ZEUS UK Collaboration Status Report

— Part 1 —

Richard Hall-Wilton
University College London

1st July 2002
Overview

- Introduction to HERA and ZEUS
- Detector Status
 - Central Tracking Detector
 - Microvertex Detector
 - Global Tracking Trigger
 - Transverse Polarimeter Upgrade
- Physics Results on Heavy Flavour Production
Role of UK within ZEUS

▷ Spokesman

▷ Vital UK role in data taking
 ▷ Run coordinators, Shifts, Component coordination, Background studies

▷ Joint coordinators in 3 (of 5) physics groups

▷ Monte Carlo and Tracking Coordinators

▷ Leading a wide range of analyses

ZEUS UK plays an essential role within ZEUS
HERA — World’s only e^p collider

HERA Physics program:
- Understanding p and γ structure
- QCD studies
- Electroweak tests
- Searches

HERA luminosity upgrade (2000-1) — Increase in specific luminosity

Recommissioning: $L_{spec} = 1.4 \times 10^{30} cm^{-2} s^{-1} mA^{-2}$ (design 1.8×10^{30})

- Encouraging
HERA Recommissioning

- Initially reproducability of beam orbits was poor
 - Machine now better understood
- Background conditions in experimental areas too high
 - New collimators installed in March reduced backgrounds significantly
 - Backgrounds for ZEUS still too high to operate detector effectively
- CTD essential for solving problems

ZEUS and HERA working closely together to solve this problem

CTD SL1 currents, positrons only

- positrons only
- lumi 2000 (lp=99.3mA)
- positrons only 2000
- positrons only, 12 GeV

Richard Hall-Wilton, UCL
ep Collisions

Zeus Run 40747 Event 1866

ep collisions observed at HERA II
Significant upgrades to the ZEUS detector

- Microvertex Detector ➔ more later!
- Global Tracking Trigger ➔ more later!
- Straw Tube Tracker ➔ Tracking in forward direction
- Luminosity Monitor ➔ 3 detectors installed
- Polarisation ➔ more later!
Central Tracking Detector (CTD)

- **Primary ZEUS UK contribution** ▶ CTD essential for ZEUS running
- Very successful throughout HERA I
- Possibly observed "Malter" effect in 2000 ▶ Fixed
 ▶ High Voltage Breakdown problems not observed since then
- dE/dx now understood for physics analysis
 ▶ dE/dx used in several results in past 2 years
- Essential for all 3 levels of the trigger at HERA I and II

- CTD used in virtually every ZEUS result published from HERA I
 ▶ Will be needed for every result from HERA II
UK MVD Responsibilities:

- Clock + Control Electronics
- Laser Alignment System
- Patch box
- Installation

MVD installed March - April 2001

MVD motivated by strong UK physics program:

Understand charm and beauty production in QCD
Micro Vertex Detector (MVD) Commissioning

- UK people heavily involved in pre-installation system test
 - Provided shift people and visualisation software

- Involved in post-installation commissioning

- MVD commissioned in ZEUS DAQ chain for July 2001 cosmic test

- Offline alignment ongoing

MVD now installed + works in situ!
Global Tracking Trigger (GTT) Algorithm

- Integrate tracking from CTD, MVD and STT at Second Level Trigger
 - Harsh environment ▶ high contribution from beam gas
- Operate within existing CTD SLT latency (Mean ~ 10 ms)
- CTD+MVD algorithm written and tested ▶ compared to current offline

▶ Track Resolutions comparable or better than current offline

Event vertex

- \(\sigma(z) \sim 355 \mu m \)
- cf 1mm current offline
- cf 8cm present CTD-SLT

Combined CTD + MVD tracks are available at the SLT
Physics Motivation for Polarisation

- Spin rotators installed around HERA experiments during shutdown
 - Polarisation possible after upgrade

AIM: 4 data sets from HERA II:

\[e^+, e^-; P > 0, P < 0 \]

- Fully investigate structure functions and electroweak physics
 - \(\frac{\Delta P}{P} < 1\% \) required

Transverse Polarimeter upgrade - A ZEUS UK Contribution

Richard Hall-Wilton, UCL
Transverse Polarimeter Upgrade

- Built, calibrated and installed
- Testbeam in CERN and DESY
 - Results meets specification

- Silicon detector
 - $\sigma(y) < 50 \mu m$, S/N ~ 21

- TPOL Calorimeter
 - $\sigma(E)/E \sim \frac{25}{\sqrt{E}} \mp 4\%$

- Installed November 2001

- Post-installation
 - Operated successfully with unpolarised beams
 - Measuring bunch-by-bunch polarisation
Already a very successful physics program from HERA I

- 113 Papers from ZEUS
- 131 pb$^{-1}$ data taken
 ▶ Many more results to come ...

- Talk about results in heavy flavour physics here
- Results on Structure Functions, Electro-Weak, Jets, Searches ...
 ▶ See next talk ...
Heavy Flavour Physics — Motivation

- Boson-Gluon-Fusion dominant contribution
 - Sensitive to gluon content of proton
- m_c and m_b give a hard scale to process
 - Good testing ground for QCD
- Q^2 and E_T^{jet} can also provide a hard scale
 - Multi-scale problem

- Beauty production in $p\bar{p}$ and e^+e^- above expectations
 - What about ep collisions?

Heavy Flavour Physics is a major unresolved topic in QCD
Heavy Flavour Physics

Topics Covered Here:

- Charm production in Deep Inelastic Scattering
- Diffractive Charm
- Charm + Jets
 - Charm in the photon?
 - Fragmentation
- Beauty production

All results shown here led by UK people

Topics not covered here:
D* meson branching ratios
Alternative D* meson decay channels
Charm in Deep Inelastic Scattering

- Important for understanding charm in the proton
- Tag charm by D^* mesons
- Vast improvement in errors from previous results
- First time $\sigma(e^-)$ measured at HERA
- $\sigma(e^+)$ and $\sigma(e^-)$ in agreement with pQCD
Diffractive Charm

- **Diffraction at HERA is important topic**
 - Characterised by a large rapidity gap in the final state
 - Exchange of colour singlet ➔ Often termed pomeron
 - What is the diffractive exchange?

- **Charm is sensitive to gluons**
 - Gluonic content of pomeron

- **Models with 2 gluon exchange seem to be able to describe results better**

- **Significant fraction of DIS charm production is diffractive (7%)**

Graph:

- *ZEUS 95-97 prot. diss.*
- *BJLW qq*
- *ACTW fit B*
- *SATRAP-CDM*
Charm and Jets

Now high enough statistics to look at charm + dijet production

- In resolved events, photon acts as a source of partons
- Resolved charm production → sensitive to γ structure
- Charm with dijets give access to the production dynamics
- Charm Fragmentation can be studied

Direct

High x^{OBS}_γ

Resolved

Low x^{OBS}_γ
Charm and Jets

- **Idea**: Probe production mechanism
- **Direct**: Approx. Symmetric
 - Boson Gluon Fusion
- **Resolved**: Strong asymmetry in photon direction

\[e^+p \rightarrow D^{*\pm} + \text{dijets} + X \quad M_{jj} > 18 \text{ GeV} \; ; \; |\eta| < 0.7 \]

\[x_{\gamma}^{\text{obs}} < 0.75 \]

\[x_{\gamma}^{\text{obs}} > 0.75 \]

Strong evidence for charm in the photon
Is charm fragmentation universal?

Measure fragmentation:
charm → D* meson

Energy fraction, z, carried by D*

Strong sensitivity to ϵ

Data similar to that from e^+e^-

Precision competitive with LEP - very different production process for charm
Beauty Production

- Electrons from semi-leptonic heavy quark decays
 - Tag using dE/dx in CTD
 - Technically difficult
 - Sensitive to b quark production
 - 15% contribution from beauty
 - HERA results on beauty above NLO pQCD predictions
 - In both Deep Inelastic Scattering and photoproduction
 - Statistical uncertainty still large

b cross section at HERA

![Graph showing HERA II data](image)

<table>
<thead>
<tr>
<th>Label</th>
<th>Data</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 μ p_t^{rel}</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>H1 μ impact param. (prel.)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ZEUS e^+ p_t^{rel}</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ZEUS μ p_t^{rel} (prel.)</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

HERA II data will be very interesting