2004-11-22

Visual Basic – Annotation exercise
One way to learn programming is to study existing program code and try to find out what it is doing. In this exercise you will look at two macros and add comments to explain what each section does. The first macro you will create yourself by recording some actions, so hopefully you will be aware of what it does. You just have to identify the actions in the lines of code. The second macro is given to you and you have to work out what it does from the code only.

Part 1

· Open a new spreadsheet and copy the data below into it, starting at cell A1.
	11.24439
	2.75181

	9.74770
	1.20287

	9.21094
	1.81950

	10.78271
	1.24783

	13.71846
	3.06438

	9.08540
	2.00224

	12.16542
	3.45065

	10.96323
	1.54703

	10.01341
	0.75178

	11.06328
	0.69813

· Carry out the following operations:

· insert an extra row above the table of data;

· enter the following headings in cells A1:D1: x, error, weight (w), wx;
· centre the headings in their cells and change the font to bold;

· add horizontal borders across cells A1:D1 below the headings and below the numbers;

· in the column headed “weight (w)” enter formulae to calculate
[image: image1.wmf]2

/

1

s

=

w

 where
[image: image2.wmf]s

 is the number in the corresponding row of the “error” column;

· in the column headed “wx” enter formulae to multiple w and x;

· below the “w” and “wx” columns calculate the sum of the numbers in each column;
· add horizontal borders across cells A12:D12 above the sums;

· in cell C14 type “Mean=”;

· in cell D14 enter a formula to calculate the weighted mean
[image: image3.wmf]1010

11

/

iii

ii

xwxw

==

=

åå

;
· change the colour of the text in cells C14:D14 to red.

· Now that you have rehearsed the steps, record a macro to repeat them.

· Examine the macro in the Visual Basic Editor and add comments to explain what each line or group of lines are doing.
· Are any of the lines of code that Excel generated unnecessary? If so, delete them. (Excel usually insets values for all parameters, even for those you are not changing from their default values. If you are not sure if a line is needed or not, make sure you save your spreadsheet before you delete it and test the macro to make sure it still works.)

· Edit your macro (in the VB Editor; don’t record it again!) so that it also enters a formula, in the cell below the mean, that counts the number of x values. The macro should also add a suitable label (e.g. “N=”) and change the font of cells C14:D15 to be both red and bold. The final result of your macro should be something like the table below:
	x
	error
	weight (w)
	wx

	11.24439
	2.751808
	0.132057683
	1.484909

	9.747696
	1.202872
	0.691132505
	6.73695

	9.210938
	1.819498
	0.302062424
	2.782278

	10.78271
	1.247826
	0.642232454
	6.925006

	13.71846
	3.064379
	0.106491539
	1.4609

	9.085402
	2.002243
	0.249440164
	2.266264

	12.16542
	3.450652
	0.083984237
	1.021703

	10.96323
	1.547029
	0.417833327
	4.580803

	10.01341
	0.751778
	1.769380017
	17.71754

	11.06328
	0.698126
	2.051786516
	22.6995

	
	
	6.446400867
	67.67585

	
	
	
	

	
	
	Mean=
	10.49824

	
	
	N=
	10

Part 2

In the following macro the original comments have been removed; only the apostrophe (’) is left. Your task is to supply suitable text to the ’ comment lines to explain the action of the lines of code that follow the ’. If you wish you may add comments elsewhere if you think that helps better to explain the actions of the code. Don’t worry if you can not see what all the code does the first time through. Add some comments for those parts you understand, and then go back over the parts you missed. The comments from the first pass may help you the second time round.
The code is reproduced below, but it is better to load the spreadsheet AnnotateMacro2.xls into Excel as you can then make use of the Visual Basic Editor. If the modules are opened in the VB Editor you can make use of its help facilities to understand the syntax and the actions of the code.

'
Option Explicit

'
Sub ReD()

'

'

 Dim dupCol As Range, dupColStart As Range

 Dim currentCell As Range, nextCell As Range

 Dim dupColAddress As String

 Dim response As Integer

 Dim colCount As Integer

 Dim msg As String, boxButtons As Integer

'

'

 Do

'

'

 msg = "Select ONE cell in column of duplicates"

'

'

 Set dupCol = Application.InputBox(prompt:=msg, _

 Title:="Selection of Duplicates Column", Type:=8)

'

'

 colCount = dupCol.Columns.Count

'

'

 If colCount <> 1 Then

 MsgBox "Too many columns selected. Select only ONE"

 End If

 Loop Until colCount = 1

'

'

 Set dupColStart = dupCol.EntireColumn.Cells(1)

'

'

 dupColAddress = dupColStart.Address

'

'

 dupColAddress = Mid(dupColAddress, 2, Len(dupColAddress) - 3)

'

'

 boxButtons = vbYesNo + vbDefaultButton1 + vbQuestion

 msg = "Duplicate entries in Column " & dupColAddress

 response = MsgBox(prompt:=msg, Title:="Duplicates Column", _

 Buttons:=boxButtons)

 If response = vbNo Then Exit Sub

'

'

 ActiveSheet.UsedRange.Sort key1:=dupColStart, header:=xlYes

'

'

 Set currentCell = dupColStart

'

'

 Application.ScreenUpdating = False

'

'

 Do While Not IsEmpty(currentCell)

 Set nextCell = currentCell.Offset(1, 0)

 If nextCell.Value = currentCell.Value Then

 currentCell.EntireRow.Delete

 End If

 Set currentCell = nextCell

 Loop

'

'

 Application.ScreenUpdating = True

End Sub

PAGE
2

_1130851296.unknown

_1144763679.unknown

_1130851264.unknown

