The European Free Electron laser (EuXFEL) facility will generate coherent and intense X-ray flashes at up to 27000 flashes per second with a ~4.5 MHz bunch delivery rate. Each flash is intense enough to produce a full diffractive picture of scattering targets.

There are three detector designs being developed namely, AGIPD, LPD and DSSC. These three differ in terms of the functionality and the technologies involved in the design, however the overall structure which consists of sensor modules with an ASIC and Front End Modules (FEM) is similar.

The Clock and Control (CC) system provides the synchronising clock and bunch and train related information to the FEM electronics. It also receives status feedback from FEMs and distributes the veto signals to the FEMs to reject some of the detector data.

The connections to the FEM boards are realised on AC-coupled LVDS links on CAT5 RJ45 cables. The RTM board provides the number of channels to support up to 16 FEM modules for a 1 MPixel 2D detector.

The connections to the CC board are realised on AC-coupled LVDS links on CAT5 RJ45 cables. The RTM board provides the number of channels to support up to 16 FEM modules for a 1 MPixel 2D detector.

The detectors for the 2D camera systems will be able to capture up to 5000 images/second with a resolution of 1 MPixel.

The CC system receives clock and system information from the EuXFEL Timing Receiver (TR) through MTCA.4 crate backplane. Two low-jitter radial clock signals TCLKA,B and 8 bussed MLVDS lines are for the system clocks and the trigger and telegram data respectively.

The CC hardware/firmware system is designed to provide the flexibility, extensibility and scalability to support possible future upgrades to the DAQ. It also reduces the cost and effort for the development of such system by using a general-purpose MTCA.4 FPGA board as its processing platform and an RTM to provide the custom functionality.