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Abstract

The luminosity spectrum is an important parameter of an accelerator, and thus
must be understood and modeled precisely. In this study the different energy loss
components of the luminosity spectrum are investigated, and improved methods for
modeling them are devised.

Furthermore, a study of how the luminosity spectrum influences the top quark
threshold is performed, by introducing uncertainties in our knowledge of the luminosity
spectrum, and simulating the effects that such uncertainties would have on the top
quark measurement.

It is found that uncertainties introduced in the beamstrahlung component of the
luminosity spectrum by using the Bhabha acolinearity method for measuring it, do
not influence the top quark measurement. By introducing random uncertainties for
studying the effects in the beamspread and beamstrahlung components separately, the
way that these uncertainties influence the top quark measurement is determined.

Finally, the percentage of the luminosity spectrum being effective for top quark
production at the top threshold is determined by truncating the spectrum and exam-
ining the effects introduced to the top measurement.
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1 Introduction

Physics in general relies upon the cross examination of theoretical and experimental
results in order to understand nature. Particle physics is no exception to this rule, and
thus theoretical results must be compared with their experimental counterpart, and
vise versa, in order for progress to be made.

The current theoretical understanding of nature in its most fundamental form, the
elementary particles and the forces between them, is provided by the so called Standard
Model (SM) of particle physics. The SM has been heavily examined in experiments
during the last 30 years, and no major disagreement between theory and experiment
has been found. However, there are some important parameters of the model that still
need to be examined in order to understand if nature behaves as described by the SM,
or if there are other aspects and extensions that need to be added (eg SuperSymmetry).

The most important, and most famous, of these parameters is the Higgs boson,
which in the model explains how particles acquire mass. The Large Hadron Collider
(LHC) currently built at CERN is expected to find the Higgs boson, if such exists, and
examine some of its properties. A second very important parameter of the SM that
needs further examination are the properties of nature’s heaviest fundamental particle,
the top quark.

So far, since the discovery of the top quark in 1995, experimenters have managed to
measure its mass to Mt = 174.3±5.1 GeV [1]. Because the top quark is so heavy (second
heaviest, excluding the Higgs boson, is the the bottom quark with mass Mb ≈ 4.3 GeV),
it is very difficult to produce it in accelerators since a very large centre of mass energy is
required. Most of our knowledge of the top quark comes from direct observations at the
CDF and D0 experiments at Fermilab, and it is expected that when the LHC becomes
operational in 2007, it will deliver a top quark mass measurement with uncertainty in
the range of 1-2 GeV.

However, both the Tevatron and the expected LHC are hadron colliders, which do
not provide the best environment to do precision physics. Therefore, just like after the
SPS and ISR projects at CERN (both hadron colliders) an e+e− machine, LEP, was
constructed, in order to do the precision physics of the discoveries of the W and the
Z. In the same way, precision physics needs an e+e− collider to study the discoveries
produced in the energy ranges of the LHC and the Tevatron. This machine will be an
e+e− Linear Collider with energies of 0.5 to 1 TeV.

1.1 The ILC

Linear colliders offer the ideal environment to do precision physics, because the particles
that they collide are themselves elementary (e+ and e−), and thus a very low back-
ground exists, while hadron machines collide protons, which are composed of quarks in
a bath of gluons, where the background is very high.

The case for building a Linear Collider in the energy range of 0.5 to 1 TeV is being
made since the early nineties, with different design proposals from the US-Japan and
Europe. The US-Japan proposals focused on an accelerator with copper accelerating
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cavities operating at room temperatures, while the European proposal (TESLA) [2]
focused on a accelerator with superconducting cavities operating at 2 K. By the end of
2004, the decision was made to use the superconducting ’cold’ approach, and thus all
worldwide effort on the design of the machine is now concentrating on this approach,
now called the International Linear Collider (ILC). Luckily, the machine assumptions
in this study are based on the TESLA approach and thus all references to the Linear
Collider imply a ’cold’ technology machine following the TESLA design.

To do precision physics, the e+e− collider must be a high energy, high luminosity
machine. The TESLA design [2] is based on a 33 km long linac, that will be able to
deliver energies of 0.5 to 0.8 TeV with possible extensions to 1 TeV or more, and a
luminosity of L ≈ 3.4× 1034 cm−2 s−1 for the 0.5 TeV machine.

1.2 The Top Quark

The top quark is nature’s heaviest fundamental particle ever discovered. Because of
this fact however, it is also the less precisely measured particle. A precise measurement
of the top quark parameters is on its own right an important task for particle physi-
cists, but furthermore, the value of its mass provides constraints on other searches of
fundamental particles, such as the Higgs particle.

Fits of the SM parameters from the Electroweak working group at CERN provide
constraints on the likely mass of the Higgs particle that is currently the big unsettled
question of the SM. The left plot of figure 1.1 shows the likely mass of the Higgs particle
depending on our knowledge of the mass of the W and the mass of the top quark.
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Figure 1.1: Left : The dependence of the masses of the W and the top quark to the
mass of the Higgs boson. Right : The blue band plot for Winter 2005 [3]
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It is clear from this plot that a smaller uncertainty of the mass of the top quark
would help in constraining the mass of the Higgs more precisely in the 68% CL. On
the right in figure 1.1 is the famous ‘Blue Band’ plot showing the χ2 fit of all the SM
parameters versus the mass of the Higgs, and this plot is also sensitive to the mass of
the top quark.

The top quark in an e+e− machine is produced in pairs via the channel of figure
1.2. This means that in order for top quarks to be produced, the machine must operate
at the top quark production threshold energy of 2Mt ≈ 350 GeV. Furthermore, in the
TESLA design linear collider the production rate for tt̄ is 70 h−1 for the 0.5 TeV machine
[2].
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Z0/γ

f

f

Figure 1.2: The main channel for top quark production in e+e− collisions, the fermion
states on the right are in our case a tt̄ pair.

The attempt for top quark physics at an e+e− machine has both advantages and
disadvantages, the main advantage is that for the channel shown in figure 1.2, the tt̄
pair mainly decays to tt̄ → bb̄WW which have clear signatures. Also, since the top is so
heavy, it decays very rapidly so that high order QCD corrections are cut-off. The main
disadvantage, which comes also from the fact that the top is heavy, is that because of
its large mass and hence fast decay, the ‘toponium’ tt̄ pair fails before even a complete
oscillation, and thus no clear toponium resonance exists in the cross section.

In this analysis, standard values for the top quark parameters had to be assumed,
and since according to the Particle Data Group the current limits on the top mass are
Mt = 174.3±5.1 GeV for direct observation and Mt = 178.1+10.4

−8.3 GeV from electroweak
fits [1], a central value of Mt = 175 GeV is assumed in the analysis. Furthermore, the
width of the top is assumed to be Γt = 1.43 GeV and the strong coupling constant is
taken at the Z0 peak as αs(MZ) = 0.118, so as to be consistent with the assumption
for Mt.

1.3 Machine Energy

Every particle physics accelerator is characterized by its energy. For a LC of 0.5 TeV,
the electron and positron beams are both expected to have an energy of 250 GeV at the
interaction point, thus creating a centre of mass energy of 0.5 TeV. However, this will
be a 33 km long machine, so the actual energy delivered at the interaction point might
be very different from the nominal energy that the operators have set the machine to
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run at. Furthermore, within each accelerated bunch of particles, physics and machine
effects can cause the bunch to have a non-uniform energy, thus also influencing the
actual energy of the collisions at the interaction point.

Therefore, a way of describing and monitoring the actual machine energy must
be devised. The luminosity spectrum of an accelerator is such a way of describing the
beam energy for the incoming particles of each collision.

The luminosity is usually described as:

L = flux × N [cm−2s−1]

and the luminosity spectrum is then:

∂L
∂
√

s

where N is the number of particles in the beam, and
√

s is the centre of mass energy.
Most of the physics analysis of the events produced by the collision of the two

beams depends on the knowledge of the centre of mass energy of each collision, which
itself depends on the luminosity spectrum of the machine. Hence, the luminosity spec-
trum is a very important parameter in the physics studies of an accelerator, and must
be understood, modeled and measured very carefully and precisely.



2 LUMINOSITY SPECTRUM 5

2 Luminosity Spectrum

2.1 Energy Losses

The beam energy of an accelerator usually has physics and machine related effects
influencing its value. The way to describe it is to understand and measure precisely
the luminosity spectrum of the machine.

In the ILC, there are three main energy losses influencing the luminosity of the
machine. These are:

Initial State Radiation (or ISR) is the physics process in which the electrons (positrons)
in the accelerating beams emit a photon while they travel. The emitted photon
carries some of the electron’s momentum and thus the energy of the beam is
reduced. ISR is calculable to high precision in QED, and thus can be modeled
precisely.

BeamSpread (or BS) is the spread of energy introduced by the machine in each
accelerated bunch of particles. Since the particles are accelerated in bunches,
not all of them travel the same mean path, so depending on the position of each
particle in the bunch, slightly different accelerating gradients are experienced,
thus introducing a spread in the energy of the bunch1.

BeamStrahlung (or BSTR) is a new energy loss mechanism, which is a result of the
high energy and high luminosity of the machine. To achieve high luminosity, the
beam size must be ‘squeezed’ as much as possible, and thus a strong electro-
magnetic field surrounds each bunch of accelerated particles. When the opposing
bunches approach, each bunch ‘feels’ the opposing bunches’ electromagnetic field,
which exerts a transverse force on the bunches’ particles, causing some of them
to radiate photons, and thus lose energy. This effect increases in occurrence as
the particle travels a greater path in the opposing bunch until it collides. Beam-
strahlung is the most difficult of these three effects to model.

In figure 2.1, the three components of the luminosity spectrum can be seen plotted
together. The x axis represents

√
s√
sn

, which is the ratio of the actual luminosity spectrum
to the nominal.

The energy losses are included in the expression for the centre of mass energy of
the machine such that: √

s = 2
√

xexpEeEp

where the subscripts e and p stand for the electron and positron beams respectively,
and,

x = xisr xbstr xbs

are the contributions from each of the three loss mechanisms. A detailed derivation of
this expression can be found in appendix A.

1Beamspread is not necessarily a loss mechanism, since because of it, some particles in a bunch
might end up with higher than the nominal beam energy



2 LUMINOSITY SPECTRUM 6

x
0 0.2 0.4 0.6 0.8 1

x
0 0.2 0.4 0.6 0.8 1

ev
en

ts

1

10

210

310

410

510

lumiSpectrum

x
0 0.2 0.4 0.6 0.8 1

ev
en

ts

1

10

210

310

410

510 beam spread (bspr)

+ beamstrahlung (bspr+bstr)

+ ISR (isr+bspr+bstr)

lumiSpectrum

x
0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01

x
0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01

ev
en

ts

10

210

310

410

lumiSpectrum

x
0.99 0.992 0.994 0.996 0.998 1 1.002 1.004 1.006 1.008 1.01

ev
en

ts

10

210

310

410

lumiSpectrum

Figure 2.1: The three components of the luminosity spectrum

2.2 Modeling the Components

In order for the luminosity spectrum to be as accurate as possible, a detailed under-
standing of each of its three components must exist.

ISR is calculable to high precision in QED, and in our analysis it is calculated
using the PANDORA Monte Carlo generator [4]. Beam spread is expected to be of a
Gaussian shape, and with a spread of 0.1% for the electron beam and 0.03% for the
positron beam [2]. The most difficult of the components to model is beamstrahlung.

There are two ways in which beamstrahlung can be modeled, either parametrized
into a function, or modeled at the microscopic level for each particle in the bunch. The
standard way of parameterizing beamstrahlung is by using the Circe function [5]. The
Circe function is

f(x) = a0 · δ(1− x) + anxa2(1− x)a3 (2.1)

with a0, a2 and a3 the parameters and an a normalization factor. The δ function
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represents the particles that have not radiated, while the β function represents the
particles that have radiated.

The second way of modeling beamstrahlung is by modeling the microscopic in-
teractions of the collisions. The program Guinea-Pig [6] provides the framework for
modeling the microscopic interactions of bunch-bunch collisions. In figure 2.2, a sam-
ple histogram of the beamstrahlung and beamspread components of the luminosity
spectrum can be seen.
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Figure 2.2: Luminosity spectrum including beamstrahlung and beamspread, based on
the microscopic simulation of 550 bunch-bunch collisions.

This specific data set is the simulation of 550 bunch-bunch collisions simulated
with Guinea-Pig, including full accelerator effects simulated by the program FONT
(Feedback On Nanosecond Timescale) [7].

The problems that arise in these two approaches are that, when the Circe function
is called to fit a realistic luminosity spectrum, problems are introduced because the
function is divergent at 1, and realistic luminosity spectra with beamspread go to
higher values than 1. The Guinea Pig microscopic simulation approach is a useful way
for obtaining data sets but cannot be used to parametrize existing luminosity spectra.

Thus, a more flexible and efficient way is needed in order to be able to parametrize
the beamstrahlung and beamspread components of the luminosity spectrum. Such
that the parameters for the beamstrahlung and the spread can be read from a fit of
the function to the full (BSTR + BS) luminosity spectrum.
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2.3 Parameterizing Beamstrahlung and Beamspread

The Circe function provides an insufficient way of modeling realistic luminosity spectra,
because such spectra also include beamspread effects, and such effects cause the spec-
trum to go to higher values than

√
s√
sn

= 1, but the Circe function, because of its β func-
tion component, diverges at one, and thus does not provide a complete parametrization
of the spectrum.

In order to obtain a function that would provide a parametrization for both the
tail of plot in figure 2.2, corresponding to beamstrahlung, and the Gaussian peak
centered around 1, corresponding to beamspread, the most trivial approach would be
to convolute the two functions describing these parts of the spectrum.∫

Circe⊗Gaussian dx

However, this integral is impossible to be done analytically, since this would correspond
to doing an integral of the β function anxa2(1− x)a3 in the region (0, 1), and since the
β function diverges at 1, this is impossible.

Thus, there is a need for an alternative function to be constructed, which would
provide a description of the luminosity spectrum in its complete range. The criteria
for this new function are positivity and integrability in the (0, 1) range [5].

Furthermore, it must be noted that the search for such a function is difficult, since
as it can be seen in figure 2.2, the spectrum rises very fast in the (0.8, 1) region,
such that it increases by approximately 4 orders of magnitude, also in the (0.6, ∼
0.85) region, a slight curvature can be observed, which increases the complication for
selecting an appropriate parametrization form.

2.4 New Parametrization

After exploring various different possibilities of functions that could be used for describ-
ing the luminosity spectrum, and satisfying the criteria for integrability and positivity,
the following form was decided to be the basis for the new parametrization,

f(y) = a0
e−y2/2σ2

√
2πσ

+
1√
2πσ

∫ 1

0
(

n∑
i=1

ain(biz)e−biz)× e−(y−z)2/2σ2
dz (2.2)

where y is the mapping y = 1− x, a0 and ai are fractional weights, and the n(biz) are
the normalizations of the exponentials.

The description of the components of function 2.2 is as follows: the first component
represents a unit normalized Gaussian, centered around y = 1 − x, with the a0 factor
being the weight of the term. The next part of the function consists of the integral of
a sum of exponentials, convoluted with a Gaussian. The integral is definite and runs
from 0 to 1, since this is the ‘region of (physical) interest’ of the function, describing
the luminosity spectrum. Also a way is needed to ‘kill’ the function outside this ‘region
of interest’, and this way is accommodated by the integration running from 0 to 1.
Furthermore, the ai are the weights of the terms in the sum (convoluted exponential(s)
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with Gaussian), the n(biz) terms are the normalizations for each of the exponentials, the
σ represents the spread of the Gaussians, and the z is the ‘dummy’ index of integration
for the convolution. The details of the definitions and the integration can be found in
appendix B.

The ‘physical’ meaning of the terms is that the ‘stand-alone’ Gaussian resembles
the behavior of the δ function in equation 2.1, but with a spread σ which corresponds
to the beamspread effect, and the sum of exponentials convoluted with a Gaussian
are terms that should describe the different sloped regions of the luminosity spectrum.
The Gaussians are both unit normalized, and the n(biz) factors are included to unit
normalize the exponentials2, such that the whole function is unit-normalized and the
fractional weights have a meaning. Through the fractional weights then, when this
function is fitted to a realistic luminosity spectrum, the different contributions of the
spectrum can be ‘read out’, as it will be demonstrated in the following section.

The sum of the exponentials to be convoluted (n) is left open to run over an unde-
fined number of terms, since this is a free parameter that can be optimized according
to the precision needed by the function.

2.5 Fitting Real Data

Now that we have a proposed form of a function describing the luminosity spectrum
(beamstrahlung + beamspread), it is left to demonstrate that this function can indeed
be used to parametrize a realistic luminosity spectrum, and that the parameters ex-
tracted from such parametrization are useful. The applicability and appropriateness of
the proposed function can then be tested by the quality of the fit.

Such a data set is the one shown in figure 2.2, which is a simulated form of the
luminosity spectrum as described in section 2.2, and includes most effects that can be
simulated, both accelerator and physics related.

In order to do a fit with function 2.2 to the data, the number of exponential
terms to be used must be decided. After investigations of various configurations, it
was decided that the best fit to the data is provided when using n = 4 convoluted
exponentials, as it will be explained below.

In order to comply with the unit normalization of the function, the data set was
also unit normalized. In addition, an extra dx correcting factor was included in the
Gaussian so as to get the form:

e−((y+dx)−z)2/2σ2

This was done in order to correct for the possibility that the luminosity spectrum data
set does not peak exactly at 1, but has a shifted peak. So, with this extra term, possible
offsets can be ‘read’ from the fit, and determine the exact position of the peak. In the
case that the spectrum does peak exactly at 1, then the dx factor returns as zero.

2It can easily be proved that the convolution of two unit normalized functions yields a unit normal-
ized result.
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The fit of the function3 to the Guinea-Pig data can be seen in figure 2.3, with
the fitted parameters and the different regions of the fit zoomed for more accurate
illustration.
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Figure 2.3: Clockwise from top left: Luminosity spectrum fitted with new parametriza-
tion; zoomed in different regions of the fit.

It can be seen in the plots above that the function does indeed provide a good fit
to the data, eventhough the χ2 fit does return to about ∼ 30 per degree of freedom,
but it can be argued that this is due to a computational problem having to do with
the histogram itself, and not the quality of the fit.

Furthermore, the fractional weights returned from the fit need to be corrected by
dividing them by 10−3, since they correspond to a value per bin, so they need to be
divided by the bin width in order to normalize them to correspond to a value per point.
When this is done, it can then be checked that (a0 + a1 + a2 + a3 + a4) ≈ 1, which is
what would be expected for fractions that conserve the unit area of the function, and
thus this proves that the normalizations are correct.

The other parameters of the fit, namely the spread σ and the slopes of the exponen-
tials, can also be interpreted. The spread, which would correspond to the beamspread

3Using MINUIT.
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of the beam if assumed Gaussian, returned to be σ = 0.093%, which is a good estimate
of the original value of 0.1% used for the electron beam. Also, the correcting factor
dx returned with a value of dx = 0.0053 which corresponds to an offset of the peak
to 1.0053 instead of 1. In this case this is the result of statistical fluctations due to
the method of simulating the dataset with Guinea-Pig, but in a real dataset this could
indicate the effects of a complicated form of beamspread, which could shift the peak of
the luminosity spectrum.

Finally, the 4 slopes of the exponentials returned as b1 ≈ 11.3, b2 ≈ 25.5, b3 ≈ 103.5
and b4 ≈ 620.2, which indicates which exponential is effective in which region of the
spectrum. For example, in this case, the highest sloped exponential, namely b4, takes
care of the fit very near to the peak, where the one with the lowest slope, b1, takes care
of the tail of the data.

This can be further explained by examining the fractions returned. We can expect
that the peak should have a large fraction of the function contributing to it, and it can
be seen that the fraction of the stand-alone Gaussian is ∼ 0.35, while if we include the
fraction of the highest sloped exponential, the total contribution of the peak reaches
∼ 0.46, meaning that it contains a large fraction of the function, as expected.

In addition, in order for the curvature at the tail of the data (0.55-0.6 region) to
be described by the function, the fraction of the lowest sloped exponential, b1,( i.e. the
exponential that contributes in that region) turns negative, as to kill the function by
providing the curvature of the tail. This however, introduces some complication in our
fit, which will be described below.

A way to better understand the fit of the function to the histogram containing the
Guinea-Pig generated luminosity spectrum can be provided by examining the residual
plots, i.e. the value of Hi−f(xi)

Hi
, the fractional difference of the histogram value to the

function value evaluated for each bin of the histogram.
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Figure 2.4: Residual plots of the fractional difference of the histogram value to the
function value evaluated at each bin.

By examining the residual plots of figure 2.4, we can observe that there is a signif-
icant difference of the value of the histogram to the function in the region (0.5, 0.65),
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i.e. the region of the lowest sloped exponential.
This difference is due to the fact that the curvature of the data at that region is

very difficult to fit with exponentials, thus introducing large differences when examined
in the form of residual plots. Also, the function decays rapidly in that region to provide
the curvature required, but it never drops exactly to zero, thus this creates a large effect
in the residual plots for the case that the histogram bin value is zero, and the function
value is not. Furthermore, there seems to be a disagreement between function value
and data value at 1 (the peak), but in fact this is a property of the fit, since we are
fitting a function to a histogram, at the peak the function cannot fit perfectly all the
bins, so in this case, it underestimates the bin containing the peak, and overestimates
the previous one, in order to correct for this effect. However, this is an artifact of fitting
such steep spectra to a function, and should not be considered as a problem.

In addition, the end tail (0.5 - 0.7 region) of the luminosity spectrum contains 5-6
orders of magnitude less data than the peak, and thus should be considered as a region
of low statistics that does not have an important contribution to the overall effect of
the spectrum. Nevertheless, it is desirable to have a very precise description of it.

There are further issues that can be discussed in the context of choosing the form
of equation 2.2, namely the number of exponentials used to fit the function and the
form of the lowest sloped exponential that is effective in the 0.5 - 0.7 region of the
spectrum.

This fit was also attempted with 2 and 3 exponentials, and it was found that then
the tail of the spectrum is neglected by the function, with the fit forcing the 3 (or 2)
exponentials used to concentrate on a high slope, thus looking after the mid and peak
ranges of the spectrum. Therefore, depending on the range of the spectrum that is of
interest, the function can be adjusted in order to accommodate this, by decreasing the
number of exponentials used. It was also attempted to use 5 exponentials, but then the
function turns degenerate, with the extra exponentials canceling each-other, and thus
the quality of the fit decreases. Therefore, in the context of describing the full range of
the spectrum, the optimum number of exponential terms to be used was found to be
n = 4 in equation 2.2.

Furthermore, in order for the fit to describe the low slope tail region of the spec-
trum, alternative ways of forming the killing term were examined. By artificially adding
a term of the form:

1√
2π

∫ 1

0
(1− zλ)(ain(biz)e−biz)× e−(y−z)2/2σ2

dz

as the 4th exponential, where λ is a free parameter of the fit, the ‘killing’ of the func-
tion describing the tail of the spectrum becomes more accurate, and the χ2 of the fit
decreases. However, this artificial inclusion of the ‘killing’ term (1 − zλ) spoils the
normalization of the function, and the fractional weights that were used to describe the
contribution of the different components of the fit of the function to the spectrum lose
their significance.
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Also, this then introduces terms such as

∼
∫ 1

0
zλe−bizdz = Γ(λ, b)

into the integration, where Γ(λ, b) is a Gamma function, and this brings further com-
plication into the proposed function.

Finally, it is proved that the function of the form described in 2.2 provides an
accurate and flexible description of the the beamstrahlung and beamspread components
of the luminosity spectrum, and the parameters in the parametrization provide a useful
way of describing features of the spectrum and ‘reading’ from it properties such as the
beamspread (if assumed Gaussian).

2.6 Numerical Convolution

A different approach for obtaining a parametrization of the luminosity spectrum that
would include beamspread was also attempted. This different approach corresponds
to performing a numerical convolution of the Circe function 2.1 with a Gaussian. If
the algorithm for the numerical convolution is carefully constructed, then the problems
that arise in the analytic integration approach of the divergence of the β function in
Circe, can be overcome.

Two different methods were used for the numerical convolution of Circe with
a Gaussian, one doing the convolution using a Monte Carlo (MC) random number
method, and a very preliminary attempt for doing a trapezium integration of the two
functions in question.

In the MC algorithm, a distribution was used describing a β function and multi-
plied by a Gaussian random number distribution describing the beamspread. For the δ
function, a random number Gaussian distribution centered about 1 was also used. For
each event in the MC algorithm, the selection of which part of the Circe ⊗ Gaussian
function would the event correspond to (i.e. the δ function part of Circe or the β func-
tion part), was made by examining the coefficients of the two parts of Circe (equation
2.1), and using a uniform random number distribution to make the choice.

The histogram version of the convoluted functions with the standard parameters
for Circe (table 1) can be seen in figure 2.5.

a0 0.5461
a2 20.297
a3 -0.62747

Table 1: Standard Circe parameters as used in [8]

It can be seen in the plots of figure 2.5 that the convolution results in the shape
that would be expected for the the luminosity spectrum describing beamstrahlung and
beamspread.
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Figure 2.5: MC convoluted Circe with a Gaussian, using the standard parameters for
Circe (table 1), and a Gaussian spread of 0.01%.

The algorithm used to produce this spectrum does depend on the Circe parameters,
and the spread of the Gaussian, and thus could be used as a function in order to fit
the realistic luminosity spectrum and extract the parameters of Circe and beamspread
from it. However, the ‘know-how’ of doing such a fit could not be obtained in the
limited time available for this project, and thus this is left as a future task to be done
to test the correctness and usefulness of the numerical convolution.

In addition to the MC numerical method, a very preliminary attempt to do the
same convolution using a standard trapezium rule method was attempted. However,
this proved to be more difficult that anticipated, since the Circe function has the distinct
feature of rising so fast to 1, and thus for the trapezium rule to be used, extra care
must be taken in order to obtain an adequate sampling of the function in the sensitive
fast rising region. Thus, methods of adaptive integration are needed in order for such
an approach to work, and again the limited time of this study did not allow for such
methods to be developed.

2.7 Fitting Fake Data

The development of the methods described in section 2.6 allows a further test on the
parametrization developed in section 2.4 to be performed.

Assuming that the MC convolution is accurate, a simple form of a luminosity
spectrum depending on Circe and including beamspread can be obtained, and thus the
proposed new parametrization can be tested by fitting the function to the histogram
containing the MC convoluted spectrum.

The plot of the fitted spectrum, together with a zoomed version concentrating on
the peak (the most difficult and important part to fit) can be found in figure 2.6.

By examining the parameters returned by the fit, it can be seen that the χ2 in this
case returns a negligible value, indicating that the fit is good, in addition the value of
the beamspread extracted from the fit is σ = 0.098% which is in good agreement with
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Figure 2.6: Fit of the new parametrization to a histogram containing data from the
MC convolution of Circe with a Gaussian.

the value of σ = 0.1% that was used for the convolution. Furthermore, the slopes bi

are as expected, and the fractional weights need again to be corrected to correspond
to values per point instead of values per bin, thus dividing with the bin width of the
histogram.

Due to the simplicity of the spectrum fitted (compared with the more realistic
spectrum of section 2.5), the function has turned degenerate, with exponentials 2 and
3 having roughly equal and opposite fractions. This indicates that the fit could be also
be performed with a version of function 2.2 containing n = 3 exponentials.

This proves again that the parameterization described in section 2.4 gives a flex-
ible and accurate way of parameterizing spectra with beamstrahlung and beamspread
effects.
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3 Top Quark Threshold Studies

At the ILC, top quarks are mainly produced via the channel of figure 1.2, with a t t̄
pair produced in the final state. The ILC cross-section for such a process is [5]:

dσe+e−

dΩ
(
√

s) =
∫ 1

0
dx1dx2De+e−(x1, x2,

√
s)

dσe+e−
0

dΩ′ (x1, x2,
√

s) (3.1)

where in the integral the De+e− is the energy spectrum, and dσe+e−
0
dΩ′ is the bare cross-

section. Thus, this suggests that the form of the energy spectrum has an important
effect on the bare top cross-section.

This further implies that the uncertainty of the measurement of the top cross-
section heavily depends on the knowledge of the luminosity spectrum of the machine,
because if the luminosity spectrum is inaccurate, then a systematic error is introduced
in the extraction of the top quark parameters. In fact, it is believed that this is the
factor introducing possibly the largest error on the top quark parameters in such a
measurement at the ILC.

The objective of this simulation is to examine the effects of the luminosity spectrum
to the parameters of the top quark, as they would be measured in an e+e− linear
collider.

3.1 Technology Used: Cross-Sections

In order to calculate the bare cross-section of equation 3.1, the program TOPPIK
[9] was used, which provides a NNLO calculation of the the cross-section near the
threshold. The results from this calculation were then interpolated in order to provide
the cross-section as a function of centre of mass energy of the collisions. This resulted
in cross-sections of the form of figure 3.1

 [GeV]s
340 345 350 355 360

 [p
b]

σ

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.1: The cross-section as calculated by TOPPIK for a 175 GeV top quark.
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For the task of being able to interpolate between different cross-section top quark
parameters, the cross-sections were stored in such a way as to contain different versions
of the same calculation, but for different top quark parameters, thus resulting in dif-
ferent cross-sections. An example of the cross-sections contained of a file can be seen
in figure 3.2.
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Figure 3.2: A sample file containing cross-sections for different values of the top quark
mass.

This allowed the analysis to be done in way such that the files storing information
about the cross-section to behave as 4 dimensional functions of the form f(Mt,Γt, αs;

√
s),

and thus to be able to fit with them. The need for this fitting procedure will be apparent
in the following sections.

The standard top quark parameters used, as mentioned in section 1, are:

Mt 175 GeV
Γt 1.43 GeV

αs(MZ) 0.118

Table 2: Standard top quark parameters used in the analysis.

3.2 Effects of the Luminosity Spectrum

The luminosity spectrum heavily influences the cross-section for top quark production,
as it is described in equation 3.1. Thus, by convoluting a function that describes the
luminosity spectrum with the bare cross-section, we can obtain the cross-section that
would be expected to be measured in the machine.

This convolution can be done for different spectra / different parameters of a
spectrum, and by comparing the resulting cross-sections, we can determine the effect
of this change in the luminosity spectrum to the top quark parameters.
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In addition, we can perform this analysis by switching on and off the different
energy losses described by the luminosity spectrum, as explained in section 2.1, and
observe the response of the cross-section to these changes.

The plot of figure 3.3 illustrates this idea, by describing the bare cross-section, and
then adding one by one the different energy losses, which lead to the smearing of the
cross-section.
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Figure 3.3: The effect of introducing the three main energy losses to the bare cross-
section.

The smeared cross-section loses some of the bare cross-sections’ characteristics,
such as the peak, and thus in order to know what to expect from the ILC, a detailed
understanding of the luminosity spectrum must exist. In addition, by examining the
uncertainties of our knowledge of the luminosity spectrum, the uncertainties in the
parameters of the top quark can be deduced, at it will be demonstrated in the following
sections.

The basic idea behind this simulation is to produce a theoretical cross-section,
smear it with a form of the luminosity spectrum, then smear the same cross-section
with a slightly different luminosity spectrum, and by fitting the two cross-sections,
obtain the differences that would be introduced to the top quark parameters by the
variation of the spectrum.

3.3 Fitting Method

In order to fit the two smeared cross-sections, one must be treated as the data obtained
from the actual experiment, and the other as the theoretical simulated cross-section.

Therefore, a way must be devised in order to allow us to create a “data” sample
from a smeared cross-section.

Also, in the data cross-section, additional effects introduced by the experimental
methods used to do such analysis will be introduced. These effects include assigning
the number of points that the threshold scan of the accelerator would concentrate on
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(i.e. in which energies would the accelerator run in order to obtain enough data to
fully describe the top threshold cross-section), and the integrated luminosity per scan
point, as well as the detector efficiency for collecting the data.

In the analysis, this is done by sampling a number of points from the theoretical
cross-section, and multiplying them with the integrated luminosity to be used, and
with a fractional number describing the detector efficiency.

In this analysis, unless otherwise stated, a choice of using 20 scan points equally
distributed in the regions from 346 GeV to 354 GeV, with an integrated luminosity of∫
L = 3× 104 pb per point, and a detector efficiency of 41% [10], were used.

A sample plot of a “data” cross-section extracted from a simulated theoretical
cross-section can be seen in figure 3.4 below:
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Figure 3.4: A sample of “fake data” as extracted from a theoretical cross-section.

The next step is to fit the theoretical cross-section to the data with different
parameters for its luminosity spectrum. This is done using a χ2 test for the top quark
parameters, from MINUIT, and minimizing it using Migrad. From this fit, the change
in the parameters due to the difference of the two cross-sections can be obtained, as
well as the statistical uncertainty and various correlations of the fitted parameters.

The change of the parameters is then interpreted as the systematic shift due to
the difference in the luminosity spectra used to smear the cross-sections, and this can
be used in many ways to explain the effect that different forms of spectra would have
on the top measurement, as well as the effect that uncertainties in our ability to know
(measure) the spectrum precisely, would have on the top parameters.

The outcome of such a fit can be seen in figure 3.5, where the same smeared cross-
section is used for both data and fit, in order to illustrate that the method works. The
results on the fitted parameters indicate no shift from the input values, as would be
expected for a fit of two identically smeared cross-sections.

Now that the framework for examining the effects of different luminosity spectra
on the top quark parameters has been introduced, we can proceed by examining more
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Figure 3.5: The plot of a ‘sample’ fit, illustrating that the method works.

realistic cases of such effects.

3.4 Varying Beamspread

The first component of the luminosity spectrum to be examined for the effects it intro-
duces to the top quark parameters is beamspread.

When the decision was taken for the ILC to follow the ‘cold’ TESLA technology,
one of the factors influencing it was that with a ‘warm’ technology, the luminosity
spectrum was expected to be more complicated, by including a complicated form of
beamspread with a 0.3% spread. In this analysis we simplify the situation by assuming
that the beamspread would have 0.3% spread, but with a simple Gaussian shape.

We want to examine how the comparison of two luminosity spectra with different
beamspread contributions, one with the predicted ‘cold’ technology 0.1% spread, and
one with a 0.3% spread, influences the top parameters. Another way to interpret this
is that we expect the beamspread of the machine to have a 0.1% spread, but in reality
it has a 0.3% spread, thus introducing a difference in the results.

The bare cross-section smeared with a standard ISR calculated through PAN-
DORA, and a Circe function with the standard parameters described in section 2.6,
but with a Gaussian beamspread of 0.3%, is to be considered as the ‘data’ cross-section.
The cross-section that is fitting the data (i.e. the expected theoretical cross-section),
is the bare cross-section smeared with the same effects, but a beamspread of 0.1%.

The fit of the theoretical cross-section to the data can be seen on the left in figure
3.6, and the χ2 of the fit as a function of Mt can be seen on the right. The minimum
of the χ2 indicates the value of Mt that better fits the data.

From the plot on the left, it can be seen that the peak in the data cross-section
which is smeared with a higher value for beamspread, has slightly shifted to a lower

√
s

value in comparison to the theoretical cross-section used for the fitting. The relative
shift in the top parameters introduced by the difference of beamspread in the two
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Figure 3.6: Left : Fitting theoretical cross-section to the data, the data having a 0.3%
beamspread, and the theoretical cross-section a 0.1%. Right: The χ2 of the fit as a
function of Mt.

cross-sections can be found on table 3. From the values of the shifted parameters it
can be seen that the effect of a higher beamspread is rather large on the top mass, as
it shifts it by −118± 12 MeV. Thus, this implies that the beamspread of the machine
must be monitored precisely, in order to avoid the systematic errors introduced by an
uncertainty in it.

Parameters Systematic Shift Statistical Error
δMt -118 MeV ±12 MeV
δΓt 30 MeV (at limit) ±4 MeV

δαs(MZ) -0.0028 ±3.3× 10−4

Table 3: Shift in the top parameters introduced by a variation of the beamspread of
the Luminosity Spectrum.

The shift in Γt must not be considered obsolete, since the parameter has reached its
fitting limit, and thus the true shift could be larger than the one stated here. However,
this gives an indication that a large shift is introduced in its value.

These results indicate that beamspread has a large effect on the parameters of
the top quark, and thus that an accurate knowledge of it is needed for the ILC, in
order to be able to do a precision measurement of the top quark mass. This further
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indicates however, the need for having a parametrization of the luminosity spectrum
that includes beamspread, as it was argued in section 2.4.

3.5 Varying Beamstrahlung

The next component of the luminosity spectrum that needs to be investigated for its
effects to the top parameters is beamstrahlung.

In this analysis, the traditional form of beamstrahlung parametrized using Circe
is used, with the standard parameters of section 2.6 for the smearing of the fitting
function. For the smearing of the ‘data’ points to be fitted, varied Circe parameters
are used, and by the fits, the effects of the variations can be studied.

In order to decide by what amount the Circe parameters are to be varied, two
approaches were used. The first approach follows the estimated errors obtained for
the Circe parameters by simulating the measurement of the luminosity spectrum using
the acolinearity of Bhabha events in the forward-tracking region at TESLA [11]. In
this paper, a form of the Circe parameters is chosen, such that a luminosity spectrum
can be constructed. By simulating the process of measuring this luminosity spectrum
using the acolinearity of Bhabha events [12] in the forward-tracking region of TESLA,
the uncertainties on the Circe parameters arising from the measurement are estimated.
Thus, by using these uncertainties, we can estimate the variation of the top parameters
introduced by them.

The uncertainties estimated in [11] are based on a slightly different version of the
Circe parameters than the one used in this analysis, thus they must be adjusted to our
Circe parameters. The resulting parameters with uncertainties are:

a0 0.5461 ± 4.97× 10−3

a2 20.297 ± 0.2045
a3 -0.62747 ± 6.06× 10−3

Table 4: Standard Circe parameters with uncertainties adjusted from [11].

By adjusting the Circe parameters with different permutations of the uncertain-
ties from table 4, and creating the data set from them, the effect introduced to the top
parameters can be studied. This can be interpreted as supposing that the true lumi-
nosity spectrum intrinsic to the machine is the one with the Circe parameters having
the standard form, but the measurement of the luminosity spectrum using the Bhabha
acolinearity method can only deliver the Circe parameters with the precision described
in table 4. Thus, the effect of having a luminosity spectrum measurement efficiency as
described in [11] to the top quark measurement can be studied.

It must be noted, that for the luminosity spectrum described both in [11] and in
this analysis, the standard TESLA beamspread of 0.1% is included.

The plots of figure 3.7 are the outcome of the fitting for the Circe parameters of
a0 = 0.5461 + 4.97 × 10−3, a2 = 20.297 + 0.2045 and a3 = −0.62747 + 6.06 × 10−3,
i.e. the standard Circe parameters with the upper error bound applied to them. The
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Figure 3.7: Clockwise from top left: The fit of the theoretical smeared cross-section to
the data cross-section; the χ2 of the fit as a function of Mt; the contour plot in the
Mt−αs parameter space, indicating the correlation of the two parameters; and the χ2

of the fit as a function of αs.

plots, clockwise from top left, describe the fitting of the theoretical standard Circe
smeared cross-section to the Circe + errors smeared data cross-section, the χ2 of the
fit as a function of Mt, the contour plot in the Mt−αs parameter space, indicating the
correlation of the two parameters, and χ2 of fit for the αs parameter.

The systematic shifts resulting from the errors due to acolinearity method (for
all upper bound errors), as can be seen in table 5, are negligible and well within the
statistical errors introduced by the fit. In addition, the results of the other permutations
of combining the Circe errors are similar, with the statistical error always being greater
than the small (if any) systematic shift observed.

This result implies that the Bhabha acolinearity is a valid method to be used
for measuring the luminosity spectrum at the top quark threshold, since the small
uncertainties that are introduced do not affect the top parameters. However, these
errors do not include uncertainties introduced to the luminosity spectrum (and hence
the Circe parameters) due to the accuracy of the forward region detector that would be
used to measure the acolinearity. Such uncertainties can introduce a significant effect
to the top parameters.
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Parameters Systematic Shift Statistical Error
δMt 1 MeV ±13 MeV
δΓt −0.14 MeV ±10 MeV

δαs(MZ) 6× 10−5 ±3.8× 10−4

Table 5: Shift in the top parameters introduced by a variation of the Circe parameters
to accord with the uncertainty introduced by the luminosity spectrum measurement
using the Bhabha acolinearity method.

Since the beamstrahlung parameterization uncertainties due to the Bhabha acol-
inearity method do not significantly affect the top parameters, larger uncertainties to
the Circe parameters must be introduced in order to investigate how the luminosity
spectrum and the top parameters respond to a significant change in the beamstrahlung
parameterization.

The uncertainties to be studies were randomly chosen to be ±5% and ±10% of the
standard Circe parameters.

The effect of luminosity spectrum with all Circe parameters in the ±5% and ±10%
bounds to the top cross-section compared to the cross-section smeared with the stan-
dard Circe parameters can be seen in figure 3.8.
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Figure 3.8: Effect of ±5% and ±10% errors for Circe in the top cross-section.

It can be seen from figure 3.8 that such uncertainties in the Circe parameters
symmetrically shift the position of the cross-section in the

√
s axis.

In figures 3.9 and 3.10, the fits of the standard Circe luminosity spectrum cross-
section to data with standard Circe parameters +5% and +10% respectivelly, can be
seen. The plots of the fits of the cross-sections with Circe −5% and −10% luminosity
spectra are symmetrically identical.
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Figure 3.9: Fit of the standard Circe luminosity spectrum convoluted cross-section to
the Circe + 5% as data.
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Figure 3.10: Fit of the standard Circe luminosity spectrum convoluted cross-section to
the Circe + 10% as data.

The results of the fitting for the top parameters are summarized in table 6. As it
can be seen from these results, the main point to be made is that the top parameters
(especially Mt) seem to be more sensitive to the −5% and −10% versions of Circe,
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Circe Parameters Systematic Shift Statistical Error
δMt -76 MeV ±7.1 MeV

+10% δΓt at limit –
δαs(MZ) at limit –

δMt -3 MeV ±7.6 MeV
+5% δΓt +3 MeV ±9.4 MeV

δαs(MZ) + 0.003 ±4.9× 10−3

δMt +14 MeV ±8.2 MeV
−5% δΓt +4 MeV ±8.8 MeV

δαs(MZ) at limit –
δMt +121 MeV ±7.9 MeV

−10% δΓt at limit –
δαs(MZ) at limit –

Table 6: Shift in the top parameters introduced by a variation of the Circe parameters
by ±5% and ±10%.

since the systematic shift for these is significantly larger than the respective +5% and
+10% versions. For example, the −10% Circe version gives a shift δMt = +121 ± 7.9
MeV, while the respective positive version of the Circe errors, namely +10%, gives a
shift of δMt = −76± 7.1 MeV. In addition, the −5% Circe version gives a systematic
shift in Mt larger than the statistical error, while the +5% version has a shift within
the statistical error, and also the αs parameter for the −5% version of the fit reaches
its limit, while the value for +5% version does not, thus it changes slower, since the
limits are identically set at 0.115 - 0.121.

This result does imply that the fits for the Circe parameters behave worse for more
heavily smeared cross-sections, since as it can be seen from figure 3.8, the −5% and
−10% Circe smeared cross-sections are relativelly more smeared than the rest, thus
beamstrahlung is a larger effect for these cross-sections, and so information used for
the fitting are smeared out, which causes the fitted parameters to have this asymetrical
behaviour.
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3.6 Effective Luminosity Spectrum for Top Production

This part of the study concentrates on investigating how does the luminosity spectrum
influences top quark production. The luminosity spectrum describes the differential
luminosity of the machine, and is a function of

√
s√
sn

where
√

s is the effective centre of
mass energy, and

√
sn is the nominal. However, at the top threshold, the luminosity

spectrum should contribute to top production only near
√

s√
sn

= 1, since below this
value, the threshold for top production is not reached, so no top events exist.

This investigation can be made by truncating the luminosity spectrum to different
percentages about the peak, and applying this to the top analysis described in the
previous sections. In more detail, the truncated luminosity spectrum can then be
applied to the cross-section and treated as the data, while a full spectrum applied to
the cross-section is to be treated as the fitting theoretical cross-section.

Samples of truncated luminosity spectra can be seen in figure 3.11.
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Figure 3.11: Left: 80% truncated Luminosity spectrum Right: and 95% truncated
spectrum.

By applying luminosity spectra with different truncated values, the effectiveness
of the luminosity spectrum on the top threshold can be determined. The effectiveness
of the luminosity spectrum is the percentage that contributes to top production, and
thus the percentage on which we need to have an accurate knowledge and description
in order for the top measurement to be as precise as possible.

The results for δMt of the fits of the standard beamstrahlung + beamspread (Circe
+ Gaussian) luminosity spectrum to different truncated luminosity spectra can be seen
in figure 3.12.

It can be seen in this plot that the effect of truncating the luminosity spectrum
up to 97%, i.e. using only 3% of its value around the peak to the top cross-section,
does not influence the top parameters. The systematic shift, and thus the truncation
affecting the top parameters, starts by truncating 98% and on.

In figure 3.13, the effect of the truncation of the luminosity spectrum to the Γt

and αs parameters are shown. In the left plot, the effect of truncating the luminosity
spectrum on δαs can be seen, with the same truncation percentage as the turning point
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Figure 3.12: The effect of truncated luminosity spectra on δMt.
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Figure 3.13: Left: Effect of truncated luminosity spectra on δαs Right: and δΓt

NOTE: In the Γt plot, the fit reaches its limit beyond 98% of the truncated spectrum.

where the systematic effects are introduced. In the plot on the right, the effect of the
truncation on δΓt is shown, in this plot it must be noted that the fit reaches its limit
beyond 98% of the truncation. However, the tendancy for the value of αs to shift can
be observed from the previous points, as well as the large amount that αs shifts by.

These results indicate that if there is a very accurate knowledge of the peak of the
luminosity spectrum (4 − 5% of the spectrum around the peak) at the top threshold,
then that is adequate for the analysis of the top parameters to be unaffected by errors
in the knowledge of the tail of the spectrum.

However, in a more realistic context, the spectrum around the peak will always
have a small uncertainty associated with it (from the measurement), and thus the
description of the 20% of the spectrum around the peak must be known, in order to
help and understand the uncertainties at the peak.
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3.7 Need for a Scan Strategy

In the top threshold analysis of this study, essentially a random number of points was
used in order to determine how the experimental data would be distributed, and thus
deduce the change in the top parameters from fits to these data points. However, for
a more realistic and accurate analysis to be done, an optimization of the scan strategy
to be followed when the ILC runs at the top quark production threshold must be
determined.

In a real machine run, an amount of integrated luminosity (∼ running time or
data obtained) at the top threshold will be issued, and with that amount of data the
experimenters must proceed by making the most accurate measurement possible for
the top parameters.

This measurement however, depends on how the threshold scan is planned, since
the fit to the data is affected by the way the points and the integrated luminosity per
point are distributed.

Therefore, a detailed study of how it is best for the top threshold to be scanned
must be made. This includes determining which region in the centre of mass energy
is important for mapping the top cross-section, and thus which should be the starting
and ending

√
s of the top threshold scan. The next issue to be answered is how to

distribute the given integrated luminosity in that region, with how many points and
what integrated luminosity per point to be used.

By examining these questions, an equilibrium must exist between the answers
that would provide the most accurate description of the top cross-section, which would
optimize the fit to work on the best configuration of data, and thus keep a high level
of accuracy for this aspect of the top threshold analysis.

The analysis presented in this report would then be optimized to resemble the
realistic analysis that will take place when the ILC runs at the top threshold.

A very preliminary attempt was made for the scan strategy analysis, but due to
the limited time of the project, this essentially consists of asking the questions that
need to be answered. More effort in this part of the top quark threshold analysis is
required, in order for the simulations of the threshold studies to become more realistic.
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4 Conclusions and the Future

This study has provided some very interesting results about the luminosity spectrum
and studies of the top quark threshold at the ILC.

The need for a more flexible parameterization of the beamstrahlung energy loss
of the luminosity spectrum, such as to incorporate beamspread, was identified. Such
a parameterization was constructed, and was successfully tested against simple and
complicated luminosity spectrum data sets. Furthermore, a method was devised for
creating a beamstrahlung + beamspread parameterization by numerically convoluting
Circe with a Gaussian, but this approach needs further effort in order to demonstrate
its applicability.

The top quark threshold analysis was performed by investigating how the top
quark cross-section responds to variations of the luminosity spectrum. This study was
performed for luminosity spectra with different beamspread, indicating that the top
quark parameters are very sensitive to the variation of beamspread. Also, by using
different parameterizations for Circe and hence different beamstrahlung contributions
to the luminosity spectrum, the effects to the top parameters were examined.

These differences in the parameterization of beamstrahlung included changing the
parameters by the amount indicated in [11], that would be the uncertainty introduced
by using the Bhabha acolinearity to measure the luminosity. This resulted in negligible
systematic changes to the top quark parameters, and hence we can conclude that the
top quark measurements are not sensitive to the uncertainties introduced by using this
method for measuring the luminosity spectrum.

In addition, a random variation of ±5% and ±10% on the beamstrahlung pa-
rameters was investigated, and it was demonstrated that the top parameterers are
sensitive to such large variations of the beamstrahlung parameters, and in particular
this sensitivity is asymetric in the sense that the −5% and −10% versions of the pa-
rameterization give a larger shift than the +5% and +10%. This arises because the
smaller Circe parameters indicate a stronger beamstrahlung effect, as it can be seen in
figure 3.8, and thus the top cross-section is more heavily smeared, causing it to lose
some of its characteristics and thus influencing the fit to the standard cross-section.

Finally, the percentage of the luminosity spectrum that is effective for top quark
production was investigated, and it was demonstrated that only 3% about the peak
of the spectrum is important for top production. However this does not necessarily
imply that the rest of the spectrum is not important, since in order to have an accurate
knowledge of the peak, which is a difficult region to measure, knowledge of how the
luminosity spectrum behaves is needed.

Future improvements of this study include the optimization of the scan range for
the top quark threshold, in order to adjust the simulation of the top measurement
accordingly. In addition, a wider range in the parameter space of the fits should be
chosen, such that the fitted parameters do not reach the fit limit so rapidly.

On the parameterization front, the effect of the difference of the function to the
data set, as illustrated in the residual plots of figure 2.4, must be further examined,
such that the function is best optimized in all regions. Also, a larger sample of differ-
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ent spectra can be fitted with the function, in order to explore in full the functions’
flexibility.

The numerical convolution approach should be further developed as well, such that
the convolution algorithm can be used as a function that can fit data, and through this
fitting to examine the usefulness of the parameters extracted from the fits.

Finally, it is worth noting that the top threshold study is a model depended ap-
proach, that does not provide the absolute errors on the top measurements at the ILC
[13]. Nevertheless, it is a very interesting study to indicate the effects of our under-
standing of the luminosity spectrum to the measurement of the top quark, and also to
impose estimated limits on the precision that can be reached in such measurement.
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A Centre of Mass Energy Derivation

In a linear collider, the electron (e) and positron (p) beams travel in opposite directions. Thus
they can be described by the energy-momentum four vectors:

pe = (xisrxbsxbstrEe, 0, 0, xisrxbsxbstrEe)

and
pp = (xisrxbsxbstrEp, 0, 0,−xisrxbsxbstrEp)

by making the decision that the electron beam travels in the positive x direction, and thus the
positron beam travels in the negative x. In this expression, xisr is the energy loss due to ISR,
and is in the range 0 ≤ xisr ≤ 1, xbstr is the energy loss due to beamstrahlung and is in the
range 0 ≤ xbstr ≤ 1, and xbs is the energy loss due to beamspread, and in principle can have
any value, we can assume however that −σ

2 ≤ xbs ≤ σ
2 , where σ is the value of beamspread.

Now by using the convention that xe = xisrxbstrxbs are the energy loses of the electron
beam, and xp = xisrxbstrxbs those of the positron beam, we can write:

| pe + pp |= (xeEe + xpEp, 0, 0, xeEe + xpEp)

⇒ x2
eE

2
e + 2xexpEeEp + x2

pE
2
p − (xeEe + xpEp)2 = s

⇒ x2
eE

2
e + 2xexpEeEp + x2

pE
2
p − x2

eE
2
e − 2xexpEe ·Ep − x2

pE
2
p = s

and by canceling the identical terms,

⇒ 2xexp(EeEp −Ee ·Ep) = 2xexp(2EeEp) = 4xexpEeEp = s

Taking the square root of both sides then leads to the expression,
√

s = 2
√

xexpEeEp

where
√

s is the standard form of expressing the Lorentz invariant centre of mass energy of a
collision.
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B Details of the new Parameterization

We want to construct a function that has a behavior such as figure 2.2 with exponentials.
The first step is to map the exponentials to rise from x = 0 to x = 1 by defining:

y = 1− x

Then the function of choice to be used is:

f(y) = a0
e−y2/2σ2

√
2πσ

+
1√
2πσ

∫ 1

0

(
n∑

i=1

ain(biz)e−biz)× e−(y−z)2/2σ2
dz (B.1)

where a0 is the fractional weight of the ‘stand-alone’ unit normalized Gaussian, and the ai’s
are the fractional weights of the convoluted exponentials.

The n(biz) are the normalizations of the exponentials such that:

ni =
1∫ 1

0
e−biz

=
bi

1− e−bi

So by having a normalized Gaussian convoluted with normalized exponentials, the result of the
convolution is normalized as well.

Now, if the integration in B.1 is carried out analytically, the final result is:

f(y) = a0
e−y2/2σ2

√
2πσ

+
1
2
{

n∑
i=1

e
1
2 bi(biσ

2−2y)aini(−Erf [
biσ

2 − y√
2σ

] + Erf [
1 + biσ

2 − y√
2σ

])} (B.2)

where Erf [z] is the Error function, the integral of a Gaussian distribution, and is defined as:

Erf [z] =
2√
π

∫ π

0

e−t2dt

The function described in B.2 with n = 4, is the proposed form of a parameterization for
the beamstrahlung and beamspread energy loss components of the luminosity spectrum.



References

[1] Eidelman et al. (Particle Data Group), Phys. Lett. B, 592,1 (2004).

[2] TESLA Technical Design Report, http://tesla-new.desy.de/

[3] LEP ElectroWeak Working Group, CERN, 2005. http://lepewwg.web.cern.ch/LEPEWWG/

[4] M. Peskin and M. Iwasaki, Pandora, and Pandora-Pythia: Event Generation for Linear
Collider Physics. http://www.slac.stanford.edu/ mpeskin/LC/pandora.html

[5] T. Ohl, CIRCE Version 1.0: Beam Spectra for Linear Collider Physics, Com-
put.Phys.Commun. 101 (1997) 269-288. [hep-ph/9607454]

[6] D. Schulte, Ph.D. Thesis, University of Hamburg 1999; TESLA-97-08.

[7] The FONT project, http://hepwww.ph.qmul.ac.uk/ white/FONT/default.htm.

[8] S. Boogert, QCD and Top sessions, ECFA meeting, Durham, Sept. 2004.

[9] A.H. Hoang and T. Teubner et al, Top-Antitop Pair Production close to Threshold: Syn-
opsis of recent NNLO Results. [hep-ph/0001286].

[10] G. Blair, A. Juste, M. Martinez, D. Schulte, and C. Shepherd-Themistocleous. In DESY-
ECFA Conceptual Design Report, DESY, 1997.

[11] K. Mönig, Measurement of the Differential Luminosity using Bhabha events in the
Forward-Tracking region at TESLA., LC NOTE: PHSM-2000-60-TESLA.

[12] M.N. Frary and D.J.Miller, Monitoring the Luminosity Spectrum, DESY 92-123A.

[13] N. Brambila et. al. Heavy Quarkonium Physics, [hep-ph/0412158].


