Design and Development of Electronics for the EuXFEL
Clock and Control System

Erdem Motuk, Martin Postranecky, Matthew Warren, Matthew Wing
Department of Physics and Astronomy, University College London
as part of EuXFEL, WP76: DAQ and Control

The European Free Electron laser (EuXFEL) facility will generate coherent and intense X-ray flashes at up to 27000 flashes per second with a ~4.5 MHz bunch delivery rate. Each flash is intense enough to produce a full diffractive picture of scattering targets.

The detectors for the 2D camera systems will be able to capture up to 5000 images/second with a resolution of 1MPixel. There are three detector designs being developed namely, AGIPD, LPD and DSSC. These three differ in terms of the functionality and the technologies involved in the design, however the overall structure which consists of sensor modules with an ASIC and Front End Modules (FEM) is similar.

The Clock and Control (CC) system provides the synchronising clock and bunch and train related information to the FEM electronics. It also receives status feedback from FEMs and distributes the veto signals to the FEMs to reject some of the detector data.

The MTCA.4 AMC board (DAMC2) is designed by DESY as a multi-purpose FPGA hardware platform for various projects in DESY and provides the processing capability for the CC functionality.

The firmware block diagram for the CC board
The FAST TX module generates the FAST data to the FEMs. The telegram RX module receives and decodes the information coming from TR board on a clock and data pair through the backplane.

The connections to the FEM boards are realised on AC-coupled LVDS links on CAT5 RJ45 cables. The RTM board provides the number of channels to support up to 16 FEM modules for a 1 MPixel 2D detector. Each channel comprises 4 LVDS pairs on an RA45 connector:
• Output clock (FAST clock): ~99 MHz clock derived from the 4.5 MHz bunch clock.
• Output data (FAST data): trigger start signal and train ID data
• Veto: bunch reject data encoded on a either 99 or 4.5 MHz clock
• Status: status feedback from the FEMs

The CC system receives clock and system information from the EuXFEL Timing Receiver (TR) through the MTCA.4 crate backplane.

The CC hardware/firmware system is designed to provide the flexibility, extensibility and scalability to support possible future upgrades to the DAQ.
It also reduces the cost and effort for the development of such system by using a general-purpose MTCA.4 FPGA board as its processing platform and an RTM to provide the custom functionality.