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1 Introduction

This document encloses CalDet blessed plots along with captions and some
descriptive text. It is intended that the figures be used to support general
MINOS talks as introductory material or as backup slides. Several theses[1,
2, 3, 4, 5, 6] and a NIM paper[7] have been written on CalDet and this
document borrows liberally from them. The theses, in particular, contain
details which this document cannot hope to duplicate.

Note: This document is available in html format at:
http://www.hep.ucl.ac.uk/kordosky /caldet_blessed /html/caldet_blessed.html
The html version contains links to GIF and EPS versions of each figure as
well as figure captions in BTEX format.

2 Calibration Detector

2.1 Raison d’étre

The primary goal of the CalDet is to determine the calorimetric response
to electrons, hadrons and muons as a function of particle energy. Further-
more CalDet is used to demonstrate that the Near and Far Detectors can be
precisely calibrated relative to each other. In addition to providing the cali-
bration of the MINOS detectors, the CalDet measurements are used to tune



the Monte Carlo detector simulation. Moreover, the study of electromag-
netic and hadronic event topology provides essential input into the pattern
recognition algorithms used to analyze the neutrino data.

2.2 Detector Information

The CalDet steel plates were 1 m x 1 m square and 2.50 cm-thick. The detec-
tor was unmagnetized, in contrast with the magnetized, 2.54 cm-thick planes
used in the Near and Far Detectors. The steel was manufactured in the U.K.
and has a different composition from the ND and FD steel. The differences
are not expected to cause a significant change in the detector response.

The CalDet was composed of five identical sub-sections, with twelve
planes in each, allowing relatively easy installation in the test beam areas.
The length and type of the readout cables was chosen to mimic the atten-
uation and therefore light level of the underground detectors. In 2002 one
side of each detector plane was read out using 4 m-long (“green”) WLS fiber
cables while the other side was read out using 6 m-long clear optical fiber
cables. This was meant to mimic the FD. In 2003 some data were taken with
the detector cabled with 3 m-long green cables connected to PMTs, as well as
1 and 3 m-long green cables terminated with reflector connectors (to simulate
the ND attenuation). The attenuation difference between the WLS and clear
readout also enables a clean-cut demonstration of the detector calibration.

The CalDet was operated with FD electronics in 2002, ND and FD in
2003, and ND only in 2003. Beam data were mostly collected by triggering
the detector on a coincidence of beam counters. Some ND data were taken
in sgate mode during 2003. Data were taken with FD electronics and dynode
trigger in 2001 but were not very useful as the (asynchronous) dead-time was
very high.

3 Calibration

3.1 Brief synopsis of the calibration

The principle tools for calibrating the detector were an LED based light-
injection (LI) system, cosmic rays, and test-beam muons. The detector was
calibrated in a multi-stage procedure that converted the raw signal Q;q (7, 1)
measured by channel ¢ at time ¢ into a fully corrected signal Q... Each cali-
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CalDet in T7

Figure 1: The Calibration detector, located in the CERN PS East Hall T7
beamline. The photo was taken during the 2002 running period.



bration stage produced a numerical factor (“calibration constant”). The fully
corrected Q.. was defined as the product of Q4 (i,t) and the calibration
constant from each stage:

Qeor = Qraw (4,1) x D (4,8) X L (i) x U (i) x T (¢) x S
where D, L, U, T and S refer to:

Drift correction D (i,t): Light injection was used to determine the abso-
lute gain of each channel as well as track the gain over time.

Linearity correction L (i): The LI system was used to linearize the PMT
and VA chip response to large signals.

Uniformity correction U (i): Through-going muons were used to account
for differences in light output between individual strips and attenuation
in the optical fibers.

Temperature correction 7 (¢): The temperature dependent response of
the scintillator strips, photomultipliers, and electronics was corrected
for.

Signal scale calibration S: The overall scale of the signals was anchored
to the detector’s response to stopping muons.

4 CalDet Operations

4.1 The PS Test Beams

The CalDet was exposed in the T11 and T7 test beams in the East Exper-
imental Hall of the 24 GeV /¢ CERN Proton Synchrotron (PS). The beams
are dual polarity, mixed composition (e, u, 7 and p), and were operated at
momentum settings in the range 0.2-3.6 GeV/c (T11) and 1-10 GeV/c (T7).
Both lines were equipped with brass collimators for momentum and intensity
definition. Two or three scintillator paddles were placed in the beamline and
used to measure the particle time of flight (TOF). The two counters were
separated by 9.1m in T7, 12.5m or 7.3m in T11, and achieved a resolution
of 100-200 ps. Several threshold Cerenkov counters filled with CO, were pro-
vided to identify electrons at all energies and muons and pions with momenta
> 1.8GeV/e.
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Figure 2: The response of a single PMT channel measured over the course
of six days using the light injection system. Each point represents the mean
response to 2500 light injection pulses. These data are known as drift points.
The oscillatory shape is due to changes in gain with the ambient temperature.
The FD electronics was used and the light level was about 35 PE.
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Gain-Drift Corrected ADC
Figure 3: The upper figure shows the summed signal, in uncalibrated ADC

counts, measured for 1 GeV/c electrons. Two runs were taken
PMT high voltages at their nominal values and the other after decreasing

the high voltage of each PMT by 25V. The lower figure shows the summed

signal after the gain drift correction (D (i,
able to reduce a 26% discrepancy to less than 0.5%.
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Figure 4: In black, the average linearity correction as a function of Raw
ADC counts. The error bars show the RMS (computed over all channels) of
the linearity correction. The sharp increase in RMS at approximately 13000
ADC counts occurs as the response of individual channels begins to saturate.
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Figure 5: The response of 1 GeV/c electrons when measured through WLS

fibers as compared to measured through clear fibers. The top plot shows the
response before application of the uniformity calibration constants (U (7))

while the bottom shows the calibrated response. Before calibration the re-

sponse at each end differs by ~ 20%, after calibration,

better than 1%.

the means agree to
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Figure 6: The performance of the strip-to-strip equalization procedure. The
upper figure displays the average signal per scintillator plane measured with
a sample of 1.8 GeV/c stopping beam muons. The measurements are shown
before and after the application of the uniformity calibration (U (i)). A
linear fit was done to the calibrated points and the residuals were used to
fill the histograms in the lower figure. The RMS of the residual distributions
indicates the planes were calibrated with an accuracy of ~ 1.6%.
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Figure 7: The top left-hand figure shows the average air temperature for
each of the runs used in the study. The bottom left-hand figure shows the
change in the response (to cosmic ray muons) as a function of time. The
right-hand figure shows the response as a function of air temperature, along
with a straight line fit used to characterize the dependence.
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Figure 8: The average response to stopping muons as a function of the dis-
tance from the end of the track along with the window used in the signal-
scale calibration. The signals were corrected for gain drift, non-linearity,
strip light-output non-uniformity and temperature fluctuations.
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4.2 External Trigger

The MINOS electronics were designed to operate in the relatively low rate
neutrino environment. When operated, without alteration, in the relatively
high-rate testbeam environment, the electronics were dominated by dead-
time and pile-up effects. To improve performance, a simple trigger was
formed from the coincidence of the two time-of-flight counters. The coin-
cidence signal was transmitted to each VARC and used to enable dynode
triggers for &~ 500ns. A 60 us veto was then generated to suppress coinci-
dences while the PMT signals were being digitized. The typical coincidence
rate was 1 kHz, a result of balancing the data rate against the effect of pile-up.
An additional facility was included in the trigger logic to allow light-injection
and cosmic ray calibration events to be collected between beam extractions.

4.3 Offline Event Finding

The data acquisition continuously appended newly recorded hits to the set of
previously observed hits, flushing the entire record to disk once each second.
While collecting beam data, no manipulation (aside from sorting the hits
in time order) or online selection was done, so that the data would be as
free from bias as possible. The raw data file was processed offline with an
algorithm that located events in the stream of hits and then wrote each event
as an individual record in a second file. The algorithm began by searching for
clusters of hits separated by time gaps of more than ~ 156 ns. Each group
of hits was then tested for the following trigger conditions:

1. proximity (within 156 ns) to a coincidence between the beam counters
2. proximity to a signal from the Cerenkov counters

3. hits in N out of N+1 consecutive scintillator planes, with N=3,4,5

4. proximity to a light injection calibration pulse

Hit clusters that satisfied one of these criteria were flagged with an appropri-
ate trigger word and written to disk. Generally, the first two criteria denoted
beam events, while cosmic rays and out-of-spill, accelerator-produced muons
were identified with the third criterion. The gap searching algorithm de-
scribed above is quite similar to the one used by the FD DAQ.

12



Figure 9: A threshold Cerenkov counter used in the T7 beamline. The
counter was filled with carbon-dioxide and at the maximum pressure
(4.4atm) could discriminate between 1.8 GeV/c muons and pions. The elec-
tron identification was better than 99% at a typical (for few-GeV beam mo-
mentum) pressure of 1 atm.
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Figure 10: Figure shows the pressure used in the Cerenkov counters as a
function of the beam momentum. Various special runs were taken with dif-
ferent pressures, but the values shown here are typical. Two counters were
used in T7. Below 3 GeV/c both counters were used to tag electrons. Above
3GeV/c the downstream (DS) counter was used to tag pions and the up-
stream counter was operated so as to only identify electrons. The single
counter in T'11 was operated at approximately 1atm and was only used to
identify electrons.
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Figure 11: The electron identification efficiency as a function of sin?(6,) ~
2kp — m?/p? where p is the pressure, k is a gas constant, and m,p are the
particle’s mass and momentum. The data were derived in T7 by pressurising
one of the two counters to 4 atm and then measuring the fraction of events
triggering the other counter as a function of the gas pressure. Beam counters
(scintillator paddles) were used to assure that the particle trajectory passed
through both Cerenkov counters.
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Figure 12: Proton/pion discrimination via time-of-flight as a function of
momentum setting. The time-of-flight was used to discrimanate below 4 GeV
and Cerenkov above 4 GeV. Two paddles, seperated by 7,9 12m were used
in 2002 . In 2003 a second set of paddles was employed so as to require
a coincidence at both ends of the baseline. The paddles were read out by
Philips XP2030 or XP2230 photomultipliers. Digitisation was done with a
CAEN 775 TDC (35ps LSB)
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Figure 13: The time-of-flight distribution measured in T11 at 1 GeV /c (pos-
itive beam polarity).
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Figure 14: The time-of-flight distribution measured in T7 at 4 GeV/c. One
Cerenkov counter was pressurised to identify e, u, yielding the blue dis-
tribution. The other Cerenkov counter was pressurised to identify e only.
The green distribution are those data collected when both Cerenkov coun-
ters triggered. The red distribution are those data collected when neither
Cerenkov couter triggered and corresponds to K,p. The time-of-flight and
Cerenkov identification are in good agreement and the time-of-flight resolu-
tion is 112-125 ps
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Beam Composition: Positives: T11 2002
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Figure 15: The composition of the T11 beamline (positive polarity) as mea-
sured by the Cerenkov and time-of-flight detectors.

5 Results

5.1 Beam Composition
5.2 Response
5.3 Resolution

5.4 Hadron Topology
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Beam Composition: Negatives: T11 2002
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Figure 16: The composition of the T11 beamline (negative polarity) as mea-
sured by the Cerenkov and time-of-flight detectors.
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Beam Composition: Positives: T7 2002
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Figure 17: The composition of the T7 beamline (positive polarity) as mea-
sured by the Cerenkov and time-of-flight detectors.
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Beam Composition: Negatives: T7 2002
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Figure 18: The composition of the T7 beamline (negative polarity) as mea-
sured by the Cerenkov and time-of-flight detectors.
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Figure 19: The measured detector response to electrons and hadrons of both
polarities. The response is defined as the average summed signal divided
by the available energy (total for mesons, kinetic for baryons and electrons).
The signal is expressed in historical units (“CalDet MIPs”) which correspond
to &~ 2.6 MEU. Error bars are generally to small to be seen but account for
the statistical error in the mean (gaussian approximation) as well as the more
dominant (= 1%) uncertainty in the beam momentum derived from the varia-
tion in the electron response for repeated measurements at the same momen-
tum setting. For reference, at 1 GeV the response was 7+ = 19.5 MEU/GeV,
= ~ 18.3MEU/GeV, e* ~ 24.8 MEU/GeV, p ~ 21.0 MEU/GeV.
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Figure 20: The measured detector response to electrons and hadrons of both
polarities compared with the GEANT3 simulation of CalDet. The response
is defined as the average summed signal divided by the available energy (to-
tal for mesons, kinetic for baryons and electrons). The signal is expressed
in historical units (“CalDet MIPs”) which correspond to ~ 2.6 MEU. Er-
ror bars are generally to small to be seen but account for the statistical
error in the mean (gaussian approximation) as well as the more dominant
(= 1%) uncertainty in the beam momentum derived from the variation in
the electron response for repeated measurements at the same momentum
setting. For reference, at 1GeV the response was 7+ =~ 19.5 MEU/GeV,
- ~ 18.3 MEU/GeV, e* ~ 24.8 MEU/GeV, p ~ 21.0 MEU/GeV.
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Figure 21: The measured resolution for electrons and hadrons of both po-
larities. The resolution is defined as the RMS of the summed signal distri-

bution divided by the mean. The response may be parameterised as: 7+ =
(21+1.5)@ P22 p = 42£14) @ N and et = (41+14) @ 2201
For protons the fits were restricted to the region above 1.5 GeV where most

protons shower before ranging out.
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Figure 22: The measured resolution for electrons and hadrons of both po-
larities compared to the GEANT3 simulation of CalDet. The resolution
is defined as the RMS of the summed signal distribution divided by the

mean. The response may be parameterised as: 7+ = (2.1 4+ 1.5) @ 56'\1/%0‘3,

p=(42£14) ® 5% and e* = (41+ 1.4) @ * 21, For protons the
fits were restricted to the region above 1.5 GeV where most protons shower
before ranging out.
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Figure 23: Signal distrubitions (“line shapes”) for 7*. The shaded histogram
shows the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA)

shower simulation.
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Figure 24: The distribution of the number of planes with a hit (left column)
and shower profile (right column) for 7*. The shower profile is defined as
the average fraction of the total signal deposited in each plane expressed as a
function of the plane number starting at the front of the CalDet. Error bars
denote the error on the mean rather than the RMS. The shaded histogram
shows the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA)

shower simulation.
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Figure 25: Distributions, for 7%, of the number of hits strips before (left
column) and after a 1.5 PE pulseheight cut. The shaded histogram shows
the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA) shower

simulation.
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Figure 26: Signal distrubitions (“line shapes”) for 7. The shaded histogram
shows the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA)

shower simulation.
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Figure 27: The distribution of the number of planes with a hit (left column)
The shower profile is defined as
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the average fraction of the total signal deposited in each plane expressed as a
function of the plane number starting at the front of the CalDet. Error bars
denote the error on the mean rather than the RMS. The shaded histogram
shows the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA)

shower simulation.
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Figure 28: Distributions, for 7, of the number of hits strips before (left
column) and after a 1.5 PE pulseheight cut. The shaded histogram shows
the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA) shower

simulation.
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Figure 29: Signal distrubitions (“line shapes”) for protons. The shaded
histogram shows the data, blue (red) crosses denote the GCALOR (SLAC-
GEISHA) shower simulation. Caution: 600 MeV protons barely make it
through one plane simply based on ionisation. Losses upstream of CalDet
are large for these particles and are somewhat difficult to simulate. Few %
differences in the MC proton energy can do much to rectify the (apparently)
dramatic differences in the upper figures.

33



0.6 GeVic 0.6 GeVic

LOF Mean 2.5000 ] 10— ]
- RMS 0.8223
Mean 1.1803
05k RMS 05771 | osl ]
Mean 1.1080
RMS 0.4639
0.0 = 0.0
0 5 10 15 20 0 5 10
1.0 GeV/c 1.0 GeVi/c
—_— Mean 6.1593 0.20 F— E
03} RMS 1.8671 T ee——
Mean 5.9611 0.15F e E
0.2} RMS 1.5290
Mean 5.9036 0.10¢ 1
0.1F RMS 1.7526 o.05F ]
0.0 0.00
0 5 10 15 20 0 5 10
2.0 GeVic 2.0 GeV/c
Mean 13.1598
[He .
0.08 | RMS 58521 ] 010f -~ ]
Mean 12.7753 -
0.06 | 1
RMS 5.0373
0.04 | t Mean 11.6625 -} 0osE ]
+ & RMS 5.4897 -
0.02 F g E
0.00 0.00 —
0 20 40 0 10 20 30
3.0 GeVic 3.0 GeVic
} Mean 16.7871 0.10F . h
0.08 i RMS  7.0805 7] - -
14 ’ e
0.06 kL + Mean 16.7054 ] I
t RMS  6.4624
0.05 -
0.04 | A Mean 14.7910
002k h RMS  6.0844 =1
0.00 0.00
0 20 40 0 10 20 30
# Planes Hit Shower Profile

Figure 30: The distribution of the number of planes with a hit (left column)
and shower profile (right column) for protons. The shower profile is defined
as the average fraction of the total signal deposited in each plane expressed as
a function of the plane number starting at the front of the CalDet. Error bars
denote the error on the mean rather than the RMS. The shaded histogram
shows the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA)
shower simulation. Few % differences in the MC proton energy can do much
to rectify the (apparently) dramatic differences in the upper figures
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Figure 31: Distributions, for protons, of the number of hits strips before (left
column) and after a 1.5 PE pulseheight cut. The shaded histogram shows

the data, blue (red) crosses denote the GCALOR (SLAC-GEISHA) shower
simulation. Few % differences in the MC proton energy can do much to
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rectify the (apparently) dramatic differences in the upper figures
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