3c59 Second test – 2001 session

This test will be worth between 25-30% of the final mark

Deadline for submission: 12.00 Tuesday 13th March

Submission by email to clarke@hep.ucl.ac.uk

All work MUST be in a single file called test2.cpp. This includes the answer to question 4.

You will receive an acknowledgement of reception. It is your responsibility to contact me immediately if you do not receive such an acknowledgement within 2 hours.

Instructions

This test to be done in non-contact course time.

You may discuss the problem with colleagues, but you must answer the problems in your own words and with your own code.

You may not simply copy other work.

You must demonstrate clearly that you understand what you are presenting

All steps in the code should be very clearly explained via comments. This will form a very large part of the assessment.

You may be asked to explain your working orally to demonstrate your comprehension.

Question 1: Operator overloading

Write a Complex class. This time it should be based upon the following .h file where you will see the member variables represent the exponential form, i.e. r.exp(i()

class Complex {

 private:

 float m_r ; //magnitude of number

 float m_theta ; // theta on Argand diagram

 public:

 // Constructors

 Complex();

 Complex(float r, float theta) ;

 //Simple binary operators

 Complex operator* (Complex& rhs) ;

 Complex operator+ (Complex& rhs) ;

 Complex operator =(Complex& rhs) ;

 // boolean binary operators to compare for “greater than” and “less than” based

 // upon comparing the magnitude only (i.e. forget theta for this operation)

 bool operator>(Complex& rhs) ;

 bool operator<(Complex& rhs) ;

 // Unary negation operator ! to return the complex conjugate

 Complex operator! () ;

 // print out the number in some suitable format.

 void print() ;

};

You should copy this .h file out and then provide the corresponding .cpp file to implement all of these methods.

Note that the > and ! operators are something you will have to think about and apply material from the lectures to a slightly new situation. You will very likely have to look in a book.

Question 2 : Writing a mathematical class

A quadratic polynomial is given by:

ax2+bx+c

for arbitrary a,b,c.

Write a class to represent a quadratic.You should call it Quadratic. It should have the following methods:

A suitable set of constructor(s)

float value(float x) �: to return the value of the quadratic for a given x value passed as argument

Complex root1()�: to return one of the roots as a Complex number

Complex root2() �: to return the other root as a Complex number

float derivative(float x)�: to return the value of the first derivative at a given x value passed as argument

Linear functionalDerivative()�: to return an object which represents a linear (first order) polynomial set to be the derivative of the quadratic. You will of course have to write the Linear class.

Write this class and demonstrate the use of its methods in a short application program (e.g. a main function).

[You will require the Complex class from part 2, or from the earlier class exercises, to make this work.]

Question 3. Simple Inheritance

This question is to demonstrate a simple inheritance structure

Write a Cat class

Implement a void happy() method to print “miaow” to the screen

Implement a void angry() method to print “MIAOW” to the screen.

Write two new classes which inherit the Cat class, called Lion and Tiger

Override the angry() method in each case to print a more appropriate noise.

The idea is to leave the happy method (all cats say miaow when happy) but override the angry method as cats make different noises when angry.

Demonstrate the use of these two methods in the subclasses.

Question 4: Simple design

This question is an attempt to bring out your OO thinking. It is not aimed at writing implementation code.

You have been asked to write some software to run the UCL room bookings system.

The requirements specified from the client viewpoint are:

To allow the client to query the system to see if a room is available for a specified period with the required capacity.

To allow the client to query the resources in a room, i.e. phone, OHP, whiteboard, data projector, network connection.

To allow the client to book a room for a specified period.

To allow the client to request that a resource is installed in a room for a specified period.

To allow a client to cancel a booking.

You should think out a set of classes suitable for addressing this problem.

The key point is to think of well defined classes, each with a well defined set of responsibilities. Classes should have whatever “state” they legitimately require and their methods should be passed whatever additional objects are required to perform their function. Conversely classes should not have inappropriate member variables or methods which pertain to some action which should be in a different class.

You should write ONLY the header files (.h) files showing the member s and the method signatures which you think each class might need to do its job.

You should NOT write any implementation code (.cpp files).

You should however describe in words how these classes would interact with each other starting from a client approaching the system through to a booking being made.

Note: Put the ENTIRE answer for this part in test2.cpp between /**/, i.e.

/*

blah blah..

blah .. blah...

*/

In this way it will all be seen by the compiler as comments.

