Reactor anti-neutrino disappearance (with KamLAND)

Filimon Gournaris Lunchtime Seminar 7 Dec 2006

Solar Neutrino Problem

Flux/SSM

- Neutrino flux from sun to earth found at Cl / Ga and SuperK experiments ~1/2 of what expected from Standard Solar Model (SSM).
- But could SSM be wrong ?
- SNO confirmed that total flux (all flavours) arriving at earth agrees with SSM, but electron neutrinos only 1/3 of what expected.
- So electron neutrinos emitted in the sun arrive as a different flavour at earth

Neutrino Oscillations

Reactor Experiments

- Same principle holds for man-made neutrinos, but now well defined flux and L.
- Two methods :

Reactors	Accelerators
E ~ few MeV	E ~ few GeV
disappearance only	appearance possible
can probe v.small Δm^2	requires v.large L
fair sin²20 sensitivity	Produce μ and τ

- First detected neutrino (Reines, Cowan 1953) came from a reactor (Savannah River)
- Nuclear reactors are very intense sources of \overline{v}_e deriving from beta-decay of the neutronrich fission fragments -> Yield ~ 6 \overline{v}_e / fission at ~3MeV energy.

Kamioka Liquid scintillator Anti-Neutrino Detector

- 1 kton liq. Scintillator detector in the old Kamiokande cavern (1km undergr.) housed in a 13m diameter balloon.
- 1879 PMTs covering Inner Detector (ID)
- Outer Detector (OD) filled with ~3200 m³ of pure water and 225 old Kamiokande PMTs to detect cosmic ray muons and absorb gamma rays and neutrons from surrounding rock radioactivity.
- Antineutrinos detected through inverse beta decay in LS Coincidence signal provides great handle over background.
- Energy / vertex calibration by inserting known radioactive sources.

KamLAND site

180 GW thermal power (~7% world's nuclear power) ~ 3.4e22 \overline{v}_e /s 80% of total flux from baselines ~ 180 km. Typical neutrino energies ~3MeV

Detection Method

- Detection through inverse beta decay in LS
- Coincidence signal provides great handle over background
- Event locations are reconstructed from timing of PMT hits.

 $\overline{\nu}_e + p \rightarrow n + e^+$

Coincidence signal: detect – Prompt: *e*⁺energy + annihilation γ

Selection Cuts

- Fiducial volume (R < 5m)
 - To avoid fast neutrons from rock.
- Time correlation (0.5 μ sec < Δ t < 660 μ sec)
- Vertex correlation ($\Delta R < 1.6m$)
- Delayed Energy (1.8 MeV < E_{delay} < 2.6 MeV)
- Prompt Energy (E_{prompt} > 2.6 MeV)
 - To avoid ambiguity with geoneutrinos

Total Efficiency : 78.3 ± 1.6 %

- Outer Detector veto (eliminate cosmic muon backgrounds)
 - Muons leave neutrons which can fake delayed signal
 - Veto detector for 2ms after muon in OD
 - Muons also create longer lived (>100ms) neutron emitters
 - Veto 3m cylinder cone around muon track for 2s
 - For high energy muons (>3GeV) veto entire detector for 2s

Results

Result using 145.1 days of data measures 54 events While the 'no oscillations' scenario predicts

86.8±5.6 events (1±1 bkgd)

Corresponding to

 $\frac{N_{\rm obs} - N_{\rm BG}}{N_{\rm expected}} = 0.611 \pm 0.085 ({\rm stat}) \pm 0.041 ({\rm syst}).$

Which demonstrates reactor antineutrino disappearance at the 99.95% C.L.

By fitting the antineutrino spectrum the best-fit oscillation parameters can be extracted.

These exclude all solutions to the Solar Neutrino problem except the Large Mixing Angle solution (LMA).

Fit to oscillation parameters

More on http://kamland.lbl.gov/