
 1

Visual Basic - Arrays

An array is a named collection of variables of the same data type. Each element of the
array is labelled by one or more indices, e.g.
candNames(1) = “Smith”
candNames(2) = “Patel”
candNames(3) = “Oddbins”

Arrays allow you to group related variables and to manipulate them all at once while
still being able to access each variable separately. For arrays we can set up loops
using the index numbers.

The size of an array is determined by the number of dimensions (i.e. the number of
arguments) and the lower and upper bounds of the index number of each dimension.
VB arrays can have 60 dimensions, with computer memory size limiting the number
of elements. In the example above candNames has three elements and one
dimension.
VB allocates space for every element of an array even if you never store a value in it.
Thus you should avoid declaring an array larger than you really need. If you know
what size you need declare a static array and specify the lower and upper bounds of
each dimension. On the other hand if the size is truly not known you can declare a
dynamic array.

You must explicitly declare an array before you use it; implicit declaration is not
allowed. You use Private, Public, Dim or Static keywords to define its scope and
lifetime; use integer values to specify the lower and upper bounds on each dimension;
use As to specify the data type of the elements (all the same).
You specify lower and upper bounds within brackets after the array name. The bounds
can be positive, negative integers or zero. If you give only one value for a dimension
it is interpreted as the upper bound. The default lower bound is zero (0) unless you
set it to 1 – which is recommended. The statement
Dim counters(14) As Integer
defines counters as an array with 15 elements going from counters(0) through to
counters(14) . To set the default lower bound to 1 use Option Base 1 in a
module. This is strongly recommended as all Excel collections are 1-base. If you
assign a 1-based array to a 0-based, the same data exits in both arrays but each
element is offset by one. This makes macros confusing and leads to errors. To
specify explicitly both bounds use lowewrBound To upperBound as in
Dim counters(1 To 15) As Integer
Dim totals(100 To 150) As Single

To use an array you access each element using the element’s index value. The
following example fills an array with 10 random numbers in the range 1 to 20 and
displays the 6th.
Sub RandomArray()
 Dim n As Integer, randNos(10) As Integer
 For n = 1 To 10
 randNos(n) = Int(Rnd() * 20) +1

 2

 Next
 MsgBox randNos(6)
End Sub

If you want to change the size of an array at run-time, say to free up memory, you use
a dynamic array. To declare a dynamic array omit the dimensions from the definition,
i.e. Dim dynamicArray() . Later in the macro allocate the actual number of
elements with the ReDim statement, ReDim dynamicArray(x + 1) where the
value of x is an integer. The ReDim statement can change the number of elements,
lower and upper bounds and the dimensions of the array. For example
Option Base 1
Sub ChartSheetNames()
‘ get names of chart sheets in workbook
 Dim chartNames() As String
 Dim i As Integer, chartCount As Integer
 chartCount = Workbooks(“test.xls”).Charts.Count
 ReDim chartNames(chartCount)
 For i = 1 To chartCount

chartName(i) = _
Workbooks(“test.xls”).Charts(i).Name

 Next
End Sub

Each time the ReDim statement is used all current values in the array are lost and all
elements are re-initialised. Sometimes, however, you may want to keep the data. To
do this use the Preserve keyword. To enlarge the dimensions of oldArray by 1 but
without losing the data do
ReDim Preserve oldArray(Ubound(oldArray) + 1),
where Ubound is a VB built -in function that gets the value of the upper bound of
an array. Only the upper bound of the last dimension in a multi-dimensional array can
be changed if the Preserve keyword is used.
A multi-dimensional array is defined in the statement
Dim matrix(10, 10) As Single
to give a 10 x 10 “square” array with 100 elements from matrix(1,1) to
matrix(10, 10). The statement
Dim multiArray(4, 1 To 10, 1 To 15)
produces a three-dimensional array 4 x 10 x 15 with 600 elements.

Loops (see later) are an efficient way to process arrays. The example initialises each
element of a 10 x 10 array to its position in the list
Option Base 1
Dim i As Integer, j As Integer
Static matrix(1 To 10, 1 To 10) As Single
For i = 1 To 10
 For j =1 To 10
 matrix(i, j) = 10 * i + j
 Next j
Next i

