
 1

Visual Basic - Modules and Procedures

Introduction
A procedure is a unit of code enclosed either between the Sub and End Sub
statements or between the Function and End Function statements. A procedure
should accomplish a simple well-defined task.
Modules are workbook sheets that contain code. Each module can contain a
declarations section followed by procedures. There may be many procedures in a
module, but preferably the procedures should have some common theme.

The declaration section can contain
§ Option statements which set module-level options and must appear before any

procedure.
§ User defined type definitions
§ Declarations – any variable or constant declarations that are not contained

within a procedure must be placed before any procedures in the module.

Except for the three classes above, ALL code in VB must be contained within
procedures.

Procedures that access common data or provide a coherent set of actions can be
grouped into the same module. Modules can be grouped into a single workbook, (or
over several linked workbooks but that’s too technical for this course).

Creating procedures
When you create a procedure you must decide
§ how widely accessible you want it to be,
§ what to name it,
§ what task it will perform,
§ what types of data it will accept and return.

Specifying scope
The term scope means the parts of the programme from which a variable, constant or
procedure is accessible or “visible”. VB procedures can have either private or public
scope. A procedure with private scope is visible only to other procedures in the same
module; one with public scope is visible to all procedures in all modules in a
workbook. Unless specified otherwise, procedures have public scope. To make a
procedure private we use the Private keyword,
 Private Sub Savings()
 MsgBox “A private procedure”
 End Sub
A private procedure cannot run as a stand-alone procedure; it can only be called from
another procedure.

 2

Naming procedures
A procedure name must
§ begin with a letter,
§ not contain periods, mathematical or comparison operators,
§ not exceed 255 characters,
§ be unique within its scope
§ not be the name of an existing VB method, function or property.

Types of procedure
There are two types: Sub procedures and Function procedures.
A Sub procedure is enclosed between Sub and End Sub statements and performs a
task but does not return a value. It may modify an Excel spreadsheet.
A Function procedure is enclosed between Function and End Function. It also
performs some task but must also return a value. A function procedure is analogous to
a mathematical function. It may not modify a spreadsheet, for example by deleting
rows.
For a function to return a value it must include a function assignment statement that
gives a value to the name of the function. For example
 Function ConeSurface(radius, height)
 ‘ calculates the surface area of a right-cone
 ‘ given its radius and height
 Const Pi = 3.14159
 coneBase = Pi * radius ^ 2
 coneSide = Pi * radius * _

Sqr(radius ^ 2 + height ^ 2)
 ConeSurface = coneSide + coneBase
 End Function
The information for the function to perform its task (radius and height) is passed as
arguments.
This function may be used in an expression such as
surfaceCone = ConeSurface(3,10)
in another procedure and also as a function in a workbook in which it is defined. In a
cell you may type the formula =ConeSurface(3,10) , or, for example, in cell C1
put =ConeSurface(A1,B1)if the radius and height data are stored in cells A1 and
B1 respectively.
[The function can be used in a workbook in which it is not defined provided you
precede the function with the name of the workbook in which it is defined
(Conebook.xls) and which must also be open, i.e.
=CONEBOOK.XLS!ConeSurface(3,10) .]

Calling procedures
There are two ways to call a Sub procedure

1. via a Call syntax with the arguments within brackets, e.g.
Call MyProc(arg1, arg2)

2. without call and without brackets, e.g.
MyProc arg1, arg2

Functions are called in the same way as built -in functions, =sin(x), e.g.

 3

X = ConeSurface(radius, height)

Arguments
When you use an argument you can specify
§ the data type,
§ whether the procedure can change the argument’s value
§ whether an argument is required or is optional

The arguments are included in brackets after the procedure name in its definition, e.g.
Sub UpdateRecords(ownerID, ownerName) is called in the following
extract
Dim newID As Integer, newName As String
 newId = 1467
 newName = “Joe Green”
 UpdateRecords newID, newName

Note that the name of the variable passed from the calling procedure does NOT have
to be the same as the name of the argument declared in the definition of the called
procedure. If an array is passed as an argument, you include empty brackets after the
array name. Since the dimensions of the array are not defined, the procedure can
accept arrays of any size, e.g. Sub CustomerList(customerArray()).

Arguments have the same scope as variables declared within the procedure. They are
not accessible outside the procedure in whose argument list they are declared. By
default, procedure arguments have the Variant data type (see later notes). You can
explicitly declare other data types using the As keyword in the declaration, e.g.
Function ReverseText(text As String, n As Integer)
‘ reverses the first n characters in “text”
 Dim temp As String, i As Integer
‘ check on n compared to number of characters in “text”
 If n > Len(text) Then n = Len(text)
‘ fill “temp” with characters reversed
 For i = n To 1 Step -1
 temp = temp & Mid(text, i, 1)
 Next i
 ReverseText = temp & Right(text, Len(text) – n)
End Function

Passing arguments by Reference or by Value
This discussion is quite technical and initially can be ignored. It is, however, one
cause of errors in programmes and so could be looked at on a second pass through the
material.

If you pass an argument by reference when calling a procedure it has access to the
actual variable in memory and so can change its value. This is the default mode in
VB. The statement Sub Pass(ByRef passedVariable As Integer)
has the same effect as the statement
Sub Pass(passedVariable As Integer).

 4

If you pass an argument by value when calling a procedure the called procedure only
gets a COPY of the variable. Hence if the called procedure changes its value it only
affects the copy and the original va riable is unchanged. Passing variables by value
therefore protects the original data from being changed accidentally by the called
procedure. Compare the two cases below. TestArgs calls the procedure AddTen
with the arguments passed by reference or by value. The numerical outcomes are very
different!
Sub TestArgs()
 Dim varToPass As Integer
 varToPass = 4
 AddTen varToPass
 MsgBox varToPass ‘ this displays 14
End Sub

Sub Addten(ByRef passedVar As Integer)
 passedVar = passedVar + 10
 Msgbox passedVar ‘ this also displays 14
End Sub
When TestArgs is run the message box display the number 14.
If on the other hand we had passed the argument by value and defined
Sub AddTen(ByVal passedVar As Integer)
 passedVar = passedVar + 10

Msgbox passedVar ‘ this displays 14
End Sub
we would find that the message box in TestArgs would display the number 4, not
14 because AddTen only received a copy of the argument passedVar and could
not change the original. Note that passedVar is NOT available in TestArgs in
either case.

If a data type is specified for an argument passed by reference you must pass a value
of that type. On the other hand if the argument is passed by value, you need not pass
a value of the same data type as the argument.

There is one error that is produced by sloppy typing. If the argument is to be passed
by reference then the statements
Call AddTen(passedVar)
or
AddTen passedVar
will do so. However if the Call is inadvertently omitted from the first syntax so that
you write
AddTen(passedVar) ,
then the argument is passed by value and the outcome is different as in the previous
example . Beware!

Optional arguments
The Optional keyword can be used in the argument list to specify that some of the
arguments to the procedure are optional. If used, all subsequent arguments in the list
must be optional. (Optional arguments must be of the Variant type). For example
Sub List(startRow As Integer, startCol As Integer, _

 5

 Optional newText, Optional oldText)
When this procedure is called we could use
List 2, 4, False, True
List 2, 4, , True

Named arguments
Many built-in functions and methods take several optional arguments. Commas
would be needed for all the missing ones and typing errors are liable to occur. You
can use named arguments instead. VB associates argument names with the procedure.
So the List procedure could be called in the following way.
List newText:= False, startRow:= 2, startCol:= 4
Note the syntax := after each argument name, and also that the named arguments can
be given in any order.

Indefinite number of arguments
Usually the number of arguments in the calling of a procedure must be the same as in
the procedures definition. The use of the ParamArray keyword allows you to
specify that the procedure will accept an arbitrary number of arguments. (The
argument used with ParamArray must be an array of Variant variables). The
ParamArray keyword can only be used with the last argument in the list. The
following procedure will work with any number of arguments.
Function AddIntegers(ParamArray intNumbers())

Dim j As Integer, y As Variant
For Each y In intNumbers

 x = x + y
Next y

 AddIntegers = x
End Function
This procedure could be called by AddIntegers(1, 3, 7) where three
arguments are supplied or by AddIntegers(1, 3, 7, 9, 11, 13, 15)if
seven are given.

Exiting procedures
Procedures usually run from the first statement to the last. Occasionally you may need
to exit earlier, e.g. an error has occured in the procedure that makes it necessary to
quit. Use Exit Sub and Exit Function to exit the procedure in a controlled manner.
Exit statements are convenient but should not be overused as it makes the code
difficult to read and debug.

