
 1

Visual Basic - Variables

Introduction
Having discussed the procedure declaration statement we now need to discuss the
statements contained within the procedure. We deal first with variable, constants and
data type.

As with procedures we need to define the scope of the data. We can also specify the
length of time to keep data in a variable or constant – its lifetime. This can prevent
unexpected re-initialisation of variables and allow retention of a variable’s value
between calls to a procedure. We can also specify the amount of memory allocated to
the data. Keeping this to the minimum for the task obviously uses less memory but
also makes the macros run faster.

Variables
Variables are named areas in memory in which you store data while the workbook
containing the code is open.
The rules for naming variables are the same as those for naming procedures. To
minimise the time you spend understanding and debugging code use
§ each variable for one purpose only,
§ names that indicate what the variable represent in the problem.

By default VB allows you to create variables simply by using them in your code.
(Other languages, e.g. C require you to explicitly declare variables before using
them). Hence the statement
tempVal = Worksheets(1).Range(“A1”).Value
assigns the value in cell A1 to the variable tempVal . This is an implicit variable
declaration. Used in this way VB creates a variable of Variant data type (see later for
the types). [Variant data types can contain any data, including strings, numbers,
dates and objects].
Although it’s convenient to let VB create variables whenever you need them it is a
DANGEROUS practice and is to be discouraged. It can lead to subtle errors which
are hard to track down. For example
tempVal = Worksheets(1).Range(“A1”).Value
Worksheets(1).Range(“A1”).Value = _
 Worksheets(1).Range(“A2”).Value
Worksheets(1).Range(“A2”).Value = temVal
was written with the intention that it swops the contents of cells A1 and A2 – but it
does not. After it’s run cell A1 contains the value previously in cell A2, and cell A2
is empty! Do you see the error?

Explicit declaration of variables is a safer technique and makes the code more reliable.
To explicitly declare a variable use the Dim , Private , Public , or Static keyword to
specify the variable’s scope, lifetime and data type.

Explicit variable declaration helps prevent you from inadvertently
§ creating a new variable by misspelling an existing one,

 2

§ re-using an existing one with a different meaning in the problem, when a new
one should be created, so overwriting the value stored in it.

It also speeds execution of the code as VB doesn’t have to determine the data type of
each variable while the code is running.

The simplest form of explicit variable declaration creates a new variable of Variant
type with procedure-level scope, the value in the variable only being preserved while
the procedure is running, e.g.
Sub AreaOfCircle()
 Dim radius, area
 Radius = InputBox(“Circle radius is “)
 Area = 3.14159 * radius ^ 2
 MsgBox “the area of the circle is “ & area
End Sub

You can specify that VB generates an error message whenever it finds a name used as
a variable that has not previously been declared explicitly as a variable. At the top of
the module put Option Explicit . This forces variables to be declared before
they are used. It is recommended that you use the Option Explicit statement in
all your modules.

Variable scope and lifetime
When you declare a variable in a procedure, only code within that procedure can
access or change the value of the variable. The scope is local to the procedure.
Sometimes you need a variable available to all procedures within the same module or
even to all modules in the same workbook. The scope attached to variable
declarations is

Declaration Scope
Dim or Static within a procedure Procedure only
Dim or Private at top of module Private, available to all procedures in

module
Public at top of module Public , available to all procedures in all

modules in woorkbook

It’s a good idea to use the narrowest scope for your variables as it helps reduce errors.

A variable’s lifetime is the time for which VB preserves the value in the variable. The
values in private and public variables are preserved while the workbook is open.
However if you edit a module all modules in a workbook are recompiled and all
variables are reset to their initial values. Although variables declared by Dim or
Static have the same scope they have different lifetimes. Variables declared with
Static exit the whole time the workbook is open and their values are retained between
calls to the procedure. Variables declared by Dim exist ONLY while the procedure is
running and their values are not preserved nor is the memory allocated to them. The
next time the procedure is run the local variables are re-initialised. Thus to preserve
the value of a local variable you must declare it with the Static keyword. Consider
the following example,
Function RunningTotal(num)

 3

 Static accumulation
 accumulation = accumulation + num

RunningTotal = accumulation
End Function
If accumulation were declared with Dim the previous value would not be
preserved and the function would simply return the value with which it was called!

Private variable are available to all procedures in a module where they are declared.
Public variables are available to every procedure in any module in the workbook
where they are declared. A public variable retains its value from the time a value is
assigned to it until the workbook is closed (or a procedure is edited).

Declaring a variable’s data type
When a variable is declared you can specify a data type for it. This type defines the
kind of data that can be stored in the variable. If you don’t specify a data type VB
automatically give the variable the Variant data type. This is the most general type
as it can handle all types of data and automatically converts between them. You might
be tempted, therefore, to always use this type. However, if, for example, a variable
will only contain a small integer value you can significantly speed up the macro when
performing arithmetic operations if you declare the variable as an Integer.

Data types
Each type takes up a certain amount of memory, allows a specific range of values and
is best suited for particular kinds of data.
Type name Storage size Range
Integer 2 bytes -32,768 to 32,767
Long 4 bytes -2,147,483,648 to 2,147,483,647
Single 4 bytes -3.402823E38 to -1.401298E-45

(negative)
1.4012298E-45 to 3.402823E38
(positive)

Double 8 bytes -1.79769313486232E308 to
–4.94065645841247E-324 (negative)
4.94065645841247E-324 to
1.79769313486232E308 (positive)

Currency 8 bytes -9223372033685477.5808 to
922337203685477.5807

String 1 byte per character 0 to approx 65,500 characters
Boolean 2 bytes True or False
Date 8 bytes January 1, 100 to December 31 9999
Object 4 bytes Any Object reference
Variant 16 bytes + 1 byte for each

character
Null, Error, any numeric value valid
for any numeric data type, any text,
object or array

 4

Decimal numbers can be expressed in their usual form, 3.14159 or as mmmEeee (or
mmmDeee) where mmm is the mantissa and eee is the exponent, e.g. 3.4024E-34 with
mmm = 3.4024 and eee = -34.

Comments on the data types

Integer
If a variable will always contain integer numbers declare it as Integer or Long. If it
may contain fractional numbers declare it as Single , Double or Currency. Beware. A
variable (or constant) of any numerical type can contain any numerical data. Hence
assigning a value of 3.7 to a variable of Integer data type does NOT produce a
computing error (even though 3.7 is not an integer) but will produce a mathematical
error as VB rounds off (it does NOT truncate) the fractional part before assigning it to
the Integer. Thus the value becomes 4 in this example.

A variable of the numeric data types is initialised to zero (0) after it’s declared and
before you assign a value to it.

String
This data type will always contain a character string and not a numeric value. It’s
initial value is “” (the empty string). When assigning a value use double quotation
marks e.g.
dataName = “Giuseppe Verdi”
dataName = Left(dataName, 8) ‘ gives “Guiseppe”

Boolean
These contain a logical value i.e. True or False . The initial value is False.

Date
These contain date and time values , e.g. someDate = #3-6-99 13:21#. The
initial value is 12:00:00 on December 30 1899.

Object
These contain a reference to an object within Excel. You assign an object variable
with the Set statement, e.g.
Dim wks As Object
 Set wks = Worksheets(1)
Object variables are initialised to the value Nothing.

Variant
This type allows the variable to hold most types of data. The initial value is Empty.
VB automatically performs the conversions e.g.
Private varValue ‘ Variant type by default
varValue = “17” ‘ contains two character string 17
varValue = varValue – 9 ‘ now contains numeric value 8
varValue = “VP” & varValue ‘ now contains the three
 ‘ characters VP8

 5

Constants
You may need to use quantities that have constant values (e.g. p). A constant is a
name that takes the place of the number or string that doesn’t change. It’s like a
variable but you cannot modify it. There are two types of constants,

1. Built-in (or intrinsic) provided by the application. All Excel built-in constants
start with xl in the name.

2. Symbolic or user-defined.
You declare a constant using the Const keyword. You can specify its scope (private
by default, or public), e.g.
Const constPi = 3.14159
Const constCodeName As String = “Enigma”
Const constTwoPi = constPi * 2

