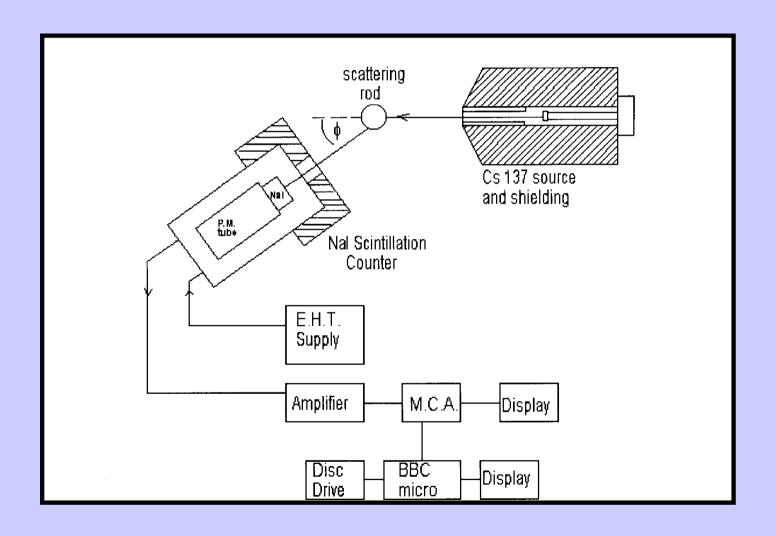

3C59 - Object Oriented Programming

Consolidation exercise 1: An analysis of Compton scattering data

http://www.hep.ucl.ac.uk/~bjw/

- Compton scattering
- Description of the problem
- Reminder of the topics covered so far
- Group discussion
- Some guiding words


Compton scattering - theory

Compton scattering - experiment

3rd year lab experiment:

http://www.hep.ucl.ac.uk/~clarke/ThirdYearLaboratories/ComptonEffect/r3_rev.doc

Description of the problem

You will be provided with three data files (data.dat, model1.dat, model2.dat) which are formatted as follows:

angle (Deg)	energy (KeV)
0.225227	933.131
54.7191	283.047
•••	
80.4224	318.277
	0.225227 54.7191

Your task is to write an (object oriented) analysis suite to analyse the data and determine which model best describes the data.

Requirements: Your programme should...

- ⇒ Read the data from the files
- ⇒ Fill histograms of the angle and energy distributions for each sample
- ⇒ Print out the details of each histogram (contents, error and range of each bin, number of entries and mean)
- \Rightarrow Determine which model best describes the angular distribution of the data (use the χ^2 method)

Reminder of the topics covered so far

- Classes are user designed data types that contain
 - Data
 - Methods
- Steering elements
 - If, else, while, do…
- Input and output
 - To/from the console <iostream>
 - To/from a file <fstream>
- Collections
 - For a collection of integers we would use std::vector <int>
 - Standard method such as push_back ...

Group discussion

- How should the program be structured?
- What classes do we need?
- What should they do? (i.e. what methods should they have?)

#6

Some guidance

Example code will be available at:

http://www.hep.ucl.ac.uk/~bjw/Compton/

- Code suggestions:
 - A datum class for each measurement (each set of measurements can the be stored in a vector of datum objects)
 - A function which reads in data from a file and returns a vector of datum objects
 - A histogram class (and a bin class) which has a χ^2 method
- Calculating χ^2 of two histograms:

$$\chi^{2} = \sum_{bins} \frac{(a_{i} - b_{i})^{2}}{\sigma_{a,i}^{2} + \sigma_{b,i}^{2}}$$

 Start by writing a datum class, then the file reader, then test these on the supplied files