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Global Energy Requirements

In 2000, world population = 6x10°

Total energy consumption/year = 10x10° toe
per capita consumption = 1.6 toe/year
electricity per capita = 0.5 toe/year

In 2050, world population expected to reach 9x10°

Population growth = 165000 per day

Assuming current electricity usage per capita the
additional requirement is equivalent to:

a 1GW power station per day !
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A new one of these every day!
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..and the associated carbon emission

Grammes of carbon

Sl 7N per KWh of electricity

Nuclear 4
Wind 8
Hydro electric power 8
Energy crops 17
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source: Government Energy Support Unit (confirmed by OECD)
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Global Nuclear Capacity

Country No. Reactors 10° KWh % Total
United States 103 754 20
France 59 395 78
Japan 53 305 34
United Kingdom 35 78 22
Germany 19 160 31
Russia 29 120 15
So. Korea 16 103 41
Canada 14 69 12
India 14 14 3
Sweden 11 55 39
21 Others

Totals: 437 2,447 16
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Global uranium requirements
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Scenario 1
No new nuclear build

Scenario 2
Maintain current nuclear capability
(implies major increase in plant construction)

Scenario 3
Nuclear renaissance: increase in nuclear power
generation to 1500 GW capacity by 2050

Available resources

Total U resources recoverable at <US$80/kg
= 6Mt

Resources recoverable at <US$130/kg may
amount to ~4Mt

For scenario 3 these resources will be
depleted within 70 years*

Hence the need to breed fuel

*assuming 170kgU/GWe
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........hence need to breed fuel
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|AEA, status report May 2005

....In recent times, the need for
0/ / N proliferation-resistance, longer
v { N ) fuel cycles, higher burn up,
: \) improved waste form
V characteristics, reduction of

plutonium inventories and in
situ use of bred-in fissile
material has led to renewed
interest in thorium-based fuels
and fuel cycles in several
developed countries.......

“

gl Knowledge Exchange in Particle Physics and Nuclear Physics, IOP, March 2009
UDDERSFIELD



Annual energy consumption Thorium equivalent

~5x10°
tonnes of coal

27x10°
barrels of oil

2.5x1012
m?3 of natural gas

65x103
tonnes of uranium

5x103 tonnes of thorium

Knowledge Exchange in Particle Physics and Nuclear Physics, IOP, March 2009



Thorium: Abundance:
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Fig. 5.13. The chemical composition of the Earth’s crust.
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Estimated global Th resources

Estimated thorium resources by country

Country Total Identified Thorium Resources THORIUM AS AN ENERGY SOURCE
(*000 t Th) [ [
<USD 80/kg Th

%
Australia 420 17
United States 400 16
Turkey 344 14
India 319 13
Venezuela 300 12
Brazil 221 9
Norway 132 v / 7
Egypt 100 4
Russian Federation 75 3
Greenland 54 2 2]
Canada 44 2 it
South Africa 18 1 f j ﬁﬁum_":::'é:‘:{;:
Others 33 1 W 1
TOTAL 2460 % j

Sources: Data for Australia compiled by Geoscience Australia: estimates
for all other countries are from: OECD. 2006: Red Book Retrospective.
A review of Uranium Resources, Production and Demand from 1965 to 2003.
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Operation

N Y Type rer Fuel i
ame and Country ¥p Power Period
AVER. Germany HTGR 15 MW, Th & U-235 Driver Fuel, 1967 - 1988
Experimental Coated fuel particles,
(Pebble Bed Reactor) Oxide & dicarbides
THTE. Germany HTIGR 300 MW, Th & U-235 Driver Fuel. 1985 - 1989
i Power Coated fuel particles.
(Pebble Type) Oxide & dicarbides
Lingen. Germany BWR 60 MW, (Th. Pu)O; Test Fuel , Termunated
Irradiation-testing Pellets i 1973
Dragon, UK HTIGR 20 MWy Th & U-235 Driver Fuel, 1966 -1973
OECD-Euratom also Expenimental Coated fuel particles,
Sweden. Norway & (Pin-in-Block Design) Dicarbides
Switzerland
Peach Bottom. USA HTIGR 40 MW, Th & U-235 Driver Fuel. 1966 — 1972
Experimental Coated fuel particles,
(Prismatic Block) Oxide & dicarbides
Fort St Vrain. USA HIGR 330 MW, Th & U-235 Driver Fuel, 1976 — 1989
Power Coated fuel particles,
(Prismatic Block) Dicarbides
MSRE MSBR T5MWy, U-233 1964 — 1969
ORNL, USA Molten Fluonides
Borax IV & BWRs 24 MW, Th & U-235 Driver Fuel. 1963 — 1968
ik River Reactors: (Pin Assemblies) 24 MW,  Oxide Pellets
USA
Shippingport & LWBR 100 MW, Th & U-233 Driver Fuel, 1977 - 1982
Indian Point. PWR 285 MW. Oxide Pellets 1962 — 1980
USA (Pin Assemblies)
SUSPOP/ESTR KEMA. Aqueous 1 MWy Th & HEU 1974 - 1977
Netherlands Homogenous Oxide Pellets
Suspension
(Pin Assemblies)
NRU & NRX, Canada MTR Th & U-235 Test Fuel Irradiation-
(Pin Assemblies) testing of few
fuel
elements
KAMINL MTR 0 EkWa Al & U-233 Dnve Fuel, All three
CIRUS & Thermal 40 MWy T rod of Th & ThO, research
DHEUVA. India 100 MWga T rod of ThO, reactors in
operation
KAPS1&2, PHWR 220 MW,  ThO, Pellets Continuing in
KGS1&2. (Pin Assemblies) For neutron flux all new
RAPS2 3 & 4. India flattening of initial PHWRs
core after start-up
FBTR. India LMFER 40 MWy  ThO; blanket In operation
(Pin Assemblies)
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Thorium in power reactors

Shippingport LWBR
— Fuelled with U-233 and Th-232
— Produced 1.4% more fuel than it burned

IAEA-TECDOC 1450




Current activity

The planned AHWR
(India) is a vertical
pressure tube type,
boiling light water
cooled and heavy water
moderated reactor
using 233U-Th MOX
(Mixed Oxide) and Pu-
Th MOX fuel.

L
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Thorium as fuel

Advantages
Thorium supplies plentiful

Disadvantages

No fission until 233U is

Robust fuel and waste produced

form 233 is weapon grade

unless denatured
Generates no Pu and

fewer higher actinides Parasitic 2%2U production

results in high gamma

233 has superior fissile activity

properties to 2*°U and

239P Thorex processing of

waste needs substantial

Proliferation resistant
development

It is generally considered that the neutrons necessary to produce 233U from 232Th must
be introduced by:seeding the Th fuel with 23°U or Pu for a conventional reactor, or

But ....can we dispense with U and Pu altogether ?
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Spallation

...... for example by utilising spallation, rather than fission, neutrons...
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Neutron energies

100
Proton enerqy

104 | gggoMM\e/v The energy spectrum of the
T ] | 600Me :
S 1 |-a2000Mev spallatlor) neutrons at
2 14 different incident proton
E i energies.
T 015 //,2
€ ] /3/ o/ The target is a lead cylinder
5 0.014 Ao of diameter 20 cm
)} /s
5 /5/2/
o j e
— 0 °
5 y .
g 1533 A/g,f‘ / At 1 Gev, approximately 24

1oes neutrons per proton are
1E-4 4 LA B L B L AL AL LR LLL IR L B pI’OdUCGd
1E-4 1E3 001 01 1 10 100 1000 10000
Neutron energy (MeV)

q

University af
HUDDERSFIELD

Knowledge Exchange in Particle Physics and Nuclear Physics, IOP, March 2009



The Energy Amplifier/ADSR Concept

ADS control unit
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The Energy Amplifier/ADSR energy balance

N~40%
X7
600MW, 1550MW .,
. Energy
N~50% gain:
155

accelerator sub critical reactor
22Th + n —»28Th —»23Pg (27d)— 22U
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Proton beam requirements for EA/ADSR

The (thermal) power output of an ADSR is given by

P - N Ef_ Kot
Ty -k,
with N = number of spallation neutrons/sec

E. = energy released/fission (~200MeV)

v = mean number of neutrons released per fission (~2)
k.= criticality factor (<1 for ADSR)

So, for a thermal power of 1550MW we require

N=9.6x10"x 1 Ko neutrons.s™’
eff

Given that a 1 Gev proton produces 24 neutrons (in lead) this corresponds to a
proton current of
- 9.6x 10™

1- keff

><1.6><1O'19><1_k‘aff amps = 640x mA

eff eff

“
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Proton beam requirements
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Safety margins

Allowed Operational Safety Margin

PWR
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Time evolution of k . for a Th-fuelled ADSR
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H.M. Broeders, I. Broeders
Nuclear Engineering and Design 202 (2000) 209-218

Evolution of the criticality value,
K., over 6 years for lead-cooled

Th/U?33 ADSRs

1. Initial loss due to build-up of
absorbing Pa?3® and decrease of
U233 enrichment by neutron
absorption and fission

2. Increase due to increasing U233
enrichment from subsequent 3-
decay of Pa233

3. Long term decrease due to build
up of neutron absorbing fission
products
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MYRRHA: an ADSR transmutation proposal

350 Mev, 5mA
The MYRRHA design proton beam
proposes a windowless —
Pb-Bi target:

The target surface results
from the vertical co-axial
confluent Pb-Bi liquid metal
flow

The beam impacts the target
vertically from above

MYRRHA is being designed to
transmute Pu waste
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...because existing accelerators are not stable

Beam current on SINQ target: 66h period 03.05.00 - 05.05.00
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FFAGs: Eixed Eield Alternating Qradient accelerators

5 © %5

Synchrotron Cyclotron FFAG
constant closed orbit isochronous G C/OSGQ O.Fbll‘
varying magnetic field orbit fixed magnetic field

J Synchrotron-like proton energies with cyclotron —like currents

) Significantly more compact — and therefore cheaper to construct

2 Simpler (fixed fields) - and hence more reliable?

Innovative non-scaling FFAGs are currently being
developed as part of the BASROC CONFORM BAS ROC
RCUK Technology programme =

q
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ADSR geometry -single spallation target

232Th core/Pb target
q

dE/dz - energy released along z (central target)
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Flux distribution in ADSR core
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Power density distribution improves
with K., but remains non-optimal

Solution is generally to increase
fissile enrichment in several core
zones (eg see step at zone boundary
on left)

A better solution might be to use
several proton beams and spallation
targets

Multiple beams/targets should also
alleviate accelerator stability
problems
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Triple target ADSR

POWER Power density distribution
i 300 (W:cm3) in a lead-cooled
ADSR with Th:U?33 fuel.

o _ote, Yo
o _olecese, 78
0l e tula®e,

ol 9P 99%:¢

The three beams with buffer
zones are described by seven
lead-filled fuel element
positions.

The over-all power distribution
is satisfactory.
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Triple target FFAG-driven ADSR

Power density distribution
(W:cm?3) in a lead-cooled
ADSR with Th:U?33 fuel.

The three beams with buffer
zones are described by seven
lead-filled fuel element
positions.

Trefoil of 3 ns-
FFAGs

each providing
3.5mA at 1 GeV

The over-all power distribution
is satisfactory.

g5 | Three ns-FFAG drivers should

be no more expensive than a

singe conventional driver....
Molten lead is both core Pb-cooled Th/U?% . . .
coolant and spallation subcritical core with: ....:an_(JI_ will proylde the required
target k=0.985 reliability margin

P, =1550MW,,

q
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Can thorium fuel be used in conventional reactors?

==
g == —=— \

Miniature spallation target in central High power (MW) -_';:
bore of fuel element assembly proton beam

Spallation charging of Th fuel rods

@ 232Th to 233U conversion can be better optimised, with
mitigation against detrimental neutron absorption by
233Th and 2*Pa

@ Modifications to existing reactors are not necessary
@ Wider global exploitation of nuclear technology is possible

@ Fuel preparation and burn cycles are decoupled
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Fuel types

Thorium Metal

Ductile, can be shaped. High conductivity
Problem with diffusion of Fe and Ni at T>
500°C forming brittle phases. Th diffuses
into Zr at about 800°C.

Thoria -ThO,

High melting point, most stable oxide
known. Powder can be prepared by sol-gel pyC SiC C MOX fuel pellet
methods then pelletised. TRISO fuel (ORNL)
MOX fuels are made by combining ThO,

with UO, or PuO, Ziccomum

Thorium Nitrides and Carbides e
Carbides ((ThU)C,) have already been

successfully used. The use of nitrides is
also possible

Cermet fuel

Cermet __ element
Fine o_X|de partilcles embedded in a Resctrfuel | | Zircaloy Tube
metallic host.

q
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Materials Physics

LWR fuel rod element

** Crack formation

X/

% Substantial grain growth in
centre (ie in hotter region)

»  Small gap at pellet-cladding
interface

Effects of irradiation and
thermal cycling on thorium
fuel assemblies must be
studied and characterised -
thorium fuel rods may be
deployed for several years
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Summary

@ Thorium is an underexploited fuel resource that could meet all our
power generation requirements for many centuries

@ Thorium fuel is proliferation resistant and produces relatively low level
radiotoxic waste

@® Although thorium is fertile, not fissile, it may be possible to construct
safe and reliable EA/ADSR power systems, using spallation neutrons
to drive the transmutation/fission process

@ Similar processes could provide thorium fuel elements for conventional
power reactors

@ The key to both technologies is the development of compact, cheap
and reliable accelerators: We believe ns-FFAGs may fit the bill

@ Significant materials research on thorium and thorium compounds is
still required

Thorium might just save the planet!!

q
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