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1B40 Practical Skills 
 

Weighted mean 
The normal (Gaussian) distribution with a true mean µ and standard deviation σ is  
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The probability of occurrence of a value 1x is ( )1p x .  Hence the probability P of obtaining the 

values 1 2 3, , , , nx x x x…  is 

( ) ( ) ( ) ( ) ( )1 2 1 2 3, , .n nP x x x p x p x p x p x=… L  

{Strictly there should be a factor 1/n! on the R.H.S as the order is irrelevant, but it can be 
omitted as we are only interested in the variation of P with its parameters.} 
Thus explicitly  
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It is reasonable to assume that this should be a maximum. (Principle of Maximum 

Likelihood). This probability is a maximum when ( )2
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−∑ is a minimum.  This idea leads to 

the Principle of Least Squares which may be expressed as follows: 
• the most probable value of any observed quantity is such that the sum of the squares of 

the deviations of the observations from this value is the least.  
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Hence these principles lead to the often quoted result that the best estimate for µ is the 
arithmetic mean.   
 
It may be, of course, that the 1 2 3, , , , nx x x x…  belong to different Gaussian distributions with 
different standard deviations.  The total probability would then be  
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This will be greatest when 
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∑ is a minimum.  This occurs when µ is given by the 

weighted mean 
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In general if a measurement ix has weight iw then the weighted mean is  
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The standard deviation of the weighted mean is  
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These expressions reduce to those given earlier for the unweighted quantities if we put  1iw =  
for all measurements.   
For the case of only two quantities,  
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and using the formula for the propagation of errors on a sum of two quantities gives  
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Curve fitting 
We can apply the principle of least squares to the problem of fitting a theoretical formula to a set 
of experimental points.  The simplest case is that of a straight line.   

The Straight Line 
In many experiments it is convenient to express the relationship between the variables in the 
form of the equation of a straight line i.e. 
 ,y mx c= +  
where m, the gradient of the line, and c,  the intercept at x = 0, are treated as unknown 
parameters.   
 
As an example, consider the compound pendulum experiment where the relationship between 
the period T and the adjustable parameter h is given by 
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and the quantities h and k are defined in the script for the experiment.    
Plotting T against h would yield a complicated curve which is difficult to analyse.  However the 
relationship can be expressed as  
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If T2h is plotted against h2 a straight line is expected. The benefits of this are 
1. Results expressed as a linear graph have a satisfying immediacy of impact.   
2. It is very easy to see if a set of results is progressively deviating from linearity - much 

easier than say detecting deviation from, for example, a parabola.   
3. The line of best fit to a set of points with error bars is easy to estimate approximately by 

eye, and to insert with the aid of a ruler as a quick check.  . 
4. A mathematical method exists to calculate the line of best fit, which relates simply to the 

statistical consideration of errors.   
 
Best straight line fit to a linear curve using the method of least 
squares    (Legendre 1806) 
We consider fitting a function of the form  
 y mx c= +  
to a set of data points.  The example is simple because it is linear in m and c not because y is 
linear in x.  The data consists of the points( ),i i ix y σ± .  That is we assume that the x-

coordinates are known exactly as they usually correspond to the independent variable (the one 
under the experimenter’s control), but there is an uncertainty iσ in the y-coordinate 
corresponding to the dependent variable that is “measured”.  The deviation, id , of each point 

from the straight line is taken only in the y-coordinate, ( )i i id y mx c= − + .   
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Method I – Points with associated error bars 
According to the principle of least squares we have to minimise 
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On differentiating with respect to m and c in turn we get  
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Expanding these we have  
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The last one, on dividing through by 2
1

1n

i iσ=
∑  becomes  
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This shows that the best fit line passes through the weighted mean point ( ),x y  even if this does 

not correspond to an actual measured point.   
The eqns (1.3) are two simultaneous equations for the two unknown, m and c. Their solution is  
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where  
 [ ][ ] [ ][ ]1 ,D xx x x= −  (1.5) 

and the quantities in the square brackets [ ] are defined by  
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The calculation of the errors on the fitted parameters, m and c, is intricate and is done best by 
techniques that are beyond this introductory course (matrix methods).  We simply quote the 
results,  
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These expressions may look complicated but they are easily evaluated in a computer 
programme or a spreadsheet. They only involve sums of terms.   
 

Method II – no estimate of error on y 
If the errors on the data points are not known we can only minimise  

 ( )2

1

.
n

i i
i

S y mx c
=

= − −∑  (1.8) 

This is equivalent to the previous case if we set all the errors 1iσ = .  Thus we can get the 
results immediately for  
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In this case the only way to estimate the uncertainties in m and c is to use the scatter of the 
points about the fitted line.  The mean square error 2σ  in the residuals ( )i i id y mx c= − +  is 

given by  
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{The n -2 occurs because we have only n -2 independent points, two being needed to find the 
slope and intercept of the line}.  We then estimate the errors 
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where  
 [ ] [ ][ ].D n xx x x= −  (1.12) 

Correlation in least squares fits 
The original measurements ix and iy  may be uncorrelated but the values of m and c found by 

both methods are correlated since they depend on the same data - the ( ),i ix y  values.   The 

best fit line passes through the fixed point ( ),x y .  If 0x >  and the gradient is increased by its 

error the intercept decreases as the line pivots about the point ( ),x y , and vice versa.  A 

formula for the covariance can be derived. For the weighted fits,  
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and for the unweighted ones  
[ ]2 2cov( , ) .mc

x
m c

D
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As an illustration, a fit to some data gave the following weighted fit parameters: 
0.433, 6.189, 0.057, 0.297, cov( , ) 0.014.m cm c m cσ σ= − = = = = −   The table 

shows the values of iy  predicted and the estimated uncertainty for chosen ix . 

x predicted y y error with correlation y error without correlation 
-10 10.5 0.8 0.6 
40 -11.1 2.0 2.3 

The errors with correlation included may be smaller or larger than those calculated without it!
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The table below compares the advantages and disadvantages of Method I and Method II.  
  
 Method I Method II 
Data points with big 
errors 

are essentially ignored in the fit  are treated like those points with 
small errors 

Errors on m and c are realistic in terms of the statistics 
of the data, iσ and n 

can be (unfortunately) small if 
points happen to lie well on a 
straight line 

If the data don’t 
really lie on a 
straight line 

the errors on m and c may be 
ridiculously small if statistics are 
large 

errors will be larger 

Number of data 
points needed to 
estimate m, c  and 
errors 

2 3 

Can goodness of fit 
be tested? 

Yes No 

Can method be 
used if iσ are 
unknown? 

No Yes 

 
 

Excel implementation of unweighted fit 
Method II is implemented in the Excel spreadsheet function LINEST. If the array formula (see 
Excel for ways to enter an array formula)  
=LINEST(range of known y’s, range of known x’s, , true) 
is entered into an array of 5 rows and 2 columns, then it returns the following results,  
(The words have been added to explain the quantities computed).  

 LINEST   
m -0.3961 5.8665 c 
error on m 0.0465 0.3151 error on c 
r2 0.8898 0.4873 standard error on y 
F 72.6618 9 number degrees freedom 
regression sum of squares 17.2568 2.1374 sum of squares of residuals 

 
Thus this example describes the line 
 ( ) ( )0.40 0.05 5.9 0.3 .y = − ± + ±  


