European

XFE

Abstract

The detectors to be used at the European XFEL have to deal with the unique time structure of the machine,
delivering up to 2700 pulses, with a repetition rate of 4.5 Mhz, ten times per second, the very high photon flux of up
to 102 photons/pulse and the need to combine single-photon sensitivity and a large dynamic range. These machine
properties present a challenge for the large-area 2D imaging detectors to be used at European XFEL.

In order to thoroughly characterize the detectors, optimize their performance and the required calibration concepts,
as well as give estimates of the expected scientific performance in a wide range of experimental scenarios, we are
currently pursuing different simulation projects.

Initially, small self-contained simulation tools were developed e.g. for estimating the performance of calibration
sources or for estimates on the performance of the large 2D-pixel detectors, results of which are presented here.

Additionally, we are currently developing a large scale simulation toolkit, which will be tightly integrated into the
European XFEL software framework, Karabo [1]. It is envisaged that this framework will be available to XFEL facility
users and allow the simulation of the 2D-pixel detectors used at European XFEL - starting from the photons

incident on the detector down to the level of the read-out electronics.
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Figure 2: Geant4 simulation of the X-ray source setup for
target materials C, Al, Cu, Mo, and Au consisting of 20
million primary electrons at 50kV. The target angle was set to
18°. Counts are given for a plane detector of infinite size. The
simulation correctly reproduces the fluorescence lines for each
of the simulated target materials.

Figure 1: The Geantd4 detector
geometry for the X-ray source
simulation. Electron gun and target
position/angle are fully parameterized
and accessible through macro
functions as is target material

selection.
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Figure 4: Geant4-based quantum efficiency simulations for the three large 2D-pixel detectors with Mhz readout
capability at European XFEL. From left to right the AGIPD, LPD and DSSC are shown. The individual absorption
edges, determined by the respective detectors’ entrance windows, are visible. For each detector the efficiency was
simulated at different incidence angles: 0°, 20°, 30°, , 00° and . Additional simulations were made to verify
that the energy-dependent variation of efficiency is due to back scattering (reduction for large angles at small
energies) and geometric length’ (enhancement for large angles at high energies).
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Figure 5: An early diagram giving an overview of the design considerations for X-CSIT, which will be written in C++
including use of the boost library. This roughly shows the class layout of the software and framework. The photon
and high energy electron tracking is shown in red, the charge cloud simulation in yellow, the electronics and front-
end module simulation in green and auxiliary components in blue.
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Figure 6: Quantum efficiency and absorption graphs with 100k photons per energy bracket. The positions of
charge deposition was extracted from Geant4, passed back to the framework, then on to a python link and
displayed using a matplotlib script. The plots are as expected, demonstrating the simulation and data framework is
working correctly.
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