PPRP, 1st July 2002, RAL

ZEUS UK Collaboration Status Report

— Part 1 —

Richard Hall-Wilton University College London 1st July 2002

Overview

Introduction to HERA and ZEUS

• Detector Status

- Central Tracking Detector
- Microvertex Detector
- Global Tracking Trigger
- Transverse Polarimeter Upgrade
- Physics Results on Heavy Flavour Production

Role of UK within ZEUS

Spokesman

- Vital UK role in data taking
 - ▷ Runcoordinators, Shifts, Component coordination, Background studies
- Joint coordinators in 3 (of 5) physics groups
- Monte Carlo and Tracking Coordinators
- Leading a wide range of analyses

ZEUS UK plays an essential role within ZEUS

HERA — World's only *ep* collider

HERA Physics program:

- \triangleright Understanding p and γ structure
- > QCD studies
- Electroweak tests
- ▷ Searches

HERA luminosity upgrade (2000-1) — Increase in specific luminosity

Recommissioning: $L_{spec} = 1.4 \cdot 10^{30} cm^{-2} s^{-1} m A^{-2}$ (design 1.8 $\cdot 10^{30}$) \triangleright Encouraging

HERA Recommissioning

- Initially reproducability of beam orbits was poor
 - Machine now better understood
- Background conditions in experimental areas too high
 - New collimators installed in March reduced backgrounds significantly
 - Backgrounds for ZEUS still too high to operate detector effectively
- CTD essential for solving problems

ZEUS and HERA working closely together to solve this problem

ep collisions observed at HERA II

Upgrade of the ZEUS Detector during Shutdown

• Significant upgrades to the ZEUS detctor

▷ Microvertex Detector → more later!

 \triangleright Global Tracking Trigger \rightarrow more later!

 \blacktriangleright Straw Tube Tracker \rightarrow Tracking in forward direction

ightarrow Luminosity Monitor ightarrow 3 detectors installed

 \triangleright Polarisation \rightarrow more later!

Central Tracking Detector (CTD)

- Primary ZEUS UK contribution > CTD essential for ZEUS running
- Very successful throughout HERA I
- Possibly observed *"Malter"* effect in 2000 > Fixed
 - High Voltage Breakdown problems not observed since then
- dE/dx now understood for physics analysis
 - dE/dx used in several results in past 2 years
- Essential for all 3 levels of the trigger at HERA I and II
- CTD used in virtually every ZEUS result published from HERA I
 Will be needed for every result from HERA II

Micro Vertex Detector (MVD) Installation

UK MVD Responsibilities:

- Clock + Control Electronics
- Laser Alignment System
- Patch box
- Installation

• MVD installed March - April 2001

MVD motivated by strong UK physics program:

Understand charm and beauty production in QCD

Micro Vertex Detector (MVD) Commissioning

UK people heavily involved in pre-installation system test
 Provided shift people and visualisation software

- Involved in post-installation commissioning
- MVD commissioned in ZEUS DAQ chain for July 2001 cosmic test
- Offline alignment ongoing

MVD now installed + works in situ!

Global Tracking Trigger (GTT) Algorithm

- Integrate tracking from CTD, MVD and STT at Second Level Trigger
 Harsh environment > high contribution from beam gas
- ullet Operate within existing CTD SLT latency (Mean \sim 10 ms)
- CTD+MVD algorithm written and tested > compared to current offline
- Track Resolutions comparable or better than current offline

Event vertex

 σ(z) ~ 355µm

 cf1mm current offline

 cf8cm present CTD-SLT

Combined CTD + MVD tracks are available at the SLT

Physics Motivation for Polarisation

- Spin rotators installed around HERA experiments during shutdown
 - Polarisation possible after upgrade
- AIM: 4 data sets from HERA II:

e⁺, **e**⁻ ; **P** > **0**, **P** < **0**

▶ Fully investigate structure functions and electroweak physics ▶ $\frac{\Delta P}{P} < 1\%$ required →

Transverse Polarimeter upgrade -A ZEUS UK Contribution

1st July 2002

Transverse Polarimeter Upgrade

- Installed November 2001
- Post-installation
 - Operated successfully with unpolarised beams
 - Measuring bunch-by-bunch polarisation

HERA I

- Already a very successful physics grogram from HERA I
- 113 Papers from ZEUS
- ullet 131 pb $^{-1}$ data taken

▷ Many more results to come ...

- Talk about results in heavy flavour physics here
- Results on Structure Functions, Electro-Weak, Jets, Searches
 - See next talk . . .

Heavy Flavour Physics — Motivation

- Boson-Gluon-Fusion dominant contribution
 - Sensitive to gluon content of proton
- \bullet m_c and m_b give a hard scale to process
 - Good testing ground for QCD
- $\bullet~\mathbf{Q}^2$ and \mathbf{E}_T^{jet} can also provide a hard scale
 - Multi-scale problem

Beauty production in pp̄ and e⁺e⁻ above expectations
 What about ep collisions?

Heavy Flavour Physics is a major unresolved topic in QCD

Heavy Flavour Physics

Topics Covered Here:

- Charm production in Deep Inelastic Scattering
- Diffractive Charm
- Charm + Jets
 - Charm in the photon?
 - Fragmentation
- Beauty production

All results shown here led by UK people

Topics not covered here:

 D^{\star} meson branching ratios

Alternative D^* meson decay channels

PPRP, RAL

ZEUS

Charm in Deep Inelastic Scattering

Diffractive Charm

- Diffraction at HERA is important topic
 - Characterised by a large rapidity gap in the final state
 - Exchange of colour singlet > Often termed pomeron

What is the diffractive exchange?

Charm and Jets

Now high enough statistics to look at charm + dijet production

- In resolved events, photon acts as a source of partons
- \bullet Resolved charm production \rightarrow sensitive to γ structure
- Charm with dijets give access to the production dynamics
- Charm Fragmentation can be studied

Charm and Jets

- Idea: Probe production ZEUS mechanism $\frac{1/\sigma \text{ (all } \mathbf{x}^{obs}_{\gamma}) d\sigma/d\cos\Theta}{2}$ **ZEUS (prel.) 1996-2000 PYTHIA** $e p \rightarrow D^{*\pm} + dijets + X$ • Direct: Approx. Sym-**HERWIG** $M_{ii} > 18 \text{ GeV}; |\bar{\eta}| < 0.7$ CASCADE metric **PYTHIA: Direct** Boson Gluon Fusion $x_{\gamma}^{obs} < 0.75$ Resolved: Strong 1 assymetry in photon $x_{\gamma}^{obs} > 0.75$ **PYTHIA: Resolved** direction 0.5 0 -0.6 -0.4 0.2 -0.8 -0.2 0 0.4
- **Strong evidence for charm in the photon**

0.6

0.8

 $\cos\Theta$

Charm Fragmentation

ZEUS

- Is charm fragmentation universal?
- Measure fragmentation: charm \rightarrow D^{*} meson
- Energy fraction, z, carried by D^{*}
- \bullet Strong sensitivity to ϵ
- Data similar to that from e^+e^-

Precision competitive with LEP - very different production process for charm

Beauty Production

- Electrons from semi-leptonic heavy quark decays
- ▷ Tag using dE/dx in CTD
- Technically difficult
- Sensitive to b quark production
- ▷ 15% contribution from beauty
- HERA results on beauty above NLO pQCD predictions
- In both Deep Inelastic Scattering and photoproduction
- Statistical uncertainty still large

HERA II data will be very interesting

b cross section at HERA

