of the Higgs boson, and F = 2s is
a �ux factor. Since the unpolarised amplitude squared is independent of external
momenta, the phase space integration simply gives a numerical factor,∫

d3q
(2π)32EH

(2π)4δ4 (q − p1 − p2) = 2πδ(s − m2
H ), (31)

where the Mandelstam variable s = (p1 + p2)2 = 2p1 · p2 = m2
H appears.

The cross section is therefore
σ(gg→ H) =

π

m2
H

δ(s − m2
H ) |M|2

=
α2

sm2
H

322πv2 δ(s − m2
H )

[
τ
(
1 + (1 − τ) arcsin2 √

1/τ
)]2

(32)

This is only valid for τ > 1. Show the result in the other possible case.

What happens if the fermion is considered very heavy?
We study the amplitude in the limit where the mass of the fermion is considered to
be much larger than the mass of the Higgs boson. This corresponds to the limit
τ → ∞. For large τ‚ the inverse sine can be expanded to

arcsin 1/
√
τ =

1
√
τ

+ 1

3!
(√
τ
)3 + O

 1(√
τ
)5

 . (33)

Inserting this into the expression for the amplitude gives

lim
τ→∞
A = lim

τ→∞
τ

[
1 + (1 − τ)

( 1
τ

+ 1
3τ2

)]
+ O

( 1
τ

)
=

2
3 . (34)

This means that the cross section for the considered process does not vanish even
as the mass of the fermion in the intermediate state is considered to be in�nite!

Relative contributions from di�erent quarks
The functional form of the cross section is shown in Figure 2 as a function of the
mass of the fermion in the loop. The plot shows well that it is su�cient to take into
account only the contribution from the top quark. Assuming mbeauty = 4.5 GeV,
mtop = 175 GeV, and mH = 125 GeV, the contribution of the top quark is about 150
times larger than that of the beauty quark. Note that this is not equal to the squared
ratio of the quarks’ masses (as is claimed in the note by Bentvelsen, Laenen, and
Motylinski), which would give a factor that is an order of magnitude larger than
the actual factor,

m2
top

m2
beauty

& 1000

Another important thing we see from the plot is that the approximation τ → ∞ is
adequate, even though the actual top quark mass is not even twice the mass of the
Higgs boson. Still, plugging the experimental values into the de�nition of τ yields

τ =
4 × 1752

1252 ≈ 8,

which is about an order of magnitude larger than unity.
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Figure 2: The leading order cross section of gg→ H via a fermion loop, as a function
of the fermion mass. The two dashed vertical lines indicate the mass of the beauty
and top quark, assuming the masses mb = 4.5, mt = 175, and mH = 125, all in GeV.
It can be seen that the contribution of the top quark is far larger than that of the
beauty quark, by a factor of ∼150.

3 Formulating an e�ective �eld theory

In the limit where m → ∞, we can write an e�ective �eld theory in which the
diagrams g

g

H+
p2, b, ν

p1, a, µ
k + p1

k

k − p2

q

g

g

Hare collapsed into a single point-like e�ective vertex

. The Feynman rule of this vertex is found by taking the amplitude in Equation
(25) and stripping the external gluons o� it:

E�ective ggH vertex: αsΛδab

m2
H

2 gµν − pµ1 pν2

 , (35)

where Λ is a constant. Note that the momenta p1 and p2 are both incoming.

9



p2, b, ν

p1, a, µ

k

k − p2

k + p1

q

g

g

H

p2, b, ν

p1, a, µ

q

g

g

H

Figure 3: The “triangle” and “sword�sh” diagrams: virtual corrections to the leading-
order Higgs boson production via gluon fusion.

4 Going to next-to-leading order

Additional Feynman rules needed in the NLO calculation

Gluon propagator: idµν

p2 + iε
δab

Three gluon vertex: g fabc
[
gαβ (p1 − p2)γ + gβγ (p2 − p3)α + gγα (p3 − p1)β

]
Four gluon vertex: ig2

[
fabe fcde(gαγgβδ − gαδgβγ)

+ face fdbe(gαδgβγ − gαβgγδ)

+ fade fbce(gαβgγδ − gαγgβδ)
]

E�ective ggH vertex: see Equation (35)

The quantity dµν in the gluon propagator depends on the choice of gauge. We will
choose a physical gauge, in order to have no Faddeev–Popov ghosts appear in the
Feynman diagrams to preserve unitarity. In the physical gauge,

dµν = −gµν + pµnν + nµpν

n · p
+

(
n2 + ξp2

) pµpν

(n · p)2 . (36)

The momenta in the three gluon vertex are all outgoing.

Amplitude

iMtriangle = αsΛ

∫
d4k

(2π)4
id βρ

k2 + iε
idδσ

(k − p2)2 + iε
idαγ

(k + p1)2 + iε

×

m2
H

2 gγδ + (k + p1)γ (k − p2)δ


× g fmab

[
gµβ (p1 − k)α + gαβ (2k + p1)µ + gαµ(−k − 2p1)β

]
× g fnba

[
gρν (−k − p2)σ + gνσ (2p2 − k)ρ + gσρ(2k − p2)ν

]
× ε

µ
m(p1)ενn(p2)

(37)
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4.1 Simplifying the numerator
We pick out the part of the numerator that has a non-trivial Lorentz structure,

Ntriangle = d βρdδσdαγ
m2

H

2 gγδ + (k + p1)γ (k − p2)δ


×

[
gµβ (p1 − k)α + gαβ (2k + p1)µ + gαµ(−k − 2p1)β

]
×

[
gρν (−k − p2)σ + gνσ (2p2 − k)ρ + gσρ(2k − p2)ν

]
× ε

µ
m(p1)ενn(p2)

(38)

and simplify it using the algebraic manipulation program FORM,

Ntriangle =
m2

H

2

{
kµ

[
ε1 · ε2

(
pµ1 − pµ2

)
+ p1 · ε2ε

µ
1 − p2 · ε1ε

µ
2
]

+ kµkνε
µ
1 ε

ν
2 (4d − 6)

−
2k2

m2
H

kµkνε
µ
1 ε

ν
2

+ k22ε1 · ε2

+ 2k4

m2
H

ε1 · ε2

+ 4p1ε2 p2 · ε1 −
5
2m2

Hε1 · ε2

}
.

(39)

— I’m not convinced this is correct!

4.2 Veltman-Passarino reduction of the tensor integrals
The numerator contains terms proportional to kµ and kµkν , where the Lorentz
indices are contracted with some external four-vector in the problem, i.e. an external
gluon momentum or polarisation vector. To calculate the integrals, we use Veltman-
Passarino reduction.

4.3 Colour structure of the triangle diagram
fmab fnba = − fmab fnab = −C2(G)δab (40)
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