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Abstract

An investigation into the effect that quantum chromodynamics, such as
gluon emission, has upon the transverse momentum of Z0 bosons produced in
pp̄ collisions.

A simulation of the CDF’s Central Electromagnetic (CEM) calorimeter
was written. HERWIG events were run through the simulation to investigate
how the energy resolution of the CEM affect the production of Z0 bosons. It
was found that with increased κ the peak of the PT (Z) increased. The affect
of κ was found to be significant, and the value of κ was derived by means
of fitting mass distributions to MZ data from the CDF. κ was calculated at
1.5065 ± 0.2368; the χ2 for the fit was 123.383 with 138 degrees of freedom,
corresponding to passing a 80% significance test.

A functional form was chosen to represent PT (Z), run through the detector
simulation, and then compared with PT (Z) data from the CDF. The parame-
ters of the best fit were: P1 equal to 0.1311±0.0103; P2 being 0.0302±0.0262;
P3 equal to 6.8299± 0.4895; P4 being 0.6070± 0.0607. The χ2 of the fit was
38.9175 with 46 degrees of freedom, passing a 76% significance test.
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1 Background Theory

1.1 W± and Z0 bosons

1.1.1 The Standard Model

The Standard Model is the currently accepted theory explaining the nature of
sub-atomic particles, and their interactions. It allows for three types of particle:
leptons, quarks and force mediators (gauge bosons). The model came into being
during the late 1970’s as a combination of all the previous work into elementary
particle physics during the last century.

As a result of their experiments, physicists believe that there are four funda-
mental forces, three of which can be explained using the Standard Model: the
electromagnetic force, the strong force, and the weak force. The mediators of the
weak force are the W± bosons and the Z0 boson.

The Standard Model does not account for gravity, however, but it is hoped that
with greater research that it may one day be tied with the other three fundamental
forces.

1.1.2 Importance of W± mass

The mass of the W± is an important test of the validity of the Standard Model.
Yet, an a priori prediction of the W± mass is not possible, it must be inferred from
the masses of other particles such as top quark. Accurate measurements of the top
mass and W± mass would make the constraints upon things such as the Higgs
mass, smaller. The current measurement of the W± mass is 80.412± 0.0060 GeV,
yet the particle physicists want to reduce the uncertainty to less than 30 MeV;
such accuracy is not currently possible with available detectors. An alternative
approach is to model the W± mass in a detector simulation, and then compare
this with the experimental results.

Figure 1 shows how the W± and top masses affect the Higgs mass predictions.
Should the uncertainty in the masses of the the W± and top be reduced, then the
Higgs mass bands would narrow. Thus, the more precise the measurement of these
masses, the more precise we hope we can be about Higgs mass predictions. There
are various Higgs mass predictions as a result of work conducted by various collab-
orations and experiments. The DØ and CDF experiments, both at the Fermilab,
collide protons and anti-protons at the Tevatron. NuTeV is another Fermilab ex-
periment, which investigates neutrino-neutron scattering. LEP2 was an accelerator
at CERN, which collided electrons and positrons; one of the results from the its
OPAL experiment was a good measurement of the W± mass, which is indicated.
The Minimal Supersymmetric Standard Model (MSSM) predictions are also shown,
this is the Standard Model prediction, but modified with the assumption that the
hypothetical supersymmetric particles exist.
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Figure 1: Predicted Higgs mass for values of the top and W± mass. Limits and
predictions as a result of various experiments are also shown (Image credit: Fermi
National Accelerator Laboratory).

1.1.3 Glashow-Weinberg-Salam Theory

The Glashow-Weinberg-Salam (GWS) theory is the current model for explaining
the nature of weak interactions. One crucial result of the GWS scheme is the ratio
of the masses of the weak bosons:

MW

MZ
= cos θW (1)

In the above equation θW is the Weinberg angle, where sin2 θW has been ex-
perimentally measured to be 0.23101 ± 0.00027. This corresponds to a θW of
28.726 ± 0.0014◦. During the 1990’s, many experiments went into determining
the mass of the Z0, such as OPAL at CERN’s LEP. It has been found to be
91.1875 ± 0.0021 GeV. But, if one uses (1) then the mass of the W± should be
79.964 ± 0.0022 GeV. This contradicts what has been found experimentally, and
indicated that there is something amiss.

One reason for the difference is that these calculations are only to leading order
in perturbation theory. There are many higher order processes, examples of which
are illustrated in figure 2. These contribute to the measured mass of the W±.
Therefore, a precise measurement of the W± mass is crucial to our understanding
of what may lie beyond the Standard Model. It would also be useful in attempting
verify the Standard Model beyond leading order.
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Figure 2: Feynman diagrams showing some loop corrections to leading W± prop-
agation. The top-bottom quark loops dominate the predicted Higgs loop.

1.2 W± and Z0 Production

1.2.1 Feynman viewpoint

One method of producing Z0 and W± bosons is via pp̄ collisions in a particle
accelerator, such as the Collider Detector at Fermilab (CDF).

The Feynman representations of the leading order boson production, figure 3,
show the basic weak force interactions vertices encountered. This is, however, a
näıve view of the processes, a basic principle of quantum chromodynamics (QCD)
is that all free particles must be colourless; free, or unbound quarks cannot exist

Figure 4 is a more realistic case: the quarks inside the proton and anti-proton
collide with one another, but they may be gluon exchanges between the interacting
quark and those left in the proton remnant to conserve colour. The quarks not
involved in the qq̄Z0 vertex decay, those in the proton remnant, fragment into
jets of hadronic particles. The decay of these extra quarks produces even more
gluons. In addition to this process, there may be QCD radiation of gluons from
the interacting quarks before they collide. This is far removed from the simple
picture as depicted in figure 3(c). The added complexity as a result of the gluon
interference brings added experimental problems with it when trying to determine
which jet corresponds to which gluon decay.

1.2.2 Schematic viewpoint

Schematically, the pp̄ are fired at one another in a straight line, with the decay
products being scattered off at an angle, the scattering angle, θ, to the incident
beams. The quarks that fragment into the jets do not collide, thus the jets are
projected along the path of the incident quark, rather than being deflected. The
problem with the gluon interference is that it affects the momenta of the incoming
quarks in the transverse plane. If one arbitrarily chooses the path of the incoming
quarks to be the ẑ-axis, then the transverse plane exists in the x̂ and ŷ directions.
In the näıve regime, all the incoming quarks only have all their momenta projected
in the z-direction; this is not the case when gluon radiation is considered.

Highly energetic quarks are prone to QCD radiation of gluons, affecting the
momenta of the quarks. Whereas before one could assume that the quarks had
no momentum in the transverse plane, the emission of a gluon would cause the
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(a) The formation of a W− boson.
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(b) The formation of a W+ boson.
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(c) The formation of a Z0 boson (qq̄

represents either a uū or dd̄ pair).

Figure 3: The Feynman representation (to leading order) of the formation of the
weak force bosons from a pp̄ collision. It is assumed that the force mediators are
travelling forward in time, and that time runs from left to right.

�q

q̄

Z0
e−

e+

Figure 4: A more realistic process for the production of a Z0 from pp̄ collision. The
quarks not involved in the collision fragment into hadronic jets (while a uū process
is depicted, it could easily be a dd̄ collision). QCD radiation of the colliding quarks
is also shown.

4



�q q �q

Figure 5: The effect of a quark emitting a gluon prior to collision. Whereas quark
on the right is still travelling in the same path as before, the emission of a gluon
from quark on the left has affected the momentum in the transverse plane.

quark’s trajectory to change. These emitted gluons then decay into hadronic jets,
in a direction opposing that of the formed boson.

1.3 Transverse momentum uncertainty

The uncertainty in the initial transverse momentum has a sizable effect upon the
error estimates of W± calculations. One cannot directly observe the bosons, they
are virtual particles; one can only observe the products from the decay of the boson.
For the W± bosons, these are electrons, positrons, and their respective neutrinos
and anti-neutrinos. However, neutrinos are deeply penetrating and cannot be easily
detected. For this reason, in order to work out the fraction of momentum being
carried by the neutrino, one has to assume the initial momentum of the W±,
the quantity one wishes to calculate. This is a problem, for MW is derived from
calculations involving the recorded mass in the transverse plane, the transverse
mass.

No such problem exists for the decay of the Z0, its decay products are electrons
and positrons; the properties of the initial boson can be easily reconstructed from
experimental signatures. The kinematics of W → eν are very similar to Z → e−e+,
therefore one may be able to estimate the transverse momentum distribution for
W± from corresponding Z0 distribution.

1.4 Comparison of the weak bosons

The Z0 and W± are predicted, by the Standard model, to have similar decays.
An inspection of the Feynman diagrams leads one to appreciate the similarities
between the processes. Both decay into leptonic products, with amplitudes akin
to one another arising from the vertices. The same can be said of the quark-boson
vertices, both introduce similar contributions to the observed properties.

Both bosons are described by the massive propagator, albeit with slightly dif-
ferent masses involved. However the general form of the propagation term is the
same in both cases.
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Figure 6: The kinematics of a two parton scattering process with two decay prod-
ucts. P1 and P2 are the incident pp̄, P3 and P4 are the leptonic decay products.
The interacting quarks are P5 and P6. The quarks from the proton remnant are
P7 and P8. The QCD radiation gluons are not depicted, but they would affect P5

and P6.

2 Kinematics

2.1 Two-body processes

The properties of a particle are generally represented using 4-vector momentum,
ie. (E,Px, Py, Pz). The benefits are apparent when attempting to reconstruct the
properties of hidden particles from their decay products; adding all the 4-momenta
of the decay particles together allows one to reproduce the 4-vector of the particle
that produced them.

In the example above, figure 6, the two decay products, P3 and P4 were pro-
duced from the decay of the virtual particle involved in the process. Therefore,
adding P3 and P4 together will produce a 4-vector momentum that describes the
unseen particle. The W± decay produces neutrinos, so only P3 or P4 may be
known, not both; both are observed in the decay of the Z0. However, the proper-
ties of the hidden boson may be found by considering the particles that formed it,
namely P5 and P6. Yet, these particles are never observed, but the other quarks
from in the incoming protons may be detected. They are likely to disappear down
the beam pipe of a detector, but they may miss, and strike part of the detector.
Thus, if fortunate, P7 and P8 may be inferred from the properties of low angle jets,
produced by the quarks fragmenting into hadrons. Using these, and knowledge
of the incoming protons, P1 and P2, the properties of the quarks, and thus the
properties of the boson, may be derived. This method is used to observe the W±,
but it is severely limited by how much data is lost by the remaining quarks not
being measured by the detector.
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2.2 Co-ordinate systems

The decay particles from a collision are better described using a spherical coordi-
nate system, thus the following conversion into Cartesian is useful:

Px = P sin θ cos φ (2)
Py = P sin θ sinφ (3)
Pz = P cos θ (4)

The total momentum may be calculated from the recorded energy and knowl-
edge of the rest mass of the decay product, or, trivially, from the Cartesian com-
ponents:

p =
√

E2 −m2
o =

√
P 2

x + P 2
y + P 2

z (5)

2.3 Transverse plane

In collision physics, at the point of interaction, particles are directed toward one
another in a straight line. The transverse plane can be defined as the plane per-
pendicular to the direction of the incoming particles. In general, the direction of
the colliding beams is designated as ẑ, thus, the transverse plane is that in the x̂
and ŷ dimensions. The hadrons that result from the decay of the proton remnant
are usually lost down the beam pipe. It is for this reasons that measurements are
made in this plane.

Using Cartesian coordinates, and taking the path of the incoming particles to
be ẑ, then the transverse momentum, energy, and mass can be defined:

ET =
√

E2
x + E2

y (6)

PT =
√

P 2
x + P 2

y (7)

MT =
√

E2
T − P 2

T (8)

2.4 Rapidity and pseudorapidity

The rapidity, y, is an important quantity in the kinematics of particle collisions.
It is defined as:

tanh y =
Pz

E
(9)

The rapidity is a useful because ∆y is Lorentz invariant, and may be used to
convert between frames of reference. If one takes the limit where the energy of
the particle is much larger than the mass of the particle, then the pseudorapidity,
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η, may be used as an approximation (where θ is the scattering angle between the
incident beam and the scattered products):

η = − ln tan
θ

2
(10)

In general, the pseudorapidity is a more useful measure of angle than the scat-
tering angle. Given that particle detectors are generally cylindrical about ẑ, then
any point on this cylinder may be described by (η, φ).
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Figure 7: Outline of the cyclotrons at Fermilab. (Image credit: Fermi National
Accelerator Laboratory)

3 The CDF detector

3.1 Overview

The Collider Detector (CDF) is one of the detectors at the Fermi National Acceler-
ator Laboratory (Fermilab), a high-energy particle physics laboratory in Batavia,
Illinois (45 miles from Chicago). The main accelerator at Fermilab is the Tevatron,
which could accelerate protons and anti-protons up to energies of 1.8 TeV during
its first run, the CDF Run I experiment, from which the data in this project was
obtained.

Like all cyclotrons, the Tevatron accelerates protons and anti-protons around
in loops, gaining energy, before directing the particle beams toward one another
inside a detector, figure 7.

Similar to most detectors in high energy particle physics, the CDF is not one
detector, but a combination of several different detection systems. A majority of
the detection systems are orientated with a cylindrical geometry around the beam
pipe.

The innermost systems are tracking systems, used to determine the trajectories
of charged particles. The first of these systems in the CDF is a silicon vertex
detector (SVX). This type of tracking detectors has a very high spatial resolution,
and is used to make precise measurements of very short-lived particles close to the
beam pipe. The SVX has a spatial resolution of 30–50µm. Silicon vertex detectors
are expensive, and it is not feasible to have an entire tracking system using the
material. Therefore, there is a cheaper drift chamber, the Central Outer Tracker
(COT), surrounding the SVX. The COT has a spatial resolution of 150–200µm.
Again, like the SVX, drift chambers can only be used to observe the paths of
charged particles.
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Figure 8: The different detection systems in the CDF. The systems of note are
the central and plug electromagnetic calorimeters, which have detection ranges of
|η| 6 1 and 1 < |η| 6 2.4 respectively (Image credit: Fermi National Accelerator
Laboratory)

The electrons and positrons given off from the decay of W± and Z0 can be
observed by these systems, but the neutral neutrinos and anti-neutrinos cannot,
one reason why neutrinos are difficult to observe in experiments. Neutrinos can
only interact with matter via the weak force, therefore they only leave a tiny energy
loss as they leave the detector. It is estimate that one interaction in every 1010–1021

is a neutrino.
Measurement of the trajectories is very important in particle identification when

the data is compared with the energy signatures observed by the calorimeters.
In between the tracking chambers and the calorimeters is a solenoid. This

subjects the entire CDF apparatus to a magnetic field, allowing one to derive the
particle momentum from the curvature of the paths of charged particles.

The tracking systems are surrounded by electromagnetic and hadronic calorime-
ters, used to measure the energy and position of particles. The calorimeter data
is used with the tracking data in aid in particle identification. The curvature of
the charged particles in the SVX and COT is used to determine where the particle
should strike the calorimeters. The two calorimeters in the central region are the
Central Electromagnetic (CEM) and the Central Hadron (CHA) calorimeters.

The detection systems beyond the calorimeters are used to detect muons.
Muons are deeply penetrating and they would not be stopped by the previous
apparatus. The layers of metal in the calorimeters sometimes reduces their energy
to levels that allow detection, but this has no effect upon the neutrinos which will

10



escape the detector unobserved.
The systems already discussion were all in the main detection area, where

|η| 6 1; there are extra detectors at greater angles, increasing the angular resolution
of the CDF. In the 1 < |η| 6 2.4 region there are extra tracking systems. There is
smaller tracking chamber, the ISL, and behind that is the Plug. The Plug contains
two calorimeters, one electromagnetic (PEM) and the other is hadronic (PHA).

3.2 Calorimeters

The two calorimeters of importance in the scope of the investigation are the CEM
and PEM. The CEM is not one, but several hundred modular calorimeters, ar-
ranged in a cylindrical configuration around the beam pipe, figure 9.

Calorimeters usually consist of alternating layers of an absorbing material and a
detector. When an electron enters the calorimeter, it passes heavy nuclei, radiating
photons as it scattered off them. As a result, the energy of the incident electron is
shared out. The electron and photon generate many secondary particles, forming
an electromagnetic shower. The electron and positron shower because they have a
small mass; heavier muons do not reach relativistic velocities, and will not radiate
photons as they pass through the absorbing material.

Various processes can generate secondary particles, electrons and positrons can
scatter off the lead nuclei, emitting photons in the process. The photons may
produce electron-positron pairs, which can then radiate yet again. While all these
processes produced fluctuations in the signal, they are random, which is important
when the statistics of the electromagnetic shower are considered.

The CEM uses lead as the absorbing material and a scintillator as the active
detection region. The PEM uses a drift chamber in the detection region and lead
as the absorber.

3.2.1 Calorimeter resolution

Measurements during the testing of the CDF gave energy resolutions of 2% for the
CEM and 4% for the PEM [1]. These resolutions refer to the limit of each module
in the calorimeter, but each module will have its own characteristic error, brought
about by differences such as the electronics. Thus, there is an added uncertainty
on top of the error in each module, it is denoted as κ.

A useful feature of κ is that it can account for all uncertainties that affect the
CEM and PEM, even if an source of error has not been identified, some other
sources of error are depicted in figure 10.

The energy resolutions:(
∆E

E

)
CEM

=

√
(0.135)2

ET
+ κ2

CEM (11)

(
∆E

E

)
PEM

=

√
(0.16)2

ET
+ κ2

PEM (12)
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Figure 9: End view of the CDF showing several of the detection systems. Inset:
Close up view of the modular system used for the calorimetry. (Image credit: Fermi
National Accelerator Laboratory)

Figure 10: A diagram of various factors that can affect the accuracy of measure-
ments. From left to right: an electron that enters the calorimeter in a usual
fashion; an electron that has missed the CEM modules and will not be detected;
an electron that has emitted a photon prior to entering the detector; an electron
that enters a CEM module near the edge, leading to the possibility of some of the
electromagnetic shower leaking out of the side.
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4 Methodology

All of the data analysis in the project was carried out on a Linux platform with
programs written in either C++ or FORTRAN. The Root data analysis package
was used extensively throughout the investigation, with the custom C++ classes
and histogram generation extremely useful.

4.1 Initial HERWIG analysis

Various properties of the decay of the Z0 and W± were investigated at the start
of the project. The initial data was generated using HERWIG (Hadron Emission
Reactions With Interfering Gluons), a Monte Carlo simulation that models the
collision of particles.

An analysis program was written that extracted the 4-momenta of all the final
particles in each event generated by HERWIG. This program could be used to
generate histograms using Root, an object-orientated data analysis package, which
has been developed at CERN. The W± decay products were investigated first.

Each histogram is declared at the beginning of the program, to be filled with
data later on. For each event in the input file, the program would loop over all
the particles HERWIG had generated. Each particle would be identified, and only
electrons and positrons would be considered. At this point the transverse momenta,
pseudorapidity and energy of each would be calculated.

There is no reason to suppose that this particle would have been produced by
the decay of the W±, so only the particle with the highest transverse momentum
per event was retained. This was achieved by simply storing the values of decay
particle outside the loop, with the current particle transverse momentum being
checked against this transverse momentum. If the current particle had a higher
PT , then the values were replaced. The properties of the particle were then binned
into a histogram. The output of the program was a Root file containing histograms,
which could then be formatted inside Root itself. The same was conducted for the
Z0.

Figure 11 shows a comparison of the electron and positrons that were produced
from the decay of the W± and Z0 bosons. An important aspect of the project
is that the W± can be modelled from Z0 data. As can be seen, the electronic
decay products are very similar for both bosons. The PT distributions, figures
11(a) and 11(b), are as would be expected. One would imagine that the electron
and positron that result from the decay of the W± would contain around half the
energy of the original boson. The HERWIG data indicates that there is a cut-off
point in the transverse momenta at 40 GeV. One would assume that the remainder
of the momentum is contained in the neutrino. The same is the case for the Z0

with a cut-off being at 45 GeV.
The pseudorapidity distributions, figures 11(c) and 11(d), are not the same

for both bosons. The W+ and W− have asymmetric pseudorapidity distributions,
there is a preferential direction of decay. Therefore, the electron distribution would
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Figure 11: Data generated from a HERWIG simulation of a pp̄ collision and W±

and Z0 decay.
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Figure 12: Various distributions of the decay of a Z0 generated from a HERWIG
simulation of a pp̄ collision

reflect that of the W−, and the same for the positron and W+. Both the electrons
and positrons are emitted, with no bias, in the decay of the Z0, and the pseudora-
pidity distributions reflect this. The energy distributions, figures 11(e) and 11(f),
both show a peak energy at half that of the mass of the original boson.

Observing the data, it can been seen that the W± and Z0 decay to leptons are
very similar, and that the Z0 decay could be used to model the W± decay, albeit,
after the Z0 distributions are corrected for the subtle differences between the two.

The actual Z0 was also investigated in a similar fashion. To determine the
properties of the Z0, the 4-momenta of the electron and positron were combined
once they had been identified as the main particles in each event. The reconstructed
Z0 4-momentum was used to generate transverse momentum, energy, and invariant
mass distributions.

The energy, figure 12(b), and the rest mass, figure 12(c), distributions are
both peaked around 90 GeV, which is expected; mass of the Z0 is 91.1875 GeV,
so one would hope that the rest mass distribution generated by HERWIG would
peak at this value. It should be noted that it is possible for the mass to be
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measured with much lower values as a result of electroweak mixing. The pp̄ → e−e+

process has two routes: the weak neutral current, ie. the Z0 boson; the other is
via the electromagnetic force. Hence, the photonic contributions to the measure
mass become more significant the lower one gets in the transverse mass spectrum.
However, in the 60–120 GeV range, the one investigated, the dominant contribution
to the measured boson mass would be that of the Z0.

The energy distribution exhibits a clear threshold at which boson production
is allowed. It implies that it is highly unlikely for the boson to be measured with
an energy that is lower than its rest mass, which is expected.

The transverse momentum distribution, figure 12(a), is peaked at 3–4 GeV
with a slowly decaying tail. This value is not too large, but it is significant. Any
estimates of the transverse mass of the boson would have an uncertainty of this
magnitude. If it is assumed that there is zero transverse momentum, then the
measured energy would correspond to the mass, for example, measuring the energy
to be 91.187 GeV would correspond to a mass of 91.187 GeV. Yet, should the PT

of the boson be 4 GeV, rather than the assumed value of zero, then the mass
measurement would be affected by 90 MeV. Work is being carried out trying to
reduced the error on the W± mass to less than 30 MeV; being able to model the
PT would be very useful in this matter.

However, it should be noted that one major benefit of the determining the
mass of particles via the transverse mass, is that the Jacobian peak is not greatly
affected by smearing. Yet, with such stringent requirements on the knowledge of
the W± mass, all work that can reduce the uncertainty in mass measurements is
helpful.

This part of the project was not without problems. The first HERWIG simula-
tion for the Z0 was incorrect, and the project was delayed while a correct simulation
was generated. In addition, there was a period of familiarisation with the programs
such as Root, and using Linux as an development environment.

4.2 Detector effects

The next stage involved building the detector simulation. Detector simulations are
crucial when testing theories, data detailing a particle collision will be tempered
by the resolution of the apparatus used to record it. In order for theoretical sim-
ulations to be compared with real recorded data, the theoretical data has to have
to effectively ‘go through’ a detector.

The detector simulation in this project will model the effect of the CEM and
PEM. The energy resolution would be built into the data analysis program used
to investigate the HERWIG model of the boson decay.

The processes that occur inside the calorimeters bring about fluctuations in
the the signal recorded, however, these fluctuations are completely random, hence,
Gaussian statistics can be employed to model them.

Using the CEM resolution, (11), a formula for adding this uncertainty into the
detector measurements can be derived. If one assumes that the ratio between the
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transverse energy, ET , and the total energy is the same as the transverse momentum
ratio, ie. ET

E = PT
P , then the CEM resolution may be written as an error upon the

energy:

∆E = E

√
(0.135)2P

PT E
+ κ2

CEM (13)

The error was applied using Gaussian statistics. Defining σ to represent a
normally distributed random number, where the mean is zero and the standard
deviation is unity, then the energy of a particle, as seen by the CEM is:

ECEM (κ) = E

1 + σ

√
0.1352P

EPT
+ κ2

CEM

 (14)

The error on the momentum was determined using (5) and standard error
propagation:

(∆p)2 =
(

dp

dE

)2

(∆E)2 (15)

=

(
E√

E2 −m2
0

)2

(∆E)2 (16)

∴ ∆p =
E∆E√
E2 −m2

0

(17)

The position of the particles in the detector is measured by the likes of the SVX
and other tracking detectors. These have a very good resolution (the SVX has a
spatial resolution of 30–50µm [1]), therefore, the angular uncertainty was neglected
in the simulation.

Thus, using equations (2), (3), and (4):

dpx

dp
=

dpy

dp
=

dpz

dp
= 1 (18)

∴ ∆p = ∆px = ∆py = ∆pz =
E∆E√
E2 −m2

0

(19)

The error in the momentum was applied in the same fashion as the energy
error, thus:

Pi,CEM (κ) = Pi

(
1 + σ

E∆E√
E2 −m2

0

)
(20)

The data analysis code was modified to simulate the resolution of the CEM.
Once again the code would loop over all the events in a HERWIG simulation.
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If the particle was an electron or a positron, then code would create a clone of
the 4-vector momentum. The cloned 4-vector would have its components replaced
with ‘smeared’ components, using the CEM resolution error equations (14) and
(20). The smeared and unsmeared particles were recombined to form a smeared
and unsmeared Z0. The required properties were binned into histograms. The
initial CEM smearing was conducted using a κ of 2.5% and no pseudorapidity
cuts were made at this stage; the purpose was to observed the effect of the CEM
resolution upon the simulated data.

The effect of the CEM resolution upon the energy distribution, figure 13, of
the Z0 is as expected. The sharp edge to the distribution is being smeared out by
the uncertainty in the measurements. This allows more measurements where there
should not have been enough energy to produce the boson, the uncertainty lessens
the rigidity of the threshold.

The transverse momentum of the Z0, figure 14, shows the peak shifting toward
a higher value.

With uncertainty in the the momentum and energy measurements means that
there will be a greater error in the mass measurements. This is reflected in the
data, figure 15. The smeared distribution has a much larger spread of mass values
because of the greater error in the measurements.

The effect of κ upon these distributions was then looked into; it is an unknown
parameter, but if its effect was negligible, then it could have been safely neglected.
Therefore, an investigation how it affects the data, and its significance was neces-
sary.

The PEM calorimeter can also be modelled. Using (12) and a similar argument
as before, the energy smearing for the Plug can be determined:

∆E = E

√
(0.16)2P

PT E
+ κ2

PEM (21)

Thus,

EPEM (κ) = E

1 + σ

√
(0.16)2P

EPT
+ κ2

PEM

 (22)

The momentum smearing is the same as before:

Pi,PEM (κ) = Pi

(
1 + σ

E∆E√
E2 −m2

0

)
(23)

The effect of κCEM and κPEM was investigated by holding either one of the
κ at an expected value, and varying the other over an expected range. The same
data analysis program was to be used, but with different code to run every event.
Rather than create one smeared clone 4-vector for each particle, a smeared 4-vector
was created for every value of κ being tested. Thus, for n values of κ there were n
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Figure 13: The CEM smearing effect upon the energy of the Z0. No cuts were
made.
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Figure 14: The CEM smearing effect upon the transverse momentum of the Z0.
No cuts were made.
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Figure 15: The CEM smearing effect upon the rest mass of the Z0. No cuts were
made.
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Figure 16: The invariant mass of the Z0 boson in HERWIG simulated pp̄ collisions
with various CEM and PEM smearing effects applied. All particles with |η| > 2.4
were rejected.
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Figure 17: The transverse momentum of the Z0 boson in HERWIG simulated pp̄
collisions with various CEM and PEM smearing effects applied. All particles with
|η| > 2.4 were rejected.
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Figure 18: The energy distribution of the Z0 boson in HERWIG simulated pp̄
collisions with various CEM and PEM smearing effects applied. All particles with
|η| > 2.4 were rejected.
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smeared Z0 4-vectors. However, the CEM and PEM effects are only valid within
certain pseudorapidity ranges; they are physical objects, and can only measure in
the range in which they exist.

If the electron or positron fell in a |η| 6 1 range, then CEM formulae were used;
if it were to land in the 1 < |η| 6 2.4 range, then the PEM formulae were applied
instead. All particles with |η| > 2.4 were rejected by the detector simulation.
Once the detector smearing has been applied, and the Z0 bosons reconstructed,
the histograms were binned.

The CEM effect was applied with κCEM varied between 0.5%–3.0% and the
PEM effect was applied with κPEM in the range 1%–8%. While κCEM was being
varied, κPEM was held constant at 3.2%; κCEM was kept constant at 2.5% when
the κPEM was being varied.

The rest mass distribution of the Z0 boson, figure 15, was affected the most
by introducing the detector effect, hence, observing changes in this property would
best indicate the significance of κCEM and κPEM . Figure 16 show that the range
that κPEM can take affects the data more than the range of values that κCEM can
take. This is not surprising, the constraint upon the κCEM is much stricter than
that upon κPEM . In both cases, increasing the value of κ increases the uncertainty
in the invariant mass of the boson, which is expected. Rough estimates on the
error in the CEM and PEM are 2% and 4%; the size of extra error, κ, in both cases
can exceed the magnitude of the original error.

This is not as apparent when looking at the transverse momentum distributions,
figure 17. This serves to highlight how sensitive the detectors are to changes in the
transverse momentum. The CEM curves are very close to one another, albeit with
the κCEM = 3.0% curve slightly shifted to higher values. The PEM effect over the
range of acceptable values is far more noticeable.

The energy distributions, figure 18, exhibit smearing of the peak, with larger
values of κ increasing the amount of smearing observed.

Neither κCEM or κPEM were known and needed to be determined for the data
that was being used. While the lack of knowledge about the PEM errors has more
of an effect upon the distributions, the CEM is the more important detector, given
its location in the central detection region. Yet, all the differences between the
distributions are meaningless without a comparison of real data from the CDF,
complete with statistical error. The CEM distributions in figure 16 were compared
with CDF rest mass data, and χ2 fits of the predictions to the real data were made.

The CDF data was read in from a file, and the binned into a histogram. The
CEM smeared HERWIG distributions were normalised, then compared bin by bin,
producing figure 19.

The χ2 values for the number of bins do not indicate that the fits are particularly
good, but the figures serve to indicate the difference in χ2 over the range of the
acceptable κCEM , hence it needed to be determined.

This section of the project was completed without many problems. Early on
there were some problems with the application of the smearing effects. Other
concerns were generally with the use of C++ and recognising what the compilation
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Figure 19: The invariant mass of the Z0 boson in HERWIG simulated pp̄ collisions
with various a constant PEM smearing effect applied (κ = 3.2%). The CEM
smearing has been applied with κ of 0.5% and 3.0%. All particles with |η| >
2.4 were rejected and the χ2 fit information has been shown for both predicted
distributions when compared with actual mass information from the CDF.

errors were. As means of checking if the energy smearing had been applied correctly,
the energy error added was plotted in histograms with each run of the program. If
the smearing had been applied correctly, then the resulting histogram should have
been a Gaussian distribution.

4.3 Finding κCEM

The previous part of the project had shown that in order to model the effects of the
CEM, accurate knowledge of κCEM

1 was required. The rest mass distributions are
very sensitive to changes in κ, and the rest mass of the Z0 is very well known. The
fore is was very reasonable to use the distributions to find κ, determining which
MZκ-distribution best fit the CDF mass data.

The fit was made using a TMinuit2 Setting up the fit involved writing a lengthy
program that could take an array of MZκ distributions and generate a new nor-
malised distribution for any value of MZ or κ. A χ2 or log likelihood comparison
of the distribution would be the function that TMinuit would minimise.

The main program would first read the CDF data from an ASCII file and
store this in an array. The program was intended to be object-orientated, thus a
class was written to store this data. The program would then open the Root file

1Now to be referred to as κ for brevity.
2More on TMinuit can be found in Appendix A.2.1.
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Figure 20: A graphical representation of the 3D array of data. Each plane depicted
represents all the possible values that one bin in mass distribution may take. Inter-
polating down the line would generate the mass distribution for those given values
of MZ and κ.

that contained histograms. These histograms were rest mass distributions with
MZ ranging from 90–92 GeV in 0.125 GeV steps and κ ranging from 0.3–2.3 with
0.2 as the step size. A class was written to extract the information about the
distributions, and to allow the extraction of the correct histogram for a particular
MZ and κ combination.

This index class was used to create a 3D array of data containing the informa-
tion in each histogram in the input Root file. Explicitly, the array contained the
bin contents of the histogram, with the particular point in the histogram the third
dimension extending from the two dimensions of MZ and κ, figure 20.

This array was interpolated to create new mass distributions. If the input Root
file contained histograms with n bins, then there would be a 3D array with n MZκ-
planes. A mass distribution for an arbitrary MZ,i and κi could then be created by
interpolating the each of n planes at (MZ,i,κi), forming a new array of data with n
entries. This was then used to create a Root histogram. Bicubic interpolation [2]
was used in preference to polynomial interpolation because of the lack of stability
in the interpolating polynomials at higher orders. The use of polynomials is not
recommended when interpolating data that contains more than 6–10 data points;
there were 17 points in the MZ dimension and 10 points in the κ dimension. A
class was written to store the generated mass distributions, containing methods to
allow the conversion into Root histograms.

The generated histograms also needed to be normalised, so that the integral
was equal to unity. The preferable method was to use a Gaussian Quadrature
algorithm, but the program would crash due to a memory error every time it was
implemented. This did not provide to be too much of a problem, a summation
over all the bin areas agreed with the former method to four significant figures.

The χ2 fits were made using a bin by bin comparison in two regions: over the
whole range (70–110 GeV) and in the peak (80–100 GeV). Fitting over the whole
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Figure 21: The best fit mass profile to the CDF data.

distribution determines MZ to be 91.1241± 0.0130 and κ as 1.5065± 0.2368. The
χ2 for the fit was 123.383 with 138 degrees of freedom. Fitting in the range of the
peak gives MZ to be 91.1229 ± 0.0136 with κ as 1.5105 ± 0.2299. The χ2 for this
fit was 76.1488 with 79 degrees of freedom. Hypothesis testing gave 80% and 54%
as the maximum significance level the fits would pass.

There were some problems with this section of the project. Firstly, the values
of κ for the data were not as close to a previously determined estimate of 1.742%
as hoped. However, the figure that was calculated, 1.5105± 0.2299, has this lying
on at the very edge of the error limits. Unfortunately, the measured mass of the
Z0 also falls outside the range of the mass predicted from the fitting program, but
only by 80 MeV. While the derived κ value is close to the estimate, the estimate
was used in the later fitting.

Other problems were centred around the actual programming; having little
experience of C++ before undertaking the task made progress slow, for until that
point in the project, all analysis was conducted inside a framework that has already
been written and tested. Isolating and removing bugs from the code was very time-
consuming, and days could be lost attempting to correct bugs.

Furthermore, when the program was initially completed, it would not return a
reasonable fit, nor an acceptable answer. However, the added experience in using
TMinuit allowed the program to be corrected at a later date. The decision had
already been made to continue the project with a proper κ value before this time,
however.

At first, the interpolation routines were suspected: at one point the routines
were creating mass distributions with negative regions. This proved not to be
the cause of the problem when the interpolated mass histograms were compared

25



with an external check. The check was conducing using Root, and two adjacent
distributions. The distributions were added to one another with a weight of 50%
each, producing a linear interpolation between the added mass distributions. These
linearly interpolated histograms were exactly the same as those generated by the
fitting program.

The problem was found to have been in the actual χ2 test. Later experience
showed that the best method involved creating Root histograms with identical bins,
and then conducting the χ2 on a bin by bin basis.

Some of the problems with the program would have been avoided had it been
created with proper exception handling from the start; debugging would have been
quicker, and modification of the program would have been simpler. This would
have been done had the program been written in a more familiar language, Java,
for example, but it was not possible; the only language that would work with Root
was C++.

4.4 Transverse momentum of Z0

Having ascertained the κCEM for the data, an theoretical model of the transverse
momentum of the Z0 could be run through a detector simulation and then com-
pared with CDF data.

A functional form [3] was chosen to represent the form of the Z0 transverse
momentum:

dσ

dpT
=

(
PT
50

)P4

Γ (P4 + 1)

[
(1− P1) PP4+1

2 e
−P2PT

50 + P1P
P4+1
3 e

−P3PT
50

]
(24)

The form contains no physical basis whatsoever, it is no more then an ad hoc
function, containing a superposition of two exponentials, that may be used to
represent the shape of the transverse momentum distribution. This form was to
have the detector resolution applied and then fitted to the CDF data. The smeared
functional form is a convolution of the unsmeared form and the smearing function:

P smear
T = P true

T ⊗ fsmear (25)

Attempting the convolution of (24) with the smearing function analytically
proved to be too time consuming to compute, it took about 5 minutes to process
the Fourier transform of (24) with ‘Mathematica’, and the result was consisting of
nested Fourier transforms. This would slow down the fit far too much so a less
elegant, but far more effective method was chosen.

HERWIG events were used to generate two PT (Z) distributions, one that de-
scribed the original Z0, and one that described the Z0 as seen by the CEM. Nor-
malising these distributions, and dividing one by the other would give a weighting
array. A histogram was created from the functional form and each bin was re-
weighted according to the weighting array. Then functional form could then be
fitted to CDF data.

26



A program was written, which read in HERWIG generated 4-vector momenta
for the electron and positron produced from the Z0 decay. These would be con-
verted into a smeared and unsmeared Z0 using the detector simulation developed
in §4.2. It then created the weighting from these distributions. The program then
read in PT (Z) data from the CDF and binned it into a distribution. TMinuit was
used to find the four parameters that would give the best fit functional form. The
function it would minimise would generate a histogram using an arbitrary selection
of parameters. Each bin of the histogram was that the form described the smeared
PT (Z). The χ2 fit of this histogram to the data was the figure used to minimise.
During the program’s testing phase, approximately 60000 HERWIG events were
used to create the weighting array, but 4.6 million events were required to generate
smooth histograms during program execution.

The parameters that generated the best fit, figure 22, are discussed in §5.
There were not many problems with this part of the project. Having gained

significant experience in C++, programming the fit did not take long to set up. It
was not completely without problems, some time was spent trying to get TMinuit
to generate a fit that has reasonable errors. The first fits were also incorrect,
and by pure chance, a bug in the detector simulation partially corrected for the
mistake. Initially, the value of κ entered into the program was 1.742 but this
corresponded to an extra 170% error in the measured data as a result of the CEM.
This coupled with the incorrect implementation of the smearing formulae actually
managed to produce fits that looked reasonable, albeit with extremely anomalous
errors. Correcting both the κ value used, and the detector simulation resulted in
more appropriate errors.

4.5 W± mass uncertainty

A method of producing new PT (Z) distributions relatively quickly3 had now been
developed. This was to be converted into an estimate on the mass of the W±.

As has already been mentioned in §1.4, while the Z0 and W± are similar enough
to model PT (W ) from PT (Z), the differences between them affect the results be-
yond the sensitivity of the data. Therefore, the PT (Z) needs to be re-weighted
to account for the differences in the theory. The PT (W ) could then be used to
estimate the transverse mass of the W±. There was not enough time in the project
to complete this final section, however the method to produce an mass uncertainty
from the PT (Z) will be discussed.

TMinuit produces an error matrix, this can be diagonalised with the errors
limited to within one standard deviation, giving a new set of parameters to produce
a new PT (Z). The program would read in a file containing the results of the re-
weighting calculations4: transverse mass results and the PT (W ) used to generate

3The program took 3–4 minutes to read and process the 4.6 million HERWIG events, but this
is faster than generating n sets of HERWIG events.

4The file contained a next to leading order calculation of d2σ
dydPT

|W / d2σ
dydPT

|Z averaged over all
rapidity.
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them. Firstly, the program would create a transverse mass plot from the data in
the file, it would also create a theoretical PT (W ) distribution.

The program would then create a new set of parameters by diagonalising the
covariant matrix from TMinuit. A new PT (Z) would be created from these using
(24). Normalising and dividing these PT distributions would set up a re-weighting
array. Then each PT (W ) in the file would have its weight be multiplied by the
corresponding ‘smearing’ weight, to produced a smeared PT (W ). This was then to
be used to fill a new transverse mass histogram. The deviation of this histogram
from the original histogram would be retained, and this process repeated at least
10,000 times. This would generate an histogram with a width representing the
uncertainty in the transverse mass of the W±.

This part of the project was not completed because it proved too difficult to
diagonalise the covariant matrix in the time remaining. There was a FORTRAN
program that would diagonalise the matrix, but integrating it into the C++ code
was tricky, and the FORTRAN program would crash when the code executed;
having very little experience of FORTRAN, this eventually was too difficult a task
to complete with the time remaining. Had there been more time available, then
the program would more than likely have been finished.
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Figure 22: The best fit of the smeared functional form to CDF PT (Z) data. The
pre-simulation functional form has been plotted for comparison. The χ2 for both
has been shown for reference, along with the number of degrees of freedom for the
fit.

Parameter Value
P1 0.1311± 0.0103
P2 0.0302± 0.0262
P3 6.8299± 0.4895
P4 0.6070± 0.0607

Table 1: The parameters for the best fitting smeared functional form to the CDF
PT (Z) data.

5 Results

The parameters that gave the best smeared functional form fit to the data are listed
in table 5. The χ2 of the this fit to the CDF was 38.9175 with 46 degrees of freedom.
This corresponds to passing a 76% significance test. However, the original function
form had a χ2 value of 38.2081 with the same 46 degrees of freedom, passing a 78%
significance test. How much can be read into this is unclear, a visual inspection of
the fit, figure 22, seems to indicate that the smeared form fits the peak better than
the original form. However, the CDF data in the 7–15 GeV range is erratic. More
data would be required before anything more definite could be said of the detector
simulation.
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6 Conclusion

The project has shown that the transverse momentum of the Z0 can be used to
represent the W±. This was done by analysing Monte Carlo events generated by
HERWIG.

The effect of the resolution of the CDF’s Central Electromagnetic calorimeter
upon various properties of the Z0 was also investigated using HERWIG data.

How the detector simulation depended upon κCEM was investigated, and found
to be significant. In order to find this κCEM , a bicubic interpolation fit was made
to find the rest mass distribution of the Z0 that contained the κCEM that best
described the data. This task was not as successful as hoped, but by no means a
failure. A value of κCEM was found to be 1.5105%±0.2299%, and when the uncer-
tainty is considered, it is close to a previous derived estimate of 1.742%. However,
latter stages of the project were already being worked upon before the bugs in the
fitting program were corrected. Nevertheless, the program did eventually return
answers with reasonable errors. This was more than likely the result of a lack
of experience in C++ programming; a person more experienced in the language
would have built exception handling into the program from start, which may have
reduced the time spent chasing bugs and errors.

The value of κCEM was used to complete the modelling the CEM, and this
was used with an ad hoc functional form to build a theoretical prediction for the
observed transverse momentum of the Z0. This was fitted against CDF data to
find the four parameters that generated the best form; these parameters were
reasonable with believable errors. The χ2 for the fit was respectable, and it passed
a 76% significance test.

A estimate for the corresponding uncertainty on the measured transverse mass
of the W± was not completed; there was not enough time to complete the program,
and integrating the FORTRAN subroutines into C++ was tricky. With more
experience of FORTRAN, the analysis should have been completed, it was the
implementation that caused the delay in working.

Is believed that whether the CEM simulation is valid, or not, could only be
determined with more transverse momenta data from the CDF. The χ2 fits of the
smeared and original functional form both fit the data, but the error bars on the
data are large enough to allow this.

Throughout the project work was hampered by bug and other programming
related issues. Given that C++ was an unfamiliar language at the start of the
project, progress was slower than liked when faced with difficult programming
tasks. However, the language was picked up, with analysis programs being writ-
ten from scratch, which could generate histograms that could be viewed in Root
immediately.

It is hoped that the final section of the project could have been completed
within a fortnight if it were to be continued.

Modelling some of the other detector, such as the Plug EM calorimeter, would
improve the simulation; the effect of κPEM was significant when the PEM was
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modelled along with the CEM. Taking other detector effects into account would
also be beneficial.
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A Software used

A.1 HERWIG

HERWIG (Hadron Emission Radiation With Interfering Gluons) is a Monte Carlo
event generator. It simulates events using the probabilities that a particle will
decay via a particular decay mode.

A.1.1 Monte Carlo numbering scheme

In an effort to maintain a standard of particle identification for event generators, a
numbering system was devised [4]. A negative number represents an antiparticle.

Particle ID Particle ID Particle ID
d 1 e− 11 γ 22
u 2 νe 12 Z0 23
s 3 µ− 13 W+ 24
c 4 νµ 14
b 5 τ− 15
t 6 ντ 16

Table 2: Some particle IDs in the Monte Carlo numbering system.

A.2 Root

One of the major packages used was Root. Root was developed by Rene Brun and
Fons Rademakers to provide an object-orientated programming framework from
which they could link together software together.

Root is freely available for download at the CERN’s Root website
http://root.cern.ch

A.2.1 Fitting with Root - TMinuit

Root is equipped with a minimisation package, TMiniut, which takes operates upon
a static external function written by the user. The class is a C++ wrapper around
an older FORTRAN program Minuit.

The user created the function to be minimised. For example, to find the mini-
mum of f(x) = x2:

static void myFCN( Int_t &npar , Double_t* gin , Double_t &f ,

Double_t* par , Int_t flag)

{

f=0;

double x = par[0];

f = x*x;

}

32



A TMinuit object would then be created and the minimisation algorithm in-
voked.

int main()

{

// Create object with number of paramerter to minimise

TMinuit minuit = new TMinuit(1)

// Set a pointer to the user function

minuit->SetFCN(myFCN);

int ierflg = 0;

// Define the parameter to be minmised

string name = "x";

start = 10;

upper_lim = 20;

lower_lim = -20;

step = 0.1;

// Set the level of feedback (1=normal,0=no warnings,-1=nothing)

minuit->SetPrintLevel(1);

// Input the parameter into TMinuit

minuit->mnparm(0,start.c_str(),start,step,lower_limn,upper_lim,ierflg)

// Error checking to use (1=Chi-squared)

minuit->SetErrorDef(1);

// Maximum number of iterations

minuit->SetMaxIterations(500);

// Invokes the Migrad algorithm and minimises myFCN

minuit->Migrad();

}

The Migrad algorithm would then find the value of x where f(x) is a minimum,
which should be 0 in this case. More information about TMinuit can be found in
the Root ‘Users Guide’ [5]
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B Source Code

B.1 Initial HERWIG analysis

The following code was used to investigate the energies, transverse momenta, pseu-
dorapidities of the electrons and positrons that are produced from the decay of the
W± and Z0. It was part of a larger framework that was written to read and write
to Root files.

The section of code was run for every event in the file.

// Loop over all the particles and select the highest Et electron in the

// event

int np = _HepEvtBlock.hepevt.nhep;

double ptmax_e = -10.0;

double ptmax_p = -10.0;

double rap_e = -100.0;

double rap_p = -100.0;

double ptZ = 0.0;

double emax_e = -1.0;

double emax_p = -1.0;

for (int i = 0; i < np; i++){

if (_HepEvtBlock.hepevt.id_pdg[i] == 11 ||

_HepEvtBlock.hepevt.id_pdg[i] == -11) {

double px2 = _HepEvtBlock.hepevt.px[i]*_HepEvtBlock.hepevt.px[i];

double py2 = _HepEvtBlock.hepevt.py[i]*_HepEvtBlock.hepevt.py[i];

double pz2 = _HepEvtBlock.hepevt.pz[i]*_HepEvtBlock.hepevt.pz[i];

double energy = _HepEvtBlock.hepevt.e[i];

The HepEvtBlock is a custom class that defines a struct which contains all the
various information a Root file.

double pt = TMath::Sqrt(px2 + py2);

double p = TMath::Sqrt(px2 + py2 + pz2);

double cos_theta = (_HepEvtBlock.hepevt.pz[i])/p;

double angle = TMath::ACos(cos_theta);

double debugger = TMath::Tan(angle/2);

double prap = (-1)*TMath::Log(debugger);

if (pt > ptmax_e && _HepEvtBlock.hepevt.id_pdg[i] == 11) {

// electron

ptmax_e = pt;

rap_e = prap;

emax_e = energy;

} else if (pt > ptmax_p && _HepEvtBlock.hepevt.id_pdg[i] == -11){

// positron

ptmax_p = pt;

rap_p = prap;

emax_p = energy;

}

ptZ =TMath::Abs(ptmax_e - ptmax_p); //PT of the z-boson

}

}

rf_out = AnalysisSteer::Instance()->getOutputRootFile();

34



gH->Hf1(1,ptmax_e);

gH->Hf1(2,ptmax_p);

gH->Hf1(3,rap_e);

gH->Hf1(4,rap_p);

gH->Hf1(5,emax_e);

gH->Hf1(6,emax_p);

gH->Hf1(7,emax_e+emax_p);

gH->Hf1(8,emax_e+emax_p);

The properties in the event are binned into histograms.

B.2 Detector simulation

This code is a basic simulation of the CEM and PEM. It runs inside a larger
program (as with the code segment in §B.1) which reads a Root file containing
approximately 60000 HERWIG Z0 → e−e+ events.

// set the CEM and PEM terms

double termCEM = 0.135;

// double kappaCEM = 0.025;

int num_kappaCEM= 6;

double kappaCEM[6] = {0.005,0.01,0.015,0.02,0.025,0.03};

double termPEM = 0.16;

// double kappaPEM[8] = {0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08};

double kappaPEM = 0.032;

int num_kappaPEM = 8;

bool is_CEM = false; // CEM truth check

bool is_PEM = false; // PEM truth check

bool is_insiderange = true; // Is particle inside the detection range?

// Loop over all the particles and select the highest Et electron in the

// event

int np = _HepEvtBlock.hepevt.nhep;

//Empty objects for the final particles

TLorentzVector electron;

TLorentzVector positron;

TLorentzVector zboson;

TLorentzVector electron_sm[num_kappaCEM];

TLorentzVector positron_sm[num_kappaCEM];

TLorentzVector zboson_sm[num_kappaCEM];

The TLorentzVector object is a custom Root class that can contain a position
or momentum 4-vector.

for (int i = 0; i < np; i++){

if (_HepEvtBlock.hepevt.id_pdg[i] == 11 ||

_HepEvtBlock.hepevt.id_pdg[i] == -11) {

TLorentzVector particle;

35



TLorentzVector particle_sm[num_kappaCEM];

particle.SetPxPyPzE(_HepEvtBlock.hepevt.px[i],

_HepEvtBlock.hepevt.py[i],

_HepEvtBlock.hepevt.pz[i],

_HepEvtBlock.hepevt.e[i]);

// Time to mess up the energy

double E_in = particle.E();

double r_gaussCEM = gRandom->Gaus(0,1);

double r_gaussPEM = gRandom->Gaus(0,1);

double pxyz[3] = {particle.Px(),particle.Py(),particle.Pz()};

double pxyz_smearCEM[3][num_kappaCEM];

double pxyz_smearPEM[3][num_kappaCEM];

double m0 = 0.511e-3; // GeV

double E_T = TMath::Sqrt(pxyz[0]*pxyz[0] + pxyz[1]*pxyz[1]);

double E_z = pxyz[2];

double deltaE_CEM[num_kappaCEM];

double E_smearCEM[num_kappaCEM];

double deltaE_PEM[num_kappaCEM];

double E_smearPEM[num_kappaCEM];

// Check whether the CEM or PEM picks it up

double eta = particle.PseudoRapidity();

is_CEM = TMath::Abs(eta)<=1 ;

is_PEM = TMath::Abs(eta)<=2.4 && TMath::Abs(eta)>1;

for (int k=0;k<num_kappaCEM;k++) { // loop through my kappa array

// CEM energy calculations

deltaE_CEM[k] = TMath::Sqrt(((termCEM*termCEM)/E_T) +

(kappaCEM[k]*kappaCEM[k]));

E_smearCEM[k] = E_in*(1+(r_gaussCEM*deltaE_CEM[k]));

// PEM energy calculations

deltaE_PEM[k] =

TMath::Sqrt(((termPEM*termPEM)/E_in)+(kappaPEM*kappaPEM));

E_smearPEM[k] = E_in*(1+(r_gaussPEM*deltaE_PEM[k]));

// Momentum (CEM and PEM)

for (int j = 0; j < 3; j++) {

pxyz_smearCEM[j][k] = pxyz[j] *

(1+(r_gaussCEM*((E_in*deltaE_CEM[k])/(TMath::Sqrt(E_in*E_in-m0*m0)))));

pxyz_smearPEM[j][k] = pxyz[j] *

(1+(r_gaussPEM*((E_in*deltaE_PEM[k])/(TMath::Sqrt(E_in*E_in-m0*m0)))));

}

//...and put into the smeared particle

if (is_CEM) particle_sm[k].SetPxPyPzE(pxyz_smearCEM[0][k],

pxyz_smearCEM[1][k],

pxyz_smearCEM[2][k],

E_smearCEM[k]);

if (is_PEM) particle_sm[k].SetPxPyPzE(pxyz_smearPEM[0][k],
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pxyz_smearPEM[1][k],

pxyz_smearPEM[2][k],

E_smearPEM[k]);

}

// Identify and dump....

if (particle.Pt() > electron.Pt() &&

_HepEvtBlock.hepevt.id_pdg[i] == 11 ) {

electron = particle;

for (int k=0;k<num_kappaCEM;k++) {

electron_sm[k] = particle_sm[k];

}

} else if (particle.Pt()>positron.Pt() &&

_HepEvtBlock.hepevt.id_pdg[i] == -11 ) {

positron = particle;

for (int k=0;k<num_kappaCEM;k++) {

positron_sm[k] = particle_sm[k];

}

}

}

}

// The electon and positron have been identified, now to combine to

// form the z bosons

zboson = electron + positron;

for (int k=0;k<num_kappaCEM;k++) {

zboson_sm[k] = electron_sm[k] + positron_sm[k];

}

// Final pseudorapidity cut, are they in the range |eta| <= 2.4

double eta_e = electron.PseudoRapidity();

double eta_p = positron.PseudoRapidity();

is_insiderange = TMath::Abs(eta_e)<=2.4 && TMath::Abs(eta_p) <= 2.4;

// Invariant mass calc.

double ze_sm[num_kappaCEM];

double zp_sm[num_kappaCEM];

double ze = zboson.E();

double zp = zboson.P();

double zmass_sm[num_kappaCEM];

double zmass = TMath::Sqrt(ze*ze - zp*zp);

for (int k=0;k<num_kappaCEM;k++) {

ze_sm[k] = zboson_sm[k].E();

zp_sm[k] = zboson_sm[k].P();

zmass_sm[k] = TMath::Sqrt(ze_sm[k]*ze_sm[k] - zp_sm[k]*zp_sm[k]);

}

rf_out = AnalysisSteer::Instance()->getOutputRootFile();

if (is_insiderange) {
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gH->Hf1(10,zboson.Pt());

gH->Hf1(11,zboson_sm[0].Pt());

gH->Hf1(12,zboson_sm[1].Pt());

gH->Hf1(13,zboson_sm[2].Pt());

gH->Hf1(14,zboson_sm[3].Pt());

gH->Hf1(15,zboson_sm[4].Pt());

gH->Hf1(16,zboson_sm[5].Pt());

gH->Hf1(20,zboson.E());

gH->Hf1(21,zboson_sm[0].E());

gH->Hf1(22,zboson_sm[1].E());

gH->Hf1(23,zboson_sm[2].E());

gH->Hf1(24,zboson_sm[3].E());

gH->Hf1(25,zboson_sm[4].E());

gH->Hf1(26,zboson_sm[5].E());

gH->Hf1(30,zmass);

gH->Hf1(31,zmass_sm[0]);

gH->Hf1(32,zmass_sm[1]);

gH->Hf1(33,zmass_sm[2]);

gH->Hf1(34,zmass_sm[3]);

gH->Hf1(35,zmass_sm[4]);

gH->Hf1(36,zmass_sm[5]);

// Sanity tests

double E = zboson.E();

double E_sm[num_kappaCEM];

double sanity[num_kappaCEM];

for (int k=0;k<num_kappaCEM;k++){

E_sm[k] = zboson_sm[k].E();

sanity[k] = (E - E_sm[k])/E;

}

This checks the amount of energy applied or removed from the particle because
of the detector smearing, which should result in a Gaussian distribution.

gH->Hf1(90,sanity[0]);

gH->Hf1(91,sanity[1]);

gH->Hf1(92,sanity[2]);

gH->Hf1(93,sanity[3]);

gH->Hf1(94,sanity[4]);

gH->Hf1(95,sanity[5]);

}

rf_out.cd();

incrementEventCount();

}

B.3 Rest mass-κ fit

B.3.1 main.cc

This is the main program for the fitting program. It sets up the required objects
needed to compute the interpolation fitting, then invokes TMinuit to complete the
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fit.

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include <sstream>

#include "TROOT.h"

#include "realData.hh"

#include "masterIndex.hh"

#include "iArray.hh"

#include "numRep.hh"

#include "fit.hh"

#include "TAxis.h"

#include "profile.hh"

#include "TMinuit.h"

#include "ControlCards.hh"

#include "TGraph.h"

#include "TCanvas.h"

#include "TLegend.h"

static realData* CDF_MZ;

static iArray* bigArray;

static profile* current;

static bool isDefaultRange;

static double fitMin,fitMax,norm;

static string sssss;

static string fitType;

static TH1D* actual;

using namespace std;

static void myFCN( Int_t &npar , Double_t* gin , Double_t &f ,

Double_t* par , Int_t flag )

// Function minimised by Minuit.

{

f=0;

double xIn = par[0];

double yIn = par[1];

current = bigArray->GetNormZProfileForXY(xIn,yIn,sssss);

double* chi = current->Fit(actual,norm,fitMin,fitMax,fitType);

f = chi[0];

}

int main () {

// Define the variables to be read from the cards

ControlCards cCards;

cCards.define("EXP_DATA_FILE","");

cCards.define("HISTO_FILE","");

cCards.define("MASTER_ID","");
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cCards.define("X_PARAM_NAME","");

cCards.define("X_PARAM_START",(float) 0);

cCards.define("X_PARAM_MIN",(float) 0);

cCards.define("X_PARAM_MAX",(float) 0);

cCards.define("X_PARAM_STEP",(float) 0);

cCards.define("Y_PARAM_NAME","");

cCards.define("Y_PARAM_START",(float) 0);

cCards.define("Y_PARAM_MIN",(float) 0);

cCards.define("Y_PARAM_MAX",(float) 0);

cCards.define("Y_PARAM_STEP",(float) 0);

cCards.define("MAX_ITER",(int) 500);

cCards.define("M_ERROR",(float) 0.5);

cCards.define("MIN_TYPE",(float) 1.0);

cCards.define("M_FEED",(int) 1);

cCards.define("DEFAULT_RANGE",(int) 1);

cCards.define("FIT_MAX_X",(float) 0);

cCards.define("FIT_MIN_X",(float) 0);

cCards.define("OUTPUT_FILE","");

cCards.define("OUTPUT_ROOT",(int) 0);

cCards.define("HISTO_NAME","");

cCards.define("BIN_TYPE","");

cCards.define("Z_AXIS","");

cCards.define("Y_AXIS","");

cCards.define("X_AXIS","");

cCards.Read();

cCards.Print();

bool isSavingOutput = cCards.IntValue("OUTPUT_ROOT")==1;

sssss = cCards.StringValue("BIN_TYPE");

if (cCards.FloatValue("M_ERROR")==0.5) fitType="LOG";

if (cCards.FloatValue("M_ERROR")==1) fitType="CHI";

// File path

string fileInput = cCards.StringValue("EXP_DATA_FILE");

cout << "Fitter> Creating realData object" << endl; ;

CDF_MZ = new realData(fileInput,false);

cout << "Fitter> Initate with ‘" << fileInput << "’" << endl;

// Set up MasterID array

string rootFileName = cCards.StringValue("HISTO_FILE");

string mode = "READ";

string title = "Master ID";

cout << "Fitter> Opening " << rootFileName;

cout << " to find the master ID" << endl;

TFile *rootFile =

new TFile(rootFileName.c_str(),mode.c_str(),title.c_str(),0);

if (!rootFile->IsOpen()) {

cout << "Fitter> Error file not found" << endl;

}

cout << "Fitter> Extracting the index histogram" << endl;
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TH2F *masterHis =

(TH2F*) rootFile->Get((cCards.StringValue("MASTER_ID")).c_str());

masterIndex *MasterID = new masterIndex(masterHis);

masterHis->~TH2F();

// Set up interpolation array

// It should be noted that the program will assume that all the histograms

// in the index have identical x-axes

cout << "Fitter> Creating the interpolation array" << endl;

TH1D *dummy = (TH1D*) rootFile->Get("h1");

int zBins = dummy->GetNbinsX();

TAxis *Xaxis = dummy->GetXaxis();

double zMin = Xaxis->GetXmin();

double zMax = Xaxis->GetXmax();

double zDelta = (zMax-zMin)/zBins;

dummy->~TH1D();

// Turn data into a histogram and get the normalisation factor

actual = CDF_MZ->getHistogram("act","Actual data",zBins,zMin,zMax);

for (int i=0;i<=zBins;i++) {

norm+= (actual->GetBinContent(i))*zDelta;

}

// now we have both ranges, choose which to use

isDefaultRange = cCards.IntValue("DEFAULT_RANGE")==1;

if (!isDefaultRange) {

fitMin = (double) cCards.FloatValue("FIT_MIN_X");

fitMax = (double) cCards.FloatValue("FIT_MAX_X");

} else {

fitMin = zMin;

fitMax = zMax;

}

cout << "Fitter> zBins = " << zBins << "\tzMin = " << zMin;

cout << "\tzMax = " << zMax << "\tBin Width = " << zDelta << endl;

bigArray = new iArray(rootFile,MasterID,zBins,zMin,zMax,zDelta);

cout << "Fitter> Root file closed" << endl;

if(!isDefaultRange) {

cout << "Fitter> Minuit minimisation with custom range: fitMin=";

cout <<fitMin << " fitMax=" << fitMax << endl;

} else {

cout << "Fitter> Minuit minimisation with default range: fitMin=";

cout << zMin << " fitMax=" << zMax << endl;

}

// Define Minuit

Int_t pm = 2;

TMinuit *minuit = new TMinuit(pm);

minuit->SetFCN(myFCN);

int ierflg = 0;
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// Minimisation Parameters

string* name = new string[2];

name[0] = cCards.StringValue("X_PARAM_NAME");

name[1] = cCards.StringValue("Y_PARAM_NAME");

double* start_values = new double[2];

start_values[0] = (double) cCards.FloatValue("X_PARAM_START");

start_values[1] = (double) cCards.FloatValue("Y_PARAM_START");

double* lim_min = new double[2];

lim_min[0] = (double) cCards.FloatValue("X_PARAM_MIN");

lim_min[1] = (double) cCards.FloatValue("Y_PARAM_MIN");

double* lim_max = new double[2];

lim_max[0] = (double) cCards.FloatValue("X_PARAM_MAX");

lim_max[1] = (double) cCards.FloatValue("Y_PARAM_MAX");

double* step = new double[2];

step[0] = (double) cCards.FloatValue("X_PARAM_STEP");

step[1] = (double) cCards.FloatValue("Y_PARAM_STEP");

Double_t* val = new double[1];

// Set parameters

minuit->SetPrintLevel(cCards.IntValue("M_FEED"));

minuit->mnparm(0,name[0].c_str(),start_values[0],step[0],lim_min[0],

lim_max[0],ierflg);

minuit->mnparm(1,name[1].c_str(),start_values[1],step[1],lim_min[1],

lim_max[1],ierflg);

minuit->SetErrorDef(cCards.FloatValue("M_ERROR"));

minuit->SetMaxIterations(cCards.IntValue("MAX_ITER"));

val[0] = (Double_t) cCards.FloatValue("MIN_TYPE");

minuit->mnexcm("SET STR",val,1,ierflg);

minuit->Migrad();

double xFit,xErr,yFit,yErr;

minuit->GetParameter(0,xFit,xErr);

minuit->GetParameter(1,yFit,yErr);

cout << "Fitter> Finished with X=" << xFit << " error=" << xErr;

cout << " and Y=" << yFit << " error=" << yErr << endl;

string bit = cCards.StringValue("HISTO_NAME");

string sig,sigf;

string s1 = "bfH_";

string s1f = s1.append(bit);

profile* bestFit = bigArray->GetNormZProfileForXY(xFit,yFit,sssss);

TH1D* bfH = bestFit->getHistogram(s1f.c_str(),"Best Fit");

double* chi = bestFit->Fit(actual,norm,fitMin,fitMax,fitType);

cout << "Fitter> Goodness of fit: chi^2 = " << chi[0] << endl;

cout << "Fitter> Degrees of freedom = " << chi[1] << endl;

cout << "Fitter> Probability test = " << chi[2] << endl;

if(isSavingOutput) {
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double d;

stringstream ss;

ss << "#chi^{2} = " << chi[0] << " / " << chi[1] << endl;

string chistr = ss.str();

TH1D* chichi = new TH1D("chi",chistr.c_str(),1,1,1);

chichi->SetLineColor(0);

bfH->Scale(norm);

s1 = "act2_";

s1f = s1.append(bit);

TH1D* act2 =

new TH1D(s1f.c_str(),"Actual Data in fit range",zBins,zMin,zMax);

for (int i=0;i<CDF_MZ->numItems();i++){

d = CDF_MZ->getDataElement(i);

act2->Fill(d);

}

for (int z=0;z<zBins;z++) {

norm+=(act2->GetBinContent(z+1))*zDelta;

}

s1 = "act1_";

s1f = s1.append(bit);

TH1D* act1 =

new TH1D(s1f.c_str(),"Actual Data in fit range",zBins,zMin,zMax);

for (int ii=0;ii<zBins;ii++){

d = act2->GetBinContent(ii+1);

act1->SetBinContent(ii,d/norm);

}

s1 = "ovl_";

s1f = s1.append(bit);

TCanvas* ovl1 = new TCanvas(s1f.c_str(),"Fitting output");

ovl1->SetFillColor(0);

bfH->SetLineColor(2);

act2->GetXaxis()->SetTitle((cCards.StringValue("Z_AXIS")).c_str());

act2->Draw("e0");

bfH->Draw("c same");

TLegend* leg = new TLegend(0.78,0.80,1,1);

leg->AddEntry(act2,"Raw data","L");

leg->AddEntry(bfH,"Best Fit","L");

leg->AddEntry(chichi,chistr.c_str(),"L");

leg->SetFillColor(0);

leg->SetTextFont(62);

leg->SetTextSize(0.04);

leg->Draw();

ovl1->SetBorderMode(0);

ovl1->Draw();

string fName = cCards.StringValue("OUTPUT_FILE");

TFile* f2 = new TFile(fName.c_str(),"RECREATE");

act1->Write();
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act2->Write();

bfH->Write();

ovl1->Write();

f2->Close();

cout << "Fitter> Output written to " << fName << endl;

}

}

B.3.2 realData.hh

The class written to store the data from the CDF.

#ifndef realData_HH

#define realData_HH

#include "TH1D.h"

using namespace std;

class realData {

private:

vector<double> Mz_CDF;

int items;

public:

realData();

realData( string , bool );

~realData();

double getDataElement( int );

void setDataElement( int, double );

void create( string, bool );

int numItems();

TH1D* getHistogram(string id,string name,int bins,double min,double max);

};

#endif

B.3.3 realData.cc

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include "realData.hh"

realData::realData() {

items = 0;

}

realData::realData( string fileInput, bool showNums ) {

string buffer;

string buffer2;
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cout << "realData> Attempting to open " << fileInput << "...\n";

ifstream file (fileInput.c_str());

cout << "realData> File opened.\n";

cout << "realData> Attempt to read file...\n";

if (!file){

cout << "realData> File not found.\n";

cout << "realData> Aborting...\n\n";

}

items = 0;

char buffArray[100];

char *stopchar = "";

int i=0;

while (file >> buffer) {

strcpy(buffArray, buffer.c_str());

Mz_CDF.insert(Mz_CDF.end(),strtod(buffArray,&stopchar));

items++;

if (showNums) cout << buffer << "\n";

if (showNums) cout << Mz_CDF[i] << "\n";

i++;

}

cout << "realData> " << items << " entries, storing data to array...\n";

file.close();

cout << "realData> File closed.\n";

}

realData::~realData() {

}

double realData::getDataElement( int id ) {

if (id < Mz_CDF.size()) return Mz_CDF[id];

else {

cout << "realData>Error index out of bounds." << endl;

cout << "realData> id=" << id << " size of array=" << items << endl;

return 0;

}

}

void realData::setDataElement( int id, double value ) {

if (id < Mz_CDF.size()) {

Mz_CDF[id] = value;

}

else {

cout << "realData>Error index out of bounds." << endl;

cout << "realData> id=" << id << " size of array=" << items << endl;

}

}
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int realData::numItems() {

return items;

}

TH1D* realData::getHistogram( string id,string name,int bins,double min,

double max ) {

TH1D* histo = new TH1D(id.c_str(),name.c_str(),bins,min,max);

for (int i=0;i<this->numItems();i++) {

histo->Fill(this->getDataElement(i));

}

return histo;

}

B.3.4 masterIndex.hh

The class that created the index of histograms. It reads the Root file and creates
an array, which relates the particular value of MZ and κ to a named histogram in
the file.

#ifndef masterIndex_HH

#define masterIndex_HH

#include "TH2F.h"

using namespace std;

class masterIndex {

private:

int *ID;

int nXbins;

int nYbins;

double deltaX;

double deltaY;

double Xmin;

double Xmax;

double Ymin;

double Ymax;

public:

masterIndex();

masterIndex( TH2F* );

~masterIndex();

inline int GetNbinsX() { return nXbins; }

inline int GetNbinsY() { return nYbins; }

inline double GetXMin() { return Xmin; }

inline double GetXMax() { return Xmax; }

inline double GetYMin() { return Ymin; }

inline double GetYMax() { return Ymax; }

inline double GetXDelta() { return deltaX; }

inline double GetYDelta() { return deltaY; }

int GetHistID ( double , double );

int GetHistID ( float , float );

int GetHistID ( int , int );

int GetHistIDwBin ( int , int );
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string myCast ( int );

string myCastH ( int );

};

#endif

B.3.5 masterIndex.cc

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include "TROOT.h"

#include "TFile.h"

#include "TKey.h"

#include "masterIndex.hh"

#include "TMath.h"

masterIndex::masterIndex() {

}

masterIndex::masterIndex( TH2F *masterHis ) {

cout << "masterIndex> Creating MasterID matrix\n";

nXbins = masterHis->GetNbinsX();

nYbins = masterHis->GetNbinsY();

TAxis *Xaxis = masterHis->GetXaxis();

TAxis *Yaxis = masterHis->GetYaxis();

Xmin = Xaxis->GetXmin();

Xmax = Xaxis->GetXmax();

Ymin = Yaxis->GetXmin();

Ymax = Yaxis->GetXmax();

Xaxis->~TAxis();

Yaxis->~TAxis();

deltaX = ( Xmax - Xmin ) / nXbins ;

deltaY = ( Ymax - Ymin ) / nYbins ;

cout << "masterIndex> " << this->GetNbinsX() << " bins for X and ";

cout << this->GetNbinsY() << " for Y\n";

cout << "masterIndex> X min = " << this->GetXMin() <<" \t X max = ";

cout << this->GetXMax() << "\n";

cout << "masterIndex> X bin width = " << this->GetXDelta() << "\n";

cout << "masterIndex> Y min = " << this->GetYMin() <<" \t Y max = "

cout << this->GetYMax() << "\n";

cout << "masterIndex> Y bin width = " << this->GetYDelta() << "\n";
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ID = new int[nXbins * nYbins];

for (int i=0;i<nXbins;i++) {

for (int j=0;j<nYbins;j++) {

ID[(i*nYbins) + j] = (int) masterHis->GetBinContent(i+1,j+1);

}

}

}

masterIndex::~masterIndex() {

}

int masterIndex::GetHistID( int xIn, int yIn ){

return GetHistID((double)xIn,(double)yIn);

}

int masterIndex::GetHistID( float xIn, float yIn ){

return GetHistID((double)xIn,(double)yIn);

}

int masterIndex::GetHistID( double xIn, double yIn ){

if (xIn<Xmin || xIn>Xmax || yIn<Ymin || yIn>Ymax) {

cout << "masterIndex> getHisID(" << xIn << "," << yIn;

cout << ") outside range\n";

return 0;

}

int xBin = (int)TMath::Floor((xIn-Xmin) / deltaX);

int yBin = (int)TMath::Floor((yIn-Ymin) / deltaY);

return ID[xBin*nYbins + yBin];

}

int masterIndex::GetHistIDwBin( int xBinNum, int yBinNum ){

return ID[xBinNum*nYbins + yBinNum];

}

// Not sure how to cast from int to char*, so I wrote my own crude methods.

string masterIndex::myCastH ( int input ) {

string s;

s = "h";

if(TMath::Floor(input/100)) {

int num = (int)TMath::Floor(input/100);

s += myCast(num);

input-=(num*100);

}

if(TMath::Floor(input/10)) {

int num = (int)TMath::Floor(input/10);

s += myCast(num);

input-=(num*10);

}

if(input) {

s += myCast(input);

} else {
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s += "0";

}

return s;

}

string masterIndex::myCast( int digit ){

string s;

switch (digit) {

case 0:

s = "0";

break;

case 1:

s = "1";

break;

case 2:

s = "2";

break;

case 3:

s = "3";

break;

case 4:

s = "4";

break;

case 5:

s = "5";

break;

case 6:

s = "6";

break;

case 7:

s = "7";

break;

case 8:

s = "8";

break;

case 9:

s = "9";

break;

default:

s = "NaN";

break;

}

return s;

}

B.3.6 iArray.hh

This class uses the masterIndex class to create the 3D array of data in the Root
file. It extracts all the information from the Root file to hold in memory. It
contains a method that will return a normalised mass distribution for any pairing
of MZ and κ (while it can extrapolate profiles, they are extremely unreliable, thus
it should only be used to interpolate inside the data range)
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#ifndef iArray_HH

#define iArray_HH

#include "profile.hh"

#include "TROOT.h"

#include "TFile.h"

using namespace std;

class iArray {

private:

double* array;

int zBins;

double zDelta;

double zMin;

double zMax;

int xBins;

double xDelta;

double xMin;

double xMax;

int yBins;

double yDelta;

double yMin;

double yMax;

public:

iArray();

iArray( TFile* , masterIndex* , int , double , double , double );

~iArray();

inline int GetNbinsX() { return xBins; }

inline int GetNbinsY() { return yBins; }

inline int GetNbinsZ() { return zBins; }

inline double GetXMin() { return xMin; }

inline double GetYMin() { return yMin; }

inline double GetZMin() { return zMin; }

inline double GetXMax() { return xMax; }

inline double GetYMax() { return yMax; }

inline double GetZMax() { return zMax; }

inline double GetXDelta() { return xDelta; }

inline double GetYDelta() { return yDelta; }

inline double GetZDelta() { return zDelta; }

inline double GetBinContent( int i ) { return array[i]; }

inline int GetTotalNumEntries() { return xBins*yBins*zBins; }

inline double* GetXAxisValues() { return this->GetXAxisValues(""); }

inline double* GetYAxisValues() { return this->GetYAxisValues(""); }

inline double* GetZAxisValues() { return this->GetZAxisValues(""); }

double* GetXAxisValues( string );

double* GetYAxisValues( string );

double* GetZAxisValues( string );

double* GetXYPlaneWBin( int );

profile* GetNormZProfileForXY ( double , double , string );

double GetXYZBin( int , int , int );

double GetXYZBin( float, float , float );

double GetXYZBin( double , double , double );

void CreateSplines();
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void Dump();

};

#endif

B.3.7 iArray.cc

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include "TROOT.h"

#include "TH1.h"

#include "TH1D.h"

#include "masterIndex.hh"

#include "numRep.hh"

#include "profile.hh"

#include "iArray.hh"

iArray::iArray() {

}

iArray::iArray(TFile *rootFile , masterIndex *mID , int zBinsI ,

double zMinI , double zMaxI , double zDeltaI ) {

zBins = zBinsI;

zMin = zMinI;

zMax = zMaxI;

zDelta = zDeltaI;

xBins = mID->GetNbinsX();

xDelta = mID->GetXDelta();

xMin = mID->GetXMin();

xMax = mID->GetXMax();

yBins = mID->GetNbinsY();

yDelta = mID->GetYDelta();

yMin = mID->GetYMin();

yMax = mID->GetYMax();

cout << "iArray> Creating interpolation array\n";

array = new double[xBins*yBins*zBins];

for (int x=0;x<xBins;x++) {

for (int y=0;y<yBins;y++){

string s = mID->myCastH(mID->GetHistIDwBin(x,y));

TH1D *f = (TH1D*) rootFile->Get(s.c_str());

for (int z=0;z<zBins;z++) {

int where = (zBins*yBins*x) + (y*zBins) + z;

array[where] = (double) f->GetBinContent(z+1);

}
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f->~TH1D();

}

}

cout << "iArray> Interpolation array created\n";

cout << "iArray> xBins = " << this->GetNbinsX() << "\tyBins = ";

cout << this->GetNbinsY() << "\tzBins = " << this->GetNbinsZ();

cout << "\tNum entries = " << this->GetTotalNumEntries() << "\n";

}

iArray::~iArray() {

}

double* iArray::GetXAxisValues( string type ) {

//Returns bottom (MIN), top (MAX) or middle (default) of bin values

double* XAxis = new double[xBins];

if (type=="MIN") XAxis[0] = xMin;

else if (type=="MAX") XAxis[0] = xMin+xDelta;

else XAxis[0] = xMin+(xDelta)/2;

for (int x=1;x<xBins;x++) {

XAxis[x]=XAxis[x-1]+xDelta;

}

return XAxis;

}

double* iArray::GetYAxisValues( string type ) {

//Returns bottom (MIN), top (MAX) or middle (default) of bin values

double* YAxis = new double[yBins];

if (type=="MIN") YAxis[0] = yMin;

else if (type=="MAX") YAxis[0] = yMin+yDelta;

else YAxis[0] = yMin+(yDelta)/2;

for (int y=1;y<yBins;y++) {

YAxis[y]=YAxis[y-1]+yDelta;

}

return YAxis;

}

double* iArray::GetZAxisValues( string type ) {

//Returns bottom (MIN), top (MAX) or middle (default) of bin values

double* ZAxis = new double[zBins];

if (type=="MIN") ZAxis[0] = zMin;

else if (type=="MAX") ZAxis[0] = zMin+zDelta;

else ZAxis[0] = zMin+(zDelta)/2;

for (int z=1;z<zBins;z++) {

ZAxis[z]=ZAxis[z-1]+zDelta;

}

return ZAxis;

}

double* iArray::GetXYPlaneWBin( int zIn ) {

// Returns the XY plane array for a Z.

double* xyPlane = new double[xBins*yBins];

for (int x=0;x<xBins;x++) {

for (int y=0;y<yBins;y++) {
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xyPlane[(x*yBins) + y] = this->GetXYZBin(x,y,zIn);

}

}

return xyPlane;

}

profile* iArray::GetNormZProfileForXY( double xIn, double yIn, string type )

{

// Method returns an normalised array of Z-values which make up a new

// (X,Y) profile. Involes bi-cubic spline interpolation at each Z vertex

// down the line of (X,Y) in the 3D array.

vector<double> zNew;

double* xAxis = this->GetXAxisValues(type);

double* yAxis = this->GetYAxisValues(type);

for (int z=0;z<zBins;z++) {

double* xyPlane = this->GetXYPlaneWBin(z);

double* splines = numRep::splie2(xAxis,yAxis,xyPlane,xBins,yBins);

zNew.insert(zNew.end(),

numRep::splin2(xAxis,yAxis,xyPlane,splines,xBins,yBins,xIn,yIn));

delete [] xyPlane;

}

profile *prof = new profile(xIn,yIn,zNew,this->GetZAxisValues(),zBins);

prof->Normalise();

return prof;

}

double iArray::GetXYZBin(int x , int y , int z) {

return array[(zBins*yBins*x) + (y*zBins) + z];

}

double iArray::GetXYZBin(float x , float y , float z) {

return GetXYZBin((int) x , (int) y , (int) z);

}

double iArray::GetXYZBin(double x , double y , double z) {

return GetXYZBin((int) x , (int) y , (int) z);

}

void iArray::Dump() {

for (int i=0;i<xBins*yBins*zBins;i++) {

cout << "iArray> array[" << i << "]:\t" << array[i] << endl;

}

}

B.3.8 profile.hh

This class was written to contain the data that describes a mass distribution: the
data in each bin, and the label of the bin. It also contains the second derivatives
that the cubic spline interpolation needs to interpolate (this is to stop the program
having to recompute them after the object is created).

#ifndef profile_HH
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#define profile_HH

#include "realData.hh"

#include "TH1D.h"

using namespace std;

class profile {

private:

double* data;

double* zAxis;

double* splines;

int zBins;

double zMin;

double zMax;

double zDelta;

double xParam;

double yParam;

double mean;

public:

profile();

profile( double , double , double* , double* , int );

profile( double , double , vector<double> , double* , int );

~profile();

inline double getBinValue ( int bin ) { return zAxis[bin]; }

inline double getBinElement ( int bin ) { return data[bin]; }

inline double X() { return xParam; }

inline double Y() { return yParam; }

inline double Mean() { return mean; }

inline double Min() { return zMin; }

inline double Max() { return zMax; }

inline double Size() { return zBins; }

int getBin( double );

double getDataElement( double );

void Normalise();

void Dump();

inline double LogLikelihoodFit( realData* data , string fitType ) {

return this->LogLikelihoodFit(data,this->Min(),this->Max(),fitType);

}

double LogLikelihoodFit( realData* , double fitMin , double fitMax ,

string fitType );

double* Fit( TH1D* dataIn , double norm , double fitMin , double fitMax ,

string fitType );

TH1D* profile::getHistogram( string name , string title );

};

#endif

B.3.9 profile.cc

#include <iostream>

#include <string>

#include <vector>

#include <stdlib.h>
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#include <cstdlib>

#include "numRep.hh"

#include "TMath.h"

#include "fit.hh"

#include "realData.hh"

#include "profile.hh"

profile::profile() {

}

profile::profile( double xIn , double yIn , double* profileIn ,

double* profileAxis , int bins ) {

xParam = xIn;

yParam = yIn;

zDelta = profileAxis[1]-profileAxis[0];

zBins = bins;

data = new double[bins];

zAxis = new double[bins];

for (int z=0;z<bins;z++) {

data[z]=profileIn[z];

zAxis[z]=profileAxis[z];

}

zMin = zAxis[0]-(zDelta/2);

zMax = zAxis[zBins-1]+(zDelta/2);

splines = numRep::spline(zAxis,data,zBins,1.0e30,1.0e30);

mean = numRep::splint(zAxis,data,splines,zBins,xParam);

}

profile::profile( double xIn , double yIn , vector<double> profileIn ,

double* profileAxis , int bins ) {

xParam = xIn;

yParam = yIn;

zDelta = profileAxis[1]-profileAxis[0];

zBins = bins;

data = new double[bins];

zAxis = new double[bins];

for (int z=0;z<bins;z++) {

data[z]=profileIn[z];

zAxis[z]=profileAxis[z];

}

zMin = zAxis[0]-(zDelta/2);

zMax = zAxis[zBins-1]+(zDelta/2);

splines = numRep::spline(zAxis,data,zBins,1.0e30,1.0e30);

mean = numRep::splint(zAxis,data,splines,zBins,xParam);

}

profile::~profile() {

}

int profile::getBin( double zIn ) {

if (zIn<zMin || zIn>zMax){

cout << "profile [" << xParam << "," << yParam << endl;

55



cout << "]> Error, input out of range" << endl;

return 0;

} else {

return (int) TMath::Floor((zIn-zMin)/zDelta);

}

}

double profile::getDataElement( double zIn ) {

if (zIn<zMin || zIn>zMax){

cout << "profile [" << xParam << "," << yParam << endl;

cout << "]> Error, input out of range" << endl;

return 0;

} else {

return numRep::splint(zAxis,data,splines,zBins,zIn);

}

}

void profile::Normalise() {

double N=0;

for (int i=0;i<zBins;i++) {

N += numRep::splint(zAxis,data,splines,zBins,zAxis[i]) * zDelta;

}

for (int j=0;j<zBins;j++) {

data[j] = data[j]/N;

}

delete [] splines;

double* splines = numRep::spline(zAxis,data,zBins,1.0e30,1.0e30);

mean = numRep::splint(zAxis,data,splines,zBins,xParam);

}

void profile::Dump() {

for (int i=0;i<zBins;i++){

cout << "profile [" << xParam << "," << yParam << "]>\t";

cout << "zAxis[" << i << "]\t" << zAxis[i];

cout << "\tdata[" << i << "]\t" << data[i];

cout << "\tspline[" << i << "]\t" << splines[i] << endl;

}

}

double profile::LogLikelihoodFit( realData* dataIn , double fitMin ,

double fitMax , string fitType ) {

return fit::getFitParameter(dataIn,this,fitType,fitMin,fitMax);

}

double* profile::Fit( TH1D* dataIn , double norm , double fitMin ,

double fitMax , string fitType ) {

return fit::getChiSq(dataIn,norm,this,fitType,fitMin,fitMax);

}

TH1D* profile::getHistogram( string name , string title ) {

TH1D* h = new TH1D(name.c_str(),title.c_str(),zBins,zMin,zMax);

for (int i=1;i<=zBins;i++) {

h->SetBinContent(i,data[i-1]);

}
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return h;

}

B.3.10 fit.hh

This class contains the fitting methods used to compare an input profile class
with a input TH1D Root histogram of real data.

#ifndef fit_HH

#define fit_HH

#include "realData.hh"

#include "profile.hh"

using namespace std;

class fit {

public:

fit();

~fit();

static double getFitParameter(realData* , profile* , string , double ,

double );

static double* getChiSq(TH1D* data , double norm , profile* profileIn ,

string fitType , double fitMin , double fitMax );

static double gammln( double );

};

#endif

B.3.11 fit.cc

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include "numRep.hh"

#include "TMath.h"

#include "fit.hh"

fit::fit() {

}

fit::~fit() {

}

double fit::getFitParameter(realData* data , profile *profileIn ,

string fitType , double fitMin , double fitMax ) {

double fitSum;

double sum;
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double mean = profileIn->Mean();

for (int i=0;i<data->numItems();i++) {

double realMZ = data->getDataElement(i);

if( (realMZ>fitMin) && (realMZ<fitMax) ) {

const double databit = profileIn->getDataElement(realMZ);

if (fitType=="LOG") {

sum = (double) TMath::Log(databit);

}

if (fitType=="CHI") {

sum = (double) (databit-mean)/mean ;

}

fitSum = fitSum + sum;

}

}

return fitSum;

}

double* fit::getChiSq(TH1D* data , double norm , profile *profileIn ,

string fitType , double fitMin , double fitMax ) {

TH1D* theory = profileIn->getHistogram("bfit","Estimate");

theory->Scale(norm);

double* chi = new double[3];

double sum,th,ex;

int min,max;

// calculate which bins to check over.

min = profileIn->getBin(fitMin);

max = profileIn->getBin(fitMax);

chi[0] = chi[1] = chi[2] = 0;

// Chi^2 fit over the bins

for (int i=min;i<=max;i++) {

th = theory->GetBinContent(i+1);

ex = data->GetBinContent(i+1);

if (ex!=0.0) {

chi[0]+= (TMath::Power(ex-th,2))/ex;

chi[1]++;

}

}

theory->~TH1D();

chi[1]--;

chi[2] = TMath::Prob(chi[0],chi[1]);

return chi;

}

B.3.12 numRep.hh

This class contains algorithms taken from ‘Numerical Recipes in C ’ and ‘Numerical
Recipes in C++’ [6].

#ifndef numRep_HH

#define numRep_HH

using namespace std;
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class numRep {

public:

static double* spline(double*,double*,int,double,double);

static double splint(double*,double*,double*,int,double);

static double* splie2(double*,double*,double*,int,int);

static double splin2(double*,double*,double*,double*,int,int,

double,double);

static double* extractYProfile(double*,int,int);

static double* numRep::polint(double* xa,double * ya,int n,double x);

};

#endif

B.3.13 numRep.cc

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include <math.h>

#include "TMath.h"

#include "numRep.hh"

double* numRep::extractYProfile( double* xyPlane , int yBins , int xIn ) {

double *profile = new double[yBins];

for (int y=0;y<yBins;y++) {

int ik = (xIn*yBins)+y;

profile[y] = xyPlane[ik];

}

return profile;

}

double* numRep::spline( double* x , double* y , int n , double yp1 ,

double ypn ) {

// Given y[] where y[i] = y( x[i] ), the size of the array, n and the

// first and last derivatives of y, will return the array needed for

// cubic spline interpolation.

// Calling with yp1 or ypn > = 0.99e30, will make it use a natural spline

// there.

int i,k;

double p,qn,sig,un;

double *u = new double[n-1];

double *y2 = new double[n];

if (yp1 > 0.99e30 ) {

y2[0] = u[0] = 0.0;

} else {
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y2[0] = -0.5;

u[0] = (3/(x[1]-x[0]))*((y[1]*y[0])/(x[1]-x[0])-yp1);

}

for (i=1;i<n-1;i++) {

sig = (x[i]-x[i-1])/(x[i+1]-x[i-1]);

p = sig * y2[i-1] + 2;

y2[i] = (sig-1)/p;

u[i] = (y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);

u[i] = (6 * u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;

}

if (ypn > 0.99e30 ) {

qn=un=0;

} else {

qn = 0.5;

un = (3/(x[n-1]-x[n-2]))*(ypn-(y[n-1]-y[n-1])/(x[n-1]-x[n-1]));

}

y2[n-1] = (un-qn*u[n-2])/(qn*y2[n-1]+1);

for (k=n-2;k>=0;k--) {

y2[k]=y2[k]*y2[k+1]+u[k];

}

return y2;

}

double numRep::splint( double* xa , double* ya , double* y2a , int n ,

double x ) {

// With spline run already, to calculate y2*, this will return a y(x) for

// given x

int klo,khi,k;

double h,b,a;

klo = 0;

khi = n-1;

while (khi-klo > 1) {

k = (khi+klo) >> 1;

if (xa[k] > x) khi=k;

else klo=k;

}

h=xa[khi]-xa[klo];

if (h==0) cout << "numRep> Splint says something is wrong, bad input.\n";

a=(xa[khi]-x)/h;

b=(x-xa[klo])/h;

double thing =

a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;

return thing;

}

double* numRep::splie2( double* xAxis , double* yAxis , double*

xyPlane , int xBins , int yBins ) {

// This is called before bicubic spline routine. Like spline, it

// generates the second derivatives needed.

double *splines = new double[xBins*yBins];

60



for (int x=0;x<xBins;x++) {

double *temp = numRep::extractYProfile(xyPlane,yBins,x);

// create temp array with new splines

double *temp2;

temp2 = spline(yAxis,temp,yBins,1.0e30,1.0e30);

for (int y=0;y<yBins;y++) {

splines[(x*yBins)+y] = temp2[y];

}

delete [] temp;

delete [] temp2;

}

return splines;

}

double numRep::splin2( double* xAxis , double* yAxis , double* xyPlane,

double* splines , int xBins , int yBins , double xIn , double yIn ) {

// With splie2 called, this generates a bicubic spline interpolated z

// value for (x,y)

double *yTemp = new double[xBins];

double *yyTemp = new double[xBins];

for (int x=0;x<xBins;x++) {

double *temp_prof = numRep::extractYProfile(xyPlane,yBins,x);

double *temp_spli = numRep::extractYProfile(splines,yBins,x);

yyTemp[x] = splint(yAxis,temp_prof,temp_spli,yBins,yIn);

delete [] temp_prof;

delete [] temp_spli;

}

yTemp = spline(xAxis,yyTemp,xBins,1.0e30,1.0e30);

return splint(xAxis,yyTemp,yTemp,xBins,xIn);

}

double* numRep::polint( double* xa , double * ya , int n , double x )

// For this routine y[0] is the answer, y[1] is the error (y is returned).

{

int i,m,ns=1;

double den,dif,dift,ho,hp,w;

double *c,*d;

double *y=new double[2];

dif=fabs(x-xa[0]);

c = new double[n-1];

d = new double[n-1];

for (i=0;i<n;i++) {
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if ( (dift=fabs(x-xa[i])) < dif) {

ns=i;

dif=dift;

}

c[i]=ya[i];

d[i]=ya[i];

}

y[0]=ya[ns--];

for (m=1;m<n;m++) {

for (i=0;i<n-m;i++) {

ho=xa[i]-x;

hp=xa[i+m]-x;

w=c[i+1]-d[i];

if ( (den=ho-hp) == 0.0) {

cout << "numRep> Error in polint: ho=" << endl;

cout << ho << ", hp=" << hp << endl;

}

den=w/den;

d[i]=hp*den;

c[i]=ho*den;

}

y[0] += (y[1]=(2*ns < (n-m) ? c[ns+1] : d[ns--]));

}

return y;

}

B.3.14 fitter.cards

The program is controlled using this file. To avoid having to recompile the program
every time a parameter is changed, this file stores the constants and parameters
that a user would wish to change. An environment variable must be set telling
the fitting program where to find this file. This class uses the ControlCards class,
which was written by Dr. Mark Lancaster.

# ----------------------- FITTER --------------------------------

#

# Define using ’export CONTROL_CARDS=fitter.cards’

#

# The Makefile is edited so that it uses main_minuit.cc as the defult

# program main. To change this, just edit the Makefile in the correct

# place so that the link points to the program main you wish to uses.

#

# ============== Output =================================

#

# Set to ’1’ to save the best fit histogram as TH1D inside OUTPUT_FILE.

#

#

OUTPUT_ROOT 1

OUTPUT_FILE 040321_Fitter80.root

HISTO_NAME Mid

X_AXIS M_{Z}(GeV)

Y_AXIS #kappa
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Z_AXIS M_{Z}(GeV)

#

# ============== Files ==================================

#

# --- Location of experimental data ---

#

#EXP_DATA_FILE /home/dan/4C00/4C00_fitter/zee_central_only_cdf_real.data

#EXP_DATA_FILE /home/beecher/4C00_fitter/zee_central_only_cdf_real.data

#EXP_DATA_FILE /home/markl/Z_DATA.dat

#EXP_DATA_FILE /home/beecher/4C00_fitterN/Z_DATA.dat

EXP_DATA_FILE /home/dan/4C00/4C00_fitterN/Z_DATA.dat

#

# --- Location of the stored histograms

#

#HISTO_FILE /home/dan/4C00/4C00_fitter/ze_mz_kappa.root

#HISTO_FILE /home/beecher/4C00_fitter/ze_mz_kappa.root

#HISTO_FILE /home/markl/Z_TEMPLATE.root

#HISTO_FILE /home/beecher/4C00_fitterN/Z_TEMPLATE.root

HISTO_FILE /home/dan/4C00/4C00_fitterN/Z_TEMPLATE.root

MASTER_ID h99999

#

# ============== Parameters to fit ======================

#

# Minuit seems to be very fussy about the starting values; there may only

# be a small minimun local to the best fit. If Minuit tries to minimise

# outside of this region, then it will return the limits as the best fit.

# Thus, it is useful to have an idea of what the best fit parameters

# should be near.

#

# --- General params

#

# Bin min (MIN), max bin (MAX) or centre (default).

BIN_TYPE m

#

# --- First minimisation parameter

#

X_PARAM_NAME Mz

X_PARAM_START 91.178

X_PARAM_MIN 90

X_PARAM_MAX 92

X_PARAM_STEP 0.005

#

# --- Second minimisation parameter

#

Y_PARAM_NAME Kappa

Y_PARAM_START 1.7

Y_PARAM_MIN 0.31

Y_PARAM_MAX 2.29

Y_PARAM_STEP 0.005

#

# --- Range of fitting while calulating best fit

#

# Set DEFAULT_RANGE to 1 to use the whole range of the input histograms

# while calculating the best fit. Set it to 0 to use a range specified
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# by FIT_MIN_X and FIT_MAX_X

#

DEFAULT_RANGE 0

FIT_MIN_X 80

FIT_MAX_X 100

#

# ============= Minuit fitting parameters ===============

#

# --- Error calculation to use

#

# 0.5 Log likelihood

# 1 Chi squared

M_ERROR 1

#

# --- Maximum iterations

#

MAX_ITER 500

#

# --- Minimisation strategy

#

# 0 = Minimise the number of calls to function

# 1 = Try to balance speed against reliablity (standard)

# 2 = Make sure minimum true, errors correct

MIN_TYPE 1

#

# --- Feedback

#

# -1 = No output

# 0 = No warnings, result only

# 1 = Normal

M_FEED 0

#

#

B.4 Transverse momentum fit

This program consisted of one main executable class, and a external file containing
fitting parameters.

B.4.1 ptfit.cc

This program invokes TMinuit to minimise the χ2 fit of the smeared functional
form to the actual data. HERWIG data is read into the file, used to create the
re-weighting array. This is then used to ‘smear’ a TH1D histogram containing the
functional form.

The commands at the end of the code create a nice histogram and save it in a
Root file of the user’s designation.

#include <iostream>

#include <fstream>

#include <string>
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#include <cstdlib>

#include <vector>

#include <stdlib.h>

#include <sstream>

#include "TMath.h"

#include "TFile.h"

#include "TH1D.h"

#include "realData.hh"

#include "TMinuit.h"

#include "TCanvas.h"

#include "TLegend.h"

#include "TRandom.h"

#include "TLorentzVector.h"

#include "TPaveText.h"

#include "ControlCards.hh"

using namespace std;

static TH1D* exptdata;

static vector<double> reweight;

static int xBins;

static double xMax,xMin,xDelta;

double gammaln(double xx)

{

double x,y,tmp,ser;

static double cof[6]={

76.18009172947146,

-86.50532032941677,

24.01409824083091,

-1.231739572450155,

0.1208650973866179e-2,

-0.5395239384953e-5};

int j;

y=x=xx;

tmp=x+5.5;

tmp -= (x+0.5)*TMath::Log(tmp);

ser=1.000000000190015;

for (j=0;j<5;j++){

ser += cof[j]/++y;

}

return -tmp+(TMath::Log(2.5066282746310005*ser/x));

}

double PTtrue(double P1 , double P2 , double P3 , double P4 , double PT )

// The unsmeared 4-param PT functional form

{

double X = PT/50.0;

double gammaP4 = P4 * TMath::Exp(gammaln(P4));

double part1 = TMath::Power(X,P4)/gammaP4;

double part2 = (1-P1) * (TMath::Power(P2,P4+1)) * (TMath::Exp(-P2*X));

double part3 = P1 * (TMath::Power(P3,P4+1)) * (TMath::Exp(-P3*X));

return part1*(part2+part3);
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}

double* chisq(TH1D* data, vector<double> reweight, int xBins, double P1,

double P2, double P3, double P4)

// Loops over PT data in data object and returns a chi^2 for the current

// PTtrue

{

double *chi= new double[5];

chi[0] = chi[1] = 0;

chi[2] = xBins;

double* chisum = new double[2];

TH1D* tested =

new TH1D("buffer","Histogram being used to test",xBins,xMin,xMax);

double norm=0;

double nono=0;

for(int i=1;i<=xBins;i++) {

double pt = data->GetXaxis()->GetBinCenter(i);

double w = PTtrue(P1,P2,P3,P4,pt);

tested->Fill(pt,w);

norm+=(w*xDelta);

nono+=(data->GetBinContent(i))*xDelta;

}

tested->Scale(nono/norm);

for(int i=1;i<=xBins;i++) {

double expect = data->GetBinContent(i);

double theory = tested->GetBinContent(i);

double theory_sm = theory*reweight[i];

if (expect!=0) {

chisum[0] = TMath::Power((theory_sm-expect),2)/expect;

chisum[1] = TMath::Power((theory-expect),2)/expect;

} else {

chisum[0] = chisum[1] = 0;

chi[2]--;

}

chi[0]+=chisum[0];

chi[1]+=chisum[1];

}

tested->~TH1D();

chi[3] = TMath::Prob(chi[0],chi[2]);

chi[4] = TMath::Prob(chi[1],chi[2]);

return chi;

}

static void myFCN( Int_t &npar, Double_t* gin, Double_t &f, Double_t* par,

Int_t flag )

// Function minimised by Minuit.

{

f=0;

double P1 = par[0];

double P2 = par[1];

double P3 = par[2];

double P4 = par[3];

double *chi = chisq(exptdata,reweight,xBins,P1,P2,P3,P4);

f = chi[0];
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}

int main()

{

// Define the variables to be read from the cards

ControlCards cCards;

cCards.define("REAL_DATA","");

cCards.define("HERWIG_DATA","");

cCards.define("OUTPUT_FILE","");

cCards.define("X_MIN",(float) 0);

cCards.define("X_MAX",(float) 50);

cCards.define("X_BINS",(int) 50);

cCards.define("E_MASS",(float) 0.511e-3);

cCards.define("KAPPA",(float) 1.8);

cCards.define("P1_START",(float) 1);

cCards.define("P2_START",(float) 1);

cCards.define("P3_START",(float) 1);

cCards.define("P4_START",(float) 1);

cCards.define("P1_MIN",(float) 0);

cCards.define("P2_MIN",(float) 0);

cCards.define("P3_MIN",(float) 0);

cCards.define("P4_MIN",(float) 0);

cCards.define("P1_MAX",(float) 0);

cCards.define("P2_MAX",(float) 0);

cCards.define("P3_MAX",(float) 0);

cCards.define("P4_MAX",(float) 0);

cCards.define("P1_STEP",(float) 0);

cCards.define("P2_STEP",(float) 0);

cCards.define("P3_STEP",(float) 0);

cCards.define("P4_STEP",(float) 0);

cCards.define("MAX_ITR",(int) 500);

cCards.define("STRENGTH",(int) 1);

cCards.define("FEEDBACK",(int) 0);

cCards.Read();

cCards.Print();

// Constants to be determined by CC.

xMin = (double) cCards.FloatValue("X_MIN");

xMax = (double) cCards.FloatValue("X_MAX");

xBins = cCards.IntValue("X_BINS");

xDelta = (xMax-xMin)/xBins;

const double E_MASS = (double) cCards.FloatValue("E_MASS");

const double KAPPA = (double) cCards.FloatValue("KAPPA");

// Create the reweighting vector

vector<double> weight;

vector<double> px1;

vector<double> py1;

vector<double> pz1;

vector<double> px2;

vector<double> py2;
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vector<double> pz2;

ifstream ff((cCards.StringValue("HERWIG_DATA")).c_str());

if (!ff.is_open()) {

cout << cCards.StringValue("HERWIG_DATA") << " not found...." << endl;

return -1;

}

cout << "=== File opened ===" << endl;

string buffer;

char *stopchar;

while (!ff.eof()) {

ff >> buffer; // Event weight

weight.insert(weight.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PX1

px1.insert(px1.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PY1

py1.insert(py1.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PZ1

pz1.insert(pz1.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PX2

px2.insert(px2.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PY2

py2.insert(py2.end(),strtod(buffer.c_str(),&stopchar));

ff >> buffer; // PZ2

pz2.insert(pz2.end(),strtod(buffer.c_str(),&stopchar));

}

ff.close();

cout << "=== File read ===" << endl;

TH1D* DT1 = new TH1D("data_us","HERWIG Data (unsmeared)",xBins,xMin,xMax);

TH1D* DT2 = new TH1D("data_sm","HERWIG Data (smeared)",xBins,xMin,xMax);

TLorentzVector e1,e2,z0,z0s;

for (int i=0;i<px1.size();i++) {

e1.SetPxPyPzE(px1[i],

py1[i],

pz1[i],

TMath::Sqrt(px1[i]*px1[i] + py1[i]*py1[i] + pz1[i]*pz1[i])+E_MASS);

e2.SetPxPyPzE(px2[i],

py2[i],

pz2[i],

TMath::Sqrt(px2[i]*px2[i] + py2[i]*py2[i] + pz2[i]*pz2[i])+E_MASS);

// Determine the eta for e+/e-

double eta1 = e1.PseudoRapidity();

double eta2 = e2.PseudoRapidity();

// If both are detected by the CEM -> |eta| <= 1

if( TMath::Abs(eta1)<=1.0 && TMath::Abs(eta2)<=1.0 ) {

// Smear the energy

double *r = new double[8];

for (int i=0;i<8;i++) {

r[i] = gRandom->Gaus();
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}

double p1 = e1.P();

double p2 = e2.P();

double pt1 = e1.Pt();

double pt2 = e2.Pt();

double en1 = e1.E();

double en2 = e2.E();

double deltaE1 = TMath::Sqrt((0.135*0.135*p1/(en1*pt1))+KAPPA*KAPPA);

double deltaE2 = TMath::Sqrt((0.135*0.135*p2/(en2*pt2))+KAPPA*KAPPA);

// Smear the energy;

double en1s = en1 * (1 + r[0]*deltaE1);

double en2s = en2 * (1 + r[1]*deltaE2);

// Smear the momenta

double px1s = px1[i] * (1 + r[2]*(en1*deltaE1/p1));

double py1s = py1[i] * (1 + r[3]*(en1*deltaE1/p1));

double pz1s = pz1[i] * (1 + r[4]*(en1*deltaE1/p1));

double px2s = px2[i] * (1 + r[5]*(en2*deltaE2/p2));

double py2s = py2[i] * (1 + r[6]*(en2*deltaE2/p2));

double pz2s = pz2[i] * (1 + r[7]*(en2*deltaE2/p2));

// Smeared particles

TLorentzVector e1s;

e1s.SetPxPyPzE(px1s,py1s,pz1s,en1s);

TLorentzVector e2s;

e2s.SetPxPyPzE(px2s,py2s,pz2s,en2s);

// Reconstruct the Z0’s

z0 = e1 + e2;

z0s = e1s + e2s;

// Fill smeared and unsmeared histograms

DT1->Fill(z0.Pt(),weight[i]);

DT2->Fill(z0s.Pt(),weight[i]);

}

}

double norma=0;

double normb=0;

for (int i=1;i<=xBins;i++) {

norma+= (DT1->GetBinContent(i))*xDelta;

normb+= (DT2->GetBinContent(i))*xDelta;

}

DT1->Scale(1/norma);

DT2->Scale(1/normb);

// Create the reweighting array/vector

for (int i=1;i<=xBins;i++) {

const double sme = DT2->GetBinContent(i);

const double usm = DT1->GetBinContent(i);
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const double wei = sme/usm;

reweight.insert(reweight.end(),wei);

}

// Create histogram of real data

vector<double> ac_px1;

vector<double> ac_py1;

vector<double> ac_pz1;

vector<double> ac_px2;

vector<double> ac_py2;

vector<double> ac_pz2;

ifstream f2((cCards.StringValue("REAL_DATA")).c_str());

while (!f2.eof()) {

f2 >> buffer; // PX1

ac_px1.insert(ac_px1.end(),strtod(buffer.c_str(),&stopchar));

f2 >> buffer; // PY1

ac_py1.insert(ac_py1.end(),strtod(buffer.c_str(),&stopchar));

f2 >> buffer; // PZ1

ac_pz1.insert(ac_pz1.end(),strtod(buffer.c_str(),&stopchar));

f2 >> buffer; // PX2

ac_px2.insert(ac_px2.end(),strtod(buffer.c_str(),&stopchar));

f2 >> buffer; // PY2

ac_py2.insert(ac_py2.end(),strtod(buffer.c_str(),&stopchar));

f2 >> buffer; // PZ2

ac_pz2.insert(ac_pz2.end(),strtod(buffer.c_str(),&stopchar));

}

f2.close();

exptdata =

new TH1D("expt","TMinuit fit of CDF P_{T}(Z) data",xBins,xMin,xMax);

for (int i=0;i<ac_px1.size();i++) {

e1.SetPxPyPzE(ac_px1[i],

ac_py1[i],

ac_pz1[i],

TMath::Sqrt(ac_px1[i]*ac_px1[i] + ac_py1[i]*ac_py1[i] +

ac_pz1[i]*ac_pz1[i])+E_MASS);

e2.SetPxPyPzE(ac_px2[i],

ac_py2[i],

ac_pz2[i],

TMath::Sqrt(ac_px2[i]*ac_px2[i] + ac_py2[i]*ac_py2[i] +

ac_pz2[i]*ac_pz2[i])+E_MASS);

z0 = e1 + e2;

exptdata->Fill(z0.Pt());

}

double norm1=0;

for (int i=1;i<=xBins;i++) {

norm1+=(exptdata->GetBinContent(i))*xDelta;

}

// Define Minuit
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Int_t pm = 4;

TMinuit *minuit = new TMinuit(pm);

minuit->SetFCN(myFCN);

int ierflg = 0;

// Minimisation Parameters

string* name = new string[4];

name[0] = "P1";

name[1] = "P2";

name[2] = "P3";

name[3] = "P4";

double* start_values = new double[4];

start_values[0] = (double) cCards.FloatValue("P1_START");

start_values[1] = (double) cCards.FloatValue("P2_START");

start_values[2] = (double) cCards.FloatValue("P3_START");

start_values[3] = (double) cCards.FloatValue("P4_START");

double* lim_min = new double[4];

lim_min[0] = (double) cCards.FloatValue("P1_MIN");

lim_min[1] = (double) cCards.FloatValue("P2_MIN");

lim_min[2] = (double) cCards.FloatValue("P3_MIN");

lim_min[3] = (double) cCards.FloatValue("P4_MIN");

double* lim_max = new double[4];

// set to the same as lim_min to run with no limits

lim_max[0] = (double) cCards.FloatValue("P1_MAX");

lim_max[1] = (double) cCards.FloatValue("P2_MAX");

lim_max[2] = (double) cCards.FloatValue("P3_MAX");

lim_max[3] = (double) cCards.FloatValue("P4_MAX");

double* step = new double[4];

step[0] = (double) cCards.FloatValue("P1_STEP");

step[1] = (double) cCards.FloatValue("P2_STEP");

step[2] = (double) cCards.FloatValue("P3_STEP");

step[3] = (double) cCards.FloatValue("P4_STEP");

Double_t* val = new double[1];

// Set parameters

minuit->SetPrintLevel(cCards.IntValue("FEEDBACK"));

for (int pms=0;pms<pm;pms++) {

minuit->mnparm(pms,name[pms].c_str(),start_values[pms],step[pms],

lim_min[pms],lim_max[pms],ierflg);

}

minuit->SetErrorDef(1);

minuit->SetMaxIterations(cCards.IntValue("MAX_ITR"));

val[0] = cCards.IntValue("STRENGTH"); // Strength

minuit->mnexcm("SET STR",val,1,ierflg);

minuit->Migrad();

double* result = new double[4];

double* error = new double[4];

for (int pms=0;pms<pm;pms++) {

minuit->GetParameter(pms,result[pms],error[pms]);

cout << "PTFit> " << name[pms] << "\t" << result[pms] << endl;
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cout << "\tError=" << error[pms] << endl;

}

// Error checking

TH1D *PT1u = new TH1D("PT1u","PT1u",xBins,xMin,xMax);

TH1D *PT2u = new TH1D("PT2u","PT2u",xBins,xMin,xMax);

TH1D *PT3u = new TH1D("PT3u","PT3u",xBins,xMin,xMax);

TH1D *PT4u = new TH1D("PT4u","PT4u",xBins,xMin,xMax);

TH1D *PT1d = new TH1D("PT1d","PT1d",xBins,xMin,xMax);

TH1D *PT2d = new TH1D("PT2d","PT2d",xBins,xMin,xMax);

TH1D *PT3d = new TH1D("PT3d","PT3d",xBins,xMin,xMax);

TH1D *PT4d = new TH1D("PT4d","PT4d",xBins,xMin,xMax);

// Derive the chi^2 for the final histogram.

double *chi =

chisq(exptdata,reweight,xBins,result[0],result[1],result[2],result[3]);

stringstream ss1;

ss1 << "#chi^{2} = " << chi[0] << " / " << chi[2] << " (sm.)";

string chi_string1 = ss1.str();

stringstream ss2;

ss2 << "#chi^{2} = " << chi[1] << " / " << chi[2] << " (unsm.)";

string chi_string2 = ss2.str();

cout << " ==== SMEARED ====" << endl;

cout << "chi^2 = " << chi[0] << "\tDoF = " << chi[2] << "\tp = " << endl;

cout << chi[3] << endl;

cout << " === UNSMEARED ===" << endl;

cout << "chi^2 = " << chi[1] << "\tDoF = " << chi[2] << "\tp = " << endl;

cout << chi[4] << endl;

TH1D *PT1 = new TH1D("PTf_us","Unsmeared P_{T} form",xBins,xMin,xMax);

TH1D *PT2 = new TH1D("PTf_sm","Smeared P_{T} form",xBins,xMin,xMax);

TH1D *nu = new TH1D("","",xBins,xMin,xMax);

nu->SetLineColor(10);

reweight.insert(reweight.end(),1);

for (double i=(xMin+xDelta/2);i<=xMax;i+=xDelta) {

PT1->Fill(i,PTtrue(result[0],result[1],result[2],result[3],i));

PT2->Fill(

i,PTtrue(result[0],result[1],result[2],result[3],i)*reweight[i]);

PT1u->Fill(

i,PTtrue(result[0]+error[0],result[1],result[2],result[3],i));

PT1d->Fill(

i,PTtrue(result[0]-error[0],result[1],result[2],result[3],i));

PT2u->Fill(

i,PTtrue(result[0],result[1]+error[1],result[2],result[3],i));

PT2d->Fill(

i,PTtrue(result[0],result[1]-error[1],result[2],result[3],i));
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PT3u->Fill(

i,PTtrue(result[0],result[1],result[2]+error[2],result[3],i));

PT3d->Fill(

i,PTtrue(result[0],result[1],result[2]-error[2],result[3],i));

PT4u->Fill(

i,PTtrue(result[0],result[1],result[2],result[3]+error[3],i));

PT4d->Fill(

i,PTtrue(result[0],result[1],result[2],result[3]-error[3],i));

}

double norm2,norm3,norm4;

norm2=norm3=norm4=0;

for (int i=0;i<xBins;i++) {

norm2+= (PT1->GetBinContent(i))*xDelta;

norm3+= (PT2->GetBinContent(i))*xDelta;

norm4+= (exptdata->GetBinContent(i))*xDelta;

}

PT1->Scale(norm4/norm2);

PT2->Scale(norm4/norm3);

PT2->SetFillColor(0);

PT2->GetXaxis()->SetTitle("P_{T} (GeV)");

exptdata->SetFillColor(0);

exptdata->SetLineColor(9);

exptdata->GetXaxis()->SetTitle("P_{T} (GeV)");

PT2->SetLineColor(kRed);

PT2->SetStats(kFALSE);

exptdata->SetStats(kFALSE);

TCanvas* c1 = new TCanvas("can","Check");

c1->SetFillColor(0);

c1->SetBorderMode(0);

exptdata->Draw("E0");

PT1->Draw("same c");

PT2->Draw("same c");

TLegend *leg = new TLegend(0.6,0.7,1,1);

leg->AddEntry(exptdata,"CDF Data","L");

leg->AddEntry(PT2,"Best fit (sm.)","L");

leg->AddEntry(PT1,"Best fit (unsm.)","L");

leg->AddEntry(nu,chi_string1.c_str(),"L");

leg->AddEntry(nu,chi_string2.c_str(),"L");

leg->SetFillColor(0);

leg->SetTextFont(62);

leg->SetTextSize(0.04);

leg->Draw();

TFile *f1 =

new TFile((cCards.StringValue("OUTPUT_FILE")).c_str(),"RECREATE");

PT1->Write();

PT2->Write();

c1->Write();

exptdata->SetTitle("Experimental Data");

exptdata->Write();
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PT1u->Write();

PT1d->Write();

PT2u->Write();

PT2d->Write();

PT3u->Write();

PT3d->Write();

PT4u->Write();

PT4d->Write();

f1->Close();

}

B.4.2 ptcards.cards

The external file that contains the parameters of the fit.

# ----------------------- PTFIT --------------------------------

#

# Define using ’export CONTROL_CARDS=ptcard.cards’

#

# ============== Output =================================

#

OUTPUT_FILE 040322_dummy.root

#

# ============== Files ==================================

#

# --- Location of experimental data ---

#

REAL_DATA /home/beecher/4C00_pt_form/zee_pxpypz.dat

#

# --- Location of HERWIG data ---

#

#HERWIG_DATA /home/beecher/4C00_pt_form/ptz_4vec.dat

HERWIG_DATA /home/markl/ptz_4vec.dat

#

#

# ============== Variables ===============================

#

# --- Histogram sizes ---

X_BINS 50

X_MIN 0

X_MAX 50

#

# The mass of the electron in GeV

E_MASS 0.511e-3

#

# The kappa factor in the CEM resolution.

KAPPA 0.01742

#

# ============== Parameters to fit ======================

#

# Minuit seems to be very fussy about the starting values; there may only

# be a small minimun local to the best fit. If Minuit tries to minimise

# outside of this region, then it will return the limits as the best fit.
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# Thus, it is useful to have an idea of what the best fit parameters should

# be near.

#

# To run with no limits, set the min and max to be the same number.

#

# --- P1

#

P1_START 0.1

P1_MIN 0

P1_MAX 0

P1_STEP 0.1

#

# --- P2

#

P2_START 0.1

P2_MIN 0

P2_MAX 0

P2_STEP 0.1

#

# --- P3

#

P3_START 10

P3_MIN 0

P3_MAX 0

P3_STEP 0.1

#

# --- P4

#

P4_START 0.1

P4_MIN 0

P4_MAX 0

P4_STEP 0.1

#

# ============= Minuit fitting parameters ===============

#

# --- Maximum iterations

#

MAX_ITR 500

#

# --- Minimisation strategy

#

# 0 = Minimise the number of calls to function

# 1 = Try to balance speed against reliablity (standard)

# 2 = Make sure minimum true, errors correct

STRENGTH 1

#

# --- Feedback

#

# -1 = No output

# 0 = No warnings, result only

# 1 = Normal

FEEDBACK 1
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