Visual Basic - Arrays

An arrayisanamed collection of variables of the same data type. Each element of the
array is labelled by one or more indices, e.g.

candNanes(1) = “Smth”
candNanes(2) = “Patel”
candNanes(3) = “Gddbi ns”

Arrays alow you to grouprelated variables and to manipulate them all at once while
still being able to accesseach variable separately. For arrays we can set up loops
using the index numbers.

The size of an array is determined by the number of dimensions (i.e. the number of
arguments) and the lower and upper bounds of the index number of each dimension.
VB arrays can have 60 dimensions, with computer memory size limiting the number
of elements. In the example above candNanes has three elements and one
dimension.

VB dlocates space for every element of an array even if you never store avaluein it.
Thus you should avoid declaring an array larger than you really need. If you know
what size you need declare astatic array and specify the lower and upper bounds of
each dimension. On the other hand if the size is truly not known you can declare a

dynamic array.

You must explicitly declare an array before you use it; implicit declaration is not
allowed. You use Private, Public, Dim or Static keywords to define its scope and
lifetime; use integer values to specify the lower and upper bounds on each dimension;
use A s to specify the data type of the elements (all the same).

Y ou specify lower and upper bounds within brackets after the array name. The bounds
can be positive, negative integers or zero. If you give only one value for a dimension
it isinterpreted as the upper bound. The default lower bound is zero (0) unless you
st itto 1 — which isrecommended. The statement

Dim counters(14) As I|nteger

defines counters as an array with 15 elements going from count er s(0) through to
count ers(14) . To set the default lower boundto 1 use Opt i on Base 1lina
module. Thisis strongly recommended as all Excel collections are X base. If you
assign a khased array to a 0-based, the same data exits in both arrays but each
element is offset by one. This makes macros confusing and leads to errors. To
specify explicitly both bounds use | owewr Bound To upper Bound asin

Dim counters(1 To 15) As Integer

Dmtotal s(100 To 150) As Single

To use an array you access each element using the element’s index value. The
following example fills an array with 10 random numbers in the range 1 to 20 and
displays the 6.
Sub RandomArray()
Dmn As Integer, randNos(10) As Integer
For n =1 To 10
randNos(n) = Int(Rnd() * 20) +1

Next
MsgBox randNos(6)
End Sub

If you want to change the size of an array at run-time, say to free up memory, you use
adynamic array. To declare adynamic array omit the dimensions from the definition,
i.e.D m dynam cArray() . Later inthe macro alocate the actua number of
elements with the ReDim statement, ReDi m dynami cArray(x + 1) wherethe
vaue of x isan integer. The ReDim statement can change the number of elements,
lower and upper bounds and the dimensions of the array. For example
Option Base 1
Sub Chart Sheet Nanes()
‘ get names of chart sheets in workbook

Dim chart Nanmes() As String

Dimi As Integer, chartCount As |nteger

chart Count = Workbooks(“test.xls”). Charts. Count

ReDi m char t Nanmes(chart Count)

For i = 1 To chart Count
chart Name(i) = _
Wor kbooks(“test.xls”). Charts(i).Nane
Next
End Sub

Each time the ReDim statement is used all current values in the array are lost and al
elements are re-initialised. Sometimes, however, you may want to keep the data. To
do this use the Preserve keyword. To enlarge the dimensions of ol dAr r ay by 1 but
without losing the data do

ReDi m Preserve ol dArray(Ubound(ol dArray) + 1),

wher e Ubound isaVB built-in function that gets the value of the upper bound of
an array. Only the upper bound of the last dimension in a multi-dimensional array can
be changed if the Preserve keyword is used.

A multi-dimensional array is defined in the statement

Dmmatrix(10, 10) As Single

to give a10 x 10 “square” array with 100 lementsfrommatri x(1, 1) to

mat ri x(10, 10). The statement

DmmltiAray(4, 1 To 10, 1 To 15)

producesathree-dimensiona array 4 x 10 x 15 with 600 elements.

Loops (see later) are an efficient way to process arrays. The example initialises each
element of a 10 x 10 array to its position in the list

Option Base 1

Dmi As Integer, j As Integer

Static matrix(1 To 10, 1 To 10) As Single

For i =1 To 10
For j =1 To 10
matrix(i, j) =10 * i +]
Next j

Next i

