Timing, Trigger and Control, and Dead-time handling.

Ph. Farthouat, 20-11-98.

- TTC functionality.
- Dead-time handling.
- Partitioning.

TTC Overview:

Optical Distribution system transmits Timing and Trigger signals to the front end.

Based on TTC backbone developed by RD12.

TTC RD12 backbone:

Backbone elements:

- TTC VME interface module (TTCvi),
- passive optical tree, $1 \rightarrow N$ (< 1024) nodes,
- TTC crate.
- TTC receiver chip (TTCrx).
- PMC receiver (TTCsr)
- TTC crate in a VME board (TTCvx)

TTC Partitions (1):

- Subsystems need to work independently;
- each subsystem requires partitions;
- partitions can be stopped in different places (FE, RODs).

TTC Partitions (2):

System	Number of partitions
Pixel	2
SCT	4
TRT	4
EM LAr calorimeter	4
HEC	2
Tile calorimeter	4
Forward calorimeter	2
TGC	2
RPC	2
MDT	4
CSC	2
LVL1 cal trigger	1
LVL1 μ trigger	2

Total of 35 partitions

TTCvi:

One per partition, controlled by DAQ or locally.

L1A source: CTP / 3 local inputs / internal random.

Encoded, electrical outputs:

- A Channel: L1A;
- B Channel: synchronous and asynchronous commands and data (eg, BCR, EVID).

TTCvi used by several sub-systems

Feedback expected

TTCvi:

20 modules built and distributed New batch being done

Per.Gallno@cern.ch

TTC crate:

Receives:

- A channel & B channel from TTCvi;
- BC clock from LHC.

Performs:

- final encoding of data;
- time-division multiplexing of data on to single link;
- electrical-to-optical conversion.

TTCvx:

Compact replacement for TTC mini-crate

40.08 MHz clock generator & fanout

Narrow bandwidth PLL for ext clock cleanup

A/B channel multiplexer

Bi-phase mark encoder

4 optical outputs

Available in spring 99

Per.Gallno@cern.ch

TTCrx:

- Rad-hard ASIC.
- Receives control and synchronization info from TTC after optical-to-electrical conversion.
- Recovers BC clock (~100 ps precision).
- Makes available to FE L1A, BCID, EVID, etc.
- Timing adjustment to compensate for particle times of flight and propagation delays.

TTCsr:

PMC board

Fast ECL outputs

• 3 FIFOs to PCI bus

Latency:

Element	Delay	Remark
TTCvi	3 ns	3 ECL stages
TTCvi to TTC crate	3 ns	Cable
TTC crate	22 ns	Modulator, etc
TTCrx	75 ns	Receiver
Total delay excluding cables and fibres	103 ns	TTCvi + TTC crate + TTCrx

To which sub-systems must add:

Element	Remark
CTP to TTCvi	Depends on where TTC is
TTC crate to destination	- TTC crate to Front-end - TTC crate to ROD crate + ROD crate to Front-end
Change of protocol	If any

Deadtime Handling:

Buffers are filling in different places

Deadtime to be introduced as necessary

Handling in three different manners

Derandomiser:

In the CTP

Trigger Candidates (BCn+1)

Simple algorithm:

x dead BCs after each L1A ($0 \le x \le 16$)

Complex algorithm:

L1As $\leq n$ in time t1 $\leq n \leq$ 32; $0 \leq t \leq$ 1.6 ms

Expected parameters:

- 4 BCs deadtime after each L1A;
- max rate: 8 L1As in 80 μs;

 \rightarrow < 1% events lost at L1A rate of 75 kHz.

BUSY signals:

RODs and ROBs contain buffers which can be full, necessiting dead-time introduction

ROB: back-pressure on the ROD with XON/XOFF mechanism on the read-out link

 if N μs are necessary for the XOFF to reach the ROD and X words/μs are transmitted when less than N*X words are available

ROD: generation of a BUSY signal when the buffer is nearly full

 when there is just enough space to accomodate the maximum number of events (or data) which can be stored in the front-end derandomiser

BUSY tree:

BUSY signals to be gathered in a tree structure up to the CTP.

One BUSY per sub-detector partition
One BUSY per sub-detector

Partition (1):

TTC BUSY handling

Example: TRT 4 partitions (2 EC and 2 Barrel)

- EC: 160000 Channels, 96 RODs in 8 crates
- Barrel: 50000 Channels, 32 RODs in 3 crates

Partition (2):

Defining TRT partition 1:

- TTCvi1 in local mode. Selection of the input
- TRT-BUSY Partition 1 out of TRT-BUSY
- Local trigger generator dead-time control by TRT-BUSY partition 1

Local Trigger Handling:

- Detector specific
- Can we extract common functionality?
- Include it in TTCvi?

Busy handling:

Two outputs required

TTC:

 TTC signals to reach all elements of the partition (including ROBs)