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1. Recommended reading

The following textbooks may be useful, and in many places the notes borrow heavily

from them:

• Srednicki, Quantum Field Theory. This is a very nice textbook, that deals with a

lot of (sometimes quite advanced) material in a pedagogical and clear way. The

book is divided into (often short) chapters and is generally accessible. However

the approach taken is not always optimal, and the author often seems to make a

point of choosing the opposite convention to that generally taken in the literature.

In particular, the mostly positive metric is used throughout, which can lead to

confusion if you are not used to it. It has the advantage of being available online

at http://web.physics.ucsb.edu/~mark/qft.html

• Peskin and Schroeder, Introduction to Quantum Field Theory. A classic textbook

that again covers a lot of material. Not always the best introduction to some of

the material covered, but is always a useful resource.
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• Zee, Quantum Field Theory in a Nutshell. Takes a slightly idiosyncratic approach

in places, and does not cover everything. But those topics that are covered are

explained very well, so this is a useful book.

• Schwartz, Quantum Field Theory and the Standard Model. A very good book,

covering a lot of material in detail. However he is rather sloppy with raised and

lowered indices, not keeping these consistently matching, as they should be.

• Ryder, Quantum Field Theory. The sections on path integrals and renormaliza-

tion are in particular very useful.

There are of course many other textbooks available on the market, and essentially

anything dealing with quantum field theory will cover at least some of the material

contained in this course.

2. Introduction

In these lectures we aim to build up a description of the fundamental forces relevant

to particle physics, namely the electromagnetic (EM), strong and (electro)weak forces.

This is done using the tools of quantum field theory and gauge symmetry, through

which we describe these forces by (quantum) gauge field theories:

• Electromagnetism - the abelian gauge theory of Quantum Electrodynamics (QED).

• Strong interaction - the non–abelian gauge theory of Quantum Chromodynamics

(QCD).

• Electroweak interaction - a spontaneously broken non–abelian gauge theory (EW).

We will build up slowly to full QED, the theory of EM interactions between fermions

(e.g. electrons), by beginning with the simpler toy case of scalar QED, where the

fermionic fields are replaced by scalars, before demonstrating how spinor fields arise

and applying these to formulate the full theory of QED, as it exists in Nature. In both

cases we will demonstrate the important role that (U(1)) gauge symmetry plays. We

will then generalise this so–called ‘abelian’ symmetry to the ‘non–abelian’ case and

investigate the QCD gauge theory of the strong interaction.

In all of the above cases, we will apply the path integral formulation to derive

the Feynman rules of the theory, and discuss the important role that gauge symmetry

plays. We will also go beyond leading order, and show explicitly how these theories are

renormalized, leading to the QED and QCD running couplings. This will require the
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introduction of various loop techniques in D–dimensions in order to deal with diverging

integrals.

Finally, we will discuss the physics of spontaneous symmetry breaking, and we will

show how this allows us to define a non-abelian gauge theory of the electroweak inter-

action, with massive W and Z gauge bosons (and fermions) and the famous Standard

Model Higgs boson.

3. Notation

We have

xµ = (x0,x) , (3.1)

and

∂µ =
∂

∂xµ
= (

∂

∂x0
,∇) , (3.2)

while we use the mostly negative metric

gµν = diag(+1,−1,−1,−1) . (3.3)

We will often write the scalar product as

gµνa
µbν = (ab) . (3.4)

4. Recap – Lagrangian formalism and Noether’s theorem

A full explanation of these topics has been given in the QFT course. To set the scene,

some brief and far from complete discussion is given below.

4.1 Lagrangians

In classical mechanics the behaviour of some system can be derived using the La-

grangian, given by

L = T − V (4.1)

where T and V corresponds to the kinetic and potential energy of the system respec-

tively. If we are interested in the evolution of the system between some times t1 and

t2, say, then if we define the action

S =

∫ t2

t1

dt L , (4.2)
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then the path taken by the system is given by that which corresponds to the minimum

of this, known as the ‘principle of least action’1. This can determined by solving for

the case that first–order variation about the minimal path δS = 0, as must be the case

about such an extremum.

Now, quantum mechanically we must sum at the amplitude level over all possible

intermediate states (i.e. paths) that link the initial (t = t1) and final (t = t2) state of

the system. This leads to a sum over paths with an amplitude

A ∼ eiS/~ . (4.3)

To construct a relativistic field theory we apply this approach, with the Lagrangian now

given as a function of the fields of interest, φ(x). Note that in the field theory approach,

by ‘path’ we now mean a sum over the path in the space of field configurations.

The fundamental object in this course is the Lagrangian density, L, in terms of

which the action is given by

S =

∫
dt L =

∫
dDxL , (4.4)

where D = 4 in the world we (seem to) live in. We will generally simply call this the

‘Lagrangian’, and it is typically taken to be a function of the fields φ and the derivatives

∂µφ. This defines the QFT we are working with: from it, we can amongst other things

derive the equations of motion for the particles in theory, how they interact, and what

symmetries we expect the theory to obey.

4.2 Euler–Lagrange equations

Consider a Lagrangian L(φa, ∂µφa) for a set of fields φa (here a simply labels the field).

Then if we make an infinitesimal change to the fields φa(x)→ φa(x) + δφa(x), this will

produce a change

δL =
∂L

∂φa(x)
δφa(x) +

∂L
∂(∂µφa(x))

δ(∂µφa(x)) , (4.5)

where a is summed over. To derive the classical equations of motion we determine the

1See the Feynman lecture for a nice discussion.
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variation

δS =

∫
d4x

[
∂L
∂φa

δφa +
∂L

∂(∂µφa)
δ(∂µφa)

]
,

=

∫
d4x

([
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

))
. (4.6)

The second contribution is an overall surface term that vanishes for any δφa that

vanishes at spatial infinity and t = t1,2. Thus we can drop this and we arrive at

δS

δφa
=

∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)
, (4.7)

where we rewritten the expression as a functional derivative. This is defined by

δJ(xb)

δJ(xa)
= δ4(xa − xb) , (4.8)

which implies
δ

δJ(xa)

∫
d4xJ(x)G(x) = G(xa) . (4.9)

Applying the principle of least action, we demand that this variation (4.7) vanishes,

and arrive at the classical equations of motion, or the Euler–Lagrange equations

∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)
= 0 . (4.10)

We have a set of equations, one for each field a.

4.3 Noether’s theorem

A viable theory is constructed by demanding that the Lagrangian in (4.4) is invari-

ant under the symmetries observed in Nature. A straightforward example is Lorentz

invariance – if the Lagrangian obeys this manifestly then so too will the theory. Put

another way, requiring that our theory obeys Lorentz invariance (something which we

know from observation to be true to a high degree of precision) greatly restricts the sort

of terms we could write down in L, which must be a Lorentz scalar so that the action

itself is (the measure dDx is invariant). When it comes to considering our interacting

QFT, then as we will see the symmetries that the Lagrangian obeys tell us a great

deal about which interactions can actually occur and the way the relationship between

them. Symmetry is therefore a very tool in QFT. Most powerfully of all, by requiring

that our Lagrangian is invariant under a class of continuous symmetries, known as
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gauge transformations, we are lead to a very specific and concrete prediction for the

type of force carrying fields that must be present, as we will soon see.

The importance of symmetry in particle physics is perhaps made clearest by consid-

ering the role it plays in Noether’s theorem. In particular, if the Lagrangian is invariant

under a continuous symmetry there exists an object jµ(x) that satisfies

∂µj
µ(x) = 0 , (4.11)

and is known as a conserved current. To see this, if we consider the infinitesimal

transformation in the fields φa that we denote δφa, then this is a symmetry if the

Lagrangian changes by at most a total derivative

δL = ∂µF
µ . (4.12)

This can of course vanish (as will be the case in examples below). Now the variation

in the Lagrangian is given by (4.5), which we can rewrite as

δL = ∂µ

(
∂L

∂(∂µφa)
δφa

)
+

[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa , (4.13)

= ∂µ

(
∂L

∂(∂µφa)
δφa

)
+
δS

δφa
δφa . (4.14)

Now, if (4.12) and the equations of motion are satisfied this implies that

jµ =
∂L

∂(∂µφa)
δφa − F µ , (4.15)

is indeed a conserved current, ∂µj
µ = 0.

Such a conserved current also implies that the charge Q given by

Q =

∫
d3x j0 . (4.16)

is also conserved, i.e. does not change with time. To see this we note that

dQ

dt
=

∫
d3x ∂0j

0 ,

=−
∫

d3x∇ · j = −
∫
∞

j · S = 0 , (4.17)

where we have used (4.11), and we have used Gauss’s theorem and assumed that j→ 0
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sufficiently quickly as |x| → ∞ in the last step.

In fact this charge is locally conserved. Writing (4.11) in the space and time

components we have
∂j0(x)

∂t
+∇ · j(x) = 0 , (4.18)

which is a continuity equation, with j0(x) and j(x) corresponding to the charge and

current density, respectively. Thus, the charge in some volume V is given by

QV =

∫
d3x j0(x) , (4.19)

and the rate of change of charge is given by

∂QV

∂t
= −

∫
V

d3x∇ · j = −
∫
A

j · S , (4.20)

where A is the boundary of V . Thus, any charge leaving V must be accounted for by

the current flowing through A.

Thus Noether’s theorem tells us that if the Lagrangian is invariant under a continu-

ous symmetry, then there exists a corresponding conservation law and conserved charge

in the physics of the underlying QFT. For example, the invariance of the Lagrangian

under spatial translations corresponds to momentum conservation, rotations to angular

momentum conservation, time translations to energy conservation, and Lorentz sym-

metry to energy–momentum conservation. We will see some further examples of this

in the context of QFT in what follows.

5. Scalar QED

5.1 The Klein–Gordon equation

We begin by consider the case of a single complex scalar field. The corresponding

Lagrangian is:

L = ∂µφ
∗(x)∂µφ(x)−m2φ∗(x)φ(x) . (5.1)

Treating φ(x) and φ∗(x) as independent field variables, we have

∂L
∂φ∗(x)

= −m2φ(x) ,
∂L

∂(∂µφ∗(x))
= ∂µφ(x) , (5.2)

and the equations of motion (4.10) give

(∂µ∂
µ +m2)φ(x) = 0 , (5.3)
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and similarly for φ∗(x). This is the Klein–Gordon equation, a relativistic wave equation

describing the free propagation of a scalar field.

5.2 Global U(1) symmetry

The Lagrangian (5.1) is invariant under the transformation

φ(x)→ eiqαφ(x) , (5.4)

where α is a real constant and q corresponds to the charge of the particle, which will be

discussed more below. This corresponds to an abelian global U(1) symmetry, that is a

transformation that corresponds to simple multiplication by a spacetime independent

complex phase. Now, we know from Section 4.3 that a symmetry of the Lagrangian

implies the existence of a conserved current and charge. What does this U(1) symmetry

lead to?

To see what, we note that the U(1) rephasing corresponds to the infinitesimal

transformation

δφ(x) = iqαφ(x) . (5.5)

We then have

∂L
∂(∂µφ(x))

δφ(x) = iqαφ(x)∂µφ∗(x) , (5.6)

∂L
∂(∂µφ∗(x))

δφ∗(x) = −iqαφ∗(x)∂µφ(x) , (5.7)

No total derivative term is generated by the transformation, and therefore we have

jµ = −iq (φ∗(x)∂µφ(x)− φ(x)∂µφ∗(x)) , (5.8)

where we use the conventional normalization that the scale factor α is divided out:

as any constant multiplied by the current still leads to a conserved current, we are

completely free to do this.

To see how we can interpret the corresponding conserved charge we start with the

free field expansion of the scalar fields

φ(x) =

∫
d3k

(2π)32k0

[
a(k)e−ikx + b∗(k)eikx

]
,

φ∗(x) =

∫
d3k

(2π)32k0

[
b(k)e−ikx + a∗(k)eikx

]
, (5.9)
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where as we are considering the classical case for the time being we write a∗(k) rather

than a†(k) and similarly for the b coefficient; at this point these expressions simply

correspond to the most general Fourier decomposition of the field φ that is consistent

with the Klein–Gordon equation (5.3). Note that the normalization convention is as

discussed in Section 5.7. Using these and a little manipulation it is then straightforward

to show that

Q = −iq
∫

d3x
(
φ∗(x)∂0φ(x)− φ(x)∂0φ∗(x)

)
,

= q

∫
d3k

(2π)32k0

[a∗(k)a(k)− b∗(k)b(k)] . (5.10)

When we quantise, these become the number operators a†a and b†b for the particle

and antiparticle states, respectively. Thus this conserved charge corresponds to the

number of particles minus antiparticles multiplied by their charge q. As this is time

independent, any scattering process that changes the total Q will vanish. This also

follows from the Feynman rules, where for any vertex corresponding to a Lagrangian

with the global symmetry, the total charge Q must be conserved. Thus, if we had two

fields φ1,2(x) with different associated U(1) charges q1,2

φ1,2(x)→ eiq1,2αφ1,2(x) , (5.11)

then we can have no cross terms in the Lagrangian

L = ∂µφ
∗
1(x)∂µφ1(x)−m2φ∗1(x)φ1(x) + ∂µφ

∗
2(x)∂µφ2(x)−m2φ∗2(x)φ2(x) , (5.12)

so any interaction between the φ1 and φ2 fields must conserve the q1,2 charges. For

example, the term

LI = λφ∗1φ1φ2φ
∗
2 → eiα(−q1+q1+q2−q2)LI = LI , (5.13)

is invariant under the global U(1) symmetries (5.11), while

L′I = λφ∗1φ1φ1φ
∗
2 → eiα(−q1+q1+q1−q2)L′I 6= L′I , (5.14)

is not. We have not discussed how to interpret such terms yet in terms of Feynman

diagrams, but we shall see that they correspond as we might expect to 4–point interac-

tions between the scalar fields. However, given the interpretation above about charge
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conservation, we expect this to be expressed in the corresponding interactions, i.e.

in∑
i

qi −
out∑
i

qi = 0 , (5.15)

that is, the net charge in the initial state to should equal that in the final state.

Bearing in mind the sign difference in how we treat the initial and final state in the

above expression, we see that this is achieved if we for example interpret φ
(∗)
1 as an

incoming (outgoing) particle or outgoing (incoming) antiparticle (or vice versa), and

similarly for φ2. Thus we can interpret (5.13) as corresponding to e.g.

1 + 1→ 2 + 2 , or 1 + 2→ 1 + 2 , (5.16)

where we have used the bar to indicate the corresponding antiparticle. Both of these

processes one can see indeed conserve the charges q1,2. On the other hand, we can

interpret (5.13) as corresponding to e.g.

1 + 1→ 1 + 2 , or 1 + 2→ 1 + 1 , (5.17)

both of which clearly do not. It turns out that this is indeed the correct interpretation

of the corresponding interactions terms in the Lagrangian, though it takes a reasonable

amount of work to show this is actually the case in the full QFT. We will see this sort

of thing at work in the case fermion fields and their role in QED later on. For now

though, it is worth emphasising that without doing all this work, just by requiring that

the Lagrangian is invariant under (5.11) and the straightforward identification of the

corresponding conserved charges q1,2 in the above example leads us naturally to this

interpretation and limits the sort of interactions that may occur in the theory.

Within the context of the Standard Model, exactly these type of global symmetries

correspond to baryon, B, and lepton, L, number conservation. For example in QCD,

as we will see later in any given term in the Lagrangian for each antiquark field ψ there

is a corresponding quark field ψ, and hence the Lagrangian itself is invariant under

the same type of global symmetry discussed above, with one such symmetry for each

flavour of quark. This leads to the conservation of quark number, and hence baryon

number. A similar result occurs for lepton in e.g. QED2.

2In fact in the full Standard Model the situation here is not quite so simple, as these B and L
symmetries are anomalous, that is they are present in the Lagrangian but are broken by quantum
corrections. We will not discuss this further here, but it is discussed in many textbooks.
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5.3 Local U(1) gauge symmetry

The global symmetry described in the previous section corresponds to a conservation

of the particle charge q: in QED we will associate this with the electric charge. As

discussed above, in terms of Feynman rules, for any interaction vertex we associate a

charge q with a particle and −q with an anti–particle, and if
∑
qi is not conserved the

vertex is definitely forbidden. However we could just as well have associated a charge

−q with a particle and +q with an anti–particle, so that (5.4) becomes

φ(x)→ e−iqαφ(x) . (5.18)

This is a perfectly good symmetry of the Lagrangian, and leads to the same charge

conservation requirement. Physically, whether we label a particle (anti–particle) as

positively (negatively) charged and vice–versa is really a matter of convention, which

leaves the physics untouched. This is only true because of the global U(1) invariance

of the Lagrangian, which tells us that we are free to relabel the particle/anti–particle

charge q ↔ −q and the physics will remain the same. In other words, there is a

fundamental redundancy in our description.

However, this seems a somewhat unsatisfactory state of affairs, as we have per-

formed this relabelling everywhere in the universe at the same time. This idea of

performing a constant relabelling (or in the language of the Lagrangian, a constant

rephasing of the fields) at all points in space at the same time seems to contradict the

basic spirit of relativity; the relabelling of the charges on Andromeda should surely not

affect physics on Earth. This leads us to consider a space–time dependent local gauge

transformation

φ(x)→ eiqα(x)φ(x) , (5.19)

where the scale parameter now depends on x. Under this transformation, we are free to

rephase our fields in a different way at each point in space (and time). One can think

of this as a suitable generalization of the above idea of particle/anti–particle charge

q ↔ −q relabelling, though it should be emphasised that this direct interpretation in

terms of such a conserved charge is no longer present in the local case.

However immediately we have a problem. Due to this spacetime dependence the

derivative term in the Lagrangian (5.1) becomes

∂µφ(x)→ eiqα(x) (∂µφ(x) + iqφ(x)∂µα(x)) , (5.20)

which clearly doesn’t lead to an invariant Lagrangian. To solve this, we need to consider

a new Lagrangian which is invariant under such transformations. This will be achieved
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by introducing a derivative that transforms covariantly (in the same way as the fields

φ(x)) under the gauge transformation, with

Dµφ(x)→ eiqα(x)Dµφ(x) , (5.21)

this covariant derivative needs an extra term which will cancel the second term in

(5.20). As ∂µ is a Lorentz vector, this requires the introduction of a new vector Aµ. If

we define

Dµ ≡ ∂µ − iqAµ . (5.22)

and then demand that Aµ transforms according to

Aµ → Aµ + ∂µα(x) , (5.23)

then it readily follows that (5.21) holds:

Dµφ(x) = (∂µ − iqAµ)φ(x)→ (∂µ − iq(Aµ + ∂µα))eiqα(x)φ(x) ,

= eiqα(x)(∂µ − iqAµ − iq∂µα(x) + iq∂µα(x))φ(x) = eiqα(x)Dµφ(x) . (5.24)

From this we can immediately see that the new Lagrangian

L = (Dµφ(x))∗Dµφ(x)−m2φ∗(x)φ(x) , (5.25)

is invariant. Here, we simply replaced ∂µ → Dµ; this procedure, known as minimal

substitution, is something we will use a lot. The equations of motion are

(DµD
µ +m2)φ = 0 . (5.26)

Written another way, which will be useful later, it follows from (5.22) and (5.23) that

Dµ → eiqα(x)Dµe
−iqα(x) , (5.27)

from which we can again see that (5.25) is invariant.

Now, this updated Lagrangian will by construction still be invariant under the

global symmetry (5.4) and hence there will be a conserved current associated with this.

We find

jµ = −iq (φ∗(x)∂µφ(x)− φ(x)∂µφ∗(x))− 2q2Aµφ(x)φ∗(x) , (5.28)

which allows us to write

L = ∂µφ
∗(x)∂µφ(x)−m2φ∗(x)φ(x)− jµAµ +O(q2) , (5.29)
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i.e. to O(q) the vector field Aµ couples universally to the current jµ. This all follows

simply from gauge invariance. By demanding that our fields are invariant under the

local gauge transformation (5.19) we are led to introduce a new vector field Aµ which

couples to the current (5.28). This will induce terms ∼ Aµφ∗∂µφ in the Lagrangian,

which as we will see correspond to interaction vertices between the scalar fields and

the new bosonic field Aµ. This gauge field will therefore mediate an interaction (=

a force) between the scalar fields at different points x, y in spacetime, such that the

transformation properties of this field will correct for any arbitrary spacetime rephasing

of the fields we wish to apply.

In QED we will associate Aµ with the photon field. Indeed, we recall that to

describe the motion of a charged particle in an electromagnetic field in classical (and

non–relativistic quantum) physics, the principle of minimal coupling tells us to make

the replacement

pµ → pµ + qAµ . (5.30)

We have now derived this rule, which in momentum space is directly equivalent to

(5.22), purely from gauge symmetry arguments, when we associate the gauge field Aµ
with the EM 4–potential.

5.4 Photon kinetic term

Having introduced the photon field, we must now introduce a kinetic term for it. How

do we do this in a Lorentz and gauge invariant way? Consider the commutator

Fµν =
i

q
[Dµ, Dν ] = ∂µAν − ∂νAµ , (5.31)

where in the last line the commutators of the Abelian fields Aµ and the derivatives ∂µ
vanish. Then very simply

Fµν → ∂µ(Aν + ∂να(x))− ∂ν(Aµ + ∂µα(x)) = Fµν , (5.32)

is gauge invariant (exercise: show this from the commutator definition). To form a

Lorentz and gauge invariant kinetic term we can take

Lkin = −1

4
FµνF

µν , (5.33)

where the normalization will be discussed below. As we will show below this indeed

corresponds to the kinetic term for a spin–1 massless field.
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What if we wanted to include a mass term? This would look like

Lkin =
1

2
m2
AAµA

µ , (5.34)

for some photon mass mA, as can be verified by finding the equations of motion with

this term included. However under a gauge transformation (5.23) we have

1

2
m2
AAµA

µ → 1

2
m2
A(Aµ + ∂µα(x))(Aµ + ∂µα(x)) , (5.35)

which is clearly not invariant. Therefore any such explicit mass term is forbidden by

gauge invariance. We have therefore arrived at the very important conclusions that no

gauge–invariant mass term can be explicitly added for gauge fields such as the photon,

and these must therefore be exactly massless. This gives a theoretical justification

for the experimental fact that the photon is known to have at most a very small mass

(astronomical observations limit it to be mγ . 10−26 eV, so pretty small). On the other

hand, we know that the W and Z bosons, the force carriers of the weak nuclear force,

do have mass. As we will see later, the concept of spontaneous symmetry breaking

allows a way around this.

Aside: what else could we add?

In fact, there is a closely related objected known as the dual field strength tensor

F̃µν ≡
1

2
εµνρσF

ρσ . (5.36)

which we could also have introduced here. Here ε is the totally antisymmetric Levi–

Civita tensor, with ε0123 = +1. One can readily show that this is also gauge invariant.

Now, it is straightforward to show that F̃µνF̃
µν ∝ FµνF

µν , and therefore such a term

is redundant. On the other hand, we are in principle free to consider the contribution

L ∝ F̃µνF
µν , (5.37)

to the Lagrangian. However here one can show that this in fact enters as a total derivate

contribution that will give a surface term in the action. This will not contribute in

perturbation theory (it is in particular proportional to a factor of the momentum going

into the vertex minus the momentum going out, which is zero), and in fact it gives no

contribution at all in QED. However, for non–Abelian gauge theories, it does and this

is the origin of the so–called strong CP problem; namely, such a term is allowed in QCD

and would have physical effects but experimentally is found to be very small indeed.
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Finally, we are in general free to add higher order terms

L ∝ (FµνF
µν)2 + · · · . (5.38)

These would lead to non–linear interactions beyond those we have seen (so far) in

electromagnetism. In fact, the latest limits on this have come from a measurement

of so–called light–by–light scattering in lead ion collisions at the LHC, so it is still

something that is being investigated today.

5.5 The Scalar QED Lagrangian

Combining the above terms, we have the scalar QED Lagrangian

L = (Dµφ(x))∗Dµφ(x)−m2φ∗(x)φ(x)− 1

4
FµνF

µν , (5.39)

which using (5.28) we can write as

L = ∂µφ
∗(x)∂µφ(x)−m2φ∗(x)φ(x)− 1

4
FµνF

µν − jµAµ − q2AµA
µφ∗(x)φ(x) . (5.40)

The final term corresponds to a pure γγφφ∗ contact interaction, and is not present in

spinor QED3. We can therefore ignore this for now, and we have for the ‘QED’ part of

the Lagrangian

LQED = −1

4
FµνF

µν − jµAµ . (5.41)

The second term then corresponds to the usual EM interaction with matter. We have

∂LQED

∂Aν
= −jν ,

∂LQED

∂(∂µAν)
= −Fµν , (5.42)

and therefore the Euler–Lagrange equations are

∂µF
µν = jν , (5.43)

which are nothing other than Maxwell’s equations! How do we know this? Well, writing

in terms of the notation of the usual electromagnetic 4–potential, Aµ = (A0,A), we

recall that

E = −∇A0 −
∂A

∂t
, B = ∇×A . (5.44)

3In fact from (5.28) we can see that a contact interaction term is also hidden in the jµA
µ piece. For

QED this will also be absent in the corresponding term, but as the analysis below makes no reference
to the explicit form of jµ, the same arguments will hold for QED proper.
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This gives

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (5.45)

Writing the 4–current as jµ = (ρ, j) in terms of the charge and current densities, if we

consider e.g. the term

∂µFµ0 = j0 , (5.46)

then we get

∂µFµ0 =
∂

∂t
F00 −∇iFi0 = ∇ · E = ρ , (5.47)

as claimed. The other three equations can be similarly derived from other terms, and

using

∂µF̃µν = εµνσρ∂
µF ρσ = 0 . (5.48)

Note that the normalization choice of −1/4 in (5.33) was required so that the La-

grangian matched the relativistic formulation of Maxwell’s equations. This is however

the only place where we had any freedom; the rest of the Lagrangian is obtained purely

by the requirements of U(1) gauge invariance.

Let’s take a step back. We started by observing that the Lagrangian for a free

complex scalar field which is invariant under a U(1) global symmetry, i.e. a constant

rephasing of the fields at every point in spacetime, must have charge conservation of

the fields in their corresponding interactions. This allowed us to interpret such a sym-

metry physically as a relabelling of the particle and antiparticle charges, q ↔ −q, at

every point in spacetime. As this leaves the physics unchanged, there is a fundamental

redundancy in our description. We then make the reasonable requirement that this

transformation should be local, i.e. spacetime dependent, which from relativistic con-

siderations is a well motivated assumption. In this case the direct interpretation in

terms of the particle/anti–particle charge q ↔ −q relabelling is lost, but the idea of

there being a basic redundancy in our description remains. To maintain the invariance

of the Lagrangian in this case, we were forced to introduce a new gauge field Aµ. This

transformed under this local symmetry in such a way as to maintain invariance of the

Lagrangian. Having made no reference to electromagnetism or an interacting theory,

this automatically introduced interactions between the scalar fields and the gauge boson

of precisely the form we find in electromagnetism, while the simplest gauge invariant

kinetic term we could introduce for the gauge field lead exactly to Maxwell’s equations.

Thus, quite remarkably, the entirety of EM dynamics follows simply from the re-
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quirement of local gauge invariance. This is clearly a very powerful concept, and indeed

it is used to construct the theory of all particle interactions that make up the Stan-

dard Model. Moreover, as we shall discuss later on, gauge invariance places further

constraints that allow a sensible interacting quantum field theory to be constructed,

which is not a trivial exercise.

5.6 Gauge choice

We have introduced a 4–vector potential Aµ to describe the EM field, which would

näıvely correspond to 4 degrees of freedom. However, we know that the oscillation

of the EM field that make up light waves are completely transverse to the direction

of motion of the wave. This corresponds to two degrees of freedom, namely the two

polarization states of the photon. The resolution to this apparent contradiction lies in

the gauge symmetry of the Lagrangian. In particular, any fields which can be related

via the gauge transformation (5.23) are not physically distinguishable. Thus there is

clearly a redundancy in the system, which as we will see reduces the apparent 4 degrees

of freedom to the 2 we expect.

To examine this further we note that the equations of motion (5.43) in the absence

of matter correspond to

∂2Aν − ∂ν(∂µAµ) = 0 . (5.49)

Separating the time and spatial components this corresponds to

−∇2A0 −
∂

∂t
(∇ ·A) = 0 , (5.50)

−∂2A−∇(
∂A0

∂t
+∇ ·A) = 0 . (5.51)

Now, under the gauge transformation (5.23), we have

∇ ·A→ ∇ ·A−∇2α , (5.52)

and therefore we can choose the α such that

∇ ·A = 0 . (5.53)

This is known as the Coulomb gauge. The first equation now becomes

∇2A0 = 0 . (5.54)

This has no time derivative, hinting that A0 is not a physical, independent time varying
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variable. Indeed, we have not used the entirety of our gauge freedom, as for any α that

satisfies ∇2α = 0, the Coulomb gauge condition will still hold. We can then use the

gauge transformation

A0 → A0 +
∂α

∂t
, (5.55)

precisely to set A0 = 0; note that the α obeying ∇2α = 0 will still preserve (5.54). The

remaining equation of motion then reads

∂2A = 0 , (5.56)

which describes the propagation of a field A with 3 degrees of freedom. However we also

have the condition (5.53) which reduces this to 2, as required! We will show explicitly

that this counting of degrees of freedom is correct below.

The Coulomb gauge is only one particular choice of gauge fixing. The basic idea of a

gauge condition is that it places some constraint on the gauge field such that it restricts

the choices of Aµ that correspond to the Lagrangian under consideration, i.e. it strips

away all or some of the remaining gauge freedom. There are in fact an infinite number

of ways of doing this, and while formally physical results must be independent of the

gauge fixing, for given practical applications some choices are more convenient than

others. As we have seen above, an advantage of the Coulomb gauge is that all gauge

freedom can be stripped away, and we are left with two physical transverse polarization

states (more of which below).

Some other common choices are:

• The Lorenz gauge, for which we require

∂µA
µ = 0 . (5.57)

We are free to do this by choosing a suitable α in (5.23). Note that this still

leaves one remaining gauge degree of freedom, as we can still transform by any α

satisfying ∂2α = 0.

This has the advantage of being Lorentz invariant, greatly simplifying its applica-

tion in actual calculations, which of course will almost always be cast in a Lorentz

covariant fashion. We will see the benefit of this gauge in action later on when

we compute loop diagrams.

• The Rξ gauge chooses

∂2α = −1

ξ
∂µA

µ , (5.58)
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where ξ is an arbitrary real parameter. This is essentially a generalization of

the Lorenz gauge, which defines a family of gauge fixing conditions, for different

choices of ξ. We will see the benefit of this below, when defining the photon

propagator.

• The condition

nµAµ = 0 (5.59)

where n is an arbitrary 4–vector corresponds to class of axial gauges. This again

has the benefit of being Lorentz invariant. Moreover, under certain additional

conditions it can be shown that in this case only two physical degrees of freedom

propagate. In QCD, this has the advantage that the so–called ghost fields are not

required (although it leads to a considerably more complicated gluon propagator).

We we will discuss the role of these ghost fields further later on.

5.7 The Free Quantized Photon Field

Working in the Coulomb gauge, with A0 = 0, in analogy to the scalar field theory case,

we Fourier decompose the field operator A as

A(x) =
∑
λ

∫
d3k

(2π)32k0

[
ελ(k)aλ(k)e−ikx + ε∗λ(k)a†λ(k)eikx

]
, (5.60)

where k0 = |k| is the photon energy, and the ε are the photon polarization vectors

(note that the same logic below would follow if one simply considered the expansion

of the classical field). The aλ(k) and a†λ(k) are the photon creation and annihilation

operators after canonical quantisation. Note that the equation as it stands is simply a

formal expression for A(x), which defines the aλ(k) and a†λ(k). Indeed we can readily

invert the above equation to give expressions for these in terms of the fields A(x).

In particular, the normalising factors are choices; here we have followed the Srednicki

convention, but often this is multiplied by an overall factor of
√

2k0.

The aλ(k) and a†λ(k) obey the equal–time commutation relations

[aλ(k), aλ′(k)] = 0 ,

[a†λ(k), a†λ′(k)] = 0 ,

[aλ(k), a†λ′(k
′)] = (2π)3 2k0 δ

3(k− k′)δλλ′ , (5.61)

where in the last expression the factor of 2k0 would be missing if the
√

2k0 normalization

convention were taken above.
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Note that in this Fourier expansion, the equations of motion (5.56) simply corre-

spond to k2 = 0, i.e. the on–shell condition for a massless photon, as we would expect.

Thus, with this condition alone we would still have 3 degrees of freedom above, and

have to expand in terms of 3 basis polarization vectors. However, with the Coulomb

gauge condition ∇ ·A = 0 we have in k space that k ·A = 0, and therefore we require

k · ελ(k) = 0 . (5.62)

Thus we indeed have only two degrees of freedom, corresponding to the independent

polarization states that are transverse to the direction of motion k. For the case that

k lies along the z axis, then the two independent polarization vectors satisfying this

can be chosen as

ε+(k) = − 1√
2

(1, i, 0) , (5.63)

ε−(k) =
1√
2

(1,−i, 0) . (5.64)

For other directions, we can simply rotate these. This is only one particular basis

choice, but it turns out to be a physically intuitive one, as these in fact correspond to

right and left–handed circular polarization states, respectively, i.e. with ±1 angular

momentum projected onto the direction of the photon. These satisfy the normalization

and completeness relations

ελ(k) · ε∗λ′(k) = δλλ′ , (5.65)∑
λ=±

ε∗i,λ(k)εj,λ(k) = δij −
kikj
k2

. (5.66)

To keep things covariant, if we define

εµ+(k) = (0, ε+) , (5.67)

εµ−(k) = (0, ε−) , (5.68)

and introduce a vector n, which satisfies n2 = 0, n · ελ = 0, but n · k 6= 0, then we can

write ∑
λ=±

ε∗µ,λ(k)εν,λ(k) = −gµν +
nµkν + kµnν

k · n
. (5.69)

To confirm this, for the case that k lies along the z axis, we can take nµ = (1, 0, 0,−1).

Then the first term on the RHS of (5.69) gives diag(−1, 1, 1, 1) as usual, while the
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second gives diag(1, 0, 0,−1), so that the combination is consistent with the explicit

sum over the ± polarizations.

5.8 Lorentz invariance: Ward Identity

Let us consider a photon moving along the z axis with energy E, i.e.

k = (E, 0, 0, E) . (5.70)

For demonstration purposes we take a slightly different choice of polarization vectors

ε1 = (0, 1, 0, 0) , ε2 = (0, 0, 1, 0) . (5.71)

As above, these are transverse polarization vectors of the photon, that is they are

orthogonal to the direction of the photon momentum. However if we consider the

Lorentz invariant form of this statement, namely

ε · k = 0 . (5.72)

then we quickly run into problems, as any vector satisfying ε ∝ k, that is with a lon-

gitudinal polarization mode, will also satisfy this requirement. This corresponds to a

type of light wave that is in contradiction with our expectation from e.g. classical EM

and observation, from which we know that the photon should be completely transverse.

Why is this a problem? Because even if we start by defining completely transverse po-

larization vectors in some frame, as this in itself is not a Lorentz invariant requirement,

if we change frame the vectors will not necessarily remain transverse. To see if this is

indeed the case, we consider the action of some Lorentz transformation, which will in

general take the form

εµ
′

1 = a1(Λ)εµ1 + a2(Λ)εµ2 + a3(Λ)
kµ

E
, (5.73)

and similarly for ε2. Here, we are simply expanding our transformed vector in the basis

of ε1,2 and k, as defined above in the original frame; the constraint (5.72) tells us that

indeed these 3 vectors are enough to do that. The last term may then produce exactly

such an unphysical longitudinal polarization that we would like to avoid. We are not

necessarily in trouble yet, as such a transformation will also change k in general, and

so perhaps the polarization vectors might still be transverse. Unfortunately this is not

the case. To see this most clearly, we note that there exists a subgroup of Lorentz

transformations, known as the ‘little group’, which leave the vector k unchanged. For
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the choice (5.70), one example is

Λµ
ν =


3
2

1 0 −1
2

1 1 0 −1

0 0 1 0
1
2

1 0 1
2

 , (5.74)

which satisfies ΛTgΛ = g, and so is indeed a Lorentz transformation, while we also

have Λν
µk

µ = kν . The action of this on ε1 is

Λµ
ν ε
ν
1 = (1, 1, 0, 1) = εµ1 +

kµ

E
. (5.75)

This seems to be a disaster. The whole construction of the purely transverse polar-

ization states of the photon is indeed not itself Lorentz invariant. The unphysical

longitudinal polarization state that we wished to avoid is inevitably present in certain

frames, and therefore cannot be omitted by hand. To be precise, if we consider the

action of (5.75) on a general QED matrix element, then as we will discuss later this

has the form

M = εµ1Mµ →
(
εµ1 +

kµ

E

)
Mµ′ , (5.76)

where Mµ →M ′
µ under the Lorentz transformation. If we want to maintain the Lorentz

invariance of M , this would therefore apparently seem to require that in the primed

frame the photon must couple to the QED process via a partly longitudinal polarization

mode, in complete contradiction with what we know to be the case. In general, we can

see that the requirement that our observable M only couple to physical transverse

polarizations is not a Lorentz invariant statement. However, if we have

kµM
µ = 0 , (5.77)

then the problem is resolved. In particular as kµ in unchanged under our little group

transformation, and the above expression is a Lorentz scalar we have

kµM
µ′ = 0 , (5.78)

and thus

M = εµ1Mµ → εµ1M
′
µ (5.79)

so that only the physical polarization state contributes to the observable quantity M
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in both frames4, and M itself is Lorentz invariant.

Without (5.77) it would not be possible to satisfy this requirement. Remarkably,

for theories with local gauge symmetry this is indeed true, and is known as a Ward

identity. Even more remarkably, this follows directly from gauge symmetry.

5.9 Ward Identity and gauge symmetry

Consider (5.60) written in a covariant form:

Aµ(x) =
∑
λ

∫
d3k

(2π)32k0

[
εµλ(k)aλ(k)e−ikx + εµ∗λ (k)a†λ(k)eikx

]
, (5.80)

where given k2 = 0, a dependence on k can just as well be written as a dependence

on k. Now we know that our Lagrangian must be invariant under the local gauge

transformation:

Aµ(x)→ Aµ(x) + ∂µα(x) . (5.81)

How does this affect the above field expansion? Well, one can Fourier transform the

α(x) in the same way, and then in momentum space the ∂µα(x) → kµα̃(k). Then, we

require invariance under the transformation

εµλ(k)→ εµλ(k) + kµf(k, λ) , (5.82)

where f(k, λ) is some arbitrary function, related to the momentum space decomposition

of α(x). Given our general form for a matrix element involving the absorption of a

photon

M = εµ(k)Mµ , (5.83)

and similarly for emission, the only way this can be a symmetry for arbitrary f(k, λ)

is if indeed we have

kµM
µ = 0 . (5.84)

Thus, by constructing a gauge theory we find that we have automatically achieved

the non–trivial result of a sensible Lorentz invariant theory where photons have two

physical polarization states. This is one example (but not the only one) of the power

of gauge symmetry and a reason why these are so ubiquitous in particle physics, where

we are of course interested in constructing Lorentz invariant theories of massless spin–1

gauge bosons, most obviously in the case of QED.

4For more general Lorentz transformations beyond the little group we have for simplicity considered
here, this will also guarantee that polarization states ε′µ ∼ k′µ do not contribute.
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Note the above demonstration is perhaps a little heuristic, and we have not actually

proved in terms of e.g. arbitrary Feynman diagrams that (5.77) does indeed hold in

general, but we clearly expect it to given the discussion above. A more complete

account within the path integral context will be given in Section 9.

6. The Photon Propagator

6.1 Path Integrals: Recap

Recall that in the path integral formulation of quantum mechanics we must sum at the

amplitude level over all possible intermediate states (i.e. paths) that link the initial

(t = t1) and final (t = t2) state of the system . This leads to a sum over paths with an

amplitude

A ∼ eiS/~ , (6.1)

To construct a relativistic field theory we apply this approach, with the Lagrangian now

given as a function of the fields of interest, φ(x). Note that in the field theory approach,

by ‘path’ we now mean a sum over the path in the space of field configurations. The

quantum mechanical sum over field configurations is then determined by the path

integral

Z =

∫
Dφ e

i
~
∫

d4xL , (6.2)

keeping ~ explicit here. In the classical ~ → 0 limit, the path is dominated by the

minimum of the exponent and can be calculated using the method of steepest descent.

This leads back to the usual classical Euler–Lagrange equations. Away from this limit

new quantum phenomena enter, i.e. virtual particles, loop corrections and so on, due

to this sum over paths.

Now the above expression corresponds to the quantum mechanical transition am-

plitude from vacuum to vacuum, which while in principle interesting (it gives the en-

ergy of the vacuum, which is a non–trivial thing), is not what we want here. Rather

we want to know what happens when we disturb the vacuum – when particles are

created/annihilated and interact with each other. To do this we need to act on the

vacuum in some way, to disturb it. This is achieved by introducing a source term J(x),

giving the generating functional

Z[J ] =

∫
Dφ eiS(φ)+i

∫
d4x J(x)φ(x) , (6.3)

where S(φ) =
∫

d4xL. In some situations this corresponds to a physical quantity of the

system, e.g. in condensed matter systems it can correspond to the applied magnetic
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field. Here it is more of a calculation aid. This in particular provides a nice way to

calculate the vacuum expectation of time–ordered fields products, via

〈0|T φ̂(x1) · · · φ̂(xn)|0〉 =
1

Z[0]

δNZ[J ]

iδJ(x1) · · · iδJ(xn)

∣∣∣∣
J=0

, (6.4)

where the φ̂ indicates that on the left hand side we deal with field operators, rather than

the field value φ. This result will be particularly useful when deriving the Feynman

rules of the theory. While the fact that each derivative with respect to iJ(xa) brings

down a φ(xa) from the exponent in Z[J ] is clear, the derivation of this result, and the

fact that is really time–ordered products which are generated, requires more thought.

We will not go through this here, and will simply state the result; further details can be

found in the first QFT course, as well as Srednicki chapters 6-8 and Schwartz chapter

14.

Finally, it will sometimes be useful to introduce a slightly more concise notation,

with

δa ≡
1

i

δ

δJ(xa)
. (6.5)

and thus

〈0|Tφ̂(x1) · · · φ̂(xn)|0〉 =
1

Z[0]
δ1 · · · δnZ[J ]|J=0 . (6.6)

6.2 Klein–Gordon propagator

Consider the Lagrangian for a real free scalar field

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 !

= −1

2
(φ∂2φ+m2φ2) , (6.7)

where in the last step we have integrated by parts and dropped a total derivative, which

will only contribute as a surface term. Now we introduce the Fourier conjugate φ̃ via

φ̃(p) =

∫
d4x e−ipxφ(x) , φ(x) =

∫
d4p

(2π)4
eipxφ̃(p) . (6.8)

Then, the exponent of (6.3) in Fourier space becomes

iS + i

∫
d4xJ(x)φ(x) =

i

2

∫
d4p

(2π)4

[
φ̃(p)(p2 −m2)φ̃(−p) + J̃(p)φ̃(−p) + J̃(−p)φ̃(p)

]
.

(6.9)
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If we shift the fields by

χ̃(p) = φ̃(p) +
J̃(p)

p2 −m2
, (6.10)

then (6.9) becomes

i

2

∫
d4p

(2π)4

[
χ̃(p)(p2 −m2)χ̃(−p)− J̃(p)J̃(−p)

p2 −m2

]
= iS0 −

i

2

∫
d4p

(2π)4

J̃(p)J̃(−p)
p2 −m2

.

(6.11)

Going back to coordinate space we thus have

Z0[J ] = Z[0] exp

[
i

2

∫
d4xd4yJ(x)∆(x− y)J(y)

]
. (6.12)

where we have defined

∆(x− y) = −
∫

d4p

(2π)4

eip(x−y)

p2 −m2 + iε
. (6.13)

Thus, by introducing a simple shift in the field variables, the result associated with

performing the path integral over φ becomes completely contained within Z[0], with

Z[0] =

∫
Dφ eiS0[φ] . (6.14)

For the vacuum expectation of time–ordered fields products, as in (6.6), this will simply

cancel and so we have completely avoided the potential complication of actually having

to write down a well–defined formulation for and calculation of this object (although

this can be done).

In (6.13) we have introduced a iε term in the numerator. This picks out the

correct contour to give the time–ordered product of fields and define the Feynman

propagator in the usual way, see e.g. Section 2.4 of Peskin and the QFT course. From

the path integral point of view, this corresponds to a shift m2 → m2− iε, where ε is an

infinitesimal positive parameter to make the path integral well–defined in Minkowski

space.

Above, by introducing a source term and changing variables in this way, we have

completely solved the non–interacting theory. The final object (6.13) which is brought

down by the double functional differentiation in (6.4), gives the two point correlation

function for a particle to propagate from x1 to x2 in the free (i.e. non–interacting
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theory). In particular, from (6.12) we simply have

〈0|Tφ̂(x)φ̂(y)|0〉 =
1

i
∆(x− y) = i

∫
d4p

(2π)4

eip(x−y)

p2 −m2 + iε
, (6.15)

and the momentum–space propagator is given by

∆̃(p) = − 1

p2 −m2 + iε
, (6.16)

6.3 The Photon Propagator

To calculate the photon propagator we try to follow the same procedure as before, but

starting with the free QED Lagrangian (5.41). Thus

LQED = −1

4
FµνF

µν − JµAµ
!

=
1

2
Aµ(∂2gµν − ∂µ∂ν)Aν − JµAµ , (6.17)

where as in the scalar case, we have rearranged up to a total derivative to make the

manipulation below easier. We capitalise the EM current, as we will treat this as a

source for the purposes of this derivation. We have as before

Ãµ(p) =

∫
d4x e−ipxAµ(x) , Aµ(x) =

∫
d4p

(2π)4
eipxÃµ(p) , (6.18)

giving

iS = − i
2

∫
d4p

(2π)4
Ãµ(p)

[
p2P µν

]
Ãν(−p) + J̃µ(p)Ãµ(−p) + J̃µ(−p)Ãµ(p) , (6.19)

where we have defined the projection matrix

P µν(p) = gµν − pµpν

p2
, (6.20)

which satisfies P µν(p)P λ
ν (p) = P µλ(p), as a projection should. Now to calculate the

propagator we will want to make the field definition

χ̃µ = Ãµ +
1

p2
J̃σP−1

µσ , (6.21)

where P−1 is the inverse of the projection matrix. However we have that

P µνpν = 0 , (6.22)
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and therefore this matrix has a zero eigenvalue, and is not invertible.

What is causing this issue? If we imagine decomposing the field Ãµ in a basis of

linearly independent 4–vectors, then the component that is ∝ pµ gives no contribution

at all to (6.19), due to (6.22) and the fact that ∂µJ
µ = 0 for a free photon, i.e.

pµJ̃
µ(p) = 0. Therefore it makes no sense at all to integrate over it. Instead we are

interested in the subspace of Ãµ that lies orthogonal to p. We therefore define our path

integral DA to only span those field components that satisfy pµÃ
µ = 0, of which there

are three. This is equivalent to imposing the Lorenz gauge ∂µA
µ = 0.

In this subspace Pµν is simply equivalent to gµν , which is its own inverse, i.e.

P−1
µν = Pµν . Thus we can take

χ̃µ = Ãµ +
1

p2 + iε
J̃σPµσ , (6.23)

where we have introduced the usual iε to render the path integral convergent. We then

arrive at

iS = iS0 +
i

2

∫
d4p

(2π)4
J̃µ(p)

P µν

p2 + iε
J̃ν(−p) , (6.24)

and in position space

Z[J ] = Z[0] exp

[
i

2

∫
d4xd4yJµ(x)∆µν(x− y)Jν(y)

]
, (6.25)

with

∆µν(x− y) =

∫
d4p

(2π)4
eip(x−y) P µν

p2 + iε
. (6.26)

Thus the momentum space propagator is given by

∆̃µν(p) =
gµν − pµpν

p2

p2 + iε
. (6.27)

As described above, the condition kµÃ
µ = 0 corresponds to ∂µA

µ = 0, and therefore

this is the photon propagator in the Lorenz gauge.

Aside: what about the scalar propagator?

Why does the gauge redundancy of our Lagrangian not cause issues with the scalar

propagator? One way to motivate this is to consider our gauge transformations in the
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free field limit, i.e. with q → 0. In such a case we have

L = ∂µφ
∗(x)∂µφ(x)−m2φ∗(x)φ(x)− 1

4
FµνF

µν , (6.28)

and our gauge transformation becomes

φ→ φ , Aµ → Aµ + ∂µα(x) , (6.29)

The terms involving φ are clearly invariant (!), while as we have shown above the field

strength is also invariant and thus so is the kinetic term

−1

4
FµνF

µν =
1

2
Aµ(∂2gµν − ∂µ∂ν)Aν , (6.30)

which is guaranteed as

(∂2gµν − ∂µ∂ν)∂να = 0 . (6.31)

It is precisely this zero eigenvalue, when taken to momentum space, which leads to

the non–invertible projection matrix for the photon above. On the other hand in the

free field limit the scalar field, and more generally the matter field, decouples from

the gauge symmetry transformation entirely. We therefore experience no issues in this

case in defining the corresponding propagator, and this remains true when we turn

interactions back on, q 6= 0.

6.4 Faddeev–Popov gauge fixing

We saw in the previous section that the redundancy in the gauge description did not

allow us to define the photon propagator until we identified essentially by eye and

removed by hand the contribution from the redundant Ãµ ∝ kµ component. However,

we would like to develop a more general and systematic approach to this, where we

restrict the path integral so that it is does not run over redundant field configurations

that are related by gauge transformations. This gauge fixing is implemented by the

Faddeev–Popov approach.

Assume for a general path integral

Z =

∫
DAeiS[A] , (6.32)

that under the gauge transformation, which we denote by A → Ag, the action and

measure remain invariant, i.e. S[A] = S[Ag] and DA = DAg. These transformations of

course form a group, as the action and measure remain invariant under the combined
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transformation (Ag)g′ = Agg′ . We would like to rewrite the path integral schematically

as

Z =

∫
dgZ ′ , (6.33)

where the redundant gauge degrees of freedom have been integrated out and Z ′ is

independent of g. As a simple example of how this works, consider the regular integral

I =

∫
dxdy g(x2 + y2) . (6.34)

for some function g. Now as this depends only on x2+y2 we can simplify the integration

by changing to polar coordinates, with

I =

∫
dθ

∫
rdr g(r2) = 2π

∫
rdr g(r2) . (6.35)

Another way of phrasing this is that the system has an overall rotational (SO(2))

symmetry, and so the redundant angular group degree of freedom can be integrated

out, with 2π being the volume of this finite group of rotations in 2 dimensions. The

integral over r corresponds the unique degree of freedom of the problem, with all

redundancy factored out. This is the analogue of the physical degree(s) of freedom in

the gauge theory case. Ignoring this overall normalization we therefore have

I ∝
∫
rdr g(r2) . (6.36)

i.e. we can drop the θ integral entirely. This is essentially what was done in the previous

section when we dropped the Ãµ ∝ kµ component of the action.

Now in the simple example above it was straightforward to change variables and

eliminate the redundant angular degree of freedom explicitly, however this may not

always be the case. What we want instead is a more general method that we can apply

when we do not know what the suitable variables are to do this. To achieve this, we

note that as (6.34) is independent of θ, we are free to fix its value by inserting a factor

of δ(θ − φ), for some arbitrary φ, giving

I =

∫
dθ̃

∫
dxdy g(x, y)δ(θ − φ) , (6.37)

where the integration over the dummy variable θ̃, which gives the group factor of 2π

as above, is inserted to keep the normalization consistent. In fact we can be even more

general than this, fixing instead some function of θ (and the other coordinates, in this
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case r), f(r, θ). In this case we need to take care of the usual Jacobian factor, given

via

1 = ∆(r)

∫
dθδ(f(r, θ)) , (6.38)

i.e. with ∆(r) =
∑

i |f ′(r, θi)| summing over the solutions to the delta function condi-

tion as usual. So:

I =

∫
dθ̃

∫
dxdy∆(r) g(x, y)δ(f(r, θ)) , (6.39)

where r2 = x2 + y2 as usual. Sticking with (6.37) for now, we note that as this is

independent of φ, we are free to integrate over it, or indeed integrate over any arbitrary

function of it:

I =
1∫

dφ′h(φ′)

[∫
dφh(φ)

∫
dθ̃

∫
dxdy g(x, y)δ(θ − φ)

]
. (6.40)

=
1∫

dφ′h(φ′)

[∫
dθ̃

∫
dxdy g(x, y)h(θ)

]
. (6.41)

This may seem like a slightly strange manipulation, but the point here is that the

integrand of the x, y integral is now explicitly dependent on θ, and hence no longer

has the redundancy of the function g(x, y) alone, i.e. precisely what we are aiming at

for our modified path integral. Now, in this simple example, which is amenable to a

simple change of variables to a set of coordinates that are independent of the redundant

variable θ, there is of course no reason at all to go through these manipulations. The

point is that in more general situations, where the symmetry of the problem is not

quite so simple, this is the approach we must take.

In this more general case, we instead take the form as in (6.39), where f(r, θ)

is some function, that as it depends on θ, will fix the redundancy in our system, as

required. One can also again integrate over an additional function h, as above, but we

will not consider this explicitly here within the example above as it does not add much

to the discussion, though we will do this below. For Faddeev–Popov gauge fixing we

apply (6.39), suitably generalized to the path integral case, as we shall now discuss.

The rotational symmetry becomes a gauge symmetry, and the analogous arguments to

those above are now expressed in terms of the gauge invariance of various objects, but

the logic is essentially the same.

Returning to the path integral, we write

1 = ∆(A)

∫
Dgδ(f(Ag)) , (6.42)
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which defines the function ∆(A), known as the Faddeev–Popov determinant. Now we

have

[∆(Ag′)]
−1 =

∫
Dgδ(f(Agg′)) =

∫
Dg′′δ(f(Ag′′)) = [∆(A)]−1 , (6.43)

where we have defined g′′ = gg′ and used the fact that the measure Dg is invariant

under gauge transformations. Thus the Faddeev–Popov determinant is gauge invariant.

Now we insert (6.42) into (6.32) to give

Z =

∫
DAeiS[A]∆(A)

∫
Dgδ(f(Ag)) , (6.44)

=

∫
Dg
∫
DAeiS[A]∆(A)δ(f(A)) , (6.45)

where in the second line we have performed the transformation A → Ag−1 and used

the fact that S, ∆ and DA are all invariant. Now, the factor
∫
Dg exactly corresponds

to the 2π group volume above, although in gauge theories there is a separate group at

every point in spacetime, and this factor is infinite. However as we are not interested

in overall factors for observable quantities we can throw this away. Thus we can take

Z =

∫
DAeiS[A]∆(A)δ(f(A)) , (6.46)

Now, we consider the specific example of the EM Lagrangian, with its corresponding

U(1) gauge invariance. We have

Aµα = Aµ + ∂µα , (6.47)

where we relabel g ≡ α. For our gauge fixing function we take

f(A) = ∂µA
µ − σ(x) , (6.48)

where σ(x) is some arbitrary function; of course then f(A) is also strictly speaking a

function of f(A, σ), but for brevity this argument is generally dropped, as it is in the

Faddeev–Popov determinant itself. We then have

[∆(A)]−1 =

∫
Dα δ(f(Aα)) =

∫
Dα δ(∂µAµ + ∂2α− σ(x)) , (6.49)

!
=

∫
Dα δ(∂2α) , (6.50)

where in the last line we have used the fact that this will appear in (6.46) accompa-

– 35 –



nied by a δ(f(A)) and therefore this term can be set to zero. However this is clearly

independent of A, and therefore will only contribute as an overall factor to the path

integral. This will always be divided out in any observable we care to contribute, and

therefore we can simply throw it away. Now, using the argument that led to (6.39) we

are free to integrate over any arbitrary function of σ. We will consider in particular

Zσ =

∫
Dσ exp

(
− i

2ξ

∫
d4xσ(x)2

)
. (6.51)

The reason for this particular form is simply that it allows the gauge boson propagator

to be derived in a straightforward way; other choices are in principle possible, and

formally equivalent, but would in practice lead to results that would not be amenable

to the analytic manipulations we know how to apply. Thus we have

Z =

∫
Dσ exp

(
− i

2ξ

∫
d4xσ(x)2

)∫
DAeiS[A]δ(∂µA

µ − σ) , (6.52)

=

∫
DA exp

(
iS[A]− i

2ξ

∫
d4x(∂µA

µ)2

)
, (6.53)

and we can see that indeed the path integral is no longer invariant under (6.47). This

is equivalent to adding a gauge–fixing contribution to the Lagrangian

Lg.f. = − 1

2ξ
∂µA

µ∂νA
ν → 1

2ξ
Aµ∂

µ∂νAν , (6.54)

where in the second step we have integrated by parts and set the surface term to zero.

Thus, the QED Lagrangian becomes

LQED + Lg.f. =
1

2
Aµ(∂2gµν −

(
1− 1

ξ

)
∂µ∂ν)Aν − JµAµ (6.55)

with the projection matrix

P µν
ξ (p) = gµν −

(
1− 1

ξ

)
pµpν

p2
, (6.56)

where the ξ subscript is taken to distinguish this from (6.20). This obeys P µν
ξ pµ =

1/ξpν , and so it is invertible. Indeed we have

P−1
ξ,µν = gµν − (1− ξ) pµpν

p2
, (6.57)
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which gives the propagator

∆̃µν(p) =
gµν − (1− ξ) pµpν

p2

p2 + iε
. (6.58)

Two specific and often used cases are the ξ = 0 and 1 choices, known as the Lorenz and

Feynman gauges. Note sometimes these are called the Landau and ‘t Hooft–Feynman

gauges, respectively. Note also, that if we include the gauge fixing term (6.54) in

the Lagrangian and calculate the corresponding equations of motion for A, then we

find that indeed for ξ = 0 these are satisfied if ∂µA
µ = 0, consistent with the above

assignment.

7. Scalar QED: Feynman Rules

7.1 LSZ Reduction

We saw in Section 6.1 how the vacuum expectation of time–ordered field products could

be calculated within the path integral formulation, via the generating functional Z[J ].

However, the cross sections that are directly measured in experiments such as the LHC

are given in terms of scattering amplitudes between appropriate initial and final states.

These correspond to suitably defined momentum eigenstates at t → ±∞, which are

generally taken to be localised wavepackets, although the derivation does not depend

on the details of this construction. The connection to these is achieved via the so–called

LSZ reduction formula, see the QFT notes and e.g. Srednicki chapter 5 and Schwartz

chapter 6 for more details.

The basic idea is to define initial and final states at t→ ±∞ via creation operators

acting on the vacuum |0〉

|i〉 ∼ a†1(t→ −∞)a†2(t→ −∞)|0〉 , |f〉 ∼ a†3(t→ +∞)a†4(t→ +∞)|0〉 . (7.1)

We then make use of the identities

a†i (−∞)− a†i (+∞) = +i

∫
d4xe−ikix(∂2 +m2)φ(x) ,

ai(+∞)− ai(−∞) = +i

∫
d4xeikix(∂2 +m2)φ(x) , (7.2)

where ki is the wavepacket momentum, which we can assume to be infinitely narrow.

These results follow after some manipulation of the Fourier decomposition of the fields.

The second operators, a†i (+∞) and ai(−∞) annihilate the vacuum state, and therefore
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can be dropped, so that we can write

a†(ki)in → +i

∫
d4xe−ikix(∂2 +m2)φ(x) ,

a(ki)out → +i

∫
d4xeikix(∂2 +m2)φ(x) , (7.3)

which define the operators that create the incoming and outgoing states for a particle

of momentum ki appearing in

〈f |i〉 = 〈0| a(k3)outa(k4)outa
†(k1)ina

†(k2)in |0〉 (7.4)

We therefore find, for the 2→ 2 scattering of scalar particles, that

〈f |i〉 = i4
∫

d4x1d4x2d4x3d4x4e
i(k3x3+k4x4−k1x1−k2x2)(∂2

1 +m2)(∂2
2 +m2)·

(∂2
3 +m2)(∂2

4 +m2) 〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 , (7.5)

thus providing a direct relation between the scattering probability amplitude of the

physical initial and final states and the expectation value of time–ordered field products,

as claimed; this is the LSZ reduction formula for scalar fields. How does this change for

photons? Well, for the case of a scalar field the first step in deriving (7.2) is to invert

the decomposition

φ(x) =

∫
d3k

(2π)32k0

[
a(k)e−ikx + a†(k)eikx

]
, (7.6)

to give

a(k) = i

∫
d3x eikx

↔
∂ 0φ(x) , (7.7)

see the QFT course for more details (recalling the factor of 2k0 differs due to our

normalization convention). For the photon case we instead have

Aµ(x) =
∑
λ

∫
d3k

(2π)32k0

[
εµλ(k)aλ(k)e−ikx + εµ∗λ (k)a†λ(k)eikx

]
, (7.8)

which clearly has the same form, with the exception of the photon polarization vectors,

which are now present due to the vector nature of the photon field. However, we can

straightforwardly use the orthogonality condition (5.65) to invert this in the same way,
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giving

aλ(k) = −iεµ∗λ
∫

d3x eikx
↔
∂ 0Aµ(x) . (7.9)

The rest of the derivation of the LSZ formula then follows through in the same way as

for the scalar field, but in this case (7.3) simply becomes

a†λ(k)in → −iεµλ
∫

d4xe−ikx(∂2)Aµ(x) ,

aλ(k)out → −iεµ∗λ
∫

d4xeikx(∂2)Aµ(x) . (7.10)

The overall minus sign can be dropped, and the result of this is that when it comes to

the Feynman rules for QED, we associate a polarization vector ε
µ(∗)
λ with an incoming

(outgoing) photon.

Finally, we note that it is convenient to define a scattering amplitude M via

〈f |i〉 ≡ i(2π)4δ4(kin − kout)M , (7.11)

that is, with a factor of i(2π)4 multiplied by an overall momentum conserving delta

function, which appear universally in calculations, factored out.

7.2 Path Integrals and interactions - some key identities

Consider some (say) real scalar Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 + LI ≡ L0(φ) + LI(φ) , (7.12)

where we keep for now the φ argument of the Lagrangian explicit, and LI contains

some interaction terms, for example

LI(φ) = −g
6
φ3 − λ

4!
φ4 , (7.13)

for a cubic and quartic interaction, where g and λ are the couplings associated with

these. Now, in general we cannot solve the interacting theory in the way we did for

the free theory case. However, we can still make use of the same overall approach, by

noting that we can formally write

Z[J ] =

∫
Dφ ei

∫
d4x(L0(φ)+LI(φ)+Jφ) =

∫
Dφ ei

∫
d4xLI( 1

i
δ

δJ(x))ei
∫

d4x(L0(φ)+Jφ) , (7.14)

which follows as the functional derivative 1
i

δ
δJ(x)

with respect to the source term acting
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on the exponential corresponds as usual to φ(x). We can then perform the same shift

in field variables as for the free theory case, to give

Z[J ] =

∫
Dφ ei

∫
d4xLI( 1

i
δ

δJ(x))eiS0[φ]e
i
2

∫
d4xd4yJ(x)∆(x−y)J(y) , (7.15)

= ei
∫

d4xLI( 1
i

δ
δJ(x))Z0[J ] , (7.16)

where Z0[J ] is the generating functional for the free theory, as in (6.12). We can see

again that the Z0[0] term due to the path integral associated with the source–free action

S0 in the non–interacting theory factorises entirely from the rest of the expression, and

so will cancel when considering the vacuum expectation of time–ordered field products.

For the scalar QED case, we have two sources J∗, J , for the two independent fields

φ, φ∗, respectively, and a source Jµ for the photon field. That is, we have

Z[J∗, J, Jµ] =

∫
DφDφ∗DA exp

[
iS[φ, φ∗, Aµ] +

∫
d4xφ(x)J∗(x)

+ φ∗(x)J(x) + Jµ(x)Aµ(x)

]
. (7.17)

Then, with LI [φ, φ∗, Aµ], the above result generalises to

Z[J∗, J, Jµ] = Z0[0, 0, 0] exp

[
i

∫
d4xLI

(
1

i

δ

δJ∗(x)
,
1

i

δ

δJ(x)
,
1

i

δ

δJµ(x)

)]
· exp

[
i

∫
d4xd4yJ∗(x)∆(x− y)J(y)

]
exp

[
i

2

∫
d4xd4yJµ(x)∆µν(x− y)Jν(y)

]
,

(7.18)

where the absence of the factor of 1/2 in the complex scalar case (in contrast to the real

scalar before) comes from the fact that there are two independent fields entering the

propagator; this will be discussed further when we consider fermionic fields, where the

same effect occurs. In what follows, until we discuss scalar QED again in Section 7.5,

we will for simplicity consider the real scalar case, as in (7.15).

The action of the exponential terms in (7.16) and (7.18) on Z0 cannot be solved

for exactly in the general case, but what we can do is expand the exponential term by

term. If the coupling g associated with the interaction is small, then the first few terms

will give a good approximation to the full result; in other words, we apply perturbation

theory. This allows us to derive a set of Feynman rules that can be applied to calculate

observables to (in principle) arbitrary accuracy within the perturbative approach. Here,

higher order terms in the expansion in g are generated by adding more interaction
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vertices to the associated Feynman diagrams.

The vacuum expectation value of time–ordered products of fields can then be cal-

culated in the usual way, i.e. via

〈0|Tφ̂(x1) · · · φ̂(xn) |0〉 =
1

Z[0]
δ1 · · · δnZ[J ]|J=0 , (7.19)

with Z[J ] calculated at a given perturbative order by (7.16), while the scalar QED

result follows in direct analogy. Note that in what follows we will drop the φ̂ on the

LHS for simplicity, but it is always understood that these are to be interpreted as field

operators, as should be clear from the context. Now, it is useful to define

iW [J ] = logZ[J ] , (7.20)

which generates all connected diagrams, that is where every external vertex connects to

every other vertex somehow. This omits both vacuum bubble diagrams and those with-

out such contributions but where all external lines are nonetheless not connected to each

other. The former correspond to vacuum–to–vacuum transitions which occur indepen-

dently of the scattering process (thinking physically, the ‘sea’ of particle/antiparticles

that are always popping in and out of existence in the vacuum), and are cancelled

by the factor of Z[0] in the denominator of (6.4). The latter corresponds to separate

scatters which should be treated independently.

This notation allows us to easily find all contributions to the numerator and
denominator of Eq. (1.8) at any given order in the coupling constant expansion. For
example, let us consider again the evaluation of the 2-point function. The numerator

is the sum of all diagrams with two external points. At O(λ), there are only two
diagrams:

yx1 x2

=
−iλ

2

∫

d4y i∆(x1, y)i∆(x2, y)i∆(y, y), (3.13)

with

S =
1

4!
· 4 · 3 =

1

2
, (3.14)

and

y
x1 x2

=
−iλ

6
i∆(x1, x2)

∫

d4y [i∆(y, y)]2 , (3.15)

with

S =
1

4!
· 3 =

1

6
. (3.16)

The denominator corresponds to diagrams with no external points. Such graphs are
often called vacuum graphs. At O(λ), the only diagram is

y
=

−iλ

6

∫

d4y [i∆(y, y)]2 , (3.17)

with the symmetry factor the same as in Eq. (3.15).

We can now see that the denominator exactly cancels all the diagrams such as
Eq. (3.15) that have vacuum subdiagrams. To see this, note that the denominator is

the sum of all vacuum graphs:

denominator = 1 + + + + · · · (3.18)

(Why is there no vacuum diagram ?) For the 2-point function the numerator can
be written

numerator = + + + + · · ·

14

x

To read off the correlation functions, we must remember that they are completely
symmetric functions of their arguments. Comparing with Eq. (1.9) gives

i2n

(2n)!
⟨φ(x1) · · ·φ(x2n)⟩0 =

1

n!

(

− i

2

)n

[∆(x1, x2) · · ·∆(x2n−1, x2n)] . (2.34)

Here the square brackets on the right-hand side tell us to symmetrize in the arguments
x1, . . . x2n. We therefore have

⟨φ(x1) · · ·φ(x2n)⟩0 =
1

n!

(

i

2

)n
∑

σ

∆(xσ1
, xσ2

) · · ·∆(xσ2n−1
, xσ2n), (2.35)

where the sum over σ runs over the (2n)! permutations of 1, . . . , 2n.

Eq. (2.35) is not the most convenient form of the answer, because many terms

in the sum are the same. The order of the ∆’s does not matter and ∆(x, y) =
∆(y, x). The distinct terms correspond precisely to the possible pairings of the in-

dices 1, . . . , 2n. For each distinct term, there are 2n permutations corresponding to
interchanging the order of the indices on the ∆’s in all possible ways, and n! ways
of reordering the ∆’s. Therefore, we must multiply each distinct term by 2nn!. This

gives

⟨φ(x1) · · ·φ(x2n)⟩0 =
∑

σ

′
i∆(xσ1

, xσ2
) · · · i∆(xσ2n−1

, xσ2n), (2.36)

where the sum is now over the possible pairings of 1, 2, . . . , 2n. This is Wick’s

theorem derived in terms of path integrals.

We can write this in diagrammatic language by writing a dot for each position
x1, . . . , x2n and denoting a Feynman propagator i∆(x, y) by a line connecting the dots
x and y:

= i∆(x, y). (2.37)

The possible pairings just correspond to the possible “contractions,” i.e. the distinct
ways of connecting the dots. For example,

⟨φ(x1)φ(x2)φ(x3)φ(x4)⟩0 = + +

= i∆(x1, x2)i∆(x3, x4) + i∆(x1, x3)i∆(x2, x4)

+ i∆(x1, x4)i∆(x2, x3). (2.38)

We see that the Feynman rules for free field theory emerge very elegantly from the
path integral.

11

Figure 1: Example Feynman rules for (left) vacuum bubble and (right) disconnected contri-
butions to path integral.

What do these contributions look like? If we consider for example the contribution

from the quartic interaction in (7.13) of the form

Z[J ] ∼ −i λ
4!

∫
d4x

(
1

i

δ

δJ(x)

)4

Z0[J ] = i
λ

8

∫
d4x∆(0)2Z0[J ] ,

that is, where the derivatives act (twice) on the sources associated with the same ∆,

and we have picked up a symmetry factor of 3. This corresponds to a simple case

of precisely the vacuum bubble diagram described above. The Feynman diagram for

this contribution is shown in Fig. 1 (left), and corresponds to two closed loops at
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∆(x − x) = ∆(0), that is disconnected from all external points. We can see that this

will contribute to Z[0] in the denominator of (7.19), and it can indeed be shown that

these contributions will cancel the corresponding such terms in the numerator. The

second class of disconnected diagrams can be seen by considering the contribution to

the 4–point correlation function

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)|0〉 = −∆(x1−x2)∆(x3−x4) = 〈0|Tφ(x1)φ(x2)|0〉 〈0|Tφ(x3)φ(x4)|0〉 ,

which is non–zero in the non–interacting (g = 0) theory, and comes from the term

where the δ1δ2 and δ3δ4 derivatives act on the same term from the exponent of Z0[J ].

This clearly corresponds to two independent free propagators, which are entirely dis-

connected, and is certainly not what we are interested in when we calculate the 4–point

function in the interacting theory. The Feynman diagrams for this contribution, as well

as those for other permutations of the external indices, are shown in Fig. 1 (right).

To see how the connected generating functional avoids both of these contributions,

consider

iδaW [J ]|J=0 =
1

Z[0]
δaZ[J ]|J=0 = 〈φ(xa)〉 , (7.21)

iδaδbW [J ]|J=0 =
1

Z[0]
δaδbZ[J ]|J=0 −

1

Z[0]2
δaZ[J ]δbZ[J ]|J=0

= 〈φ(xa)φ(xb)〉 − 〈φ(xa)〉〈φ(xb)〉 . (7.22)

In the second case, we can see that the denominator factor of Z[0] is automatically

present, cancelling the vacuum bubble diagrams, while the second term subtracts off

the disconnected contribution. This generalises to all orders, see Srednicki chapter 9,

10 and Peskin & Schroeder chapter 4 for more details. Thus we have

〈0|Tφ(x1) · · ·φ(xn)|0〉c = iδ1 · · · δnW [J ]|J=0 , (7.23)

where the ‘c’ indicates that these are connected diagrams.

Finally, if we want to calculate the scalar propagator to any given order we use

〈0|Tφ∗(x)φ(y)|0〉 =

∫
d4p

(2π)4
eip(x−y)S(p) . (7.24)

At leading order, from (6.15) we have simply

S(p) =
i

p2 −m2 + iε
, (7.25)
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as we would expect, but this expression provides us with a more general definition of the

propagator, that goes beyond leading order. This can be calculated perturbatively by

expanding the LI exponent in (7.18). To give one slightly more complicated example,

in scalar QED we can write

〈0|TAµ(x)φ(y)φ∗(z)|0〉c =

∫
d4p

(2π)4

d4p′

(2π)4
eip(z−x)e−ip

′(y−x)S(p′)ieΓv(p, p
′)S(p)Dµν(p−p′) ,

(7.26)

where D is the photon propagator and Γ is the vertex with one photon and two scalars.

A few simple examples follow below.

7.3 An example: φ3 theory, cubic vertex

As a toy example, we will consider the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

6
gφ3 , (7.27)

for a real scalar field φ with a cubic interaction term. Let us take the observable

〈0|Tφ(x1)φ(x2)φ(x3)|0〉 = δ1δ2δ3iW [J ]|J=0 , (7.28)

that is, the connected 3–point function. First we expand the LI exponent in (7.16),

with

exp

[
i

∫
d4xLI

(
1

i

δ

δJ(x)

)]
= 1− ig

6

∫
d4x

(
1

i

δ

δJ(x)

)3

+ · · · , (7.29)

where we omit higher order terms in g, as we will only consider the lowest–order non–

zero contribution here. Up to O(g) we therefore have

Z[J ] =Z[0]

{
1− ig

6

∫
d4ya

(
1

i

δ

δJ(ya)

)3
}

exp

[
i

2

∫
d4xd4yJ(x)∆(x− y)J(y)

]
,

= Z[0]

{
1− ig

6

(
1

i

)3(
i

2

)3

23

∫
d4ya

∫ ∏
i=1,2,3

d4yi J(yi)∆(yi − ya)

− ig
6

(
1

i

)3(
i

2

)2

22 · 3 ∆(0)

∫
d4ya

∫
d4y4 J(y4)∆(y4 − ya)

}
exp

[
· · ·
]
,

(7.30)

where the 3 and 23 are symmetry factors; in e.g. the latter case this comes from acting

on Z[J ], where there are two sources for each derivative to act on. Now the ∼ ∆(0)
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term is precisely the sort of disconnected vacuum bubble contribution discussed above

that will not contribute here. As we will discuss below, this happens automatically

to O(g), but in reality one can simply trust that this will happen and drop this term.

Doing this, we get

iW [J ] = log

[
1− ig

6

(
1

i

)3(
i

2

)3

23

∫
d4ya

∫ ∏
i=1,2,3

d4yi J(yi)∆(yi − ya)

]
+

+ logZ[0] +
i

2

∫
d4xd4yJ(x)∆(x− y)J(y) . (7.31)

Now, the second and third terms will give a vanishing contribution when acted on by

the three δ derivatives in (7.28) and setting J = 0. So we only need consider the action

of these on the first term. We have e.g.

iδ3W [J ] = −ig
6
δ3

∫
d4ya

∫ ∏
i=1,2,3

d4yi J(yi)∆(yi − ya)
[
· · ·
]−1

, (7.32)

where the ‘· · · ’ denotes the argument of the first logarithm in (7.31). One then readily

identifies that the only non–zero contribution upon setting J = 0 comes from acting

on the first integral with all three derivative, giving

iδ1δ2δ3W [J ]|J=0 = −ig
6
δ1δ2δ3

∫
d4ya

∫ ∏
i=1,2,3

d4yi J(yi)∆(yi − ya) (7.33)

= −ig
6

(
1

i

)3

3!

∫
d4ya

∏
i=1,2,3

∆(xi − ya) . (7.34)

Now to get the scattering amplitude we use the LSZ formula, to give

〈f |i〉 = i3g

∫
d4ya

∏
i=1,2,3

d4xie
i(k1x1+k2x2−k3x3)

∏
i=1,2,3

(∂2
i +m2)∆(xi − ya)

= −ig
∫

d4yae
iya(k1+k2−k3) , (7.35)

= (2π)4δ4(k1 + k2 − k3) · (−ig) , (7.36)

where we have used that

(∂2
i +m2)∆(xi − x) = δ4(xi − x) , (7.37)

i.e. the propagator is a Green’s function of the KG equation (exercise: check this for
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yourself). Absorbing the momentum conserving delta function and factors of 2π into

the definition of the scattering amplitude as in (7.11) we have

iM = −ig , (7.38)

and so to calculate iM we have the simple rule that we simply assign a factor −ig for

every 3–point scalar vertex and conserve momentum at the vertex.

Finally, a quick comment about the ∼ ∆(0) term in (7.30). If we did keep this

term, then at (7.32) we would have a non–zero contribution ∼ ∆(0)
∫

d4ya∆(x3 − ya),
however this leaves no additional source terms for the δ1,2 to act on, beyond those in

the ‘· · · ’ of (7.32). However, these carry additional factors of g and therefore are zero

at this order, as promised.

7.4 A second example: φ3 theory, 2→ 2 scattering

We now consider the leading amplitude for 2 → 2 scattering, which occurs at O(g2)

and thus involves the second order term in the expansion (7.29). Working this through

is left as an exercise in the problem classes. We find:

〈f |i〉 = −ig2(2π)4δ(k1 + k2 − k3 − k4)

[
1

(k1 + k2)2 −m2
+

1

(k1 − k3)2 −m2
(7.39)

+
1

(k1 − k4)2 −m2

]
. (7.40)

We therefore have

iM = −ig2

[
1

(k1 + k2)2 −m2
+

1

(k1 − k3)2 −m2
+

1

(k1 − k4)2 −m2

]
. (7.41)

We see that these three terms can be assigned to the Feynman diagrams shown in

Fig. 2, with a factor of −ig as before assigned to each vertex, and a scalar propagator

given by
i

k2 −m2 − iε
, (7.42)

which is consistent, up on overall factor of −i, with (6.16).

7.5 Feynman rules for scalar QED

The scalar QED Lagrangian is

L = (Dµφ(x))∗Dµφ(x)−m2φ∗(x)φ(x)− λ

4
(φ(x)φ∗(x))2 − 1

4
FµνF

µν , (7.43)
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Figure 10.1: The three tree-level Feynman diagrams that contribute to the
connected correlation function ⟨0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0⟩C.

This is a general result for tree diagrams (those with no closed loops):
once the sources have been stripped off and the endpoints labeled, each
diagram with a distinct endpoint labeling has an overall symmetry factor
of one. The tree diagrams for a given process represent the lowest-order (in
g) nonzero contribution to that process.

We now have

⟨0|Tϕ(x1)ϕ(x2)ϕ(x′1)ϕ(x′2)|0⟩C

= (ig)2
(

1
i

)5 ∫
d4y d4z ∆(y−z)

×
[

∆(x1−y)∆(x2−y)∆(x′1−z)∆(x′2−z)

+ ∆(x1−y)∆(x′1−y)∆(x2−z)∆(x′2−z)

+ ∆(x1−y)∆(x′2−y)∆(x2−z)∆(x′1−z)
]

+ O(g4) . (10.9)

Next, we use eq. (10.9) in the LSZ formula, eq. (10.5). Each Klein-Gordon
wave operator acts on a propagator to give

(−∂2
i + m2)∆(xi − y) = δ4(xi − y) . (10.10)

The integrals over the external spacetime labels x1,2,1′,2′ are then trivial,
and we get

⟨f |i⟩ = (ig)2
(

1
i

) ∫
d4y d4z ∆(y−z)

[
ei(k1y+k2y−k′

1z−k′
2z)

+ ei(k1y+k2z−k′
1y−k′

2z)

+ ei(k1y+k2z−k′
1z−k′

2y)
]
+ O(g4) . (10.11)

This can be simplified by substituting

∆(y − z) =
∫

d4k

(2π)4
eik(y−z)

k2 + m2 − iϵ
(10.12)
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k1 k1 k1

k2 k2 k2

k3 k3 k3

k4 k4 k4

Figure 2: Leading order diagrams contributing to 2→ 2 scattering via 3–point interactions
of real scalar fields.

ie k + k '( )µ −2ie2gµν −iλ

Feynman'rules'for'Scalar'Electrodynamics'

−igµν / k2 − iε( ) −i / k2 +m2 − iε( )

ελi
µ*(k), ελi

µ (k) for incoming and outgoing photons respectively

�ie(k + k0)µ 2ie2gµ⌫ �i�

�igµ⌫
k2 + i✏

i

k2 �m2 + i✏

✏µ�i
(k), ✏µ⇤�i

(k)

Figure 3: Feynman rules for scalar QED in the Feynman gauge.

where we have added a quartic scalar interaction term with coupling λ to the earlier

expression (5.39). We are in principle free to add any gauge invariant contributions

we would like, and as a cubic term would not be gauge invariant, this is the lowest

dimension operator we can add. This provides us with a suitably general theory with

which to investigate the application of Feynman rules and higher–order corrections

below. Taking q = −e, corresponding to the case of the scalar electron having negative

charge, the interaction part of the Lagrangian is now given by

LI = −ieAµ (φ∗(x)∂µφ(x)− φ(x)∂µφ∗(x))− λ

4
(φ(x)φ∗(x))2 + e2AµA

µφ∗(x)φ(x) .

(7.44)

As described in earlier sections, the φ(x) and φ∗(x) carry opposite U(1) charge, which
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we associate with electric charge. We can then associate the φ(x) (φ∗(x)) with a fictional

scalar e− (e+) particle. This theory, while not identical to true QED has many similar

properties, and has the benefit of avoiding the complexity which comes from treating

fermions, which we will turn to later.

The Feynman rules can be derived by following the same procedure outlined in

the previous sections. However, without resorting to this these can be essentially read

off from the Lagrangian, guided by the results above. For the 3–point vertex, the ∂µ
derivatives in the first term will generate a kµ in the momentum space Feynman rules,

with the relative sign given by noting that

〈k′|(∂µφ∗(x))φ(x)|k〉 = ik′µe
i(k′−k)x , (7.45)

〈k′|φ∗(x)∂µφ(x)|k〉 = −ikµei(k
′−k)x , (7.46)

where |k〉 (〈k′|) are incoming (outgoing) scalar electron states. These follow from the

quantum version of the field decomposition (5.9) and the commutation rules for the

particle creation operators, which are given by straightforward analogy with (5.61).

Another point to note is the use of an arrow when indicating the scalar particle

lines. The rules for these are given below, with perhaps the most important thing

being to remember the sign of the momenta k, k′ with respect to the arrow direction

for the γφφ∗ vertex. We will discuss the reason for this more in Section 12, but for

now recall from Section 5.2 that we interpret φ
(∗)
1 as an incoming (outgoing) particle or

outgoing (incoming) antiparticle. Given this, and the fact that the Lagrangian itself (in

particular the interaction part) always features φ and φ∗ together in equal number, the

rules given below for the assignment of the arrow directions ensure that the direction

of these arrows always flows continuously along the scalar line, with one arrow pointing

towards a vertex and one away from it along the line. The reason for the sign of the

momentum assignment with respect to the direction of the arrow is not immediately

obvious, and follows from the form of the field decompositions of φ and φ∗ as applied

within the context of the LSZ reduction formula. We we will show this concretely in

the case of fermion in Section 12, but for now simply state the result.

The Feynman rules for scalar QED are:

• For every incoming (outgoing) scalar particle draw a dashed line with an arrow

pointing towards (away from) the vertex.

• For every outgoing (incoming) scalar antiparticle draw a dashed line with an

arrow pointing towards (away from) the vertex.

• For every incoming (outgoing) photon, associate a polarization vector εµλi (εµ∗λi ).
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• The allowed vertices are shown in Fig. 3, along with the corresponding Feynman

rules. For the 3–point vertex, the momenta k and k′ point in the direction of the

arrows. Note the direction of the arrows for the vertices (e.g. for the γφφ∗ one

arrow points towards the vertex and one away from it); these must be preserved.

• For every internal scalar line, draw a dashed line with an arrow that is consistent

with the rules above, and associate a factor

i

k2 −m2
, (7.47)

where k is the momentum carried by the line.

• For every internal photon, associate a factor

−i
gµν − (1− ξ) pµpν

p2

p2 + iε
. (7.48)

where p is the momentum carried by the photon, for general gauge parameter ξ.

• For every loop, we must integrate over the unconstrained internal momentum

l with measure
∫

d4l
(2π)4

, where the factor of (2π)4 enters due to the standard

conversion to momentum space, as in e.g. (6.13). We will discuss this more in the

following section.

7.6 Calculating cross sections and decay rates: brief summary

The squared scattering amplitude |M|2 corresponds to the scattering probability for a

given process. This can then be related further to a suitably defined object, known as

a cross section, that is particularly amenable to experimental interpretation. We will

only quote a few key results here, and will not go into the details, which can be found

in e.g. Schwartz chapter 5 and Srednicki chapter 11. For 2→ 2 scattering we have

dσ =
1

2E12E2

1

|v1 − v2|
d3p3

(2π)32E3

d3p4

(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4)|M|2 . (7.49)

Assuming the particles all have the same mass m, in the centre–of–mass frame we have

E1 = E2 =
√
s/2, and |v1,2| = |p|/E, with opposite signs. Using this, as well as

d3pi
(2π)32Ei

=
d4pi
(2π)3

δ(p2
i −m2

i ) , (7.50)
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(aside: this is why this measure is Lorentz invariant), we get

dσ

dΩ
=
|M|2

64π2s
, (7.51)

where dΩ = dφd cos θ is the decay solid angle of particle 3 in this frame. This expression

in fact also holds for m1 6= m2, provided the masses m1 = m3 and m2 = m4.

A further process we are often interested in measuring experimentally, is the decay

rate of a particle into a number of other particles. Considering the two–body decay

of a particle with momentum P to particles with momenta p1,2, the decay width is in

general given by

Γ =

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

(2π)4δ4(P − p1 − p2)|M|2 . (7.52)

This is most simply evaluated in the rest frame of the decaying particle, in which case

we find

Γ =
1

32π2

|p|
M2

∫
dΩ |M|2 , (7.53)

where |p| = |p1| = |p2| is the magnitude of the momentum of the final state particle

in this frame, which is given by

|p| = [(M2 − (m1 +m2)2)(M2 − (m1 −m2)2)]
1/2

2M
. (7.54)

7.7 First example: Møller scattering
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For example, consider the following diagram:

iM =
p2

p1

p4

p3

= (−ie)ϵ1µ(pµ
2 + kµ)

i

k2 −m2 + iε
(−ie)(pν3 + kν)ϵ⋆4ν ,

(9.25)

where kµ = pµ
1 +pµ

2 . The first polarization ϵ1µ is the polarization of the photon labeled with
p1

µ. It gets contracted with the momenta pµ
2 + kµ which come from the −ieAµ[φ⋆(∂µφ)

−(∂µφ⋆)φ] vertex. The other polarization, ϵ4µ, is the polarization of the photon labeled with
p4

µ and contracts with the second vertex.

9.3 Scattering in scalar QED

As a first application, let us calculate the cross section for Møller scattering, e−e− →
e−e−, in scalar QED. There are two diagrams. The t-channel diagram (recall the
Mandelstam variables s, t and u from Section 7.4.1) gives

iMt=
p2

p1

p4

p3

= (−ie)(pµ
1 + pµ

3 )
−i
[
gµν − (1− ξ)kµkν

k2

]

k2
(−ie)(pν2 + pν4),

(9.26)

with kµ = pµ
3 − pµ

1 . But note that

kµ(pµ
1 + pµ

3 ) = (pµ
3 − pµ

1 )(pµ
3 + pµ

1 ) = p2
3 − p2

1 = m2 −m2 = 0. (9.27)

So this simplifies to

Mt = e2 (pµ
1 + pµ

3 )(pµ
2 + pµ

4 )
t

(9.28)

and the ξ dependence has vanished. We expected this to happen, by gauge invariance, and
now we have seen that it does indeed happen.

The u-channel gives

iMu =
p2

p1

p3

p4
= (−ie)(pµ

1 + pµ
4 )
−i
[
gµν − (1− ξ)kµkν

k2

]

k2
(−ie)(pν2 + pν3),

(9.29)
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Figure 4: t, u–channel diagrams for Moller scattering.

Møller scattering is the 2 body e−(p1)e−(p2)→ e−(p3)e−(p4) (or e+) process. The

amplitude for t–channel exchange (the reason for this name will become clear below)
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shown in Fig. 4 (left) is given by

iMt = (−ie)(pµ1 + pµ3)

[
−i
gµν + (1− ξ)kµkν

k2

k2

]
(−ie)(pν2 + pν4) , (7.55)

where k is the momentum in the photon propagator. Now we have

kµ(pµ1 + pµ3) = (p1µ − p3µ)(pµ1 + pµ3) = p2
1 − p2

3 = m2 −m2 = 0; (7.56)

and thus the ξ dependence vanishes, as it must; a physical amplitude cannot depend

on this unphysical parameter. In fact we need to include the u–channel diagram to get

the final physical result, so it is not guaranteed that it would vanish for this individual

diagram, but here it does. Defining the Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2 = 2m2 + 2(p1p2) = 2m2 + 2(p3p4) , (7.57)

t = (p1 − p3)2 = (p2 − p4)2 = 2m2 − 2(p1p3) = 2m2 − 2(p2p4) , (7.58)

u = (p1 − p4)2 = (p2 − p3)2 = 2m2 − 2(p1p4) = 2m2 − 2(p2p3) , (7.59)

(exercise: show that s+ t+ u =
∑
m2
i ), we have

Mt +Mu = 4πα

(
s− u
t

+
s− t
u

)
, (7.60)

where α = e2/4π is the fine structure constant. As the second u–channel diagram

shown in Fig. 4 (right) comes from interchanging p3 with p4, this is simply given by

swapping t↔ u inMt. The name t or u–channel is then simply because the propagator

carries momentum corresponding to the t or u Mandelstam.

Returning to the Møller scattering case, we then have

dσ

dΩ
=
α2

4s

(
s− u
t

+
s− t
u

)2

, (7.61)

7.8 Second example: e+e− → γγ and the Ward Identity

We saw in Section 5.8 that an amplitude εµMµ for the emission (or absorption) of

an on–shell physical photon state must vanish if we replace εµ → kµ for the result

to be sensible from the point of view of Lorentz invariance. As we argued there,

this identity follows from gauge invariance. In particular, demanding invariance of

observable quantities under the transformation Aµ → Aµ + ∂µα precisely corresponds

to a symmetry under εµ → εµ + kµ; in momentum space, the ∂µα ∝ kµ.
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We now verify that this does indeed hold, considering the e−(p1)e+(p2)→ γ(p3)γ(p4)

process as an example. Writing M = Mµνε∗3µε
∗
4ν , the t–channel amplitude shown in

Fig. 5 (left) is given by

Mµν
t = (−ie)2 (2p1 − p3)µ(p4 − 2p2)ν

(p1 − p3)2 −m2
, (7.62)

where we have only assumed that the electrons are on–shell. Now consider replacing

ε∗3µ → p3 and contracting:

p3µMµν
t = e2(p4 − 2p2)ν , (7.63)

For the u–channel case shown in Fig. 5 (centre) we simply replace p2 with p1, giving

p3µ(Mµν
t +Mµν

u ) = 2e2(p4 − p2 − p1)ν 6= 0 , (7.64)

and we appear to be in trouble. However we have omitted the contact interaction

shown in Fig. 5 (right), which gives

Mcontact = 2e2gµνε∗3µε
∗
4ν , (7.65)

adding this in we get

p3µ(Mµν
t +Mµν

u +Mµν
contact) = 2e2(p4 + p3 − p2 − p1)ν = 0 , (7.66)

which vanishes from momentum conservation. Thus the Ward identity does indeed hold

in this more general case, but only when we include all contributing diagrams required

by the Lagrangian (7.43) and (7.44). This is not surprising: it is only when including

all terms to a given order, including that corresponding to the contact interaction, that

the gauge invariance of the Lagrangian holds. Thus the Ward Identity, which itself

follows from gauge invariance, will not necessarily hold in explicit calculations unless

all Feynman diagrams are included. Put another way, it is only the contribution from

the sum of contributing Feynman diagrams to a given process that is itself a physical

observable, and not the contributions from individual diagrams, which are themselves

interrelated by the gauge symmetry of the Lagrangian.

7.9 Photon Polarization Sum

To calculate the cross section corresponding to the process in the previous section, we

could in principle substitute explicit expressions for the photon polarizations, giving

four so–called helicity amplitudes, i.e. one for each combination of photon helicities

(++,+−,−+,−−), which we could then square in the usual way. However, generally
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Figure 61.2: Diagrams for ẽ+ẽ− → γγ.

for each scalar-scalar-photon-photon vertex, −2ie2gµν ;

for each four-scalar vertex, −iλ;

for each internal photon, −igµν/(k2 − iε);

for each internal scalar, −i/(k2 + m2 − iε).

10. The vector index on each vertex is contracted with the vector index
on either the photon propagator (if the attached photon line is inter-
nal) or the photon polarization vector (if the attached photon line is
external).

11. The value of iT (at tree level) is given by a sum over the values of all
the contributing diagrams.

Let us compute the scattering amplitude for a particular process, ẽ+ẽ− →
γγ, where ẽ− denotes a selectron. We have the diagrams of fig. (61.2). The
amplitude is

iT = (ie)2
1

i

(2k1−k′1)µε
µ
1′(k1−k′1−k2)νεν2′
m2 − t

+ (1′ ↔ 2′)

− 2ie2gµνε
µ
1′ε

ν
2′ , (61.13)

where t = −(k1 − k′1)
2 and u = −(k1 − k′2)

2. This expression can be
simplified by noting that k1 − k′1 − k2 = k′2 − 2k2, and that k′i·ε′i = 0. Then
we have

T = −e2
[
4(k1 ·ε1′)(k2 ·ε2′)

m2 − t
+

4(k1 ·ε2′)(k2 ·ε1′)
m2 − u

+ 2(ε1′ ·ε2′)
]
. (61.14)

To get the polarization-summed cross section, we take the absolute square
of eq. (61.14), and use the substitution rule

∑

λ=±
εµ
λ(k)ερ∗λ (k) → gµρ . (61.15)

This is a straightforward calculation, which we leave to the problems.

p1 p1 p1

�p2 �p2
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Figure 5: t, u–channel and contact contributions to e+e− → γγ.

speaking the photon polarization is not measured, and we are therefore interested

in the unpolarized cross section, given by summing these four squared amplitudes

incoherently. From the previous section, we can then see that we are interested in

evaluating the sum ∑
λ=±

ε∗µ,λ(k)εν,λ(k) . (7.67)

In Section 5.7 we derived an expression for precisely this, with∑
±λ

ε∗µ,λ(k)εν,λ(k) = −gµν +
nµkν + kµnν

k · n
, (7.68)

where as before n satisfies n2 = 0, n · ελ = 0, but n · k 6= 0. Thus we have:

∑
±λ

ε∗µ,λ(k)εν,λ(k)MµMν∗ =

(
−gµν +

nµkν + kµnν
k · n

)
MµMν∗ . (7.69)

However, we know from the Ward identity that for

M = εµλ(k)Mµ ⇒ kµMµ = 0 . (7.70)

and thus the second term vanishes in (7.69) vanishes! We can therefore make the simple

replacement: ∑
±λ

ε∗µ,λ(k)εν,λ(k)→ −gµν , (7.71)

where the ‘→’ indicates that this is not an actual equality, but that those terms which

contribute in addition to this give a vanishing contribution when contracted with a

physical amplitude.
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8. Radiative corrections

8.1 Renormalization

While the Lagrangian for scalar QED (7.43), given by

L = (Dµφ(x))∗Dµφ(x)−m2φ∗(x)φ(x)− λ

4
(φ(x)φ∗(x))2 − 1

4
FµνF

µν , (8.1)

is sufficient for calculating all leading order processes, it requires modification when

we go beyond this and start to consider (quantum) loop corrections. These loops are

generically divergent in the ultraviolet (UV) k → ∞ limit, where k is the momentum

flowing through the loop. Divergences aside, it is a bit of worry that our calculation

is apparently sensitive to this high k region, as this will include a regime that is way

beyond the energy scale we currently have access to, even at the LHC, and where various

new physical phenomena (supersymmetry, string theory...) may well be present. In such

regimes, we could hardly expect our simple Lagrangian above to apply.

However, it turns out that in certain cases we can systematically re–express our

theory so that it relates purely observable quantities to other observable quantities in a

way that these decouple from such UV physics. This process is known as renormaliza-

tion. Here we will present an overview, without going into all of the details (of which

there are many); Schwartz part III and Zee part III also give nice discussions.

The basic point comes from the realisation that the parameters of the above La-

grangian, e.g. the couplings e, λ and mass m, do not actually correspond directly to

what is measured experimentally. Our Feynman rules tells us to associate a coupling e

to the leading order φφ∗γ vertex, however if we were to go away and measure the elec-

tron charge by e.g. scattering electrons off each other, then this observable will not just

be given in terms of the ‘bare’ φφ∗γ vertex, i.e. the one we write down at leading order,

but rather to the vertex including an entire set (infinite in number) of higher–order

loop corrections. We should therefore express the ‘bare’ parameters of the Lagrangian

(which correspond to nothing more than those parameters we use when implementing

the Feynman rules, and are themselves not observable) in terms of the physical, or

‘renormalised’ parameters, which correspond to those that we actually measure.

The calculation in terms of these renormalized parameters will be finite, and our

renormalized Lagrangian can be used to express other (by definition, finite) observables

in terms of these. The crucial point is that for a renormalizable theory, this only involves

a suitable adjustment of a finite number of inputs. It is in general not trivial to prove

that this is the case for a given theory, however one important point to make is that

the proof of renormalizability of the Standard Model relies on the underlying gauge
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symmetry of the theory. Thus, once again gauge symmetry is playing an important

role here.

8.2 Motivation: quartic scalar interaction

Figure 6: Leading–order and one–loop contributions to φφ∗ → φφ∗ scattering.

To clarify some of the general discussion above, let us consider for simplicity the

∼ λ term in (8.1), forgetting about the QED part of the Lagrangian for now; this is

of course perfectly reasonable as the pure scalar part of this Lagrangian leads to a

perfectly well defined theory. This will allow us to introduce most of the basic concepts

in a relatively simplified scenario.

Where/Why renormalization comes in

The leading order diagram is shown in Fig. 6 (left), and we have simply

iM(0) = −iλ , (8.2)

where the ‘0’ superscript indicates that this is lowest order in λ contribution. If we

wish to be more precise, we can then include the O(λ2) contribution to this, for which

a representative diagram is shown in Fig. 6 (right). In this case we have

iM(1) = −iλ+ λ2

∫
d4l

(2π)4

1

(l2 −m2)((q + l)2 −m2)
, (8.3)

where q = p1 +p2. In general we must also include those diagrams due to permutations

of the external legs, however these simply corresponds to taking other values of q

(= p1 − p3 and so on) and will not affect the discussion which follows, so for simplicity

we drop them. Concentrating on the second term, focussing on the l→∞ limit of the
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integral we have5

iM1−loop → λ2

∫
d4l

(2π)4

1

l4
∼ λ2

∫
dl

l
, (8.4)

which is infinite6! This is precisely an example of the UV divergences mentioned above,

and these are completely ubiquitous in such loop diagrams, where we are free to inte-

grate up to arbitrarily large internal momenta. Now, following the arguments above

we might say that it is rather presumptuous to assume that our theory extends up to

infinite values of the field momenta, and so we might argue for introducing some cutoff

Λ at the energy scale where we might expect physics beyond this particular model (be

it quantum gravity, or supersymmetry or anything else) to enter and the calculation to

break down anyway. In this case we have

iM1−loop → λ2

∫ Λ dl

l
∼ λ2 log Λ . (8.5)

The result is then finite, but still potentially rather large and certainly highly sensitive

to precisely how/when we decide to cutoff our ignorance. More precisely, cutting off

the integral for l > Λ in this way we have

iM(1)(q2) = −iλ+ iλ2

[
C log

(
Λ2

q2

)
+D

]
, (8.6)

where C and D are finite numerical factors which depend on the details of the inte-

gration, and the factor of i in the second term comes from the Wick rotation that is

needed to evaluate the integral. Now, while this result is as before strongly sensitive to

Λ, as well as being infinite if we remove this cutoff, we find that if we consider instead

the amplitude at two different scales q1 and q2, then we simply have

iM(1)(q2
2) = iM(1)(q2

1) + iλ2C log

(
q2

1

q2
2

)
, (8.7)

and hence this relation is finite and perfectly well defined! This is in a line the essence

of renormalization: while the naive application of our original Lagrangian to give (8.6)

leads to unstable and potentially infinite results, this is because we are asking the wrong

question of our theory. If we instead focus on predicting observable quantities (in this

case the scattering amplitude at scale q2) in terms of observable quantities (in this

case the scattering amplitude at a scale q1) then the theory gives completely sensible

5Strictly speaking this comes after Wick rotation, with l = |lE |, see the QFT notes, but we omit
this notation for simplicity here.

6Note in the infrared l→ 0 limit we must keep the mass, m, dependence, and the result is finite.
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results7.

So what was wrong with our original calculation? The problem becomes apparent

when we think about the nature of the parameter λ in the original Lagrangian (8.1),

and what numerical value we should actually give it. This characterises the strength

of the quartic interaction and hence the value we take for λ in our theory precisely

comes from a measurement of M above. However as we have seen this amplitude is

not just proportional to λ, but also has a λ2 correction, and depending on which order

in perturbation theory we calculate at, many higher order in λ corrections besides that,

see Fig. 7.

Thus there is no unique or completely direct way to extract λ from the scattering

process, however what we can do is associate a physical, or ‘renormalized’ coupling by

definition with the measured one at some input scale, which we label by q1, by writing

−iλR ≡ iM(q2
1) = −iλ0 + iλ2

0

[
C log

(
Λ2

q2
1

)
+D

]
+O(λ3) , (8.8)

where we write the result to the first order we are calculating at here, but note that

this result can be defined at arbitrary order. Here and in what follows we have in-

troduced a ‘0’ subscript to the so–called ‘bare’ λ parameter which appears directly in

the Lagrangian (8.1), but which we do not directly associate with the measured value.

This fixing of λR is known as a renormalization condition; more precisely we should

include a q1 argument for λR, but we drop this for simplicity. Physically, in the above

case one can interpret this procedure as including all contributions from loop momenta

q2
1 < l2 < Λ2 in the definition of the coupling λR.

Figure 7: Schematic representation of the renormalized quartic coupling, λR.

7More precisely the experimental quantity of interest would be the φφ∗ → φφ∗ scattering cross
section, but this is directly related to |M|2, and so we can continue to refer to the amplitude M, or
as we shall see the coupling λ, as our observable without loss of generality.
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We note that to lowest order we have

λ0 = λR , (8.9)

consistently with the fact that in the absence of loop diagrams we were free to associate

the bare parameter of the Lagrangian with the measured one. To first order we have

λ0 = λR + λ2
R

[
C log

(
Λ2

q2
1

)
+D

]
+O(λ3

R) . (8.10)

Now, substituting this into (8.6) evaluated at scale q2 we find

iM(1)(q2
2) = −iλR − iλ2

R

[
C log

(
Λ2

q2
1

)
+D

]
+ iλ2

R

[
C log

(
Λ2

q2
2

)
+D

]
+O(λ3

R) ,

= −iλR + iλ2
RC log

(
q2

1

q2
2

)
+O(λ3

R) , (8.11)

which we can see is directly analogous to (8.7). Thus by noticing that the original bare

parameter λ0 of the Lagrangian has no direct physical interpretation, introducing a

renormalized coupling that does (i.e. has a precisely defined relationship (8.8) to the

measured scattering process), and then re–expressing our predictions in terms of this

we arrive at a perfectly finite result which corresponds to a uniquely predicted and

well–defined relationship between physical observables. The renormalization process

becomes more complex in the full case discussed in the following sections, due to the

fact that one must consider multiple renormalized inputs (namely the masses, other

couplings present in the theory and the particle propagators) with in general more

than one loop diagram contributing in each case, while the introduction of dimensional

regularization renders some of the physical interpretation necessarily a little less direct.

However, behind all of this the basic idea is exactly the same as in the above example.

Before moving on to the general case of scalar QED, this example can also be used

to introduce some further useful tools for performing renormalization in perturbation

theory.

Renormalization constants

It is conventional to write

λ0 ≡ ZλλR (8.12)

which is simply a definition of Zλ, known as a renormalization constant; in the more

general case it is often more tractable to work with this. However the content is the

same as above, and indeed we can very straightforwardly substitute this expression into

– 57 –



(8.10) to give

Zλ = 1 + λR

[
C log

(
Λ2

q2
1

)
+D

]
+O(λ2

R) . (8.13)

However from a practical point of view what we tend to do is work directly with (8.12)

from the beginning. In other words when evaluated at q1 (8.6) becomes

iM(1)(q2
1) = −iZλλR + i(ZλλR)2

[
C log

(
Λ2

q2
1

)
+D

]
, (8.14)

= −iλR
(
Zλ − λR

[
C log

(
Λ2

q2
1

)
+D

])
+O(λ3

R) , (8.15)

where in the second line we have used that Zλ = 1 to lowest order in λ. From this

we can read off the O(λR) contribution to Zλ, consistently with (8.13). Then, when

predicting the scattering amplitude (or any other scattering amplitude) at some other

scale as above, one simply applies (8.12) and (8.13).

Counterterms

Alternatively, we can achieve the same result by introducing so–called counterterms

into the Lagrangian, with

Lλ = −Zλ
λR
4

(φ(x)φ∗(x))2 = −λR
4

(φ(x)φ∗(x))2 − δλ
λR
4

(φ(x)φ∗(x))2 , (8.16)

which defines the counterterm δλ = Zλ − 1. This again adds nothing new in principle,

but in practice it is often useful to work with these. The effect is that we can calculate

with a straightforward application of the Feynman rules, with λ0 = λR, but we must add

in additional diagrams due to the counterterm. In the above case this is straightforward:

the Feynman rule corresponding to the counterterm is the same, but with λ → δλλ.

Then (8.14) becomes

iM(1)(q2
1) = −iλR + iλ2

R

[
C log

(
Λ2

q2
1

)
+D

]
− iδλλR +O(λ3

R) , (8.17)

which leads to the same result for Zλ as above.

Renormalization schemes

Writing things in terms of Zλ (or δλ) in fact reveals an additional freedom we have in

performing our renormalization, in particular the fact that we only have to include the

log Λ term in our definition of Zλ for the procedure to work, while we are perfectly free

to include or exclude any terms which are finite in the Λ → ∞ limit. To see this, we
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consider an alternative procedure (known as a renormalization scheme) to defining a

Z ′λ where for example we only include the logarithm above, i.e.

Z ′λ = 1 + λ′RC log

(
Λ2

q2
1

)
+O(λ2

R) . (8.18)

Note that this corresponds to a different definition of λR than in (8.6) (i.e. a different

relation between the measured quantity M and the coupling λR), hence why we must

add a λ′R index above. In particular, as we must have

λ0 = ZλλR = Z ′λλ
′
R , (8.19)

this gives

λ′R = λR(1 + λRD) +O(λ3
R) , (8.20)

i.e. λR and λ′R do genuinely have different numerical values for the same measurement.

In this scheme (8.11) becomes

iM(1)(q2
2) = −iλ′R + i(λ′R)2

[
C log

(
q2

1

q2
2

)
+D

]
, (8.21)

which we can see after substitution via (8.20) is indeed equivalent up to (8.11) up to

higher order terms in λ. The above results really express nothing more than the fact

that the precise form of the original prescription (8.6) for relating the renormalized

coupling to measurement was itself a choice. On the other hand, in any scheme the

Λ→∞ divergent piece has to be the same, i.e.

λ′R − λR = finite , (8.22)

in the Λ→∞ limit. Thus a scheme independent result is that

Zλ = 1 + λRC log Λ2 + finite +O(λ2
R) . (8.23)

Renormalization and dimensional regularization

As we will discuss below, it turns out that this method of introducing a cutoff Λ, while

arguably more straightforward to interpret physically, is not the most appropriate way

to deal with the apparent divergences that arise in QFTs. In dimensional regularization,
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discussed more below, (8.6) becomes

iM(1)(q2) = −iλ+ iλ2

[
E

(
2

ε
+ log

(
µ2

q2

))
+ F

]
, (8.24)

where the fact that the coefficient E is the same between the ε and log terms is not a

coincidence, but as will see in the following sections comes directly from the definition

of the new arbitrary scale µ that has been introduced by the requirement that λ be

kept dimensionless (one is not obliged to do this, but it makes it easier to keep track of

things). This scale no longer plays the direct role of a cutoff on the loop momentum, as

in Λ above. Instead, the divergence present in the original loop integration is implicit

in the ε pole, which is divergent in the D = 4 − ε = 4 dimensional case. While the

physical interpretation of λR discussed below (8.8) is lost here, one can still follow

precisely the same renormalization procedure as before. In particular, the analogue of

(8.14) becomes

iM(1)(q2
1) = −iZλλR + i(ZλλR)2

[
E

(
2

ε
+ log

(
µ2

q2
1

))
+ F

]
, (8.25)

= −iλR
(
Zλ − λR

[
E

(
2

ε
+ log

(
µ2

q2
1

))
+ F

])
+O(λ2) , (8.26)

and thus one can read off for example

Zλ = 1 + λR

[
E

(
2

ε
+ log

(
µ2

q2
1

))
+ F

]
. (8.27)

Subsituting this into the prediction of M at a scale q2 we then get

iM(1)(q2
2) = −iλR + iλ2

R

[
E

(
2

ε
+ log

(
µ2

q2
2

))
+ F

]
− iλ2

R

[
E

(
2

ε
+ log

(
µ2

q2
1

))
+ F

]
,

= −iλR + iλ2
RE log

(
q2

1

q2
2

)
, (8.28)

exactly as in (8.11), and thus the result of this is the same, as promised. In fact, this

precise result relies on the choice (8.27) of finite pieces (in the ε→ 0 limit) to include in

the definition of Zλ, i.e. this is precisely a particular choice of renormalization scheme,

as above (in fact, a rather unusual one for the case of dimensional regularization). We

will discuss this issue of scheme choice more below, but note finally that as in (8.23)

the divergent part, in this case the pole in ε, is scheme–independent, and so we have
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that

Zλ = 1 +
2EλR
ε

+ finite +O(λ2
R) . (8.29)

We will make heavy use of this result for the case of scalar QED below, where we will

only be interested in calculating the scheme–independent ‘E’ term above.

Running Coupling

Having discussed how to provide well–defined predictions from our theory we should

ask what these actually are. To answer this, consider our final relationship (8.11) but

written with q2 = q and q1 = µ to keep things looking a little more general and make

contact with later notation:

iM(1)(q2) = −iλR(µ) + iλ2
R(µ)C log

(
µ2

q2

)
, (8.30)

where λR(µ) for the moment simply serves as a shorthand to indicate that the renor-

malization condition (8.8), with q2
1 = µ2, has been imposed. However, returning to

our initial expression (8.7), we know that impact of the one–loop correction leads to

a difference in the scattering amplitudes at two different scales, q1 and q2. Thus the

value of the renormalized coupling λR(µ) must also depend on the choice of scale µ, as

implied by this notation. This dependence may be isolated by noting that the predicted

amplitude on the left hand side of (8.30) should not depend on the choice of µ on the

right hand side. Differentiating with respect to lnµ we have

0 = −i∂λR(µ)

∂ lnµ
+ 2iλR(µ)

∂λR(µ)

∂ lnµ
C log

(
µ2

q2

)
+ 2iλ2

R(µ)C , (8.31)

so that
∂λR(µ)

∂ lnµ
= 2λ2

R(µ)C +O(λ3
R) . (8.32)

That is, due to the presence of these internal loop contributions the value of the coupling

does indeed depend on the energy of the scattering process. This is known as the

running coupling, and will lead to our theory interacting more weakly or strongly at

increasing energy, depending on the sign of C. This is a genuinely observable effect that

as we shall see has rather significant consequences in Nature. This scale dependence

applies to other couplings in QFTs, as well as indeed to particle masses. Note that

the value of C depends on the precise theory being considered, and thus the amount

of scale variation expected (and indeed the sign of this) is a specific prediction of the

theory.
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Returning to (8.30), an alternative way to write this is then simply

iM(1)(q2) = −iλR(q) , (8.33)

where the argument on the left hand side implies we evaluate the coupling at scale

µ = q, as found by solving (8.32). Indeed, expanding the solution to this out, we get

λR(q) = λR(µ)− λ2
R(µ)C log

(
µ2

q2

)
+O(λ3

R) , (8.34)

consistently with (8.30).

Finally, the above derivation also works equally well when applying dimensional

regularization, by considering (8.28) as above. We in particular find that to consistently

get the same result (8.32), independent of the regularization used, we should have

C = E. A full calculation confirms this is indeed the case.

8.3 Scalar QED – renormalized Lagrangian

To renormalize our theory, we must rewrite our Lagrangian in terms of physical pa-

rameters and fields. For example, we can introduce a physical mass m via

m2
0 = Zmm

2 . (8.35)

Here, m0 is the bare mass that sits in our original Lagrangian, m corresponds to the

‘renormalized’ mass that is measured experimentally, and Zm is the renormalization

parameter, which this expression serves to define. We now associate m with the phys-

ical mass of the particle, and extract this from the measured value. Calculating the

Feynman diagrams that contribute to the measured scalar mass then allows the Zm to

be calculated order by order in perturbation theory, by requiring that the result is finite

and corresponds to this measured value. We will see how this works more explicitly

below.

Redefining all terms in the scalar QED Lagrangian in this way, the renormalized

Lagrangian is given by L = L0 + L1, with

L0 = Z2∂µφ
∗∂µφ− Zmm2φ∗φ− Z3

1

4
F µνFµν , (8.36)

L1 = −iZ1e [φ∗∂µφ− φ∂µφ∗]Aµ − Zλ
1

4
λ(φ∗φ)2 + Z4e

2φ∗φAµAµ , (8.37)

where this is now written purely in terms of the physical fields and couplings. It is
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convenient to define counterterms via

L′0 = ∂µφ
∗∂µφ−m2φ∗φ− 1

4
F µνFµν , (8.38)

Lct = δ2∂µφ
∗∂µφ− δmm2φ∗φ− δ3

1

4
F µνFµν , (8.39)

where δi ≡ (Zi − 1), so that L = L′0 + L1 + Lct. This has the benefit that the L′0 term

(which we will generally simply write as L0 for simplicity) corresponds to the usual free

Lagrangian, but now written in terms of the physical, i.e. renormalized, parameters.

The usual Feynman rules then follow from these for the photon and scalar propagators,

but we must now add in the contributions from the counterterms. This is simply a

convenient way of writing things; the counterterms have not really been ‘added’, but

rather correspond to a rewriting of the renormalized Lagrangian in such a way that the

calculation follows more easily. The form of the Feynman rules corresponding to the

above counterterms can be read off by considering the Lagrangian in momentum space

as usual, with

δ2∂µφ
∗∂µφ− δmm2φ∗φ : i(δ2k

2 − δmm2) , (8.40)

−δ3
1

4
F µνFµν : −iδ3(k2gµν − kµkν) , (8.41)

when considering the scalar and photon propagators, respectively. We will demonstrate

how these enter explicitly below. We emphasise here that as we have now rewritten

the Lagrangian completely in terms of the renormalized couplings and masses, any

parameters such as m and e which appear below will correspond to the renormalized,

and not bare, values.

Before moving on to this, we note that we have been quite fast and loose with the

application of independent renormalization constants to the Lagrangian above, when

in fact these terms are not completely independent. In particular, referring back to

(8.1), the terms proportional to Z1,2,4 come from

L 3 (Dµφ)∗Dµφ = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ . (8.42)

Making the redefinitions

φ0 = Z
1/2
2 φ , Aµ0 = Z

1/2
3 Aµ , e0 = Z1Z

−1
2 Z

−1/2
3 e , (8.43)

we get

L 3 (∂µ + i
Z1

Z2

eAµ)Z
1/2
2 φ∗(∂µ − iZ1

Z2

eAµ)Z
1/2
2 φ , (8.44)
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which then reproduces the terms proportional to Z1,2 correctly in the Lagrangian.

However we can see that this also gives

Z4 =
Z2

1

Z2

, (8.45)

and thus indeed the renormalization constants are not independent. Moreover, we

recall that gauge invariance of the Lagrangian requires the covariant derivative to enter

as Dµ = ∂µ − ieAµ, and would therefore seem to imply that we also need

Z1 = Z2 . (8.46)

In fact, as the quantization of the Lagrangian requires us to fix a gauge, it is not com-

pletely clear if this naive argument will necessarily apply in the full quantum theory. In

the sections which follow, we will concentrate on calculating the (scheme–independent)

divergent pieces of the renormalization constants, and will show that this indeed is the

case at 1–loop order. As we will discuss in more detail in Section 9, this result follows

from the Ward–Takahashi identities of the theory, and holds in general.

8.4 Divergent Integrals and Regularization

A typical loop integral might have the form

I =

∫
d4l

l4 −m2
∼
∫

dl

l
, (8.47)

at high l. This therefore diverges in the UV l →∞ limit8. In particular, if we impose

some arbitrary upper cutoff Λ on the integral we have

IΛ =

∫ Λ dl

l
∼ log(Λ) , (8.48)

and we say that this particularly integral is logarithmically divergent. Physically, we

do not expect our description to be valid up to l → ∞, and so it makes sense to cut

things off at a scale Λ where we expect our theory to break down, and a new improved

description to enter. Thus in a sense nothing is necessarily infinite in the calculation.

8Such integrals are often in addition divergent in the infrared l → 0 limit, for example in the
above case if there is a massless particle propagating (m → 0). The nature of these divergences is
quite distinct from the UV, and these will in particular cancel between diagrams when a sensible
observable is defined, independent of the renormalization of the theory. We will not discuss the IR,
and in particular what a ‘sensible’ observable actually is (in general quite a subtle question) further
here.
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On the other hand, our prediction would then seem to depend quite sensitively on

the precise value we take for Λ, which does not appear to be very predicative at all.

The process of renormalization, by expressing only finite observable quantities in terms

of other finite observable quantities removes this Λ dependence entirely, albeit at the

expense of introducing a new renormalization scale µ. However, physically we now

associate this with the scale that we actually perform the observation at, rather than

some (in principle unknown) scale at which new physics might enter.

One effect of renormalization, although not the only one, is that the final observ-

ables will certainly be finite. On the other hand, to get to that point it is still necessary

to modify the theory in some way to make the divergent loop integrals that appear in

intermediate steps tractable (and finite) in a well defined way. This process is known

as regularization. One example of this is the simple cutoff we applied above, but this

is in fact not the best way to do things. In particular, we have to be careful that our

modification does not break some of the important underlying structure of our theory,

on which the results may depend. In the case of a simple cutoff it turns out that gauge

invariance is explicitly broken, which can be disastrous, as well as more prosaically

translation invariance of the integral l → l + a, which can be very unhelpful when

manipulating loop integrals.

A better, and more popular choice, is known as dimensional regularization (DREG),

which preserves both of the above properties. Here we analytically continue to D

spacetime dimensions. Our toy integral above now becomes

ID =

∫
dDl

l4 −m2
∼
∫

dl

l5−D
, (8.49)

at large l, which is now convergent for any D < 4. Note that D does not have to be

an integer here: for example, we can see that the large l limit of the integral above is

perfectly well defined for arbitrary D. This idea holds more generally, and in DREG

we can treat our integrals as well–behaved functions of the continuous variable D. We

can for example take

gµνgµν = D , (8.50)

again for arbitrary D, without ever having to explicitly consider what a non–integer

number of Lorentz indices might actually look like. For realistic loop integrals, we will

make heavy use of the Euler–Gamma function, defined by

Γ(z) =

∫ ∞
0

dt tz−1e−t , (8.51)

such that Γ(n) = (n−1)! for any positive integer n, but this takes a value for arbitrary
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z. This is in particular obeys

Γ(z + 1) = zΓ(z) . (8.52)

Some algebraic manipulation then allows us to express the most general loop integral

that we will encounter in terms of these functions. The master formula is

I(a, b) =

∫
dDk

(2π)D
k2a

(k2 +X)b
= i(−1)a−b

1

(4π)D/2
1

(−X)b−a−
D
2

Γ
(
a+ D

2

)
Γ
(
b− a− D

2

)
Γ(b)Γ

(
D
2

) .

(8.53)

Those integrals where the denominator does not take the simple form above can still

be manipulated into this form via the method of Feynman parameters. In particular,

with a bit of algebraic manipulation it is possible to show that

1

A1 · · ·An
= (n− 1)!

∫ 1

0

dx1 · · · dxn
δ(x1 + · · ·+ xn − 1)

(x1A1 + · · ·+ xnAn)n
. (8.54)

We will only make use of the n = 2, 3 cases, for which we have explicitly

1

AB
=

∫ 1

0

dx
1

(Ax+B(1− x))2
, (8.55)

1

ABC
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

(Ax+By + C(1− x− y))3
. (8.56)

These relations then bring things precisely into the form required to apply (8.53). Those

integrals with uncontracted Lorentz indices inside the integration can still be brought

into the above form by means of so–called Passarino–Veltmann (PV) reduction. For

example, considering the integral

Iµν =

∫
dDk kµkνf(k2, · · · ) , (8.57)

where f is some function of k2 and any other scalar products of Lorentz vectors that en-

ter the integrand, but crucially is only dependent on the magnitude of k, i.e. k2. Now,

the final left hand result Iµν must have the correct Lorentz covariant transformation

properties. Moreover, any off–diagonal term, e.g. I01 ∼
∫

dDk k0k1 will be antisym-

metric in ±k0,1, and as the rest of the integrand depends only on k2, will vanish. Hence

Iµν must be purely diagonal and transform as a tensor. Lorentz invariance therefore

implies this must be proportional to the metric, and we have

Iµν = gµνI
′ , (8.58)
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where I ′ is some undetermined scalar. We can then contract both sides with the (D–

dimensional) metric to give

Iµν =
gµν
D

∫
dDk k2f(k2, · · · ) , (8.59)

This will again leave an integral that can be performed with the aid of the master

formula (8.53), as required.

Using these results, we can then work in D = 4− ε dimensions, where ε is a small

arbitrary perturbation about the usual D = 4, and use

Γ(ε) =
1

ε
− γ +O(ε) , (8.60)

where γ ≈ 0.577 is the Euler–Mascheroni constant. This will allow us to derive the sin-

gular ∼ 1/ε behaviour of the integrals, which we then use to define our renormalization

procedure.

Finally, we note that to give a dimensionless action, the Lagrangian L must have

mass dimension [D], as we now integrate over d4x → dDx. From the kinetic terms

for the scalar and gauge boson fields, we find [φ] = [Aµ] = 1 − ε/2 and hence from

the interaction terms this requires [e] = ε/2. We would not like the dimension of our

coupling to depend on the regularization procedure, and so to keep e dimensionless we

will make the replacement e → eµ̃ε/2 below, where µ̃ is an arbitrary scale with mass

dimension. We note that there is strict requirement to keep e dimensionless, but it

does simplify the analysis to do so.

Having discussed the generalities of this procedure, we will now consider the explicit

calculations involved at the 1–loop level for scalar QED.

8.5 Photon propagator

Photon self–energyRadia've*correc'ons*to*the*photon*propagator*

(Assuming* DWard*iden'ty)*

Not*renormalised*

Figure 8: One–loop contributions to photon propagator.
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At 1–loop order any photon line can receive contributions from the diagrams shown

in Fig. 8; these will lead to corrections to the photon propagator. We denote the

combined effect of these corrections as Πµν(k), known as the photon self–energy. The

Ward identity tells us that we should have kµΠµν(k) = 0, and given this, the most

general Lorentz invariant form it can have is

Πµν(k) = Π(k2)
(
k2gµν − kµkν

)
= k2Π(k2)P µν , (8.61)

where Pµν(k) = gµν − kµkν/k2 as usual, and this defines the scalar term Π(k2). Now,

let us explicitly compute the photon self–energy and confirm that it does indeed have

this form. We have

iΠµν(k) = (−iZ1e)
2(i)2

∫
d4l

(2π)4

(2l + k)µ(2l + k)ν

((l + k)2 −m2)(l2 −m2)

+ (2iZ4)e2gµνi

∫
d4l

(2π)4

1

l2 −m2

− i(Z3 − 1)(k2gµν − kµkν) , (8.62)

As we have Zi = 1 + O(e2), and we are interested in the O(e2) corrections, we can

simply set Z1,4 = 1 from now on. Combining the first two terms we have

iΠµν(k) = e2

∫
d4l

(2π)4

Nµν

((l + k)2 −m2)(l2 −m2)

− i(Z3 − 1)(k2gµν − kµkν) , (8.63)

where

Nµν = (2l + k)µ(2l + k)ν − 2
(
(l + k)2 −m2

)
gµν . (8.64)

The above integrals are as expected divergent in the UV l → ∞ limit, and so we will

apply DREG to evaluate the above result. Applying Feynman parameters as in (8.55)

this becomes

iΠµν(k) = e2µ̃ε
∫ 1

0

dx

∫
dDq

(2π)D
Nµν

(q2 +X)2
− i(Z3 − 1)(k2gµν − kµkν) , (8.65)

where q = l + xk and X = x(1− x)k2 −m2. As discussed above, we have also had to

introduce a factor µ̃ with dimensions of mass in order to keep e dimensionless. It will
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help in simplifying the result if we use(
2

D
− 1

)∫
dDk

(2π)D
k2

(k2 +X)2
= X

∫
dDk

(2π)D
1

(k2 +X)2
. (8.66)

This follows from the master formula (8.53), with

I(0, 2) =

∫
dDk

(2π)D
1

(k2 +X)2
= i

1

(4π)D/2
1

(−X)2−D
2

(
1− D

2

)
Γ

(
1− D

2

)
, (8.67)

I(1, 2) =

∫
dDk

(2π)D
k2

(k2 +X)2
= −i 1

(4π)D/2
1

(−X)1−D
2

D

2
Γ

(
1− D

2

)
, (8.68)

where we have used Γ(n) = (n− 1)Γ(n− 1). Now, substituting for q we have

Nµν = (2q + (1− 2x)k)µ(2q + (1− 2x)k)ν − 2((q + (1− x)k)2 −m2)gµν , (8.69)

!
= 4qµqν + (1− 2x)2kµkν − 2(q2 + (1− x)2k2 −m2)gµν , (8.70)

!
= 2q2

(
2

D
− 1

)
gµν + (1− 2x)2kµkν − 2((1− x)2k2 −m2)gµν , (8.71)

!
= 2Xgµν + (1− 2x)2kµkν − 2((1− x)2k2 −m2)gµν , (8.72)

= (1− 2x)2kµkν − 2(1− 2x)(1− x)k2gµν , (8.73)

!
= −4y2(k2gµν − kµkν) , (8.74)

where the ‘!’ indicates that these are not exact equalities, but only follow after dropping

terms/making substitutions as described below. In particular, in the second line we

have dropped all terms odd in q, which will give zero contribution to the otherwise

even in q integration; in the third line we have used PV reduction (8.59); in the fourth

line we have used (8.66); in the fifth line we have substituted the explicit expression

for X back in; in the sixth line, we have made the change of variables x = y + 1
2

and,

noting that the denominator (with X = (1
4
− y2)k2 −m2) is even in the y = (−1

2
, 1

2
)

integration, discarded those terms odd in y in the numerator. Thus indeed, as required

the photon self–energy is completely transverse, having the form implied by the Ward

identity.
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Thus we are interested in

−4e2µ̃ε
∫ 1/2

−1/2

dyy2

∫
dDq

(2π)D
1

(q2 +X)2
= −4e2µ̃ε

∫ 1/2

−1/2

dyy2 i

(4π)D/2
1

(−X)ε
Γ
( ε

2

)
,

= −4e2µ̃ε
∫ 1/2

−1/2

dyy2

(
i

1

8π2

1

ε
+O(ε0)

)
,

= −i e2

24π2

1

ε
+O(ε0) , (8.75)

where we substituted D = 4 − ε, and have then expanded in ε, using (8.60). From

(8.62) we therefore have

Π(k2) = − e2

24π2

1

ε
+O(ε0)− (Z3 − 1) . (8.76)

Requiring that the renormalized result is finite then gives us the pole structure of the

renormalization constant Z3, with

Z3 = 1− e2

24π2

1

ε
+O(ε0) . (8.77)

Interpretation: correction to photon propagator

How do we interpret the above result more broadly? At leading order, we associate a

factor of −i∆̃µν with the photon propagator, see (6.58). As discussed above, this will

receive contributions at the 1–loop order from the diagrams shown in Fig. 8. We write

−i∆̃exact
µν (k) = −i∆̃µν(k) + (−i∆̃µρ(k))(iΠρσ(k))(−i∆̃σν(k)) + · · · . (8.78)

Now, it is then convenient to define one–particle irreducible (1PI) diagrams as those

which cannot be divided in two by cutting through a single propagator, see Fig. 9 for

one example in the case of corrections to the scalar propagator. In this case, we can

330 Mass renormalization

18.3 Pole mass

So far, we have only included one particular self-energy correction. The 2-point function
G(/p) in fact gets corrections from an infinite number of graphs. One particular series of
corrections, of the form

iGbare(/p) = + + + · · · , (18.29)

just produces a geometric series

iGbare(/p) =
i

/p−m0
+

i

/p−m0

(
iΣ2(/p)

) i

/p−m0

+
i

/p−m0

(
iΣ2(/p)

) i

/p−m0

(
iΣ2(/p)

) i

/p−m0
+ · · · , (18.30)

which is easy to sum. More generally, any possible graph contributing to this Green’s
function is part of some geometric series. Conversely, the entire Green’s function can be
written as the sum of a single geometric series constructed by sewing together graphs that
cannot be cut in two by slicing a single propagator. We call such graphs one-particle
irreducible (1PI). For example,

is 1PI

but

is not 1PI.

(18.31)

Thus,

iG(/p) = + 1PI + 1PI 1PI + · · · ,
(18.32)

Defining iΣ(/p) as the sum of all of the 1PI graphs, we find

iG(/p) =
i

/p−m
+

i

/p−m

(
iΣ(/p)

) i

/p−m
+

i

/p−m

(
iΣ(/p)

) i

/p−m

(
iΣ(/p)

) i

/p−m
+ · · ·

=
i

/p−m

[
1 +
−Σ(/p)
/p−m

+
(−Σ(/p)

/p−m

)2

+ · · ·
]

=
i

/p−m

1

1 + Σ(/p)

/p−m

=
i

/p−m + Σ(/p)
. (18.33)

Figure 9: Example of 1PI and non–1PI diagrams.

sum the contributions of all diagrams of this sort via a simple geometric series. In

particular, substituting (8.61) into (8.78) and using the projection operator property
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(PµρP
ρσ = P σ

µ ...) we have

∆̃exact
µν (k) =

Pµν
k2

(
1 + Π(k2) + · · ·

)
+ ξ

kµkν
k4

, (8.79)

=
Pµν
k2

∞∑
n=0

Π(k2)n + ξ
kµkν
k4

, (8.80)

=
Pµν

k2(1− Π(k2))
+ ξ

kµkν
k4

, (8.81)

where we have dropped the iε in the denominator for simplicity, though it can straight-

forwardly be kept in place. To emphasise, here Π(k2) receives contributions to any

arbitrary order in perturbation theory that we wish to calculate at, but only including

those diagrams which are 1PI. At the 1–loop order considered above, all contributing

diagrams are 1PI, but this is not the case beyond that. The point here is that the con-

tribution of those diagrams which at some given order are not 1PI is simply given in

terms of combinations of lower–order 1PI contributions to Π(k2), and these are already

included in the geometric series above.

Now, this result shows that defined in this way these higher–order corrections

preserve the original form of the photon propagator, up to this new factor of Π(k2)

included in the denominator. In particular, provided that Π(k2) is regular as k2 → 0

(which indeed it is), the propagator continues to have a pole at k2 = 0. That is, the

photon will remain massless order–by–order in perturbation theory. In addition, we

can see that the ξ dependent gauge–fixing contribution receives no renormalization.

Figure 10: Impact of higher–order corrections to photon propagator on φφ→ φφ scattering.

The above results also provide another, somewhat more intuitive, way to think

about the renormalization constant Z3, without introducing it via a counterterm. In

particular, if in this case we consider the impact of the photon propagator corrections

to e.g. φφ scattering in scalar QED (see Fig. 10) we can see that this leads to the

replacement
e2

0

k2
gµν →

e2
0

k2
gµν ·

1

1− Π(k2)
, (8.82)
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where we drop the term ∝ kµkν , as this will give zero when contracted with the φφγ

vertex, by the same logic that lead us to (8.61). Thus it is natural to interpret the

effect of these corrections as impacting on our assignment for, and corresponding ex-

perimental extraction of, the electric charge. One would in particular be led to impose

a renormalization condition to relate the electric charge as extracted from a measure-

ment of φφ scattering from the calculated result in terms of the bare parameter e0,

exactly as we did for the λ coupling in Fig. 7. One way to do this is to look at what

happens for low energy scattering (k2 → 0), for which

e2
0

k2
gµν →

e2
0

k2
gµν ·

1

1− Π(0)
, (8.83)

as the self–energy itself is regular as k2 → 0. That is, while we have a pole as k2 → 0,

as discussed above, the residue of the pole is shifted from the LO result by an amount

1

1− Π(0)
≡ Z3 , (8.84)

which we define to be our renormalization constant. Then our renormalization condition

is to define the measured value of the electric charge as that extracted from low energy

scattering, i.e.
e2
R

k2
gµν ≡

e2
0

k2
gµν · Z3 , (8.85)

and hence

e0 = Z
−1/2
3 eR . (8.86)

Now excluding the counterterm, we have

Π(k2) = − e2

24π2

1

ε
+O(ε0) . (8.87)

which substituting into (8.84) gives exactly (8.77) to O(e2). Thus indeed the calculation

in terms of counterterms is completely equivalent to the approach discussed above, and

simply provides an often more straightforward way of keeping track of things.

The above discussion in fact corresponds to a particular renormalization scheme;

one is in particular not obliged to fix things by looking at the case of low energy scat-

tering. It is known as the ‘on–shell’ scheme, and will be discussed more in Section 14.6.

As we have not bothered to keep track of the finite, O(ε0) contributions, this gives

us the result we need, but in general a bit more care is needed. In addition, we note

that in general other types of loop correction can contribute to the RHS of Fig. 10, in

particular scalar self–energy and vertex corrections discussed in Sections 8.7 and 8.8,
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respectively. These can also impact on our renormalization of the electric charge, how-

ever for the specific cases of scalar QED and full fermionic QED, their impact cancels

and the above discussion does hold. This will be discussed further in Section 14.9.

8.6 MS renormalization scheme

What about the finite parts in (8.77)? As discussed in Section 8.2, in general we are free

to absorb any finite pieces into the renormalization constants so long as this is performed

consistently everywhere. This corresponds to moving finite pieces between the Zi and

the cross section calculation for a given process, and will leave any physical observables

unchanged. However, a choice for how to do this, known as a renormalization scheme,

must still be made.

One choice, known as minimal subtraction (MS), is to only absorb the poles in ε,

and not finite pieces, in the renormalization constants. This however tends to leave

finite factors of γ in the results for the renormalized observables, which are not par-

ticularly convenient and can even lead to some technical issues with convergence of

the perturbative expansion in which we calculate observables. For this reason, a more

commonly used scheme is modified minimal subtraction, or MS. If we consider again

the integral

I =µ̃ε
∫

dDk

(2π)D
1

(k2 +X)2
, (8.88)

=
i

(4π)2

(
4πµ̃2

−X

) ε
2

Γ
( ε

2

)
, (8.89)

=
i

(4π)2

(
4πµ̃2

−X

) ε
2
(

2

ε
− γ +O(ε)

)
, (8.90)

=
i

(4π)2

(
4πµ̃2e−γ

−X

) ε
2
(

2

ε
+O(ε)

)
, (8.91)

=
i

(4π)2

(
µ2

−X

) ε
2
(

2

ε
+O(ε)

)
, (8.92)

where we define µ2 ≡ 4πµ̃2e−γ. In the MS scheme, only the poles in ε are absorbed,

but after we have performed this scale redefinition. This is equivalent to absorbing a

finite factor of ln(4πe−γ) with the original µ̃, which would not be absorbed in the MS

case. Thus this scheme is minimal in the sense that only the ε pole is absorbed into

the renormalization constant, and modified due to the µ redefinition which therefore

removes the ln(4πe−γ) factor as well.
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In the previous case, we therefore have

ZMS
3 = 1− e2

24π2

1

ε
+ · · · , (8.93)

where the ‘· · · ’ corresponds to higher–order terms in perturbation theory.

8.7 Scalar propagator
Scalar*propagator*oneDloop*radia've*correc'ons:*

 

Lorentz gauge

Δ! µν l( ) = Pµν l( )
l2 − iε

Pµν l( ) = gµν − lµlν / l2

gµνPµν l( ) = d −1

Figure 11: One–loop contributions to scalar propagator.

We first consider the photon corrections to the scalar propagator, shown in Fig. 11.

Working in the Lorenz gauge9, with

∆̃µν =
Pµν(l)

l2 − iε
, (8.94)

we have

iΠφ,γ(k
2) = (−iZ1e)

2(−i)i
∫

d4l

(2π)4

Pµν(l)(l + 2k)µ(l + 2k)ν

l2((l + k)2 −m2)
, (8.95)

+ (2Z4ie
2gµν)(−i)

∫
d4l

(2π)4

Pµν
l2 −m2

γ

+ i(Z2 − 1)k2 . (8.96)

We find that the Z2 counterterm is all that is required to renormalize this contribution,

and hence we have dropped the δm counterterm for simplicity. In the second line we

have introduced a fictitious mass mγ as an IR regulator. This removes the divergences

present in this integral that are associated with the IR l → 0 region. As discussed

above these have nothing to do with the UV l → ∞ region we are interested in for

renormalization, and for sensibly defined observables this IR divergence will cancel with

contributions from other diagrams. For our purposes however, we can simply remove

9In a more general gauge as in (6.58), the results for e.g. Z1,2 will be ξ–dependent, though we still
have Z1 = Z2 and all observables are as expected ξ independent.
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them by hand by introducing this mγ. We find

µ̃ε
∫

dDl

(2π)D
1

l2 −m2
γ

=
i

8π2

1

ε
m2
γ , (8.97)

and therefore this vanishes when we take m2
γ → 0, with ε fixed. We can therefore omit

this term.

The calculation of the second contribution, and that due to the 4–point scalar

vertex, are left as an exercise in the problem classes. We find:

ZMS
2 = 1 +

3e2

8π2

1

ε
+ · · · . (8.98)

ZMS
m = 1 +

λ

8π2

1

ε
+ · · · . (8.99)

8.8 γφφ∗ vertex
}*

= 0 in Lorentz gauge
1st*and*4th*graphs:*

0

Figure 12: One–loop contributions to γφφ∗ vertex.

The contributing 1–loop diagrams are given in Fig. 12. For the renormalization

procedure to work at all, we know that the divergent part of the vertex must have the

same external momentum dependence as the leading order vertex, i.e.

iVµ
3 (k, k′) ∝ −ie(k + k′)µ

1

ε
+O(ε0) , (8.100)

so that we may absorb the universal divergent part into the renormalization constant,

which accompanies the leading–order renormalized vertex

−ieZ1(k + k′)µ . (8.101)

This is indeed the case, and thus as we are only interested in the divergence structure

here, we can simplify our calculation by taking a clever choice of external momenta;

for a complete vertex function, including the full finite pieces, we would need to use
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a general set of external momenta. In particular, we take the incoming scalar to have

zero momentum, and the incoming photon to have momentum k. By momentum

conservation the outgoing scalar must also have momentum k. The corresponding

diagrams are shown in Fig. 12.

Now, we can see that the left vertex in the second and third diagrams is −ielµ and

therefore, working again in the Lorenz gauge, these will give vanishing contributions,

as lµPµν(l) = 0. For the fourth diagram, we have to evaluate∫
dDl

(2π)D
(2l + k)µ

(l2 −m2)((l + k)2 −m2)
, (8.102)

however applying the usual Feynman parameterisation as above, the numerator will be

(2l + k)µ → 2qµ + (1− 2x)kµ , (8.103)

where q = l + xk. The first term will vanish upon the q integration, and the second

term will vanish upon x integration. Thus this diagram also gives no contribution, and

we have

iVµ
3 (k, 0) = (−ieZ1)kµ + (−iZ1e)(2iZ4e

2)gµνi(−i)
∫

d4l

(2π)4

Pνρ(l + 2k)ρ

l2((l + k)2 −m2)
. (8.104)

This integral can be performed by using lµPµν(l) = 0 and the replacement Pµν →
(1− 1/D)gµν . Using ∫

dDq

(2π)D
1

(q2 +X)2
=

i

8π2

1

ε
+O(ε0) , (8.105)

and setting Zi = 1 +O(e2), we find

Vµ
3 (k, 0) = −ekµ

(
Z1 −

3e2

8π2

1

ε
+O(ε0)

)
, (8.106)

and we therefore have

ZMS
1 = 1 +

3e2

8π2

1

ε
+ · · · . (8.107)

8.9 γγφφ∗ vertex

As the tree–level vertex factor 2iZ4e
2gµν does not depend on the external particle

momenta we can simply set them to zero. Thus any diagram where an internal photon

line attaches to an external scalar via a γφφ∗ vertex is zero as above. The remaining
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Figure 13: Non–vanishing one–loop contributions to γγφφ∗ vertex in the Lorenz gauge.

diagrams are shown in Fig. 13. Here, we have also used that any diagrams with an

external photon attached to the internal scalar line in the left hand diagram are zero

due to the Lorenz gauge condition lµPµν = 0. It turns out that the divergent parts of

the second and third diagrams in fact cancel each other, and so it is only the diagram

of the form shown in the first case that contributes.

We end up with

Vµν
4 (0, 0, 0) = −e2gµν

(
−2Z4 +

3e2

4π2

1

ε
+O(ε0)

)
, (8.108)

and so we have

ZMS
4 = 1 +

3e2

8π2

1

ε
+ · · · . (8.109)

8.10 φφ∗φφ∗ vertex

Figure 14: Non–vanishing one–loop contributions to φφ∗φφ∗ vertex.

Once again we can set the external momenta to zero, and all diagrams where an

internal photon connects with an external scalar vanish. The remaining diagrams are
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shown in Fig. 14. There are only two independent diagrams, with

iV4φ(0, 0, 0) = −iZλλ+

(
1

2
+

1

2

)
(2iZ4e

2)2(−i)2

∫
d4l

(2π)4

gµνPνρ(l)g
ρσPσµ(l)

(l2 −m2
γ)

2

+

(
1

2
+ 1 + 1

)
(−iZλλ)2i2

∫
d4l

(2π)4

1

(l2 −m2)2
, (8.110)

where the numerical prefactors sum over the contributing diagram topologies, with their

corresponding symmetry factors (Exercise: confirm where these come from). These can

be evaluated in the usual way and we end up with

ZMS
λ = 1 +

(
3e4

2π2λ
+

5λ

16π2

)
1

ε
+ · · · . (8.111)

8.11 Summary

Combining the above results we have, in the MS scheme,

Z1 = Z2 = Z4 = 1 +
3e2

8π2

1

ε
+ · · · , (8.112)

Z3 = 1− e2

24π2

1

ε
+ · · · . (8.113)

Zm = 1 +
λ

8π2

1

ε
+ · · · , (8.114)

Zλ = 1 +

(
3e4

2π2λ
+

5λ

16π2

)
1

ε
+ · · · , (8.115)

and thus indeed renormalization at 1–loop order is consistent with the relations (8.45)

and (8.46). We will motivate why this result holds from general consideration in the

following section.

9. Ward–Takahashi Identities

n.b. This section is non–examinable

9.1 Scalar Field Theory

We saw in Section 4.3 that if a Lagrangian in classical field theory is invariant un-

der a continuous transformation, then from Noether’s theorem we have an associated

conserved current. However, it is not immediately clear how this will apply the quan-

tum case. In particular, the derivation of this conserved current assumes that classical
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equations of motion are satisfied. To see how this translates we consider the path

integral

Z[J ] =

∫
Dφ ei[S+

∫
d4yJaφa] (9.1)

where we have a set of scalar fields labelled by a (summed over above). Considering a

change of variables φa(x)→ φa(x) + δφa(x), then we have

δZ[J ] = i

∫
Dφ ei[S+

∫
d4yJaφa]

∫
d4x

(
δS

δφa(x)
+ Ja(x)

)
δφa(x) = 0 , (9.2)

where we have assumed that this leaves the functional measure invariant. This is not

guaranteed: if the measure is not invariant, then the classical symmetry will be broken

by quantum corrections and is anomalous. Here, we will assume that this is not the

case, and indeed for the explicit example of the Ward identity we will consider later,

this is true.

Taking n functional derivatives with respect to Jaj(xj), and then setting J = 0 we

have ∫
Dφ eiS

∫
d4x

[
i
δS

δφa(x)
φa1(x1) · · ·φan(xn)

+
n∑
j=1

φa1(x1) · · · δaajδ4(x− xj) · · ·φan(xn)

]
δφa(x) = 0 , (9.3)

where the first term comes from acting on the exponent and in the second we have

one contribution for each action on the source not in the exponent. Dropping the

arbitrary δφa(x) and noting the path integral gives the vacuum expectation value of

the time–ordered product of fields, we get

i〈0|T δS

δφa(x)
φa1(x1) · · ·φan(xn)|0〉+

n∑
j=1

〈
0|Tφa1(x1) · · · δaajδ4(x− xj) · · ·φan(xn)|0

〉
= 0 .

(9.4)

These are known as the Schwinger–Dyson equations of the theory. Now, consider the

simplest case of a single real free scalar field, for which

δS

δφ(x)
= −(∂2

x +m2)φ(x) . (9.5)

From (9.4) with n = 1 we get

i(∂2
x +m2)〈0|Tφ(x)φ(x1)|0〉 = δ4(x− x1) , (9.6)
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and thus the free field propagator ∆(x− x1) = i〈0|Tφ(x)φ(x1)|0〉 is a Green’s function

of the KG wave operator, as we expect. More generally, we have from (9.4) that

〈0|T δS

δφa(x)
φa1(x1) · · ·φan(xn)|0〉 = 0 for x 6= x1,··· ,n , (9.7)

and thus the classical equations of motion are satisfied by a quantum field inside a

correlation function as long as its spacetime arguments differ from those of all of the

other fields. When this is not the case, we have additional so–called contact terms.

Considering now a theory with a continuous symmetry and corresponding Noether

current that leaves the Lagrangian invariant, we substitute (4.14) to get

∂µ〈0|Tjµ(x)φa1(x1) · · ·φan(xn)|0〉+i
n∑
j=1

〈
0|Tφa1(x1) · · · δφaj(xj)δ4(x− xj) · · ·φan(xn)|0

〉
= 0 .

(9.8)

These are known as the Ward–Takahashi identities; they are more general than the

Ward identity we have discussed earlier, but as we will now see this latter result follows

directly from the former. In conclusion, the Noether current is indeed also conserved

in the quantum theory, up to contact terms. The form of these terms depends on the

specific transformation, through the δφaj .

9.2 QED

Consider a scattering process in QED that involves some external photon with momen-

tum k. Recalling the discussion in Section 7.1, the LSZ formula reads

〈f |i〉 = iεµ
∫

d4xe−ikx
(
∂2
)
· · · 〈0|TAµ(x) · · · |0〉 . (9.9)

The equations of motion for the photon fields, including the renormalization constants,

are

Z3∂
µFµν = − ∂L

∂Aµ
. (9.10)

In the Lorenz gauge, for which the analysis below is simplest, this becomes

Z3∂
2Aµ = − ∂L

∂Aµ
= Z1jµ . (9.11)

where jµ is the electromagnetic current. Substituting this in the LSZ formula, we
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therefore have

〈f |i〉 = iZ−1
3 Z1ε

µ

∫
d4xe−ikx · · · [〈0|Tjµ(x) · · · |0〉+ contact terms] , (9.12)

where the contact terms arise, as above, because the classical equations of motion only

hold inside quantum correlation functions up to these. Now (see chapter 67 of Srednicki

for more details) it can be shown that these contact terms do not in fact contribute to

the scattering amplitude, and can therefore be dropped. Recall from Section 5.8 that

we required

kµMµ = 0 (9.13)

for QED to make sense from the point of view of Lorentz invariance. We are now in a

position to prove this from gauge invariance only. To see this, if we replace εµ → kµ in

(9.12), we can write this as a derivative ∂µ acting on the e−ikx, and then integrate by

parts to get this acting on the correlation function, giving

〈f |i〉 → Z−1
3 Z1

∫
d4xe−ikx · · · ∂µ〈0|Tjµ(x) · · · |0〉 , (9.14)

Now from the discussion in the previous section we know that the Ward identity gives

us

∂µ〈0|Tjµ(x) · · · |0〉 = contact terms . (9.15)

which again do not contribute to the scattering amplitude. We have therefore proved

(9.13) in the full quantum theory.

The Ward–Takahashi identities in fact place quite powerful constraints on our

theory, which in addition to the result above lead to precise relations between the

renormalization constants we introduced in the previous section. In particular, taking

n = 2 and considering the explicit form for the Noether current jµ as in (5.28) for the

first term of (9.8) and relating the second term to exact scalar propagators, we can

derive an expression

(p′ − p)µV µ
3,exact(p, p

′) =
Z1

Z2

e
[
∆̃exact(p)−1 − ∆̃exact(p′)−1

]
, (9.16)

where V3,exact is the exact γφφ∗ vertex. The exact vertex and propagators are certainly

finite, and thus in the MS scheme (where all corrections to the Zi are divergent), we

indeed need

Z1 = Z2 , (9.17)

as required. In fact, this result also holds for the on–shell renormalization scheme,
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though not necessarily for arbitrary schemes, where the finite contributions to Z1 and

Z2 may in general be different. In addition, a very similar procedure can be applied to

derive the same relation for full QED, see chapter 68 of Srednicki for further details.

10. Fermions

10.1 Representations of the Lorentz Group

A Lorentz transformation corresponds to the change of coordinates

(xµ)′ = Λµ
νx

ν , (10.1)

that preserves the interval gµνx
µxν , implying that the matrix Λµ

ν must obey

gµνΛ
µ
ρΛ

ν
σ = gρσ . (10.2)

The set of all Lorentz transformations form a group: the product of any two Lorentz

transformations is a Lorentz transformation; the product is associative; there is an

identity transform Λµ
ν = δµν ; and every Lorentz transformation has an inverse. The

Λµ
ν matrices, written in terms of the usual boosts and rotations, correspond to one

particular embedding, or representation of this more general group structure onto a

vector space, in this case of 4× 4 matrices acting on 4–vectors xµ. This is however not

the only possible representation.

We are now interested in finding the other available representations of the Lorentz

group. Why? Because we are clearly only interested in writing down those theories

which preserve Lorentz invariance, and this exercise will show us the possible ways

to do this. More directly, a given type of particle in our universe will have mass,

spin and various other quantum numbers. They also have some momenta and spin

projection on a given axis. If we rotate or boost to another frame, the momentum and

spin projection will change, but the other quantum numbers will not. A particle can

therefore be defined as a set of states which mix amongst themselves under Lorentz

transformations10. This exercise will therefore enable us to enumerate the possible

classes of particle.

Generically we can write

Φ′(x) = D(Λ)Φ(Λ−1x) , (10.3)

10Or more completely, Poincaré invariance, which includes spacetime translations.
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where D (with corresponding field Φ) is some general matrix representation of the

group. Here the Λ−1 appears because we are dealing with an active transformation,

i.e. we must invert the coordinate transformation (10.1) in order to express things in

terms of the original field.

A given particle type will correspond to a given representation. For a scalar and

spin–1 particle, these are explicitly

φ′(x) = φ(Λ−1x) , Aµ
′
= Λµ

νA
ν(Λ−1x) . (10.4)

While the scalar field transforms trivially (i.e. D(Λ) = 1), for the spin–1 field, which

carries a Lorentz index, the transformation of the field itself is given in terms of Λ

matrices. We now wish to find if there are any other representations of the Lorentz

group, corresponding to other particle types. More specifically, we are interested in

the case where no subset of states only transform amongst themselves, known as an

irreducible representation.

To pursue this further, we start with the standard 4–vector representation that we

are used to. We can then write any infinitesimal Lorentz transformation as a simple

combination of rotations and boosts, given by

δxµ = i
3∑
i=1

[θi(Ji)µν + χi(Ki)µν ]x
ν , (10.5)

where the Ji correspond to rotations around the three (x, y, z) axes, with angles θi, and

the Ki correspond to boosts in the three (x, y, z) directions with boost parameters χi.

These are the generators of the Lorentz group, in the sense that they form a complete

basis from which we can construct (i.e. which generate) all Lorentz transformations.

Explicitly we can write:

J1 = i


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , J2 = i


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , J3 = i


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , (10.6)

K1 = i


0 −1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , K2 = i


0 0 −1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , K3 = i


0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

(10.7)
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where the matrix indices (defined as (Ki)
µ
ν and similarly for the rotations) are sup-

pressed for clarity. A convenient, but completely equivalent, way to express this is to

index the generators by Mρσ instead of Ji and Ki, with Ji ≡ 1
2
εijkM

jk and Ki ≡ M0i.

This leads explicitly to

Mρσ =


0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 . (10.8)

Here each value of the antisymmetric matrix Mρσ is itself a 4× 4 matrix, e.g.

(M01)µν = (K1)µν , (10.9)

where the µ, ν label as usual the indices of the matrix K1. An explicitly covariant

expression for M is given by

(Mρσ)µν = i (gρµgσν − gσµgρν) , (10.10)

which we will make use of a little later, though not for now.

Written in terms of this (10.5) becomes

δxµ = iθρσ(Mρσ)µνx
ν , (10.11)

where the θρσ define six parameters (with θρσ = −θσρ) which again specify the Lorentz

transformation in terms of boost and rotation angles. To be precise, we have χi = θ0i

and θi = 1
2
εijkθ

jk. A general (non–infinitesimal) Lorentz transformation can then be

written by exponentiating, with in this case

D(Λ) = exp(iθiJi + iχiKi) = exp(iθρσM
ρσ) . (10.12)

Now, we have the simple group constraint (which we of course expect physically be

to be true) that the product of two Lorentz transformations should itself be a Lorentz

transformations, i.e.

D(Λ′Λ) = D(Λ′)D(Λ) . (10.13)

Imposing this, and expanding (10.12) to linear order in the θ, it can be shown that the

generators Mµν have to satisfy the commutation relations

[Mµν ,Mρσ] = i(gνρMµσ − gµρMνσ − gνσMµρ + gµσMνρ) . (10.14)
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These relations, known as the Lie algebra, are fundamental to the definition of the

Lorentz group. They are indeed satisfied by (10.10), but as the requirement (10.13)

must be satisfied irrespective of the representation, the generators for any representa-

tion must also satisfy these.

Writing the Lie algebra relation in terms of the Ji and Ki we find

[Ji, Jj] = iεijkJk ,

[Ji, Kj] = iεijkKk ,

[Ki, Kj] = −iεijkJk . (10.15)

The first of these is the usual set of commutators for angular momentum, i.e. SO(3)

rotations, as we would expect. The second says that K transforms as a 3–vector under

rotations, while the third tells us that two boosts are equivalent to a rotation.

Having derived these expressions with the particular case of the 4–vector represen-

tation in mind, we would now like to be more general. In particular, we would like to

find all possible sets of finite–dimensional matrices which satisfy these relations. To

this end, we can define some new non–hermitian operators whose physical significance

is not immediately clear, but which simplify the commutation relations greatly. In

particular,

N−i ≡
1

2
(Ji − iKi) ,

N+
i ≡

1

2
(Ji + iKi) , (10.16)

in terms of which the commutation relations become simply[
N−i , N

−
j

]
= iεijkN

−
k ,

[N+
i , N

+
j ] = iεijkN

+
k ,

[N−i , N
+
j ] = 0 . (10.17)

These correspond to two independent Lie algebras of the SU(2) group, which we denote

SU(2)L × SU(2)R. Such an identification greatly helps in finding the corresponding

representations.

Of course we can immediately write down one representation of SU(2), namely the

Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (10.18)

– 85 –



Although for our purposes this simplest case is sufficient, more generally while these

correspond to the simplest, so–called fundamental representation of SU(2), there exist

alternative higher dimensional representations. In particular, for every half–integer n

we have a set of three (2n + 1) × (2n + 1) hermitian matrices J1, J2, J3 such that J3

(say) has (2n+1) eigenvalues from −n, · · · , n. Indeed, this result follows from precisely

the same procedure of identifying raising and lowering matrices that one would do in

e.g. the standard analysis in quantum mechanics for identifying the eigenvalues of the

spin/angular–momentum operator. We can label the corresponding representation by

this index n, with the fundamental representation in terms of Pauli matrices above

corresponding to the n = 1
2

case, as one would expect from their appearance in the

case of spin–1
2

particles.

Now, in (10.17) we have two such representations, and so we label the corresponding

representations with two integers or half–integers n and m. A more physical direct way

to label this comes from noting that the original angular momentum operator is given

by Ji = N−i + N+
i , and hence finding the allowed values of j becomes a standard

problem in the addition of angular momenta, with j = |n−m|, · · · , n+m.

Denoting the J = n+m in the usual way, and writing the corresponding breakdown

as (n,m), the four simplest and most common cases are

(0, 0) : scalar, J = 0 , (10.19)(
1

2
, 0

)
,

(
0,

1

2

)
: left− handed and right− handed spinors, J =

1

2
, (10.20)(

1

2
,
1

2

)
: 4− vector, J = 0⊕ J = 1 . (10.21)

The J = 0 case corresponds to the usual scalar case, while the final representation

contains both J = 0 and J = 1, which is precisely what we expect for a 4–vector for

which the time component is a scalar under rotations (i.e. ‘J = 0’) and the remaining

three J = 1 degrees of freedom are the usual spatial components. The two remaining(
1
2
, 0
)

and
(
0, 1

2

)
cases are completely new. We will call these left and right handed

spinor representations.

10.2 Spinors

What do the representations for the J = 1
2

case look like? As discussed above, the

vector space they act on has 2J+1 = 2 degrees of freedom, and therefore we need a set

of 2 × 2 matrices which satisfy (10.17), which are precisely the Pauli matrices(10.18).

For these we have [σi
2
,
σj
2

]
= iεijk

σk
2
, (10.22)
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and therefore these suitably normalized matrices form the representation we need. Thus

we set N−i = σi
2

and N+
i = 0 for (1

2
, 0) and N−i = 0 and N+

i = σi
2

for (0, 1
2
). For the

Lorentz transformations, from the definitions (10.16) we then get(
1

2
, 0

)
: Ji =

σi
2

Ki = i
σi
2
,(

0,
1

2

)
: Ji =

σi
2

Ki = −iσi
2
. (10.23)

We call the elements of the vector space on which the spin-1
2

representations act spinors.

We say that the (1
2
, 0) representation acts on left–handed Weyl spinors, denoted ψL,

while the (0, 1
2
) representation acts on right–handed Weyl spinors, ψR. For rotation

angles θi and boost parameters χj, from (10.12) we can see that these transform as

ψ′L = e
1
2

(iθjσj−χjσj)ψL , ψ′R = e
1
2

(iθjσj+χjσj)ψR . (10.24)

We can combine the left and right handed spinors to form a four–component quantity

ψ =

(
ψL
ψR

)
, (10.25)

known as a Dirac spinor. We will identify these objects (suitably quantized) below

with the spin–1
2

fermion fields we need to build up the full theory of QED and the

Standard Model.

How do we write down the Lorentz transformation properties of these spinors? To

start off we define the seemingly unrelated 4×4 matrices γµ, which satisfy the so–called

Clifford algebra

{γµ, γν} = 2gµν · 1 . (10.26)

Here the (γµ)ij correspond to a set of 4 matrices, labelled by µ = (0 · · · 3), carrying

(unrelated) indices i, j = (1 · · · 4). (Exercise: show that it is not possible to satisfy

these relations with lower–dimensional matrices). The 1 on the right hand side is the

unit matrix in spinor space. One representation of these, given in the so–called Weyl

basis is

γ0 =

(
0 I

I 0

)
, γi =

(
0 −σi
σi 0

)
, (10.27)

where the I and σi are 2 × 2 matrices. It is easy to verify that the Clifford algebra
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indeed holds for this case. Now, if we define11

Sµν =
i

4
[γµ, γν ] , (10.28)

then by application of (10.26) it can be shown that this forms a representation of the

Lorentz algebra, i.e. it satisfies the commutation relation (10.14). In fact, without

resorting to this we can show this more simply by considering the corresponding boost

and rotation generators in this (claimed) representation. Using (10.28) we find that

these should be given by

Ki ≡ S0i =
i

2

(
σi 0

0 −σi

)
, Ji ≡

1

2
εijkS

jk =
1

2

(
σi 0

0 σi

)
. (10.29)

and thus the transformations (10.23) for the left and right handed spinors are completely

equivalent to the Dirac spinor transformation

ψ′ = S[Λ]ψ , (10.30)

where

S[Λ] = exp (iθiJi + iχiKi) = exp (iSµνθ
µν) , (10.31)

with the Ji and Ki given as in (10.29), and the χi = θ0i and θi = 1
2
εijkθ

jk as before. Thus

the Dirac spinor indeed transforms according to the representation of the Lorentz group

defined by Sµν . Note also the block diagonal form of these generators (10.29), which

makes it clear that this representation is reducible in terms of the two (irreducible) left

and right handed spinor representations.

Now, consider the action of a rotation around the z–axis on a Dirac spinor by an

angle θ. From (10.29) this corresponds to

S[Λ] =

(
ei
θ
2
σ3 0

0 ei
θ
2
σ3

)
=

(
I cos θ

2
+ iσ3 sin θ

2
0

0 I cos θ
2

+ iσ3 sin θ
2

)
. (10.32)

Thus for a 2π rotation (which should get us back to where we started!) we have

ψ′ = −ψ , (10.33)

which is certainly not what we would get when rotating a vector. This demonstrates

that the spinor representation is definitely something completely distinct from the

11Often the notation σµν ≡ 2Sµν is used.
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vector representation we are used to. Moreover, it is this additional minus sign which

results in the spin–statistics connection; it is the same minus sign which arises when

we interchange identical fermions, an action which can be performed by exactly such a

rotational transformation.

Finally, if we define

γ5 ≡ iγ0γ1γ2γ3 =

(
−I 0

0 I

)
, (10.34)

then we can form the left/right handed projector

PL,R =
1

2
(1∓ γ5) , (10.35)

in terms of which we have

ψL,R = PL,Rψ . (10.36)

Here, we have been slightly sloppy with notation and interpret these as 4–component

Dirac spinors but with only the left or right–handed components non–zero. In other

words, we have

γ5ψL,R = ∓ψL,R . (10.37)

The γ5 is known as the chirality operator, and the left and right handedness of the ψL,R
representations is known as chirality.

10.3 The Dirac Equation

We wish to build up an appropriate Lagrangian from these spinor fields. What kind of

Lorentz invariants can we construct? We have

ψ†L → ψ†Le
1
2

(−iθjσj−χjσj) , ψ†R → ψ†Re
1
2

(−iθjσj+χjσj) . (10.38)

as the Pauli matrices are Hermitian. It follows from this and (10.24) that ψ†L,RψR,L is

Lorentz invariant, while ψ†L,RψL,R is not. We can therefore make use of the Lorentz

scalar

ψ†RψL + ψ†LψR = ψ†γ0ψ ≡ ψψ , (10.39)

where we have written the combination in Dirac spinor notation, and defined ψ ≡
ψ†γ0. An alternative way to demonstrate this, using the Dirac spinor transformation

properties alone, comes from noting that

(Sµν)† = γ0Sµνγ0 . (10.40)
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which follows from (γ0)† = γ0 and (γi)† = −γi. This leads to

S[Λ]† = γ0S[Λ]−1γ0 , (10.41)

from which it follows that ψ → ψS[Λ]−1 and hence ψψ is invariant.

Now consider the combination

ψγµψ → ψS[Λ]−1γµS[Λ]ψ , (10.42)

where the γµ is unchanged as it does not itself transform covariantly (it is simply a

fixed set of matrices). Thus if we have

S[Λ]−1γµS[Λ] = Λµ
νγ

ν , (10.43)

then (10.42) will transform as a Lorentz vector. Considering infinitesimal transforma-

tions, we find this is equivalent to

[Sρσ, γµ] = −(Mρσ)µνγ
ν . (10.44)

After a little work with the explicit forms for Sρσ and Mρσ, as given by (10.28) and

(10.10) it can be shown that this is indeed the case.

Thus, a Lorentz invariant candidate for a Lagrangian describing a free Dirac field

is

L = iψγµ∂µψ −mψψ , (10.45)

known as the Dirac Lagrangian. From the equations of motion we then arrive at the

Dirac Equation

(iγµ∂µ −m)ψ = 0 . (10.46)

where the ‘m’ is shorthand for ‘m · 1’, i.e. multiplying a unit matrix in spinor space.

Introducing the Feynman slash notation, aµγ
µ ≡ /a, we can write this in the slightly

more compact form

(i∂/−m)ψ = 0 . (10.47)

Now, we have

(i∂/+m)(i∂/−m)ψ = −(∂2 +m2)ψ = 0 , (10.48)

and thus ψ satisfies the Klein–Gordon equation (5.3) for a field with mass m. This

justifies our association of (10.45) with a mass term. Note in particular that this is

linear in the mass, in contrast to the scalar and vector cases, which are quadratic

∼ m2. This is directly related to the fact that the Dirac Lagrangian (and hence Dirac
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equation) is linear in derivatives; indeed, from dimensional counting alone, we know

that we must associate a factor of m with ψψ.

How does the Dirac Lagrangian look in two–component form? We find

L = iψ†Lσµ∂
µψL + iψ†Rσµ∂

µψR −m(ψ†LψR + ψ†RψL) , (10.49)

where we have defined σ = (1, σi) and σ = (1,−σi). Thus, a massive fermion requires

both left and right handed components, as these couple through the mass term, while

a massless fermion can be described with either of these alone.

The corresponding Dirac equations take the form

iσµ∂
µψL = (E + ~p · ~σ)ψL = mψR , (10.50)

iσµ∂
µψR = (E − ~p · ~σ)ψR = mψL , (10.51)

where we have moved to momentum space (substituting pµ → i∂µ). In the massless

limit these decouple, as expected, and we find

ĥψL,R ≡
~p · ~σ
|~p|

ψL,R = ∓ψL,R (10.52)

where we have used that |~p| = E for massless particles. Here ĥ corresponds to the

projection of the spin on the direction of the momentum, and is known as the helicity.

Thus, comparing with (10.37) we can see that in the massless limit the helicity and

chirality eigenstates coincide. This is not true away from the massless limit, and indeed

here helicity is no longer a good quantum number; we can always reverse the direction

of ~p by a suitable Lorentz boost, swapping the sign of the h. However it is still a useful

observable to consider, in particular in the relativistic E � m limit, where chirality

and helicity will still closely coincide.

10.4 Solutions of the Dirac equation

Recalling from (10.48) that the spinor solution to the Dirac equation also obeys the

Klein–Gordon equation, we know that this will allow plane–wave solutions. We there-

fore consider the (classical) trial solution of the form

ψ(x) =

∫
d3p

(2π)32p0

[
u(p)e−ipx + v(p)eipx

]
, (10.53)

where with p0 = (p2 + m2)1/2 we see that this indeed satisfies the KG equation, as

required. As ψ is itself a 4–component spinor, we must introduce corresponding spinor
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coefficients, which we denote u(p), v(p), in the expansion. To satisfy the KG equation,

these must be independent of x. As ψ must satisfy the Dirac equation, we can extract

solutions for these. Plugging (10.53) in the Dirac equation we find

(p/−m)u(p) = 0 ,

(p/+m)v(p) = 0 . (10.54)

As we will confirm explicitly below, these each admit two linearly independent solutions,

that we will label u±(p) and v±(p). In the particle rest frame we have simply p/ = mγ0

and (10.54) reduce to (
−I I

I −I

)
us =

(
I I

I I

)
vs = 0 , (10.55)

which have solutions

us =

(
ξs
ξs

)
, vs =

(
ηs
−ηs

)
, (10.56)

for arbitrary two–component spinors ξs, ηs. Choosing a particular normalization and

spin labelling for the spinors, four linearly independent solutions are

u+(0) =
√
m


1

0

1

0

 , u−(0) =
√
m


0

1

0

1

 , v+(0) =
√
m


0

1

0

−1

 , v−(0) =
√
m


−1

0

1

0

 .

(10.57)

We will associate these four degrees of freedom with the ± spin states of the particle,

u±, and its anti–particle, v±.

The ± labelling is derived by noting that, given the two–fold degeneracy in the

solutions for u(p), v(p) there must be some operator which commutes with the energy

operator and whose eigenvalues label the two solutions. This is in fact given by consid-

ering the projection of the angular momentum along a given axis defined by the unit

vector n̂

Sn = n̂iJi =
1

2
εijkn̂

iSjk =
1

2
n̂i

(
σi 0

0 σi

)
, (10.58)

which if n̂ is taken as the direction of the particle momenta this corresponds to the

helicity of the particle introduced in (10.52). Considering the projection along the
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z–axis we find

Szu±(0) = ±1

2
u±(0) , (10.59)

Szv±(0) = ∓1

2
v±(0) , (10.60)

where the reason for the swapped sign in the second case relates to their association

with an antiparticle. Thus, we are justified in associating the ± solutions with the two

spin states of the particle and antiparticle. Moreover, we can see the eigenvalues of this

operator are 1/2, confirming our association of these states as spin–1
2

particles (after

quantization). In particular, we are considering the angular momentum projection for

a particle at rest, and which therefore certainly has no angular momentum by virtue of

its movement. This angular momentum is therefore intrinsic, and is precisely the spin

of the particle.

The solutions (10.57) in the particle rest frame can then be converted to general

solutions by applying the appropriate boost and rotations, or alternatively by solving

the Dirac equation for general momentum p. In either case, we get

u± =

(√
p · σξ±√
p · σξ±

)
, v± =

( √
p · ση±

−
√
p · ση±

)
. (10.61)

In the relativistic E � m limit, it can be shown that the helicity and chirality eigen-

states again coincide, with γ5u± = ±u± and γ5v± = ∓v±.

An identity that will be particularly useful when calculating cross section summed

(or averaged) over the spins of the interacting fermions can then be derived from these

expressions and noting that
∑

s ξsξ
†
s =

∑
s ηsη

†
s = I, i.e. the usual completeness rela-

tion. We then find that∑
s=±

us(p)us(p) = /p+m ,
∑
s=±

vs(p)vs(p) = /p−m , (10.62)

which are known as the spin sum relations.

10.5 Aside: Photon Polarization Vectors and Spin

As an aside, we note that the above formalism also confirms for us the spin–1 nature

of the photon field Aµ introduced before. To see this, we consider a photon travelling

along the z axis for simplicity, for which the corresponding circular polarization vectors

are given by (5.63) and (5.64). In the same way as for (10.58) we then calculate the
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projection of the photon angular momentum along the z axis to be

J3 = i


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , (10.63)

for which we indeed have

(J3)µνε
ν
±(k) = ±εµ±(k) , (10.64)

where we have kept track of Lorentz indices for completeness but they are not really

relevant here, as we only interested in pure spatial rotation. Thus indeed the photon

corresponds to a spin–1 state, with this choice of polarization vectors giving the ±1

helicity eigenstates. Note that though we have considered the case of a photon moving

along the z axis for simplicity, this will hold for an arbitrary directions provided we

suitably choose our n in (10.58) to lie in the direction of the photon momentum.

11. Path Integrals for Fermions

11.1 Grassmann Variables

When we quantize, our expansion for the Dirac field will have the form

ψ(x) =
∑
s=±

∫
d3p

(2π)32p0

[
bs(p)us(p)e−ipx + d†s(p)vs(p)eipx

]
. (11.1)

where bs(b
†
s) and ds(d

†
s) are the annihilation (creation) operators for the particle and

antiparticle, respectively. Now, using this expansion it turns out that we cannot con-

struct a sensible theory, with in particular a Hamiltonian that is bounded from below,

by imposing the usual equal–time commutation relations. Instead we are led to impose

anticommutation relations, which written in terms of the fields are

{ψα(x, t), ψβ(y, t)} = 0 , (11.2)

{ψα(x, t), ψβ(y, t)} = (γ0)αβδ
3(x− y) , (11.3)

where we have kept the spinor indices explicit for clarity. The reason for this is directly

related to the fermionic nature of the fields and the spin–statistics connection. We will

not discuss this in detail here, but refer the student to chapter 12 of Schwartz and

chapter 3 of Peskin and Schroeder for more information.
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This anticommuting nature of the fermion fields leads to some added complication

if we wish to pursue the path integral approach. In particular, in our equivalent of

(6.4) for fermionic fields we must account for the fact that on the left hand side we

have field operators which anticommute, while on the right hand side we deal with

classical field values. For this to work consistently we must therefore introduce a new

type of anticommuting number, known as a Grassmann variable, which we will use

when dealing with the partition function on the right hand side. For a set of such

variables ηi, with i = 1, ..., n, these obey

{ηi, ηj} = 0 , (11.4)

which commute with the usual (commuting!) numbers, aηi = ηia. We thus have

η2
i = 0 , η1(η2η3) = (η2η3)η1 . (11.5)

Where the second identity tells us that a combination of two such Grassmann variables

behaves like a normal commuting number.

These identities actually limit quite significantly the non–zero objects we can write

down. Thus, considering the simplest case of one Grassmann variable η, we can define

a function f(η) via the Taylor expansion

f(η) = a+ ηb , (11.6)

where due to η2 = 0 all higher terms vanish. We will be interested in the case that the

function f(η) is itself commuting, for which the variable b must be anticommuting (we

will use boldface in the this section to denote this), so that bf(η) = f(η)b. Thus

f(η) = a+ ηb = a− bη . (11.7)

We can then derive two types of derivative. The left derivative with respect to η is

given by the coefficient of η when f(η) is written with η on the far left, and the right

derivative with it on the far right. Explicitly,

∂ηf(η) = +b , f(η)
←
∂ η = −b . (11.8)

When we consider the derivatives with respect to Grassmann variables, we will always

refer to the left derivative. Note that this left derivative rule implies that the derivative

– 95 –



itself should be treated as a Grassmann valued object, so that

∂η(bη) = −b∂ηη = −∂η(ηb) = −b . (11.9)

We would also like to define a definite integral, in analogy to integrating over a real

commuting variable x over ±∞. To give sensible results, we demand that this integral

(when it converges) obeys linearity∫ +∞

−∞
dx cf(x) = c

∫ +∞

−∞
dx f(x) , (11.10)

and shift invariance ∫ +∞

−∞
dx f(x+ a) =

∫ +∞

−∞
dx f(x) . (11.11)

Again the nature of Grassmann variables restricts things quite a bit. For shift invari-

ance, under η → η + ξ, we have∫ +∞

−∞
dη (a+ ηb) =

∫ +∞

−∞
dη (a+ ηb + ξb) , (11.12)

and thus we require ∫ +∞

−∞
dη ξb = ξb

∫ +∞

−∞
dη 1 = 0 , (11.13)

where we have used linearity in the last step. Thus we require∫
dη 1 = 0 , (11.14)

where the integration limits are implied, and we have∫
dη f(η) = b

∫
dη η . (11.15)

This right hand integral should then be some number, and we conventionally define∫
dη η = 1 . (11.16)

Note it is important to keep track of ordering here, and whether we are dealing with
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Grassmann or ordinary variables. Thus we have∫
dη α(a+ bη) = −αb , (11.17)∫
dη α(a+ ηb) = αb , (11.18)∫
dη α(a + bη) = αb . (11.19)

We also have ∫
dη f(cη) = c

∫
dη ηb = c

∫
dη f(η) , (11.20)

to be contrasted with the ordinary case∫
dx f(cx) =

1

c

∫
dx f(x) . (11.21)

We can readily generalise to the multi–dimensional case, with dη → dηn · · · dη1 ≡ dnη

(note the ordering). Then, considering some linear change of variables

ηi = Jijη
′
j , (11.22)

where Jij is a matrix of commuting numbers (and therefore can be written on either

side of η′j), one can readily show that the analogue of (11.20) becomes

dnη → dnη′

(detJ)
, (11.23)

which we contrast with the usual coordinate transformation dnx→ (detJ)dnx′.

We now use this to develop the concept of a Gaussian integral with respect to

Grassmann variables. We consider the integral∫
dnη exp(

1

2
ηTMη) =

∫
dnη exp(

1

2
ηiMijηj) , (11.24)

where Mij is an antisymmetric matrix of commuting (possibly complex) numbers. For

n = 2 we have

M =

(
0 +m

−m 0

)
, (11.25)
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and ηTMη = 2mη1η2. We therefore have∫
dnη exp(

1

2
ηTMη) =

∫
d2η (1 +mη1η2) = m . (11.26)

For general n, it can be shown that (see Srednicki chapter 44)∫
dnη exp(

1

2
ηTMη) = (detM)1/2 , (11.27)

which it is instructive to compare with the usual Gaussian integral of commuting num-

bers ∫
dnx exp(−1

2
xTMx) = (2π)n/2(detM)−1/2 . (11.28)

Finally, we introduce the concept of complex Grassmann variables via

χ ≡ 1√
2

(η1 + iη2) , χ ≡ 1√
2

(η1 − iη2) , (11.29)

for which one readily finds that χχ = χχ = 0 and {χ, χ} = 0, as we would like. The

above relation has inverse (
η1

η2

)
=

1√
2

(
1 1

i −i

)(
χ

χ

)
, (11.30)

which has determinant −i. Thus we have

d2η = dη2dη1 =
1

−i
dχdχ , (11.31)

and so ∫
dχdχχχ = (−i)(−i)−1

∫
dη2dη1 η1η2 = 1 . (11.32)

Thus for some function

f(χ, χ) = a+ χb + χc + χχd , (11.33)

then we have
∫

dχdχf(χ, χ) = d and in particular∫
dχdχ exp(mχχ) = m . (11.34)
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For n complex Grassmann variables χi and their complex conjugates χi we define

dnχdnχ ≡ dχndχn · · · dχ1dχ1 , (11.35)

and it follows that ∫
dnχdnχ exp(χMχ) = detM , (11.36)

where now χ is understood as a column with entries χi (i = 1, · · · , n), and similarly

for χ. Finally, we can generalize our results by changing the integration variables and

using shift invariance. We have∫
dnη exp(ηTMη + ξTη) = (detM)1/2 exp(

1

2
ξTM−1ξ) , (11.37)∫

dnχdnχ exp(
1

2
χMχ+ ξχ+ χξ) = (detM) exp(−ξM−1ξ) , (11.38)

where in the latter case for example we make the shifts χ → χ − M−1ξ and χ →
χ− ξM−1, giving

(χ− ξM−1)M(χ−M−1ξ) = χMχ− ξχ− χξ + ξM−1ξ , (11.39)

as expected. It is these expressions that we make use of in deriving the path integral

formulation for fermions. In particular, the first expression (11.37) for real Grassmann

variables is relevant for Majorana fermions, while the latter expression (11.38) is rele-

vant for Dirac fermions. We note that in the latter case there is in fact no requirement

that χ and χ are related by complex conjugation; the derivation of (11.38) applies

equally well for arbitrary independent field variables χ and χ.

11.2 Fermion Propagator

For fermion fields ψ we introduce the path integral

Z0(η, η) =

∫
DψDψ exp

[
iS0 + i

∫
d4x (ηα(x)ψα(x) + ψβ(x)ηβ(x))

]
, (11.40)

where both ψ, ψ and η, η are complex Grassmann–valued spinors, i.e. each component

ψα and ηα is a complex Grassmann function. Note the above pairings of two Grassmann

valued spinors is consistent with the fact that the action overall is a standard commuting

number. To be more precise, we can imagine defining the fermion fields ψ, ψ via a sum
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over some orthonormal basis

ψ(x) =
∑
i

ψiφi(x) , (11.41)

where the coefficients ψi are Grassmann numbers, while the φi(x) corresponds to the

usual Dirac spinors, which are ordinary complex numbers, and which appear as in

Section 10.4 and in the Feynman rules of our theory; we will leave this decomposition

implicit in what follows, though it always implied. As an aside, we note that the formal

definition of the integral over Grassmann variables in the previous section means that

we lose the straightforward interpretation of integration (and hence the above path

integral) as the continuum limit of a sum over all possible field values at each spacetime

point x. However, this is in fact qualitatively consistent with what we know about

fermionic fields. Due to the Pauli exclusion principle, we cannot create an arbitrary

number of fermionic field excitations at a given spacetime point x, as we could for

bosonic fields. Thus the path integral is indeed restricted with respect to the bosonic

case, and it can be shown that the formal definition of the Grasmann integration given

above accounts for this effect correctly.

To be explicit, we have included the corresponding spinor indices in the above

expression, but we will for brevity suppress these in what follows. Thus for a Dirac

field with

L = ψ(i∂/−m)ψ , (11.42)

we have

Z0(η, η) =

∫
DψDψ exp

[
i

∫
d4k

(2π)4
(−ψ̃(−k)(k/+m)ψ̃(k) + η̃(−k)ψ̃(k) + ψ̃(−k)η̃(k))

]
.

(11.43)

Changing variables in the usual way, we then arrive at

Z0(η, η) = Z0(0, 0) exp

[
i

∫
d4k

(2π)4
η̃(k)(−k/+m)−1η̃(−k)

]
, (11.44)

≡ Z0(0, 0) exp

[
i

∫
d4xd4y η(x)S(x− y)η(y)

]
, (11.45)

where S(x− y) is the Feynman propagator, given by

S(x− y) =

∫
d4k

(2π)4

e−ik(x−y)

(−k/+m)
. (11.46)

Here (−k/+m) is a matrix in spinor space, and therefore while formally a solution, we
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still need to invert this. Using (10.26), we get

S(x− y)αβ = −
∫

d4k

(2π)4

(k/+m)αβ
k2 −m2 + iε

e−ik(x−y) , (11.47)

where we keep the spinor indices α, β explicit and have introduced the usual ε term to

keep the path integral well defined. This satisfies

−(i∂/x −m)αβS(x− y)βγ = −
∫

d4k

(2π)4

(−k/+m)αβ(k/+m)βγ
k2 −m2 + iε

e−ik(x−y) , (11.48)

=

∫
d4k

(2π)4

(k2 −m2)δαγ
k2 −m2 − iε

e−ik(x−y) , (11.49)

= δ4(x− y)δαγ , (11.50)

as required; recall that in the scalar case the propagator is given in terms of the inverse

of the KG equation, (∂2
x −m2)∆(x− y) = δ4(x− y).

To define a more general correlation function, we note that

δ

δηα(x)

∫
d4y

[
η(y)ψ(y) + ψ(y)η(y)

]
= −ψα(x) ,

δ

δηα(x)

∫
d4y

[
η(y)ψ(y) + ψ(y)η(y)

]
= ψα(x) , (11.51)

and therefore the generalization of (6.4) becomes

〈
0|Tψα1(x1) · · ·ψβ1(y1) · · · |0

〉
=

1

Z[0, 0]

1

i

δ

δηα1
(x1)
· · · i δ

δηβ1(y1)
· · ·Z(η, η)|η=η=0 ,

(11.52)

where the factors of i are set to be consistent with the minus sign difference between

the η and η derivatives, as in (11.51). We thus have

〈
0|Tψα(x)ψβ(y)|0

〉
= −iS(x− y)αβ =

∫
d4k

(2π)4

i(k/+m)αβ
k2 −m2 + iε

e−ik(x−y) . (11.53)

Finally, we note that while we have not explicitly referred to it, this derivation relies

on the formal developments of the preceding section, and in particular the validity of

the expression (11.38), suitably generalized to the path integral case. In particular,

the Z0(0, 0) plays the role of the detM . While this will cancel when calculating the

field expectation values we will be interested in, it is nonetheless important that such

a thing can be suitably defined in the Grassmannian case.
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12. Feynman Rules for Fermions

12.1 Yukawa Theory

To keep things as simple as possible, before considering full QED we will first look at

the case of Yukawa theory, which describes the interaction of a Dirac field ψ and a real

scalar φ. The interaction part of the Lagrangian is given by

LI = gφψψ , (12.1)

for a coupling constant g. This is exactly the form of interaction that we will find

between the Higgs Boson and massive fermions in the Standard Model.

Recalling the results of Section 7.2, the relevant path integral is therefore given by

Z(J, η, η) = exp

[
ig

∫
d4x

(
1

i

δ

δJ(x)

)(
i

δ

δηα(x)

)(
1

i

δ

δηα(x)

)]
Z0(J, η, η) , (12.2)

with

Z0(J, η, η) = Z0(0, 0, 0) exp

[
i

∫
d4xd4y η(x)S(x− y)η(y)

]
exp

[
i

2

∫
d4xd4y J(x)∆(x− y)J(y)

]
,

where ∆(x−y) and S(x−y) are the usual scalar and Dirac fermion propagators, given

by (6.13) and (11.47), respectively. The straightforward generalization of (11.52) is

then 〈
0|Tψα1(x1) · · ·ψβ1(y1) · · ·φ(z1) · · · |0

〉
=

1

Z[0, 0, 0]

1

i

δ

δηα1
(x1)
· · · i δ

δηβ1(y1)
· · · 1

i

δ

δJ(z1)
· · ·Z(J, η, η)|η=η=J=0 , (12.3)

and as usual we can define a connected generating functional iW = logZ that generates

the connected diagrams we are interested in.

Thus, for the basic 3–point φψψ vertex we will have the contribution

iW (J, η, η) = log

[
1 + ig

∫
d4xd4yd4zd4w [η(x)S(x− y)S(y − z)η(z)] ∆(y − w)J(w)

]
+· · · .

(12.4)

where the remaining terms will not give connected contributions when acted on with

δ/δJ(x) etc in the usual way.
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12.2 e±φ→ e±φ scattering

Considering as a more complicated example the e−φ→ e−φ scattering process, we have

〈
0|Tψα(x)ψβ(y)φ(z1)φ(z2)|0

〉
=

1

i

δ

δηα(x)
i

δ

δηβ(y)

1

i

δ

δJ(z1)

1

i

δ

δJ(z2)
iW (J, η, η)|η,η,J=0 ,

(12.5)

where Z = eiW as usual. The first non–vanishing contribution to this corresponds to

expanding (12.2) to second order, with

Z(J, η, η) ∼ 1

2

[
ig

∫
d4x

(
1

i

δ

δJ(x)

)(
i

δ

δηα(x)

)(
1

i

δ

δηα(x)

)]2

Z0(J, η, η) +O(g4) ,

= −i(ig)2

∫
d4x′d4y′d4z′1d4z′2d4w1d4w2η(x′)S(x′ − w1)S(w1 − w2)S(w2 − y′)η(y′)

·∆(w1 − z′1)J(z′1)∆(w2 − z′2)J(z′2)Z0(J, η, η) + · · · , (12.6)

where as usual we drop terms that will not give a connected contribution in the end.

When deriving expressions such as this, some care is needed in keeping track of minus

signs when the δ/δη derivatives anticommute through the Grassmann fields. The logic

is a bit easier to follow if we first anticommute the derivative w.r.t. η(w1,2) and η(w1,2),

reversing the order in (12.6). Breaking down the fermionic part of the above result,

each derivative gives:

i
δ

δη(w1)
:

∫
d4x′η(x′)S(x′ − w1)Z0(J, η, η) , (12.7)

1

i

δ

δη(w1)
: −
∫

d4x′d4z′η(x′)S(x′ − w1)S(w1 − z′)η(z′)Z0(J, η, η) , (12.8)

i
δ

δη(w2)
: i

∫
d4x′η(x′)S(x′ − w1)S(w1 − w2)Z0(J, η, η) , (12.9)

1

i

δ

δη(w2)
: −i

∫
d4x′d4y′η(x′)S(x′ − w1)S(w1 − w2)S(w2 − y′)η(y′)Z0(J, η, η) ,

(12.10)

In the second line we pick up a minus sign as we pass through the η(x′) to act on Z0;

in the third line we again pick up a minus sign, and a factor of i as we do not act on

a Z0; in the final line again we pick up a minus sign as we pass through η(x′). In the

third line we could instead have acted on Z0, and then on the η term brought down

from Z0 in the last line. This gives the same result, and hence cancels the factor of 1/2

from the Taylor expansion.

Acting on this with the remaining functional derivatives according to (12.5) in
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order to extract the correlation function, we arrive at

〈
0|Tψα(x)ψβ(y)φ(z1)φ(z2)|0

〉
C

= −i(ig)2

∫
d4w1d4w2

[S(x− w1)S(w1 − w2)S(w2 − y)]αβ ∆(z1 − w1)∆(z2 − w2) + (z1 ↔ z2) . (12.11)

Due to freedom to act on either the J(z′1) or J(z′2) terms in (12.6) with the scalar source

derivative, we have two contributions, depending on the ordering of the z1,2. These can

be represented diagrammatically as in Fig. 15.

order to extract the correlation function, we arrive at

⌦
0|T ↵(x) �

(y)�(z1)�(z2)|0
↵
C
= �i(ig)2

Z
d4w1d

4w2

[S(x� w1)S(w1 � w2)S(w2 � y)]
↵�

�(z1 � w1)�(z2 � w2) + (z1 $ z2) . (12.11)

Due to freedom to act on either the J(z01) or J(z
0
2) terms in (12.6) with the scalar source

derivative, we have two contributions, depending on the ordering of the z1,2. These can

be represented diagrammatically as in Fig. 15.45: The Feynman Rules for Dirac Fields 284
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Figure 45.2: Diagrams corresponding to eq. (45.8).

for various two-body elastic scattering processes, such as e−ϕ → e−ϕ and
e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions
to connected correlation functions of the form 〈0|TΨΨϕϕ|0〉C. Other pro-
cesses of interest include e−e− → e−e− and e+e− → e+e−; for these, we
will need to evaluate the tree-level contributions to connected correlation
functions of the form 〈0|TΨΨΨΨ|0〉C.

For 〈0|TΨΨϕϕ|0〉C, the relevant tree-level contribution to iW (η, η, J)
is given by fig. (45.1)(c). We have

〈0|TΨα(x)Ψβ(y)ϕ(z1)ϕ(z2)|0〉C

=
1

i

δ

δηα(x)
i

δ

δηβ(y)

1

i

δ

δJ(z1)

1

i

δ

δJ(z2)
iW (η, η, J)

∣∣∣
η=η=J=0

=
(

1
i

)5
(ig)2

∫
d4w1 d4w2

× [S(x−w1)S(w1−w2)S(w2−y)]αβ

× ∆(z1−w1)∆(z2−w2)

+
(
z1 ↔ z2

)
+ O(g4) . (45.8)

The corresponding diagrams, with sources removed, are shown in fig. (45.2).
For 〈0|TΨΨΨΨ|0〉C, the relevant tree-level contribution to iW (η, η, J)

is given by fig. (45.1)(d), which has a symmetry factor S = 2. We have

〈0|TΨα1(x1)Ψβ1(y1)Ψα2(x2)Ψβ2(y2)|0〉C

=
1

i

δ

δηα1
(x1)

i
δ

δηβ1(y1)

1

i

δ

δηα2
(x2)

i
δ

δηβ2(y2)
iW (η, η, J)

∣∣∣
η=η=J=0

.

(45.9)

The two η derivatives can act on the two η’s in the diagram in two different
ways; ditto for the two η derivatives. This results in four different terms,
but two of them are algebraic duplicates of the other two; this duplication
cancels the symmetry factor (which is a general result for tree diagrams).

Figure 15: Diagram corresponding to (12.11).

To derive an expression for the corresponding scattering amplitude, we need to

write down the LSZ reduction formula for fermionic fields. To do this, we recall that

the Dirac fields can be expanded as

 (x) =
X

s=±

Z
d3p

(2⇡)32p0
⇥
bs(p)us(p)e

�ipx + d†
s
(p)vs(p)e

ipx
⇤
, (12.12)

 (x) =
X

s=±

Z
d3p

(2⇡)32p0
⇥
b†
s
(p)us(p)e

ipx + ds(p)vs(p)e
�ipx

⇤
, (12.13)

where we associate b(†)s with the annihilation (creation) of an electron and d(†)s with the

annihilation (creation) of a positron. We then find that

bs(p) =

Z
d3xeipxus(p)�

0 (x) , (12.14)

b†
s
(p) =

Z
d3xe�ipx (x)�0us(p) , (12.15)

where we have used that

us(p)�
0us0(p) = 2E�s,s0 , (12.16)

us(p)�
0vs0(�p) = 0 , (12.17)

which can immediately be seen to hold for particles at rest from (10.57), and does hold

– 104 –

order to extract the correlation function, we arrive at

⌦
0|T ↵(x) �

(y)�(z1)�(z2)|0
↵
C
= �i(ig)2

Z
d4w1d

4w2

[S(x� w1)S(w1 � w2)S(w2 � y)]
↵�

�(z1 � w1)�(z2 � w2) + (z1 $ z2) . (12.11)

Due to freedom to act on either the J(z01) or J(z
0
2) terms in (12.6) with the scalar source

derivative, we have two contributions, depending on the ordering of the z1,2. These can
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for various two-body elastic scattering processes, such as e−ϕ → e−ϕ and
e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions
to connected correlation functions of the form 〈0|TΨΨϕϕ|0〉C. Other pro-
cesses of interest include e−e− → e−e− and e+e− → e+e−; for these, we
will need to evaluate the tree-level contributions to connected correlation
functions of the form 〈0|TΨΨΨΨ|0〉C.
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The two η derivatives can act on the two η’s in the diagram in two different
ways; ditto for the two η derivatives. This results in four different terms,
but two of them are algebraic duplicates of the other two; this duplication
cancels the symmetry factor (which is a general result for tree diagrams).
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To derive an expression for the corresponding scattering amplitude, we need to

write down the LSZ reduction formula for fermionic fields. To do this, we recall that

the Dirac fields can be expanded as
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where we associate b(†)s with the annihilation (creation) of an electron and d(†)s with the

annihilation (creation) of a positron. We then find that

bs(p) =

Z
d3xeipxus(p)�

0 (x) , (12.14)

b†
s
(p) =

Z
d3xe�ipx (x)�0us(p) , (12.15)

where we have used that

us(p)�
0us0(p) = 2E�s,s0 , (12.16)

us(p)�
0vs0(�p) = 0 , (12.17)

which can immediately be seen to hold for particles at rest from (10.57), and does hold
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To derive an expression for the corresponding scattering amplitude, we need to
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e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions
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To derive an expression for the corresponding scattering amplitude, we need to
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where we associate b(†)s with the annihilation (creation) of an electron and d(†)s with the

annihilation (creation) of a positron. We then find that
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for various two-body elastic scattering processes, such as e−ϕ → e−ϕ and
e+e− → ϕϕ; for these, we will need to evaluate the tree-level contributions
to connected correlation functions of the form 〈0|TΨΨϕϕ|0〉C. Other pro-
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but two of them are algebraic duplicates of the other two; this duplication
cancels the symmetry factor (which is a general result for tree diagrams).
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To derive an expression for the corresponding scattering amplitude, we need to

write down the LSZ reduction formula for fermionic fields. To do this, we recall that

the Dirac fields can be expanded as

 (x) =
X

s=±

Z
d3p

(2⇡)32p0
⇥
bs(p)us(p)e

�ipx + d†
s
(p)vs(p)e

ipx
⇤
, (12.12)

 (x) =
X

s=±

Z
d3p

(2⇡)32p0
⇥
b†
s
(p)us(p)e

ipx + ds(p)vs(p)e
�ipx

⇤
, (12.13)

where we associate b(†)s with the annihilation (creation) of an electron and d(†)s with the

annihilation (creation) of a positron. We then find that
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which can immediately be seen to hold for particles at rest from (10.57), and does hold
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To derive an expression for the corresponding scattering amplitude, we need to

write down the LSZ reduction formula for fermionic fields. To do this, we recall that

the Dirac fields can be expanded as

ψ(x) =
∑
s=±

∫
d3p

(2π)32p0

[
bs(p)us(p)e−ipx + d†s(p)vs(p)eipx

]
, (12.12)

ψ(x) =
∑
s=±

∫
d3p

(2π)32p0

[
b†s(p)us(p)eipx + ds(p)vs(p)e−ipx

]
, (12.13)

where we associate b
(†)
s with the annihilation (creation) of an electron and d

(†)
s with the

annihilation (creation) of a positron. We then find that

bs(p) =

∫
d3xeipxus(p)γ0ψ(x) , (12.14)

b†s(p) =

∫
d3xe−ipxψ(x)γ0us(p) , (12.15)

where we have used that

us(p)γ0us′(p) = 2Eδs,s′ , (12.16)

us(p)γ0vs′(−p) = 0 , (12.17)

which can immediately be seen to hold for particles at rest from (10.57), and does hold
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in general.

Given the above, the analogy of (7.2) for e.g. the b operator then becomes

b1(+∞)− b1(−∞) = i

∫
d4xeipx us1(p)(−i∂/+m)ψ(x) , (12.18)

b†1(+∞)− b†1(−∞) = −i
∫

d4xψ(x)(+i
←
∂/ +m)us(p)e−ipx (12.19)

and thus for electrons we must make the following replacements

bs(p)out → +i

∫
d4x eipxus(p)(−i∂/+m)ψ(x) , (12.20)

b†s(p)in → +i

∫
d4xψ(x)(+i

←
∂/ +m)us(p)e−ipx , (12.21)

where ‘in’ and ‘out’ denote incoming (t → −∞) and outgoing (t → +∞) states,

and the second relation follows after Hermitian conjugation. When we apply these

replacements, after the dust has settled the u and u spinors will be left over in the

scattering amplitude. This leads to the following Feynman rules for fermion fields: for

an incoming and outgoing fermion particle, we associate the spinors us(p) and us(p)

respectively.

For the scalar fields we have as before

a†(k)in → i

∫
d4xe−ikx(∂2 +m2)φ(x) , (12.22)

a(k)out → i

∫
d4xeikx(∂2 +m2)φ(x) . (12.23)

To evaluate the scattering amplitude

〈f |i〉 =
〈
0|Ta(k′)outbs′(p

′)outb
†
s(p)ina

†(k)in|0
〉
, (12.24)

we then apply these replacements and the usual identities (∂2
x+m2)∆(x−y) = δ4(x−y)

and (−i∂/x +m)S(x− y) = δ4(x− y), as well as replacing S(w1−w2) by its momentum

space version, to eliminate all integrals up to an overall momentum conserving delta

function. We find

iM(e−φ→ e−φ) = i(ig)2us′(p
′)

[
p/+ k/+m

(p+ k)2 −m2
+

p/− k/′ +m

(p− k′)2 −m2

]
us(p) . (12.25)

The corresponding Feynman diagrams are shown in Fig. 16. The Feynman rules for

drawing these are that we must, similar to the scalar QED case, draw a solid line
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with an arrow pointed towards (away from) the vertex for an incoming (outgoing)

particle. The allowed 3–point vertex must then have one arrow pointing towards and

one pointing away from the vertex; this corresponds to the only combination of fermion

fields allowed by the gψψφ interaction term, and ensures electric charge is preserved at

the vertex. We associate a factor of ig with every such vertex.

For internal fermion lines we also associate an arrow, which must be consistent

with the allowed 3–point vertex. As given by the derivation in Section 11.2, we then

associate a factor

i
p/+m

p2 −m2
, (12.26)

where p is the momentum flowing in the direction of the arrow. Putting these together

we can see that this is consistent with our result for the amplitude above.
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Figure 45.4: Diagrams for e−ϕ→ e−ϕ, corresponding to eq. (45.16).

bs′(p
′)out → i

∫
d4x e−ip′x us′(p

′)(−i/∂ + m)Ψ(x) , (45.13)

a†(k)in → i
∫

d4z1 e+ikz1(−∂2 + m2)ϕ(z1) , (45.14)

a(k′)out → i
∫

d4z2 e−ik′z2(−∂2 + m2)ϕ(z2) (45.15)

in eq. (45.11), and then use eq. (45.8). The wave operators (either Klein-
Gordon or Dirac) act on the external propagators, and convert them to
delta functions. After using eqs. (45.4) and (45.5) for the internal propa-
gators, all dependence on the various spacetime coordinates is in the form
of plane-wave factors, as in section 10. Integrating over the internal co-
ordinates then generates delta functions that conserve four-momentum at
each vertex. The only new feature arises from the spinor factors us(p) and
us′(p′). We find that us(p) is associated with the external fermion line
whose arrow points towards the vertex, and that us′(p′) is associated with
the external fermion line whose arrow points away from the vertex. We can
therefore draw the momentum-space diagrams of fig. (45.4). Since there is
only one fermion line in each diagram, the relative sign is positive. The
tree-level e−ϕ→ e−ϕ scattering amplitude is then given by

iTe−ϕ→e−ϕ = 1
i (ig)2 us′(p

′)

[
−/p − /k + m

−s + m2
+

−/p + /k′ + m

−u + m2

]

us(p) , (45.16)

where s = −(p+k)2 and u = −(p−k′)2. (We can safely ignore the iϵ’s in the
propagators, because their denominators cannot vanish for any physically
allowed values of s and u.)

Next consider the process e+ϕ→ e+ϕ. We now have

⟨f |i⟩ = ⟨0|T a(k′)outds′(p
′)outd

†
s(p)ina†(k)in |0⟩ . (45.17)

The relevant replacements are

d†s(p)in → −i
∫

d4x e+ipx vs(p)(−i/∂ + m)Ψ(x) , (45.18)

Figure 16: Diagram corresponding to (12.25).

What about for positron scattering, e+φ→ e+φ? We are now interested in

〈f |i〉 = 〈0|Ta(k′)outds′(p
′)outd

†
s(p)ina

†(k)in|0〉 , (12.27)

and the equivalent inversion to (12.14) becomes

d†s(p) =

∫
d3xe−ipxvs(p)γ0ψ(x) , (12.28)

ds(p) =

∫
d3xeipxψ(x)γ0vs(p) , (12.29)

where we have used

vs(p)γ0vs′(p) = 2Eδs,s′ , (12.30)

vs(p)γ0us′(−p) = 0 . (12.31)
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The equivalent LSZ replacements are therefore

d†s(p)in → −i
∫

d4xe−ipxvs(p)(−i∂/+m)ψ(x) , (12.32)

ds(p)out → −i
∫

d4xψ(x)(+i
←
∂/ +m)vs(p)eipx . (12.33)

This leads to the following Feynman rules for fermion fields: for outgoing (incoming)

fermion antiparticles, we draw a line with an arrow pointing towards (away from) the

vertex, and associate the spinors vs(p) (vs(p)). Note the difference in exponentials

for the Fourier transforms, which now have a minus sign relative to the electron case,

py → −py etc. For the Feynman rules this leads us to label the external anti–fermions

with minus the four–momenta that flows in the direction of the fermion arrow we draw,

consistently with the anti–particle interpretation, i.e. that the fermion arrow points in

the opposite direction to the corresponding particle12. We therefore arrive at

iM(e+φ→ e+φ) = i(ig)2vs(p)

[
−p/+ k/′ +m

(p− k′)2 −m2
+
−p/− k/+m

(p+ k)2 −m2

]
vs′(p

′) , (12.34)

The corresponding Feynman diagrams are shown in Fig. 17.

To emphasise, the incoming positron carries momentum p, which we label as −p
simply as this is defined as flowing in the direction of the fermion arrow, however in

the end we associate a spinor vs(p) associated with the momentum carried physically

by the anti–particle. Thus, in the left hand figure we have momenta p + k flowing

through the internal propagator, which we label as −p−k as the momentum is flowing

in the opposite direction to the fermion line. Such labelling can help in keeping track

of things, but is not essential. Rather we can simply remember to associate the spinors

as defined above, and keep track of the fact that the fermion propagator is defined in

(12.26) with the momentum flowing in the direction of the fermion arrow.45: The Feynman Rules for Dirac Fields 287

p  k

k k

p+kp p

k k

p p

Figure 45.5: Diagrams for e+ϕ→ e+ϕ, corresponding to eq. (45.22).

ds′(p
′)out → −i

∫
d4y Ψ(y)(+i

←
/∂ + m)vs′(p

′) e−ipy , (45.19)

a†(k)in → i
∫

d4z1 e+ikz1(−∂2 + m2)ϕ(z1) , (45.20)

a(k′)out → i
∫

d4z2 e−ikz2(−∂2 + m2)ϕ(z2) . (45.21)

We substitute these into eq. (45.17), and then use eq. (45.8). This ulti-
mately leads to the momentum-space Feynman diagrams of fig. (45.5). Note
that we must now label the external fermion lines with minus their four-
momenta; this is characteristic of d-type particles. (The same phenomenon
occurs for a complex scalar field; see problem 10.2.) Regarding the spinor
factors, we find that −vs(p) is associated with the external fermion line
whose arrow points away from the vertex, and −vs′(p

′) with the external
fermion line whose arrow points towards the vertex. The minus signs at-
tached to each v and v can be consistently dropped, however, as they only
affect the overall sign of the amplitude (and not the relative signs among
contributing diagrams). The tree-level expression for the e+ϕ → e+ϕ am-
plitude is then

iTe+ϕ→e+ϕ = 1
i (ig)2 vs(p)

[
/p − /k′ + m

−u + m2
+

/p + /k + m

−s + m2

]

vs′(p
′) , (45.22)

where again s = −(p + k)2 and u = −(p − k′)2.
After working out a few more of these (you might try your hand at

some of them before reading ahead), we can abstract the following set of
Feynman rules.

1. For each incoming electron, draw a solid line with an arrow pointed
towards the vertex, and label it with the electron’s four-momentum,
pi.

2. For each outgoing electron, draw a solid line with an arrow pointed
away from the vertex, and label it with the electron’s four-momentum,
p′i.

�p+ k0�p� k

Figure 17: Diagram corresponding to (12.34).

12There is an additional overall minus sign in front of the integral, and so technically we should
associate −vs′(p′) with an external fermion line etc, however this is attached to each v and v con-
sistently and can only affect the overall sign of the amplitude (rather than the relative sign between
amplitudes). This can therefore be dropped.
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12.3 e±e± → e±e± scattering
45: The Feynman Rules for Dirac Fields 285
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Figure 45.3: Diagrams corresponding to eq. (45.10).

We get

⟨0|TΨα1(x1)Ψβ1(y1)Ψα2(x2)Ψβ2(y2)|0⟩C

=
(

1
i

)5
(ig)2

∫
d4w1 d4w2

× [S(x1−w1)S(w1−y1)]α1β1

× ∆(w1−w2)

× [S(x2−w2)S(w2−y2)]α2β2

−
(
(y1,β1) ↔ (y2,β2)

)
+ O(g4) . (45.10)

The corresponding diagrams, with sources removed, are shown in fig. (45.3).
Note that we now have a relative minus sign between the two diagrams,
due to the anticommutation of the derivatives with respect to η.

In general, the overall sign for a diagram can be determined by the
following procedure. First, draw each diagram with all the fermion lines
horizontal, with their arrows pointing from left to right, and with the left
endpoints labeled in the same fixed order (from top to bottom). Next, in
each diagram, note the ordering (from top to bottom) of the labels on the
right endpoints of the fermion lines. If this ordering is an even permutation
of an arbitrarily chosen fixed ordering, then the sign of that diagram is
positive, and if it is an odd permutation, the sign is negative. (This rule
arises because endpoints with arrows pointing away from the vertex come
from derivatives with respect to η that anticommute. Of course, we could
equally well put the right endpoints in a fixed order, and get the sign from
the permutation of the left endpoints, which come from derivatives with
respect to η that anticommute.) Also, in loop diagrams, a closed fermion
loop yields an extra minus sign; we will discuss this rule in section 51.

Let us now consider a particular scattering process: e−ϕ → e−ϕ. The
scattering amplitude is

⟨f |i⟩ = ⟨0|T a(k′)outbs′(p
′)outb

†
s(p)ina

†(k)in |0⟩ . (45.11)

Next we make the replacements

b†s(p)in → i
∫

d4y Ψ(y)(+i
←
/∂ + m)us(p) e+ipy , (45.12)

Figure 18: Diagram corresponding to (12.36).

For this process we are interested in〈
0|Tψα1(x1)ψβ1(y1)ψα2(x2)ψβ2(y2)|0

〉
=

1

i

δ

δηα1
(x1)

i
δ

δηβ1(y1)

1

i

δ

δηα2
(x2)

i
δ

δηβ2(y2)
iW (η, η, J)|η,η,J=0 . (12.35)

To evaluate this, we will expand the exponent of (12.2) to second order as before. The

result is〈
0|Tψα1(x1)ψβ1(y1)ψα2(x2)ψβ2(y2)|0

〉
=

− i(ig)2

∫
d4w1d4w2 [S(x1 − w1)S(w1 − y1)]α1β1

∆(w1 − w2) [S(x2 − w2)S(w2 − y2)]α2β2

− ((y1, β1)↔ (y2, β2)) , (12.36)

and is shown diagrammatically in Fig. 18.

Notice we have a relative minus sign between the two contributions when we swap

the fermion labelings. Where does this come from? To give the second contribution

we swap the source terms acted on by the two η derivatives, which corresponds to

evaluating the first contribution as before, but with the relabelling (y1, β1) ↔ (y2, β2)

in (12.35). However, these derivates anti–commute, and we have

1

i

δ

δηα1(x1)
i

δ

δηβ1(y1)

1

i

δ

δηα2(x2)
i

δ

δηβ2(y2)
= −1

i

δ

δηα1(x1)
i

δ

δηβ2(y2)

1

i

δ

δηα2(x2)
i

δ

δηβ1(y1)
.

(12.37)

Thus the second contribution can be written down by simply interchanging the y and

β labels in the first term on the right hand side of (12.36), but with an additional

overall minus sign included. Thus at the level of the Feynman rules the anticommuting

nature of the fermionic fields leads directly to the spin–statistics connection; when we

interchange identical fermions, we must include a relative minus sign. To account for

this in the Feynman rules, we can draw each diagram in standard form, that is with
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all fermion lines drawn horizontal and their arrows pointing left to right, with the left

end points in some fixed order. If the ordering of the labelling of the right endpoints

of the fermion lines is an even (odd) permutation of some arbitrarily chosen ordering,

the relative sign is positive (negative).

Thus, for e−e− → e−e− the two diagrams are shown in Fig. 19, and we can see that

there is indeed a relative minus sign. Similarly for e+e− → e+e− the two diagrams are

shown in Fig. 20, and we can again see that there is a relative minus sign.
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Figure 45.7: Diagrams for e−e− → e−e−, corresponding to eq. (45.24).

p1

p1 p1

p2 p2

p1 p1

p2

p1

p2

p1 p2+

Figure 45.8: Diagrams for e+e− → e+e−, corresponding to eq. (45.25).

where u1 is short for us1(p1), etc., and t = −(p1 − p′1)
2, u = −(p1 − p′2)

2.
One more: e+e− → e+e−. Let the initial electron and positron have

four-momenta p1 and p2, respectively, and the final electron and positron
have four-momenta p′1 and p′2, respectively. The relevant diagrams are
shown in fig. (45.8). If we redraw them in the the standard form of rule
#11, as shown in fig. (45.9), we see that the relative sign is negative. Thus
the result is

iTe+e−→e+e− = 1
i (ig)2

[
(u ′1u1)(v2v′2)

−t + M2
− (v2u1)(u ′1v

′
2)

−u + M2

]
, (45.25)

p2p1

p1 p1

p2 p2 p2 p1

p1

p1 p2

p1

Figure 45.9: Same as fig. (45.8), but with the diagrams redrawn in the
standard form given in rule #11.

Figure 19: Feynman diagrams for e−e− → e−e−.
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where u1 is short for us1(p1), etc., and t = −(p1 − p′1)
2, u = −(p1 − p′2)

2.
One more: e+e− → e+e−. Let the initial electron and positron have

four-momenta p1 and p2, respectively, and the final electron and positron
have four-momenta p′1 and p′2, respectively. The relevant diagrams are
shown in fig. (45.8). If we redraw them in the the standard form of rule
#11, as shown in fig. (45.9), we see that the relative sign is negative. Thus
the result is

iTe+e−→e+e− = 1
i (ig)2

[
(u ′1u1)(v2v′2)

−t + M2
− (v2u1)(u ′1v

′
2)

−u + M2

]
, (45.25)
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Figure 45.9: Same as fig. (45.8), but with the diagrams redrawn in the
standard form given in rule #11.
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2, u = −(p1 − p′2)

2.
One more: e+e− → e+e−. Let the initial electron and positron have

four-momenta p1 and p2, respectively, and the final electron and positron
have four-momenta p′1 and p′2, respectively. The relevant diagrams are
shown in fig. (45.8). If we redraw them in the the standard form of rule
#11, as shown in fig. (45.9), we see that the relative sign is negative. Thus
the result is

iTe+e−→e+e− = 1
i (ig)2

[
(u ′1u1)(v2v′2)

−t + M2
− (v2u1)(u ′1v

′
2)

−u + M2

]
, (45.25)

p2p1

p1 p1

p2 p2 p2 p1
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Figure 45.9: Same as fig. (45.8), but with the diagrams redrawn in the
standard form given in rule #11.

Figure 20: Feynman diagrams for e+e− → e+e−, with the standard ordering shown in the
right.

12.4 Fermion Loops
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l
k k k k

l

k k

 k+l

Figure 51.1: The one-loop and counterterm corrections to the scalar prop-
agator in Yukawa theory.

We can also write the exact fermion propagator in the form

S̃(/p)−1 = /p + m − iϵ− Σ(/p) , (51.11)

where iΣ(/p) is given by the sum of 1PI diagrams with two external fermion
lines, and the external propagators removed. The fact that S̃(/p) has a pole
at /p = −m with residue one implies that Σ(−m) = 0 and Σ′(−m) = 0; this
fixes the coefficients ZΨ and Zm.

We proceed to the diagrams. The Yukawa vertex carries a factor of
i(iZgg)γ5 = −Zggγ5. Since Zg = 1 + O(g2), we can set Zg = 1 in the
one-loop diagrams.

Consider first Π(k2), which receives the one-loop (and counterterm)
corrections shown in fig. (51.1). The first diagram has a closed fermion loop.
As we will see in problem 51.1 (and section 53), anticommutation of the
fermion fields results in an extra factor of minus one for each closed fermion
loop. The spin indices on the propagators and vertices are contracted in
the usual way, following the arrows backwards. Since the loop closes on
itself, we end up with a trace over the spin indices. Thus we have

iΠΨ loop(k2) = (−1)(−g)2
(

1
i

)2 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ+/k)γ5S̃(/ℓ)γ5

]
, (51.12)

where

S̃(/p) =
−/p + m

p2 + m2 − iϵ
(51.13)

is the free fermion propagator in momentum space.
We now proceed to evaluate eq. (51.12). We have

Tr[(−/ℓ− /k + m)γ5(−/ℓ+ m)γ5] = Tr[(−/ℓ− /k + m)(+/ℓ+ m)]

= 4[(ℓ + k)ℓ+ m2]

≡ 4N . (51.14)

Figure 21: Fermion loop.

Another consequence of the anticommuting nature of the Dirac fields is that we

must in fact introduce an additional minus sign for every Fermion loop. Writing

1

i

δ

δJ(x)
≡ δφx , i

δ

δηα(x)
≡ δηαx ,

1

i

δ

δηα(x)
≡ δηαx , (12.38)
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then for the loop shown in Fig. 21 we are interested in

Z(η, η, J) ∼ 1

2
(ig)2

∫
d4xd4y(δφxδ

ηα
x δ

ηα
x )(δφy δ

ηβ
y δ

ηβ
y )Z0[J, η, η] , (12.39)

If we consider first the derivatives with respect to the spinor source terms, we find

(δηαx δ
ηα
x )(δ

ηβ
y δ

ηβ
y )ei

∫
d4x1d4y1η(x1)S(x1−y1)η(y1) = Tr [S(x− y)S(y − x)] ei[··· ] , (12.40)

where the trace is performed over the spinor indices, and as usual we drop terms

∼ SF (0), which will give disconnected contributions. On the other hand, if we were to

consider the equivalent expression for a bosonic loop, we would have a term proportional

to

(δφxδ
φ
x)(δφy δ

φ
y )e

i
2

∫
d4x1d4y1J(x1)∆(x1−y1)J(y1) = −∆(x− y)∆(y − x)ei[··· ] . (12.41)

The crucial point is the relative minus sign between these two expressions, which comes

from the anticommutation of the η and η fields, and is absent in the scalar case. Thus

we have that there is a relative minus sign between bosonic and fermionic loops. This

leads to the Feynman rule that we should introduce (−1) for every fermion loop, again

encoding the spin–statistics connection.

12.5 Summary of Feynman Rules

The momentum–space Feynman rules for fermionic fields are summarised below:

• For an incoming fermion particle, draw a line with an arrow directed towards the

vertex, and associate the spinor us(p), where p is directed along the arrow.

• For an outgoing fermion particle, draw a line with an arrow directed away from

the vertex, and associate the spinor us(p), where p is directed along the arrow.

• For an incoming fermion antiparticle, draw a line with an arrow directed away

from the vertex, and associate the spinor vs(p), where −p is directed along the

arrow.

• For an outgoing fermion antiparticle, draw a line with an arrow directed towards

the vertex, and associate the spinor vs(p), where −p is directed along the arrow.

• For Yukawa theory, we associate a factor of ig with every scalar–fermion–antifermion

vertex.
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• For each internal fermion, associate the propagator

i
p/+m

p2 −m2 + iε
, (12.42)

where p is the momentum pointing along the direction of the fermion arrow (this

must be drawn so that these consistently match with the fermion arrows of the

external states).

• Account for relative minus signs when swapping identical fermions in the final

state by writing diagrams in standard form (or otherwise).

• Associate an additional factor of −1 with each fermion loop.

13. Spinor Technology

In the previous section we derived the Feynman rules for fermions and the corresponding

amplitudes for some of the basic processes, such as e±φ→ e±φ, within our toy Yukawa

theory. We will now consider in a little more detail how to relate these to the sort of

observables we might actually measure.

13.1 e−φ→ e−φ and spin sums

From Section 12.3, see Fig. 16, we found that the amplitude for e−(p)φ(k)→ e−(p′)φ(k′)

scattering is given at leading order by

M(e−φ→ e−φ) = −g2us′(p
′)

[
p/+ k/+m

(p+ k)2 −m2
+

p/− k/′ +m

(p− k′)2 −m2

]
us(p) ≡ u′Au ,

(13.1)

where we use the shorthand us′ = u′, us = u, and

A ≡ −g2

[
p/+ k/+m

(p+ k)2 −m2
+

p/− k/′ +m

(p− k′)2 −m2

]
,

= −g2

[
k/+ 2m

s−m2
+
−k/′ + 2m

u−m2

]
, (13.2)

in this particular instance, but expressions of this type will occur quite generically. Here

in the second step we have also introduced the usual Mandelstam variables s = (p+k)2

and u = (p − k′)2, and used the Dirac equation p/u(p) = mu(p) to simplify things a

little. The first step to calculating an observable is of course to square the amplitude
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above. Considering

M∗ = (u′)T (γ0)∗A∗u∗ = u†A†γ0u′ = uAu′ , (13.3)

where we have defined A ≡ γ0A†γ0. Now, using (γ0)† = γ0, (γi)† = −γi and the usual

anticommutation relation, we find

γ0(γµ)† = γµγ0 , (13.4)

and thus in general we find that

a1/ · · · an/ = an/ · · · a1/ , (13.5)

that is, this operation simply corresponds to reversing the ordering of the gamma

matrices within A. For our particularly simple case we therefore have A = A. In

general, the squared amplitude will take the form

|M|2 = (u′Au)(uAu′) , (13.6)

= u′αAαβuβuγAγδu
′
δ , (13.7)

= (u′δu
′
α)Aαβ(uβuγ)Aγδ , (13.8)

= Tr
[
(u′u′)A(uu)A

]
, (13.9)

where we have included the spinor indices in the intermediate steps for clarity, and

where in the last line the trace is then performed over these.

Thus we are left having to calculate the u′u′ and uu, which are in general non–

trivial matrices in spinor space that depend on the momenta and spins of the particles.

However, in practice we are often not interested in measuring, or find it difficult to

measure, the individual spin states of the particles. In a collider, for example, it is

quite common for the incoming particle beams to be unpolarized, while in the detector

for many observables we are not interested in the spin of the produced particles, if

these can be measured at all. Our observable is therefore defined by summing over the

spins in the final state and averaging over those in the initial state (i.e. summing and

dividing by the number of possible spin states). In the present case, we therefore have

〈
|M|2

〉
≡ 1

2

∑
s,s′

|M|2 , (13.10)

where the 2 corresponds to the spin states of the initial–state electron; if we were

instead considering e+e− → e+e− this would become a 4.
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At this point, the spin sums (10.62) we wrote down in the previous section become

very useful. We can directly apply them to the above, giving

〈
|M|2

〉
=

1

2
Tr [(p/′ +m)A(p/+m)A] , (13.11)

where we have substituted A = A for concreteness. This is now given purely as a trace

over gamma matrices, without any need to write down an explicit form for the spinors

u; this is always the case when we consider spin summed/average results, and greatly

simplifies things. Writing everything out explicitly, we have

〈
|M|2

〉
= g4

[
〈Φss〉

(s−m2)2
+
〈Φsu〉+ 〈Φus〉

(s−m2)(u−m2)
+

〈Φuu〉
(u−m2)2

]
, (13.12)

where

〈Φss〉 =
1

2
Tr [(p/′ +m)(k/+ 2m)(p/+m)(k/+ 2m)] , (13.13)

〈Φus〉 =
1

2
Tr [(p/′ +m)(−k/′ + 2m)(p/+m)(k/+ 2m)] , (13.14)

〈Φsu〉 =
1

2
Tr [(p/′ +m)(k/′ + 2m)(p/+m)(−k/′ + 2m)] , (13.15)

〈Φuu〉 =
1

2
Tr [(p/′ +m)(−k/′ + 2m)(p/+m)(−k/′ + 2m)] . (13.16)

To go any further, we must derive some useful identities for the traces of gamma

matrices, known as Trace Theorems.

13.2 Trace Theorems

Using the basic results

{γµ, γν} = 2gµν · 1 , Tr(1) = 4 , (13.17)

along with the properties of the γ5 matrix

{γ5, γ
µ} = 0 , γ2

5 = 1 , (13.18)

combined with the cyclicity of the trace, it is possible to derive some very useful iden-

tities for the trace of gamma matrices. First, we have

Tr(γµ) = Tr(γ2
5γ

µ) = Tr(γ5γ
µγ5) = Tr(−γ2

5γ
µ) = −Tr(γµ) , (13.19)
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where in the first step we have inserted the identity γ2
5 = 1, in the second we have used

the cyclicity of the trace, in the third we have anticommuted the γ5 and γµ and then

in the last line used γ2
5 = 1 again. Thus the gamma matrices must be traceless. In

fact, we have seen that this is the case for the explicit representation (10.27) we have

used; as other representations are related by a unitary transformation U−1γµU , then if

this holds in one representation, it must hold in all of them. This result can readily be

generalised, and we find

Tr(odd no. of γµs) = 0 . (13.20)

So the first non–trivial trace we can consider is

Tr(γµγν) =
1

2
Tr(γµγν + γνγµ) = gµν · Tr1 = 4gµν , (13.21)

where we have used the cyclicity of the trace in the first step, substituted the usual

anticommutation relation in the second and then evaluated the trace of the unit matrix.

Quite trivially, this leads to

Tr(a/b/) = 4(ab) , (13.22)

for arbitrary 4–vectors a and b. By repeated application of the anticommutation rela-

tion, it is possible to determine expressions for any arbitrary even number of gamma

matrices. For example, we have

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) , (13.23)

and thus

Tr(a/b/c/d/) = 4((ab)(cd)− (ac)(bd) + (ad)(bc)) . (13.24)

Writing γ5 = iγ0γ1γ2γ3, then this immediately implies that

Tr(γ5) = 0 . (13.25)

It can also be shown that

Tr(γ5γ
µγν) = 0 , Tr(γ5γ

µγνγργσ) = −4iεµνρσ . (13.26)

Finally, we will sometimes encounter the contraction

γµγµ = gµνγ
µγν =

1

2
gµν{γµ, γν} = gµνgµν · 1 = D · 1 , (13.27)

where we quote the general D–dimensional result, which will be useful when evaluating
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loop calculations. In a similar way we then have

γµa/γµ = (2−D)a/ , (13.28)

and so on.

13.3 e−φ→ e−φ revisited

We now have the tools to calculate the spin–averaged amplitude squared (13.12) for

the e−φ → e−φ process. We can in particular use (13.21) and (13.23) to evaluate the

traces (13.13)–(13.16). To do this, we make use of the following results

(pk) = (p′k′) =
1

2
(s−m2 −M2) , (13.29)

(pp′) =
1

2
(2m2 − t) , (13.30)

(kk′) =
1

2
(2M2 − t) , (13.31)

(p′k) = (pk′) =
1

2
(m2 +M2 − u) , (13.32)

where m (M) are the fermion (scalar) particle masses. Then after some fairly tedious

algebra, we arrive at

〈Φss〉 = −su+m2(9s+ u) + 7m4 − 8m2M2 +M4 , (13.33)

〈Φuu〉 = −su+m2(9u+ s) + 7m4 − 8m2M2 +M4 , (13.34)

〈Φsu〉 = 〈Φus〉 = su+ 3m2(s+ u) + 9m4 − 8m2M2 −M4 . (13.35)

We can see that 〈Φuu〉 is directly related to 〈Φss〉 upon the simple interchange of u↔ s,

as we would expect from simple observation of the explicit expressions, which are related

by k → −k′. This sort of observation can be very helpful when calculating matrix

elements such as these, as it avoids us having to do essentially the same calculation

twice.

We can then use these, combined with (7.51) to calculate the differential cross

section for unpolarized e−φ→ e−φ scattering, with

dσ

dΩ
=

g4

64π2s

[
〈Φss〉

(s−m2)2
+
〈Φsu〉+ 〈Φus〉

(s−m2)(u−m2)
+

〈Φuu〉
(u−m2)2

]
. (13.36)

13.4 Second example: e+e− → e+e− scattering

As another example of the application of trace theorems, we consider the slightly more
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complicated case of e+(p1)e−(p2) → e+(p′1)e−(p′2) scattering, shown in Fig. 20. In a

similar way, we arrive at

〈
|M|2

〉
= g4

[
〈Φss〉

(s−M2)2
− 〈Φst〉+ 〈Φts〉

(s−M2)(t−M2)
+

〈Φtt〉
(t−M2)2

]
. (13.37)

Note the relative minus sign, which is due to the interchange of identical fermions

between the s and t–channel diagrams. We have

〈Φss〉 =
1

4
Tr [(p/1 +m)(p/2 −m)] Tr [(p/′2 −m)(p/′1 +m)] , (13.38)

〈Φtt〉 =
1

4
Tr [(p/1 +m)(p/′1 +m)] Tr [(p/′2 −m)(p/2 −m)] , (13.39)

〈Φst〉 =
1

4
Tr [(p/1 +m)(p/′1 +m)(p/′2 −m)(p/2 −m)] , (13.40)

〈Φts〉 =
1

4
Tr [(p/1 +m)(p/2 −m)(p/′2 −m)(p/′1 +m)] , (13.41)

where the factor of 4 is due to the 2 spin states of both incoming fermions. To give one

explicit example of the kind of thing we need to do, we find

Tr [(p/1 +m)(p/2 −m)] = Tr [p/1p/2]−m2Tr1 , (13.42)

= 4(p1p2)− 4m2 = 2s− 8m2 . (13.43)

The other traces can be calculated in a similar way, and here we will simply quote the

result: 〈
|M|2

〉
= g4

[
(s− 4m2)2

(s−M2)2
+

st− 4m2u

(s−M2)(t−M2)
+

(t− 4m2)2

(t−M2)2

]
, (13.44)

which can readily be used to calculate the corresponding cross section, as in (13.36).

These calculations can be somewhat lengthy when done by hand, but as promised no

explicit form for the spinors themselves is required. In addition, the rules for evaluating

these traces are simple and readily amenable to implementation in a computer, via

symbolic manipulation programs such as FORM.

14. Quantum Electrodynamics

14.1 Lagrangian

In Section 5 we introduced the concept of a local U(1) gauge symmetry, and demon-

strated that by requiring the Lagrangian for a free complex scalar field obey such a
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symmetry, we are led to the introduction of a photon field and hence the theory of

scalar QED. Having now discussed the case of fermionic fields, we are ready to build

up the full theory of QED, the theory of fermionic and photon fields, in an exactly

analogous way. In what follows we will only consider one type (known as a flavour) of

fermion, which we will take to be the electron for concreteness. In the Standard Model,

there are in fact three flavours of such fermions (the e, µ, τ leptons), identical up to

their differing masses, but the results which follow readily generalise to this case.

We start as before with the free Lagrangian, given by

L = iψ∂/ψ −mψψ . (14.1)

Considering the global transformations (with q = −e)

ψ → e−ieαψ , ψ → eieαψ , (14.2)

we can immediately see that these leave the Lagrangian invariant, and it us straight-

forward to derive the corresponding conserved current

jµ = eψγµψ , (14.3)

where we have as before dropped the factor of α in defining our normalization. In

exactly the same way as for the scalar QED case we then promote this global symmetry

to a local symmetry, α→ α(x), and introduce the covariant derivative

Dµ = ∂µ + ieAµ , (14.4)

with

Aµ → Aµ + ∂µα(x) , (14.5)

to ensure that the Lagrangian is invariant under this local U(1) gauge symmetry. We

thus get

LQED = iψD/ψ −mψψ − 1

4
F µνFµν , (14.6)

= iψ∂/ψ −mψψ − Aµjµ −
1

4
F µνFµν , (14.7)

where we have added in the required kinetic term for the photon field. This is the full

Lagrangian for QED, and as you can see, it is quite simple! We can in particular see

that, due to the simple linear form of the kinetic term for the fermion field, imposing

gauge symmetry has introduced a single interaction term between the photon and
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fermion fields

LI = −Aµjµ = −eψA/ψ . (14.8)

Thus the fields couple directly to the current jµ, often known for this reason as the

EM current. This is in contrast to the scalar QED case, for which the kinetic term

in the fields was quadratic in derivatives and a contact γγφφ∗ term was present; the

equivalent interaction for fermion fields would not be gauge invariant, and is absent

here.

14.2 Discrete Symmetries of QED

As well as an overall Lorentz symmetry, there are a set of discrete transformations

under which our Lagrangian can (or cannot) be invariant, namely charge conjugation

(C), parity (P) and time reversal (T). We will discuss P and C explicitly here, and will

in particular show that QED is both C and P invariant. A treatment of T reversal

can in found in many textbooks, and will be omitted for brevity here. Moreover, the

CPT Theorem tells us that any basically sensible quantum field theory (which obeys

Lorentz invariance, is local and has a Hermitian Hamiltonian) must be invariant under

the combined CPT transformation. Thus the T symmetry of any such theory is directly

connected to its CP symmetry.

Parity

This is a discrete symmetry also contained within the Lorentz group, corresponding to

a simple spatial reflection, i.e.

(x0,x)→ (x0,−x) . (14.9)

In addition to this, fields can have their own transformation properties. For example,

for a real scalar field

φ(t,x)→ ηφ(t,−x) , (14.10)

where η = ±1 are both options consistent with the basic requirement that two parity

transformations should return us the identity (i.e. P 2 = 1). Here η is known as the

intrinsic parity of the field. η = +1 corresponds to a scalar state, with even intrinsic

parity (such as the SM Higgs Boson), and η = −1 corresponds to a pseudoscalar state

with odd parity (such as a neutral pion).

For a vector field we again have two possibilities

A0(t,x) = ±A0(t,−x) , Ai(t,x) = ∓Ai(t,−x) , (14.11)
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In this case, if Ai → −Ai we say that Aµ has odd parity P = −1 and transforms

as a vector, as this is how a standard 4–vector such as ∂µ transforms. For Ai → Ai
we say that Aµ has even parity P = +1 and transforms as an axial–vector. Given

that our photon field transforms as Aµ → Aµ + ∂µα(x) under a gauge transformation,

then for a scalar function α(x), for consistency we require the photon to transform in

the same way as the vector ∂µ and therefore to have odd parity (this is also observed

experimentally to be the case).

How does a spinor transform under parity? Such a reflection leaves the direction

of rotation unchanged but swaps the boost direction, with

Ji → Ji , Ki → −Ki . (14.12)

A more precise statement of the above result is that indeed in the 4–vector represen-

tation, the matrix P = diag(1,−1,−1,−1), which produces a parity transformation,

commutes with the rotation generators, Ji, but not with the boost generators, Ki. We

therefore have from (10.16) that a parity transformation give N+
i ↔ N−i and therefore

this interchanges ψL ↔ ψR (see also (10.24)). In terms of a Dirac spinor, we can see

that this simply corresponds to

P : ψ → γ0ψ , (14.13)

which indeed swaps ψL ↔ ψR, and is also consistent with the fact that two parity

transformations should return us the identity, as γ2
0 = 1.

From (14.13), we find

P : ψψ → ψ†γ0γ0γ0ψ = ψψ , (14.14)

P : ψγµψ → ψ†γ0γ0γ
µγ0ψ = ψ(γµ)†ψ , (14.15)

where we have suppressed the inversion of the x arguments after the transformation

for simplicity, and in the second case we have used (13.4). Thus in the second case this

transforms as a vector, with odd parity. Thus, when we combine these this with the

photon fields to give the QED interaction term, we have that the Dirac Lagrangian is

even under a parity transformation. Physically, this tells us that QED preserves parity,

i.e. it treats left and right handed fermion fields identically. On the other hand we

have

P : ψγµγ5ψ → ψ†γ0γ0γ
µγ5γ0ψ = −ψ(γµ)†γ5ψ , (14.16)

and therefore this axial–vector current JµA = ψγµγ5ψ transforms in the opposite way

to the vector current JµV = ψγµψ. As a result the weak interaction, which involves the
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JµV − J
µ
A, or V − A current, does not conserve parity.

Charge Conjugation

Another discrete operation of interest, not directly related to spacetime, is charge

conjugation. This corresponds simply to the interchange of a particle with its anti–

particle. Taking

C : ψ → −iγ2ψ∗ , (14.17)

we find that this indeed corresponds to interchanging u± ↔ v±, as required, with the

complex conjugation needed to be consistent with the relative minus sign in the eipx

for the field decomposition (10.53). After some algebra, we find that

C : ψψ → ψψ , (14.18)

C : ψ∂/ψ → ψ∂/ψ . (14.19)

Note that to show these results we must make use of the fact that these fields ψ

are Grassmann valued, i.e. they anticommute. Thus the free Dirac Lagrangian is C

invariant. On the other hand we have

C : ψγµψ → −ψγµψ , (14.20)

where the relative minus sign compared to the expression above is due to the derivative

acting on the complex conjugated ψ∗ in the former case. Thus QED will only be

invariant under charge conjugation, as it is observed to be, if the photon has odd

C–parity, i.e.

C : Aµ → −Aµ . (14.21)

This may seem strange for a real field, which is its own antiparticle, however the point

is that the photon couples to the electric charge of the fermionic fields. As charge

conjugation flips the sign of this, to keep everything invariant under C the photon

must transform in this way. Finally, the axial–vector current again transforms in the

opposite way to the vector, with

C : ψγµγ5ψ → ψγµγ5ψ . (14.22)

Once again, this plays an important role in the case of the weak interaction.

14.3 Feynman Rules

To derive the Feynman rules for QED, we can apply the same approach described in
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Sections 7.2 and 11.2. In particular, (7.16) becomes

Z[J, η, η] = exp

[
−ie

∫
d4x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
γµαβ

(
1

i

δ

δηβ(x)

)]
Z0[J, η, η] ,

(14.23)

where the generating functional for the free theory is given by

Z0[J, η, η] = Z0[0, 0, 0] exp

[
i

∫
d4xd4y η(x)S(x− y)η(y)

]
· exp

[
i

2

∫
d4xd4yJµ(x)∆µν(x− y)Jν(y)

]
, (14.24)

with the free propagators given by (11.47) and (6.26).

In fact, we have already written down the required Feynman rules from our analysis

of scalar QED and Yukawa theory, with the single exception of the γψψ interaction

vertex. This could be derived in the usual way, but up to overall factors can be simply

read off from the Lagrangian. We find that we should associate a factor of

−ieγµ , (14.25)

with every interaction vertex (recall here that e is defined as being positive).

The Feynman rules are summarised below:

• For an incoming fermion particle, draw a line with an arrow directed towards the

vertex, and associate the spinor us(p), where p is directed along the arrow.

• For an outgoing fermion particle, draw a line with an arrow directed away from

the vertex, and associate the spinor us(p), where p is directed along the arrow.

• For an incoming fermion antiparticle, draw a line with an arrow directed away

from the vertex, and associate the spinor vs(p), where −p is directed along the

arrow.

• For an outgoing fermion antiparticle, draw a line with an arrow directed towards

the vertex, and associate the spinor vs(p), where −p is directed along the arrow.

• For each internal fermion, associate the propagator

i
p/+m

p2 −m2 + iε
, (14.26)
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where p is the momentum pointing along the direction of the fermion arrow (this

must be drawn so that these consistently match with the fermion arrows of the

external states).

• Account for relative minus signs when swapping identical fermions in the final

state by writing diagrams in standard form (or otherwise).

• Associate an additional factor of −1 with each fermion loop.

• For every incoming (outgoing) photon, associate a polarization vector εµλi (εµ∗λi ).

• For every internal photon, associate a factor

−i
gµν − (1− ξ) pµpν

p2

p2 + iε
. (14.27)

where p is the momentum carried by the photon, for general gauge parameter ξ.

• The only allowed vertex connects a photon to a fermion line with one arrow

pointing towards the vertex and one pointing away. We associate a factor

−ieγµ , (14.28)

with this.

We now move on to consider the application of these Feynman rules to specific

processes.

14.4 Scattering in QED: e+e− → γγ59: Scattering in Spinor Electrodynamics 352
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Figure 59.1: Diagrams for e+e− → γγ, corresponding to eq. (59.1).

We would also like to sum over the final photon polarizations. From
eq. (59.8), we see that we must evaluate

∑

λ=±
εµλ(k)ερ∗λ (k) . (59.9)

We did this polarization sum in Coulomb gauge in section 56, with the
result that ∑

λ=±
εµ
λ(k)ερ∗λ (k) = gµρ + t̂µt̂ρ − ẑµẑρ , (59.10)

where t̂µ is a unit vector in the time direction, and ẑµ is a unit vector in
the k direction that can be expressed as

ẑµ =
kµ + (t̂·k)t̂µ

[k2 + (t̂·k)2]1/2
. (59.11)

It is tempting to drop the kµ and kρ terms in eq. (59.10), on the grounds
that the photons couple to a conserved current, and so these terms should
not contribute. (We indeed used this argument to drop the analogous
terms in the photon propagator.) This also follows from the notion that
the scattering amplitude should be invariant under a gauge transformation,
as represented by a transformation of the external polarization vectors of
the form

εµλ(k) → εµ
λ(k) − iΓ̃(k)kµ . (59.12)

Thus, if we write a scattering amplitude T for a process that includes a
particular outgoing photon with four-momentum kµ as

T = εµλ(k)Mµ , (59.13)

or a particular incoming photon with four-momentum kµ as

T = εµ∗λ (k)Mµ , (59.14)

Figure 22: Leading–order Feynman diagrams for e+e− → γγ.

To demonstrate the techniques we will need to calculate observables in QED, we

start by considering the tree–level e+(p1)e−(p2) → γ(k1)γ(k2) scattering process. The
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two contributing diagrams are shown in Fig. 22. We have

M = −e2εµ∗1 ε
ν∗
2 v(p2)

[
γν

p/1 − k/1 +m

(p1 − k1)2 −m2
γµ + γµ

p/1 − k/2 +m

(p1 − k2)2 −m2
γν

]
u(p1) . (14.29)

Squaring the amplitude (see Section 13.1), we find

|M|2 = εµ∗1 ε
ν∗
2 ε

ρ
1ε
σ
2 (v2Aµνu1)(u1Aρσv2) , (14.30)

where we define

Aµν = −e2

[
γν

p/1 − k/1 +m

(p1 − k1)2 −m2
γµ + γµ

p/1 − k/2 +m

(p1 − k2)2 −m2
γν

]
. (14.31)

Now, from (13.5) we have that Aµν = Aνµ, and averaging over the spin states of the

incoming fermions we arrive at

1

4

∑
s1,s2

|M|2 =
1

4
εµ∗1 ε

ν∗
2 ε

ρ
1ε
σ
2Tr [Aµν(p/1 +m)Aσρ(p/2 −m)] . (14.32)

This can be used to calculate the cross section for e+e− annihilation into two photons

with arbitrarily defined polarization states. However, as with the fermion spins, we

are most often interested in the case where the polarization is not measured and so we

simply sum over these. In this case, we can once again simplify the above expression.

Armed with (7.71), we can write down an expression for the squared amplitude

averaged over the fermion spins, and summed over the photon polarization states. We

have

〈|M|2〉 =
1

4
Tr [Aµν(p/1 +m)Aνµ(p/2 −m)] , (14.33)

= e4

[
〈Φtt〉

(t−m2)2
+
〈Φtu〉+ 〈Φut〉

(t−m2)(u−m2)
+

〈Φuu〉
(u−m2)2

]
, (14.34)

where

〈Φtt〉 =
1

4
Tr [γν(p/1 − k/1 +m)γµ(p/1 +m)γµ(p/1 − k/1 +m)γν(p/2 −m)] , (14.35)

〈Φut〉 =
1

4
Tr [γµ(p/1 − k/2 +m)γν(p/1 +m)γµ(p/1 − k/1 +m)γν(p/2 −m)] , (14.36)

〈Φuu〉 = 〈Φtt〉 : (k1 ↔ k2) , (14.37)

〈Φtu〉 = 〈Φut〉 : (k1 ↔ k2) , (14.38)
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where the last expressions denote that we should simply interchange k1 ↔ k2 in Φtt

and Φut to give the corresponding results. Making use of the results

γµγµ = 4 , (14.39)

γµa/γµ = −2a/ , (14.40)

γµa/b/γµ = 4(ab) , (14.41)

γµa/b/c/γµ = −2c/b/a/ , (14.42)

which can readily be derived from the basic properties of the gamma matrices, see

Section 13.2, and expressing the results in terms of the usual Mandelstam variables we

eventually get

〈Φtt〉 = 2
[
ut−m2(3t+ u)−m4

]
, (14.43)

〈Φut〉 = 〈Φtu〉 = 2m2(s− 4m2) , (14.44)

〈Φuu〉 = 〈Φtt〉 : (u↔ t) , (14.45)

where the last two results follow as the interchange k1 ↔ k2 corresponds precisely to

u↔ t.

14.5 Renormalized Lagrangian

We now consider the calculation of 1–loop radiative corrections in QED. To do so, we

must consider as in the scalar QED case the renormalised Lagrangian

L0 = iZ2ψ∂/ψ − Zmmψψ − Z3
1

4
F µνFµν , (14.46)

LI = −Z1eψA/ψ , (14.47)

or, in the counterterm language

L′0 = iψ∂/ψ −mψψ − 1

4
F µνFµν , (14.48)

LI = −Z1eψA/ψ , (14.49)

Lct = iδ2ψ∂/ψ − δmmψψ − δ3
1

4
F µνFµν , (14.50)

where δi = Zi − 1 as usual.

We now derive the 1–loop corrections to the photon and fermion propagators, and

to the QED vertex. In contrast to the scalar QED case, we will take more care to keep

track of the finite pieces, enabling us to e.g. demonstrate the different renormalization
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schemes that we may choose.

14.6 1–Loop Correction to Photon propagator

62: Loop Corrections in Spinor Electrodynamics 371

lk k

 k+l

Figure 62.1: The one-loop and counterterm corrections to the photon prop-
agator in spinor electrodynamics.

Let us now turn to the calculation of Πµν(k). The one-loop and coun-
terterm contributions are shown in fig. (62.1). We have

iΠµν(k) = (−1)(iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4
Tr
[
S̃(/ℓ+/k)γµS̃(/ℓ)γν

]

− i(Z3−1)(k2gµν − kµkν) + O(e4) , (62.12)

where the factor of minus one is for the closed fermion loop, and S̃(/p) =
(−/p+m)/(p2+m2−iϵ) is the free fermion propagator in momentum space.
Anticipating that Z1 = 1 + O(e2), we set Z1 = 1 in the first term.

We can write

Tr
[
S̃(/ℓ+/k)γµS̃(/ℓ)γν

]
=
∫ 1

0
dx

4Nµν

(q2 + D)2
, (62.13)

where we have combined denominators in the usual way: q = ℓ+ xk and

D = x(1−x)k2 + m2 − iϵ . (62.14)

The numerator is

4Nµν = Tr
[
(−/ℓ−/k+m)γµ(−/ℓ+m)γν

]
(62.15)

Completing the trace, we get

Nµν = (ℓ+k)µℓν + ℓµ(ℓ+k)ν − [ℓ(ℓ+k) + m2]gµν . (62.16)

Setting ℓ = q − xk and and dropping terms linear in q (because they inte-
grate to zero), we find

Nµν → 2qµqν − 2x(1−x)kµkν − [q2 − x(1−x)k2 + m2]gµν . (62.17)

The integrals diverge, and so we analytically continue to d = 4 − ε dimen-
sions, and replace e with eµ̃ε/2 (so that e remains dimensionless for any
d).

Figure 23: Feynman diagrams contributing at 1–loop to photon propagator in QED.

We first consider the 1–loop correction to the photon propagator. The overall form

is similar to the scalar QED case considered in Section 8.5, with the added complication

that we must now deal with the gamma matrix structure in the numerator, but with

the simplification that there is no diagram due to the contact interaction. There is

therefore one contributing diagram at 1–loop, shown in Fig. 23.

As in the scalar QED case, the most general form the photon self–energy can have

is

Πµν(k) = Π(k2)
(
k2gµν − kµkν

)
, (14.51)

and we will demonstrate below that this is indeed the case at 1–loop order.

The corresponding amplitude is

iΠµν(k) = (−1)(−iZ1e)
2i2
∫

d4l

(2π)4

Tr [(l/+ k/+m)γµ(l/+m)γν ]

((l + k)2 −m2)(l2 −m2)
−i(Z3−1)(k2gµν−kµkν) ,

(14.52)

where the first (−1) is due the presence of the fermion loop. Introducing Feynman

parameters, the integrand becomes

Tr [(l/+ k/+m)γµ(l/+m)γν ]

((l + k)2 −m2)(l2 −m2)
=

∫ 1

0

dx
Nµν

(q2 +X)2
, (14.53)

where q = l + xk and

X = x(1− x)k2 −m2 . (14.54)
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For the numerator we have

Nµν = Tr [(l/+ k/+m)γµ(l/+m)γν ] , (14.55)

= 4
{

(l + k)µlν + lµ(l + k)ν −
[
l(l + k)−m2

]
gµν
}
, (14.56)

!
= 4

{
2qµqν − 2x(1− x)kµkν −

[
q2 − x(1− x)k2 −m2

]
gµν
}
, (14.57)

!
= 4

{
−2x(1− x)kµkν +

[(
2

D
− 1

)
q2 + x(1− x)k2 +m2

]
gµν
}
, (14.58)

!
= 4

{
−2x(1− x)kµkν +

[
X + x(1− x)k2 +m2

]
gµν
}
, (14.59)

!
= 8x(1− x)

(
k2gµν − kµkν

)
, (14.60)

Here, in the second line we have evaluated the trace; in the third line we have substituted

q = l+xk and dropped terms odd in q; in the fourth line we have moved to D dimensions

and applied PV reduction; in the fifth line we have used the relation (8.66); in the last

line we have substituted for X directly. Thus, as we expect the 1–loop correction to

the photon self–energy is completely transverse.

Now, we are left with the integral

µ̃ε
∫

dDq

(2π)D
1

(q2 +X)2
= µ̃ε

i

(4π)2−ε/2
1

(−X)ε/2
Γ
( ε

2

)
, (14.61)

=
i

(4π)2

(
4πµ̃2

−X

) ε
2
(

2

ε
− γ +O(ε)

)
, (14.62)

=
i

(4π)2

(
µ2

−X

) ε
2
(

2

ε
+O(ε)

)
, (14.63)

=
i

8π2

(
1

ε
− 1

2
ln

(
−X
µ2

))
, (14.64)

where we have made the MS definition µ2 = 4πµ̃2e−γ, and used that

xε = 1 + ε lnx+O(ε2) , (14.65)

with terms of O(ε) safely set to zero in the last line, as these will vanish when we set

ε = 0. Thus, taking Z1 = 1 +O(e2) we have the final result

Π(k2) = − e
2

π2

∫ 1

0

dx x(1− x)

[
1

ε
− 1

2
ln

(
−X
µ2

)]
− (Z3 − 1) +O(e4) , (14.66)
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Which gives

ZMS
3 = 1− e2

6π2

1

ε
+O(e4) , (14.67)

for which

ΠMS(k2) =
e2

2π2

∫ 1

0

dx x(1− x) ln

(
−X
µ2

)
+O(e4) . (14.68)

As an alternative, we can impose the on–shell renormalization scheme. Here, as dis-

cussed in Section 8.5, we fix things by demanding that our calculation for the exact

photon propagator, which we recall is given (in the Feynman gauge) by

−i∆̃exact
µν (k) = −i gµν

k2(1− Π(k2))− iε
(14.69)

has the same behaviour as the observed one at k2 = 0, i.e. for an on–shell photon.

From gauge invariance, we have shown that this automatically has a pole at k2 = 0, as

we expect, however we must also fix the residue at this pole to be the same, so that the

analytic structure is preserved. We must therefore also impose Π(k2 = 0) = 0. This

gives

Zon−shell
3 = 1− e2

6π2

[
1

ε
− ln

(
m

µ

)]
+O(e4) , (14.70)

and thus

Πon−shell(k2) =
e2

2π2

∫ 1

0

dx x(1− x) ln

(
−X
m2

)
+O(e4) . (14.71)

In both cases, we must input an observation at some scale in order to determine the

self–energy. For the on–shell scheme we have done this directly, by taking k2 = 0 as our

reference points. For the MS scheme, we can see that (14.68) contains a µ dependence,

and so to implement this, we will need to choose some scale µ0 at which to input an

observation. We will see how this works concretely for the QED beta function below.

Finally, we can see that

Zon−shell
3 − ZMS

3 =
e2

6π2
ln

(
m

µ

)
+O(e4) , (14.72)

that is, these differ only by finite terms, as they must; we are free to interchange such

pieces by changing renormalization scheme (so long as this is done consistently), but

the divergence structure is unchanged.
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ppp  p+l

l

p

Figure 62.2: The one-loop and counterterm corrections to the fermion prop-
agator in spinor electrodynamics.

term contributions are shown in fig. (62.2). We have

iΣ(/p) = (iZ1e)
2
(

1
i

)2 ∫ d4ℓ

(2π)4

[
γνS̃(/p + /ℓ)γµ

]
∆̃µν(ℓ)

− i(Z2−1)/p − i(Zm−1)m + O(e4) . (62.28)

It is simplest to work in Feynman gauge, where we take

∆̃µν(ℓ) =
gµν

ℓ2 + m2
γ − iϵ

; (62.29)

here we have included the fictitious photon mass mγ as an infrared cutoff.
We now apply the usual bag of tricks to get

iΣ(/p) = e2µ̃ε
∫ 1

0
dx
∫

ddq

(2π)d
N

(q2 + D)2

− i(Z2−1)/p − i(Zm−1)m + O(e4) , (62.30)

where q = ℓ+ xp and

D = x(1−x)p2 + xm2 + (1−x)m2
γ , (62.31)

N = γµ(−/p − /ℓ+ m)γµ

= −(d−2)(/p + /ℓ) − dm

= −(d−2)[/q + (1−x)/p] − dm , (62.32)

where we have used (from section 47) γµγµ = −d and γµ/pγµ = (d−2)/p.
The term linear in q integrates to zero, and then, using eq. (62.22), we get

Σ(/p) = − e2

8π2

∫ 1

0
dx
(
(2−ε)(1−x)/p + (4−ε)m

)[ 1

ε
− 1

2 ln(D/µ2)
]

− (Z2−1)/p − (Zm−1)m + O(e4) . (62.33)

Figure 24: Feynman diagrams contributing at 1–loop to fermion propagator in QED.

14.7 1–Loop Correction to Fermion propagator

At leading order we associate a factor of −iS̃F with an internal fermion line, with

−iS̃F (p) = i
p/+m

p2 −m2
, (14.73)

dropping the iε term for simplicity. At higher orders this will again receive corrections,

with

−iS̃exact(p) = −iS̃F (p) + (−iS̃F (p))(iΣ(p/))(−iS̃F (p)) + · · · . (14.74)

Here this defines Σ(p/), the electron self–energy, and at 1–loop the contributing diagram

is shown in Fig. 24. These can be summed up in a similar way to the photon propagator,

with after a little manipulation

−iS̃exact(p) =
i

p/−m+ Σ(p/)
, (14.75)

where this is understood as the matrix inverse (in spinor space). Here, and in the

following section we work in the Feynman gauge for simplicity; as in the case of scalar

QED, if we work in a more general gauge (6.58), the results for e.g. Z1,2 will be

ξ–dependent, though we still have Z1 = Z2 and all observables are as expected ξ

independent. At 1–loop we have

iΣ(p/) = (−iZ1e)
2

∫
d4l

(2π)4
γµ

(p/+ l/+m)

(l2 −m2
γ)((p+ l)2 −m2)

γµ + i(Z2 − 1)p/− i(Zm − 1)m ,

= −e2µ̃ε
∫ 1

0

dx
dDq

(2π)D
N

(q2 +X)2
+ i(Z2 − 1)p/− i(Zm − 1)m+O(e4) , (14.76)

where in the first line as in the case of scalar QED, we have had to introduce a fictional

photon mass to regulate the IR divergence associated with the l→ 0 part of the integral,

and which we are not interested in here. In the second line we have introduced Feynman

parameters as usual, with q = l + xp, and X = x(1 − x)p2 − xm2 − (1 − x)m2
γ. The
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numerator is given by

N = γµ(p/+ l/+m)γµ = (2−D)(p/+ l/) +Dm
!

= (2−D)(1− x)p/+Dm , (14.77)

where in the last equality we have dropped a term odd in q. Now, the D–dimensional

integral is of exactly the same form as for the photon propagator correction, and so we

get

Σ(p/) = − e2

8π2

∫ 1

0

dx ((ε− 2)(1− x)p/+ (4− ε)m)

[
1

ε
− 1

2
ln

(
−X
µ2

)]
,

+ (Z2 − 1)p/− (Zm − 1)m+O(e4) . (14.78)

Which gives

ZMS
2 = 1− e2

8π2

1

ε
+O(e4) , (14.79)

ZMS
m = 1− e2

2π2

1

ε
+O(e4) . (14.80)

Now, we can see from (14.75) and (14.78) that the 1–loop correction to the fermion

propagator has generated a contribution proportional to the fermion mass, with the

ε pole piece absorbed into the renormalization constant Zm. We therefore expect our

renormalization condition to correspond to inputting the value of the fermion (i.e. elec-

tron, muon...) mass, as determined experimentally. In other words, our renormalized

mass should correspond to this. However, as we will see the MS scheme does not in

fact make such a direct assignment, which is instead achieved in the on–shell scheme.

In the process of discussing this, we can also clarify how renormalization will pro-

ceed in the current context if we work with the Zi’s rather than counterterms. To do

this, we recall from (11.53) that

〈
0|Tψ(x)ψ(y)|0

〉
= −i

∫
d4p

(2π)4
S̃F (p)e−ip(x−y) , (14.81)

where we have dropped the spinor indices for simplicity. So far this corresponds to the

general expression for the propagator SF , which can be defined at a particular order in

perturbation theory, or indeed as the exact one in the same way as above. The impact

of renormalizing the fields in our QED Lagrangian, i.e. ψ0 = Z
1/2
2 ψ, therefore simply

corresponds to

S̃F,0(p) = Z2S̃F (p) , (14.82)
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and we therefore have

−iS̃exact(p) = − 1

Z2

iS̃exact
0 (p) =

1

Z2

i

p/−m0 + Σ(p/)
, (14.83)

where Σ(p/) now includes no counterterm contribution. Now, returning to our La-

grangian (14.46), we are interested in

LF0 = iZ2ψ∂/ψ − Zmmψψ = Z2ψ (i∂/− Z ′mm)ψ , (14.84)

where we have defined Z ′m ≡ Zm/Z2. Indeed, in many discussions of this topic it is

precisely Z ′m that is defined to be the renormalization constant Zm, and hence care is

needed to keep track of which notation is being used; one can of course always use the

above relation to translate between the two conventions. In particular, we have

(ZMS
m )′ =

ZMS
m

ZMS
2

= 1− 3e2

8π2

1

ε
+O(e4) . (14.85)

Here, we simply introduce this notation to emphasise the fact that in our notation we

have

m0 = Z ′mm =
Zm
Z2

m , (14.86)

and hence (14.83) becomes

−iS̃exact(p) =
i

Z2p/− Zmm+ Σ(p/) + · · ·
=

i

p/−m+ δ2p/− δmm+ Σ(p/)
, (14.87)

where in the second line we have dropped terms of O(e4) (the · · · ) and higher, which is

allowed as we are only working at 1–loop. This is precisely the same as (14.75), where

the counterterm contributions are included in Σ(p/), and thus we have indeed verified

that the two approaches will achieve the same result, at least at the current order.

Now, our experimental input is that the particle propagator is observed to have a

pole at a mass mpole, and this is what we physically associate with say the measured

electron mass (i.e. mel.
pole = 0.511 MeV). Thus it is natural to assign

mon−shell = mpole . (14.88)

To achieve this, we need that

[δ2p/− δmm+ Σ(p/)] |p/=mpole
= mpole(δ2 − δm) + Σ(p/)|p/=mpole

= 0 . (14.89)
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We in addition, as for the photon propagator require that the residue of this pole to

match that in the LO propagator, i.e. to be i. This particular choice is certainly

a sensible one, but is strictly speaking conventional, with other choices in principle

possible provided one keeps track of the suitable normalization of things in the LSZ

formula. Indeed, this no longer holds in the MS scheme. Making this choice for the

on–shell scheme, we require

i = lim
p/→mpole

(p/−mpole)
i

p/−m+ δ2p/− δmm+ Σ(p/)
= lim

p/→mpole

i

1 + δ2 + d
dp/

Σ(p/)
, (14.90)

where we have used L’Hôpital’s rule. Finally, (14.89) and (14.90) are sufficient to fix

Z2 and Zm in the on–shell scheme. We will not calculate these explicitly here, but we

can see that they will certainly be different from the MS values, as expected. However,

it is straightforward to see from (14.78) that the 1/ε terms will be the same in the two

cases, as they must.

Given the values of Zm are different in the two schemes, and recalling the discus-

sion in Section 8.2, we therefore expect the numerical value we should assign to the

renormalized mass, mMS, to be different from the physical pole mass, and indeed it will

be. To see this, we note that in any scheme the denominator of (14.87) must have a

pole at the physical pole mass p/ = mpole. Hence, in the MS scheme we have

mpole −mMS + δ2m
pole − δmmMS + Σ(p/)|p/=mpole

= 0 . (14.91)

Rearranging, and using that mpole = mMS +O(e2) (i.e. at LO all schemes coincide), we

have

mMS = mpole(1 + δ2 − δm) + Σ(p/)|p/=mpole
, (14.92)

which it is a straightforward exercise to show is non–zero as well as finite; the 1/ε poles

in the δ2,m precisely cancel those in the Σ(p/)|p/=mpole
, as required. We note in addition

that the MS mass in (14.92) depends on the scale µ via the Σ(p/) term, in a completely

analagous way to the dependence of the photon self–energy Π(k2), and as well see the

coupling α.

In summary, by applying the standard MS renormalization scheme we end up with

a definition of the renormalized fermion mass that does not (beyond LO) correspond

precisely to the value one would most straightforwardly assign it be experimentally,

i.e. the pole mass mel.
pole = 0.511 MeV in the case of an electron. Note however that

provided we work systematically in either scheme the final result will be the same at

the order we work at. So, in the MS scheme we have seen that (14.87) still has a pole

at p/ = mpole, as it does in the on–shell scheme. At each order in perturbation theory,
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the MS mass will receive corrections as in (14.92), while at any order in perturbation

theory the pole mass is fixed. Nonetheless, it may seem a little strange to work in such

a scheme, and in a sense it is less intuitive. However, for essentially technical reasons

the MS scheme is easier to work with, and hence tends to be what is used, though this

is not always true. Moreover in QCD, where free quarks are not observed in nature, the

concept of a pole mass for a quark is not such an obviously intuitive or useful concept.

14.8 1–Loop Correction to Vertex Function
62: Loop Corrections in Spinor Electrodynamics 375

p +l pp+lp

l

Figure 62.3: The one-loop correction to the photon-fermion-fermion vertex
in spinor electrodynamics.

We see that finiteness of Σ(/p) requires

Z2 = 1 − e2

8π2

(
1

ε
+ finite

)
+ O(e4) , (62.34)

Zm = 1 − e2

2π2

(
1

ε
+ finite

)
+ O(e4) . (62.35)

We can impose Σ(−m) = 0 by writing

Σ(/p) =
e2

8π2

[∫ 1

0
dx
(
(1−x)/p + 2m

)
ln(D/D0) + κ2(/p + m)

]
+ O(e4) ,

(62.36)
where D0 is D evaluated at p2 = −m2,

D0 = x2m2 + (1−x)m2
γ , (62.37)

and κ2 is a constant to be determined. We fix κ2 by imposing Σ′(−m) = 0.
In differentiating with respect to /p, we take the p2 in D, eq. (62.31), to be
−/p2; we find

κ2 = −2
∫ 1

0
dxx(1−x2)m2/D0

= −2 ln(m/mγ) + 1 , (62.38)

where we have dropped terms that go to zero with the infrared cutoff mγ .
Next we turn to the loop correction to the vertex. We define the vertex

function iVµ(p′, p) as the sum of one-particle irreducible diagrams with one
incoming fermion with momentum p, one outgoing fermion with momentum
p′, and one incoming photon with momentum k = p′−p. The original vertex
iZ1eγµ is the first term in this sum, and the diagram of fig. (62.3) is the
second. Thus we have

iVµ(p′, p) = iZ1eγ
µ + iVµ

1 loop(p
′, p) + O(e5) , (62.39)

Figure 25: Feynman diagrams contributing at 1–loop to QED vertex.

The Feynman diagram contributing to the QED vertex at 1–loop is shown in

Fig. 25. Defining iV µ(p′, p) as the sum of all 1PI diagrams with an incoming fermion

of momentum p and an outgoing fermion with momentum p′, in the Feynman gauge

we have

iV µ(p′, p) = −iZ1eγ
µ

+ (−ie)3i2(−i)
∫

d4l

(2π)4

γν(p/′ + l/+m)γµ(p/+ l/+m)γν
(l2 −m2

γ)((p
′ + l)2 −m2)((p+ l)2 −m2)

+O(e4) ,

(14.93)

where as before we have introduced an artificial photon mass to regulate the associ-

ated IR divergence. After introducing Feynman parameters, performing some spinor

manipulation and D–dimensional momentum integration, we finally arrive at

V µ(p′, p) = −Z1eγ
µ − e3

8π2

[(
1

ε
− 1− 1

2

∫
dF3 ln

(
−X
µ2

))
γµ − 1

4

∫
dF3

Nµ

X

]
,

(14.94)

where ∫
dF3 ≡ 2

∫ 1

0

dx1dx2dx3δ(x1 + x2 + x3 − 1) , (14.95)
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and

X = x1(1− x1)p2 + x2(1− x2)(p′)2 − 2x1x2p · p′ − (x1 + x2)m2 − x3m
2
γ , (14.96)

Nµ = γν [x1p/− (1− x2)p/′ −m] γµ [(1− x1)p/− x2p/
′ +m] γν . (14.97)

Which gives

ZMS
1 = 1− e2

8π2

1

ε
+O(e4) . (14.98)

14.9 The QED β Function

From the kinetic terms of the renormalized QED Lagrangian, we can read off that we

have made the field redefinitions

ψ0 = Z
1/2
2 ψ , Aµ0 = Z

1/2
3 Aµ , (14.99)

where the ‘0’ refers to the bare fields. Thus for the interaction term we must have

e0Z2Z
1/2
3 ψA/ψ = Z1µ̃

ε
2 eψA/ψ , (14.100)

where we have introduced the usual dimensionful parameter µ̃ required when continuing

to D dimensions. Defining the renormalized charge via e0 = Zeµ̃
ε
2 e, we then get

Ze = Z1Z
−1
2 Z

−1/2
3 . (14.101)

Stated physically, we have that in principle all three classes of correction we have

considered above will contribute to the renormalization of the electric charge. This

makes perfect sense, as if we consider the possible higher order corrections to the QED

vertex, then we would expect the self–energy corrections to the photon and fermion

legs, as well as the vertex correction itself, to all contribute. However, we have seen

above that

ZMS
1 = ZMS

2 = 1− e2

8π2

1

ε
+O(e4) , (14.102)

and thus these corrections exactly cancel, leaving us with

e0 = Z
−1/2
3 µ̃

ε
2 e⇒ α0 = Z−1

3 µ̃εα , (14.103)

where we have expressed things in terms of the fine–structure parameter α = e2

4π
, as is

conventional. This therefore tells us that for QED only the correction to the photon

propagator contributes to the renormalization of the electric charge. We note that

(14.102) is of course not a coincidence, but is rather a direct result of the Ward–
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Takahashi identity for QED described in Section 9.

Thus, using (14.67) we have to 1–loop order

α0 =

(
1− 2α

3π

1

ε

)−1

µ̃εα . (14.104)

Now, the important point here is that the bare α0 corresponds to the input parameter

in the Lagrangian before any regularization or renormalization has been performed. It

therefore has to be independent of the scale µ̃. When we continue to D dimensions,

and take d4x → dDx in the Lagrangian, we introduced by hand this scale in order to

keep the renormalized coupling dimensionless. At leading order we have Zi = 1, and

so this simply corresponds to

α0 ≡ µ̃εα . (14.105)

As the parameter on the left hand side is by definition independent of µ̃, the renormal-

ized coupling must depend on the scale in such way as to exactly cancel the impact of

varying it. We see this sort of thing all of the time when we introduce some system of

units: if we take ε = 1, for example, then we can imagine writing e0, as a number, e,

multiplied by the unit µ̃. If we change our unit µ̃ from eV to keV (say), then e must

be reduced by a factor of a 1000, for consistency.

Pursuing this more generally, writing

lnα0 = ε ln µ̃+ lnα(µ2) , (14.106)

where we now explicitly write the µ2 (or equivalently µ, this is just a choice of notation,

both of which are used in the literature) argument of α. Then, differentiating the left

hand side, we must have

∂ lnα0

∂ lnµ
= 0 = ε+

∂ lnα(µ2)

∂ lnµ
, (14.107)

where we have taken µ̃ → µ, which we are free to do as these differ by a constant

prefactor. Hence we have
∂α(µ2)

∂ lnµ
= −εα , (14.108)

giving

β(α(µ2)) ≡ ∂α(µ2)

∂ lnµ

∣∣∣∣
ε=0

= 0 , (14.109)

where we have defined the β–function, which expresses the variation of the coupling

with scale µ. For D = 4, at leading order we have simply α = α0, and so this indeed
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vanishes.

So far, this is all a relatively trivial result of the definition (14.105). However, if

we now consider the 1–loop correction to this (14.104) something interesting happens.

In particular, applying the same procedure as before, we find

∂α(µ2)

∂ lnµ
= −εα(µ2) +

2α2

3π
, (14.110)

and thus

β(α(µ2)) =
2α2

3π
. (14.111)

In other words, by including the effect of quantum corrections, the measured coupling

α (i.e. after setting D = 4) has developed a scale dependence.

Although the above derivation is completely general and correct, this can be seen

somewhat more transparently if we consider the 1–loop correction (14.68) to the photon

vacuum polarization, which we can see explicitly has a dependence on the photon

virtuality k2. In particular, motivated by the way in which this appears in the correction

to the photon propagator, we can define an effective coupling via

αeff(k2) =
α

1− Π(k2)
, (14.112)

where again we see that the quantum correction will induce a dependence on the photon

virtuality k2 via Π(k2). The cross section for e.g. electron–electron scattering will be

∝ αeff(k2)2 and hence we can relate this directly to the observed scattering cross section

at energy scale k2. It is related to, but not the same as, the QED coupling α. We in

particular have

αeff(k2) = α(µ2)

(
1 +

2α(µ2)

π

∫ 1

0

dx x(1− x) ln

(
−X
µ2

))
+O(α3) ,

≈ α(µ2)

(
1 +

2α(µ2)

π

∫ 1

0

dx x(1− x)

[
lnx(1− x) + ln

(
−k2

µ2

)])
+O(α3) ,

= α(µ2)

(
1 +

α(µ2)

3π

[
−5

3
+ ln

(
−k2

µ2

)])
+O(α3) , (14.113)

where in the second line we assume −k2 � m2, and we have explicitly included the µ

argument of α on the RHS, following the discussion above. Thus physically we indeed

expect our measured coupling to vary with the energy scale ∼ k2 of the interaction,

something we have motivated from more general grounds above. To be concrete, if we

consider the effective coupling measured at two values of k2
f , k

2
i � m2, then we find
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simply

αeff(k2
f )− αeff(k2

i ) =
α2(µ2)

3π
ln

(
k2
f

k2
i

)
+O(α3) , (14.114)

and hence we expect the effective charge to increase with increasing energy scale. We

note that the above result can also be derived by imposing a renormalization condition

at some scale ki, by writing α(|k2
i |) (introducing a modulus to keep the argument

positive, as is conventional) in terms of αeff(k2
i ) at this scale, such that

α(−k2
i ) = αeff(k2

i )

(
1 +

5αeff(k2
i )

9π

)
+O(α3) , (14.115)

and remembering that α(−k2
i ) = αeff(k2

i ) +O(α2). Thus, one can certainly interpret µ

in the same way as the discussion around (8.30), i.e. as the scale at which we input a

measurement for α.

However, rather than picking one particular scale for µ in this way, we can be more

general, and require that the observable αeff cannot depend on this arbitrary scale µ on

the RHS of (14.113). The corresponding µ dependence in the coupling α should then

be defined to ensure this. We get

∂αeff(k2)

∂ lnµ
= 0 =

∂α(µ2)

∂ lnµ
− 2α2(µ2)

3π
+O(α3) , (14.116)

which precisely corresponds to the expression we have derived above for the QED β

function.

Writing

β(α) = b0α
2 , (14.117)

we can solve (14.111), to give

α(µ2
f ) =

α(µ2
i )

1− b0α(µ2
i ) ln

(
µf
µi

) . (14.118)

We therefore see that the scale dependence, or running, of the coupling α has two

distinct possibilities, depending on the sign of b0:

• b0 > 0: Infrared Free. The coupling α decreases as the scale µ → 0 towards the

IR, but increases as the scale µ→∞ towards the UV.

• b0 < 0: Asymptotically Free. The coupling α increases as the scale µ→ 0 towards

the IR, but decreases as the scale µ→∞ towards the UV.
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As we shall see later, the second case is relevant for QCD. The former case is true

for QED, and indeed we know that at low scales we have α → α(0) ≈ 1/137. On

other hand, as µ→∞ the coupling increases and at some point we will enter a region

where α ∼ 1. In such a situation the theory becomes strongly coupled, and a purely

perturbative treatment is no longer applicable. From (14.118) we can in particular see

that there is a pole at

α(µ2
i ) ln

(
µf
µi

)
=

1

b0

, (14.119)

which is known as a Landau pole. Clearly upon reaching this point our theory will have

broken down entirely. Should we worry about this for QED? Well, if we consider the

QED coupling at the scale of the electron mass, α(me) = 1/137, then we have

µLandau = Mee
3π

2α(me) ≈ 10286 eV , (14.120)

which is quite a bit (!) higher than the Planck scale mP ∼ 1028 eV. Actually in the

Standard Model, we have 3 flavours of lepton, which leads b0 to be a factor of 3 larger,

as well as the impact of W boson loops to worry about. This brings the scale of the

pole down quite a bit, but still safely a lot higher than mP .

Now, there remains the question of what we should actually take for the scale µ in a

given problem. From the discussion above it seems natural to associate this scale with

the virtuality k2 of the photon. Thus, in for example e+(p1)e+(p2) → e+(p′1)e+(p′2)

scattering, we should evaluate the corresponding coupling α at the (positive) scale

Q2 = −k2 = −(p1 − p3)2. One might object that the derivation in terms of the

effective coupling proceeded by demanding that the observable itself is independent of

the renormalization scale µ. In other words, why does it matter at all what value we take

for µ? This is a perfectly valid question, and indeed it is quite true that any observable,

calculated to all orders in perturbation theory, must be independent of µ. However,

the point is that to an arbitrary truncated order in a perturbative expansion, this will

not be true. Indeed, looking at (14.113) we can see that if µ2 � −k2 or µ2 � −k2 then

the logarithm will become arbitrarily large and the second term in our perturbative

expansion may well become larger than the first, in particular if α(µ2)| ln(−k2/µ2)| ∼ 1

or larger. Thus, for such choices we can expect our perturbative expansion to be

rather poorly behaved. One might still object that the scale dependence in α should

compensate for this, but the point is that what we have in fact required is that the

dependence on µ vanishes in (14.113) to the O(α2) of the perturbative calculation.

While the scale dependence of α is precisely determined so as to achieve this, the

observable when truncated to this order will retain a O(α3) dependence on µ. In
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particular, we find explicitly for (14.113) that

∂αeff(k2)

∂ lnµ
=

(
2

3π

)2

α3(µ2)

[
−5

3
+ ln

(
−k2

µ2

)]
, (14.121)

at this order13. Thus, while formally zero at O(α2), unless we take µ2 ∼ |k2| the

logarithm present here will also be large and αeff(k2) will depend sensitively, and un-

physically, on the choice we take. Stated another way, if we do take µ2 ∼ |k2| then we

can see that the perturbative expansion is well behaved and nicely convergent, i.e. our

O(α2) result will approximate the true ‘all orders’ one rather closely. Thus any choice

such as µ2 � −k2 or µ2 � −k2 which takes us far away from this O(α2) result is cer-

tainly unreliable. The running coupling, with µ2 ∼ |k2|, is said to resum these higher

order logarithms, giving a convergent calculation that results in the scale dependence

effects we describe above. In particular, taking µ2 = |k2| in (14.113) we have

αeff(k2) = α(|k2|)
(

1− 5α(|k2|)
9π

)
, (14.122)

and so up to the small O(α) correction the effective coupling is simply given by α(|k2|),
with its appropriate scale variation given by the QED β–function.

Finally, we emphasise that the RHS of (14.122), and the similar expressions above,

corresponds to the QED prediction for the measured value of αeff at some scale k2,

given α(µ2) as an input. Thus we in general expect the RHS of (14.122) to agree with

the measured value, but only within O(α3) precision, as these are the terms we do not

include in the perturbative expansion. Thus while we should take µ2 ∼ |k2|, the precise

choice is open to us, and indeed can be considered to parameterise the perturbative

uncertainty on our prediction, given the RHS of (14.113) depends on this choice at

precisely the O(α3) level we omit in our calculation. Typically, we therefore take a

range of values for µ2, typically µ2 ∈ (−k2/4, 4k2), to give a spread of predictions that

estimate the perturbative uncertainty on our prediction.

15. Non–Abelian Gauge Theory

15.1 Non–Abelian Groups

In the previous sections, we have discussed the U(1) gauge symmetry possessed by the

13One might worry about what happens if we consider an s–channel exchange, for which k2 > 0
and the argument of the logarithm becomes negative. This is in general not a problem, as we can
analytically continue via ln(−k2) = ln(k2) + iπ, and a careful treatment then shows that the iπ does
not contribute.
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complex scalar and spinor fields φ(x) and ψ(x) in the case of scalar and regular QED,

respectively. This corresponded to multiplication of our fields by a simple commuting

phase, known as an abelian symmetry. We now wish to generalise this to the case where

the symmetry does not involve commuting operations, corresponding to a non–abelian

gauge symmetry. To do so, we first write things in a slightly different (but equivalent)

way. Our local gauge transformation is

φ(x)→ U(x)φ(x) , (15.1)

with U † = U−1, and by φ we denote either a scalar or spinor field. Explicitly, we have

U(x) = eiqα(x) . (15.2)

This corresponds to a one–dimensional unitary U(1) transformation. We can generalise

this by introducing a set of N fields, with a corresponding transformation

φi(x)→ Uijφj(x) . (15.3)

Two commonly occurring examples are SU(N), where Uij is a N ×N unitary matrix,

and SO(N), where Uij is a N ×N orthogonal matrix:

SU(N) : UU † = I, det(U) = 1 , (15.4)

SO(N) : UUT = I, det(U) = 1 , (15.5)

where the second requirement holds for the special groups, otherwise these are the larger

U(N) and O(N) groups. These are however directly related to the special groups. For

example, any unitary matrix can be written as

U = eiφŨ , (15.6)

where φ is a real parameter and det(Ũ) = 1. Mathematically, we say that U(N) is the

direct product of U(1)×SU(N), and SU(N) is a non–trivial subgroup of U(N). Thus

SU(N) represents a simpler case to U(N), and indeed when it comes to e.g. QCD it is

an experimental fact that the correct gauge group is SU(N). Moreover, from the point

of view of QFT it only really makes sense to consider these subgroups individually,

as these behave in quite different ways. To gauge U(N), we should gauge U(1) and

SU(N) independently, with in general different gauge couplings.
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Now, we can write some infinitesimal transformation θij from the origin as

Ujk(x) = δjk + θjk , (15.7)

= δjk + iθa(x)(T a)jk +O(θ2) , (15.8)

where in the second line we have expanded in terms of a linearly independent set of

basis matrices (T a)jk. The expansion parameters θa(x) are defined to be real, so that

the unitarity of Ujk and det(U) = 1 implies that these are hermitian and traceless.

There are N2 − 1 such matrices, labelled above by the index a, and they are known as

the generators of the group; we have met precisely such objects before in Section 10,

when we expanded a general Lorentz transformation in terms of the basis generators of

rotations and boosts. Demanding that the product of two separate such transformations

is still a SU(N) transformation implies that the commutator of two generators must

be a linear combination of generators[
T a, T b

]
= ifabcT c , (15.9)

where fabc are real numerical factors known as the structure constants of the group. If

the structure constants do not vanish, the group is non–abelian. For the U(1) case we

trivially have only one generator, which is a number, and so this is an abelian group.

We are free to choose the generators so that they obey the conventional normalization

Tr
(
T aT b

)
=

1

2
δab . (15.10)

For SU(2) the basis of N2 − 1 = 3 linearly independent hermitian traceless matrices

are the Pauli matrices σa, with the above normalization implying T a = σa/2; again we

met these before in this context in Section 10. The corresponding structure constants

are then given by the Levi–Civita symbols, fabc = εabc.

15.2 Non–Abelian Gauge Symmetry

Concentrating on the SU(N) case, we have seen from QED that the corresponding

Lagrangian is invariant under such a transformation provided we introduce a covariant

derivative

Dµ = ∂µ − igAµ , (15.11)

where we now introduce a coupling g, and note that to follow the normal convention

this corresponds to taking g = −e in comparison to the QED case. We require this to

transform as

Dµ → U(x)DµU
†(x) , (15.12)
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see (5.27). This is satisfied if Aµ transforms as

Aµ → U(x)AµU
†(x) +

i

g
U(x)∂µU

†(x) . (15.13)

To be explicit, for a U(1) symmetry the U(x) factors in the first term cancel automat-

ically and we indeed have

Aµ → Aµ + ∂µα(x) , (15.14)

which is consistent with the usual QED transformation.

In direct analogy to the U(1) case, we can write some arbitrary U(x) in terms of

the generator matrices as

U(x) = exp [igΓa(x)T a] , (15.15)

where the real parameters Γa(x) are not infinitesimal. We then define Aµ(x) as a matrix

of fields; for the abelian gauge symmetry to generalise consistently, we require these to

be Hermitian and traceless, i.e. to have the same general properties as the generator

matrices. In particular, we can see that the second term in (15.13) corresponds to

an arbitrary traceless and hermitian matrix, and thus Aµ(x) must have at least that

number of degrees of freedom. Then, if we assume that Aµ(x) itself is traceless and

hermitian, as would be natural, the overall transformation (15.13) preserves this.

The covariant derivative can be written as

Dij
µ = ∂µδij − igAµ(x)ij , (15.16)

where i, j = 1, · · · , N are the group indices. The Aµ(x) transforms according to (15.13)

as above. For the kinetic term, we define the field strength as for the U(1) case by

Fµν(x) ≡ i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (15.17)

where we now pick up a final commutator of the fields for this non–abelian gauge group.

Note here (and in many places below) we have dropped the gauge indices for simplicity.

It follow that under a gauge transformation

Fµν → U(x)Fµν(x)U †(x) , (15.18)

which in contrast to the U(1) case is not gauge invariant due to the fact that the U(x)

are now matrices that can not be simply pulled through F . However if we perform

a trace of the group indices, then due to the cyclic property of traces this is gauge
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invariant. We are therefore led to the kinetic term

Lkin = −1

2
Tr (F µνFµν) , (15.19)

where the normalization is conventional. We can expand the Aµ(x) and F µν in the

basis of generator matrices

Aµ(x) ≡ Aaµ(x)T a , Fµν ≡ F a
µνT

a , (15.20)

in terms of which we find

F c
µν = ∂µA

c
ν − ∂νAcµ + gfabcAaµA

b
ν , (15.21)

using (15.9). For the kinetic term we have

Lkin = −1

2
F a,µνF b

µνTr
(
T aT b

)
= −1

4
F a,µνF a

µν , (15.22)

using (15.10). Thus we can see that this leads to interactions between the gauge fields

Aµ(x) themselves. Before considering the specific case of QCD, we first discuss some

general aspect of group representations, that will play a role in the sections which

follow.

15.3 Group Representations

Any set of D(R)×D(R) traceless hermitian matrices T aR (where R is part of the name,

rather than being an index) that satisfies the same commutation relations as the original

generators [
T aR, T

b
R

]
= ifabcT cR , (15.23)

forms a representation of the group. Here D(R) is the dimension of the representation.

The original D(R) = N case is known as the fundamental representation. The matter

fields φ, or in QCD, ψ, transform in this representation, with

ψ → exp [igΓa(x)T a]ψ . (15.24)

Taking the complex conjugate of the above relation, we can see that the matrices

−(T aR)∗ also obey the commutation relations. If −(T aR)∗ = T aR or we can find a unitary

transformation T aR → U−1T aR that makes −(T aR)∗ = T aR for every a then the representa-

tion R is real. If such a transformation does not exist, but we can find a unitary matrix

V 6= I such that −(T aR)∗ = V −1T aRV for every a then the representation is pseudoreal.
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If no such unitary matrix exists, then the representation is complex. In this case, the

complex conjugate representation R is specified by

T a
R

= −(T aR)∗ , (15.25)

An important representation for the case of non–abelian groups is the adjoint repre-

sentation, given by

(T aA)bc = −ifabc , (15.26)

as the fabc are real and completely antisymmetric, the generators are manifestly hermi-

tian. With a little work one can show that these do indeed satisfy (15.9), as required.

The adjoint representation is also real. Note the dimension of the adjoint representation

is equal to the number of generators, so D(A) = N2−1 for SU(N). In the context of a

gauge theories, we find that the gauge fields transform in the adjoint representation of

the group. In particular, for a global gauge transformation the gauge field transforms

as

Aµ → UAµU
† , (15.27)

which infinitesimally becomes

Aµ → Aaµ(1 + igθbT b)T a(1− igθcT c) , (15.28)

and thus

Aaµ → Aaµ − gAbµf bacθc = Aaµ + igθb(T bA)acAcµ . (15.29)

Hence, the gauge fields transforms in the adjoint representation for this global symme-

try, i.e

Aµ → exp(igΓbT bA)Aµ , (15.30)

in the non–infinitesimal case. The extension to a local symmetry is considered in the

following section.

Finally, we note that two numbers usually characterise a representation. The index

T (R), defined via

Tr(T aRT
b
R) = T (R)δab (15.31)

and the quadratic Casimir C(R), defined via∑
a

(T aRT
a
R)ij = C(R)δij . (15.32)
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For SU(N), in the fundamental representation we have

T (N) =
1

2
, C(N) =

N2 − 1

2N
, (15.33)

while in the adjoint representation we have

C(A) = T (A) = N . (15.34)

15.4 QCD: A First Look

The theory of strong interactions, quantum chromodynamics (QCD) is a SU(3) non–

abelian gauge theory. The N = 3 group indices are known as colours, while there are

six flavours of quark (up, down, strange, charm , bottom, top). There are 32 − 1 = 8

generator matrices, which are given in terms of the so–called Gell–Mann matrices. The

explicit form of these is not important for our purposes, but these can readily be written

down if need be.

The Lagrangian is given in terms of Dirac fields ψiI(x), where i is the colour index

and I is the flavour index, with

L = iψiID/ijψjI −mIψiIψiI −
1

2
Tr (F µνFµν) . (15.35)

Expanding out, and dropping the flavour indices for simplicity we have

LYM+ψ = iψi∂/ψi −mψiψi (15.36)

+ gT aijψiA/
aψj (15.37)

− 1

2
∂µAaν∂µA

a
ν +

1

2
∂µAaν∂νA

a
µ (15.38)

− gfabcAaµAbν∂µAcν −
1

4
g2fabef cdeAaµAbνAcµA

d
ν , (15.39)

where the i, j run over the fundamental group indices, i, j = 1, · · · , 3, and the a, b... run

over the adjoint indices, a, b = 1, · · · , 8. The first line corresponds to the quark kinetic

term; the second line to a gqq interaction vertex; the third line to the gluon kinetic

term; the fourth line, two new interaction vertices between the gluons themselves. The

latter are of course absent in QED, and are a direct result of the non–abelian nature

of the gauge symmetry, as can be seen by the fact that these terms are proportional to

the structure constants. However, before writing down the Feynman rules for QCD, we

must address the issue that arose already in the case of QED, namely that if we naively

apply the above expression to derive a gluon propagator, the overall gauge redundancy
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in our description will spoil things. To do this, we apply the same Faddeev–Popov

procedure as before.

15.5 Faddeev–Popov Gauge Fixing

Recall that in the derivation of the photon propagator in Section 6.3 it was not possible

by default to perform the necessary inversion to shift the photon field variable Aµ so

that the propagator could be derived. We found however that due to the invariance of

the Lagrangian under the QED gauge transformation

Aµ(x)→ Aµ(x) + ∂µα(x) , (15.40)

we could exclude all components of Aµ that are parallel to the photon momentum kµ,

and are redundant in the corresponding momentum integral. This resulted in a path

integral that could be evaluated.

We will have exactly the same problem in the case of non–Abelian gauge theory,

however the simple argument of above no longer holds due to the non–linear nature of

the gauge transformation. To see this, we consider an infinitesimal transformation

U(x) = I + igθa(x)T a , (15.41)

under which the gauge field transformation (15.13) becomes

Aaµ(x)→ Aaµ(x) + gfabcAbµ(x)θc(x) + ∂µθ
a(x) , (15.42)

= Aaµ(x) +
[
δac∂µ + gfabcAbµ(x)

]
θc(x) , (15.43)

= Aaµ(x) +
[
δac∂µ − igAbµ(T bA)ac

]
θc(x) , (15.44)

= Aaµ(x) +Dac
µ θ

c(x) , (15.45)

where TA are the generators in the adjoint representation, and comparing with (15.16)

we can see that Dac
µ is the covariant derivative, but in the adjoint representation;

this generalises the statement made above about the gauge groups transforming in the

adjoint representation for the global transformation. Now, this is very similar in form to

the usual QED U(1) gauge transformation, however instead of a simple ∂µ we now have

a more complicated covariant derivative. As this no longer simply involves ∂µ (which

becomes kµ on Fourier transforming) we will no longer have that the components of Aµ
parallel to kµ can be simply excluded.

We must therefore pursue the more general Faddeev–Popov gauge fixing procedure
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described in Section 6.4. Recall that we could write the path integral as

Z =

∫
DAeiS[A]∆(A)δ(f(A)) . (15.46)

For the function we can simply generalise the previous U(1) version to give

f(Aa) = ∂µAaµ − σa(x) , (15.47)

as we will now be integrating over each of the a = 1, ..., N2 − 1 gauge fields. We now

have

[∆(A)]−1 =

∫
Dθ δ(f(Aθ)) =

∫
Dθ δ(∂µAaµ − σa(x)− ∂µ(gfabcθbAcµ − ∂µθa)) ,

!
=

∫
Dθ δ(i∂µ(gfabcθbAcµ − ∂µθa)) , (15.48)

=

∫
Dθ δ(−i∂µDab

µ θ
b) , (15.49)

where in the second line we drop the f(A) terms as before, as this will be accompanied

by a δ(f(A)) above. We have also multiplied by an overall factor of i in the delta

function, which are free to do as we are not interested in overall constants; this is just

to maintain consistency with the conventional definition of the ghost Lagrangian we

will introduce below.

Now, in the Abelian case the factor in the third line corresponded to an overall

constant, which could be dropped, however here due to the non–Abelian nature of the

transformation this depends on the gauge fields and so cannot be omitted from the

path integral above. To account for this term, we can write formally

i∂µ(gfabcAcµ(x)− ∂µδab)θb(x) =

∫
d4yKab(x, y)θb(y) , (15.50)

which at this stage simply defines the operator

Kab(x, y) = i∂µ(gfabcAcµ − ∂µδab)δ4(x− y) , (15.51)

= −i∂µDab
µ δ

4(x− y) . (15.52)

Now, returning to the meaning of our Faddeev–Popov determinant ∆(A), we recall this
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is introduced as an overall Jacobian factor. In particular, we have the elementary result∫
dθδ(Kθ) =

1

K
(15.53)

for real numbers, which can be generalised to the case of some (non–singular) matrix

Kij, with ∫
dθ1 · · · dθnδ(Kijθj) =

1

detK
, (15.54)

where i = 1, · · · , n. Now, in the path integral generalisation of this, the integer index i is

replaced by a continuous real variable y (say), and the summation becomes an integral.

Thus we can see that the RHS of (15.50) is precisely the path integral generalisation

of Kijθj; the fact that we have an additional summation over the gauge indices, a,

changes nothing in principle. Thus we can make the association

∆(A) = det(K) . (15.55)

At this point, such an expression is not of much use as we do not actually know how

to evaluate the determinant of this continuous, infinite–dimensional, object. However,

we already know how to write the determinant of some matrix as an integral over

Grassmann variables (11.36), i.e.∫
dnχdnχ exp (χiKijχj) = detK . (15.56)

and we can generalize this to the case of functional integration, by as before replacing

our finite–dimensional integral with a functional integral and the summation over i, j

by an integral over continuous spacetime variables, i.e.∫
DχDχ exp

[∫
d4xd4yχ(x)K(x, y)χ(y)

]
= detK , (15.57)

Thus, we can evaluate the Faddeev–Popov determinant by introducing a set of scalar

Grassmannian fields, conventionally denoted as ca and ca. We then have

∆(A) = det(K) =

∫
DcDc eiSghost , (15.58)

where

Sghost = −i
∫

d4xd4yca(x)Kab(x, y)cb(y) . (15.59)
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Substituting for K we have

Lgh = −
∫
d4yca(x)∂µDab

µ δ
4(x− y)cb(y) , (15.60)

= ∂µcaDab
µ c

b , (15.61)

= ∂µca∂µc
a − gfabcAcµ(∂µca)cb . (15.62)

As before, we are free to multiply the path integral by an arbitrary constant

Zσ =

∫
Dσ exp

(
− i

2ξ

∫
d4xσa(x)σa(x)

)
, (15.63)

which upon integrating in (15.46) will pick up a ∂µAaµ∂
νAaν term. Thus, putting every-

thing together we have

Z(J) ∝
∫
DADcDc exp [iSYM+ψ + iSgh + iSgf ] , (15.64)

with LYM+ψ given as in the previous section and

Lgh = ∂µca∂µc
a − gfabcAcµ(∂µca)cb , (15.65)

Lgf = − 1

2ξ
∂µAaµ∂

νAaν , (15.66)

The fields ca and ca are known as ghosts. Thus, to define a gauge boson propagator

in the non–abelian case we are led to introduce new fields into our Lagrangian. These

ghosts are scalar anti–commuting fields, which therefore violate the spin–statistics the-

orem. Thus these cannot correspond to physical propagating states, and this is indeed

the case, as we will see when discussing BRST symmetry later on. On the other hand

these fields do propagate internally and must in general be included in loop calcula-

tions.

16. QCD

16.1 Feynman Rules

The full QCD Lagrangian is given by LQCD = LYM+ψ + Lgh + Lgf . For clarity we

reproduce these all below:
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LYM+ψ = iψi∂/ψi −mψiψi + gT aijψiA/
aψj −

1

2
∂µAaν∂µA

a
ν +

1

2
∂µAaν∂νA

a
µ

− gfabcAaµAbν∂µAcν −
1

4
g2fabef cdeAaµAbνAcµA

d
ν . (16.1)

Lgh = ∂µca∂µc
a − gfabcAcµ(∂µca)cb , (16.2)

Lgf = − 1

2ξ
∂µAaµ∂

νAaν , (16.3)

where as before we leave the quark flavour indices implicit for simplicity. The Feynman

rules can be read off from this, and are summarised below:

• The gluon propagator follows in exactly the same way as the photon case, but

with a δab in the (adjoint) colour group indices. Thus we associate

−i
gµν − (1− ξ) pµpν

p2

p2 + iε
δab . (16.4)

with each internal gluon line carrying momenta p.

• The fermion propagator follows in exactly the same way as for QED, but with a

δij in the (fundamental) colour group indices. Thus with each internal quark line

we associate

i
p/+m

p2 −m2 + iε
δij , (16.5)

where as usual p is the momentum pointing along the direction of the fermion

arrow

• The gqq vertex has the same spinor structure as for QED, but now has a generator

matrix T a associated with it. We therefore have the vertex

igγµT aij , (16.6)

where the adjoint index a is associated with the gluon, and the fundamental

indices i (j) are associated with the fermion line pointing away from (towards)

the vertex.

• There is a 3–gluon interaction vertex, given by

gfabc((p1 − p2)γgαβ + (p2 − p3)αgβγ + (p3 − p1)βgγα) , (16.7)
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for incoming gluon momenta p1, p2, p3 associated with Lorentz indices α, β, γ and

adjoint colour indices a, b, c, respectively.

• There is a 4–gluon interaction vertex, given by

−ig2
[
fabef cde (gµρgνσ − gµσgνρ) + facef bde (gµνgσρ − gµσgνρ) + fadef bce (gµνgρσ − gµρgνσ)

]
,

where the Lorentz indices µ, ν, ρ, σ labelling the four gluon lines are associated

with the adjoint colour indices a, b, c, d, respectively.

• For every internal ghost line draw a fermion arrow over a dashed line and associate

the propagator
i

p2 + iε
δab . (16.8)

• The ghost–antighost–gluon vertex is given by

gfabcpµ , (16.9)

where p is the momenta flowing along the ghost line pointing away from the

vertex, b (c) are associate with the ghost lines flowing towards (away from) the

vertex, and a is associated with the gluon. One arrow must point towards and

one away from each vertex.

• For every internal ghost loop (as well as quark loop) we associate a factor of -1.

• Deal with external fermions in the usual way, but associating a fundamental

colour index i with each one.

• For every incoming (outgoing) gluon, associate a polarization vector εµλi (εµ∗λi ).

16.2 Quark QED interactions

As well as pure quark–gluon interactions, the quarks/antiquarks carry electric charges

eq = ±1
3
,±2

3
. These can therefore interact with photons via a photon–quark vertex,

with Feynman rule:

• The γqq vertex is given by

−ieeqδijγµ , (16.10)

where i, j are the colour indices in the fundamental representation and eq is the

fractional quark charge.
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Theory expectation 3 - Production

16

Figure 4. Processes favouring glueball G production, where J/ψ and Υ are
respectively the lowest mass cc̄ and bb̄ mesons with JPC = 1−−.

(ii) Central production of mesons: In double diffractive high energy processes the

incoming hadrons scatter with small momentum transfers and carry on the initial
valence quarks. In Regge theory this process is dominated by “double Pomeron

exchange”. If the Pomeron is viewed as a gluon dominated object then glueball

production is enhanced in this reaction (pp → p gb p). The different contributing

processes within QCD have been discussed in [47].

(iii) pp̄ annihilation: The annihilation of quarks may proceed through intermediate
gluons and the formation of glueballs (pp̄→ gb+M).

(iv) Decay of excited heavy quarkonium Y (n) to ground state Y : In the example

Y (n) → Y +X the hadrons X are emitted from intermediate gluons and therefore

could be formed through an intermediate glueball.

(v) Decay of heavy quark b → sg: This QCD process (through “penguin” diagram)
may hadronize involving a glueball according to B → Kgb [48].

(vi) Leading particle in gluon jet: In analogy to the fragmentation of the primary quark q

of a q-jet into an energetic meson M(qq̄′) which carries q as valence quark, there may

be the fragmentation of the primary gluon of a gluon jet into an energetic meson

M(gg) which carries the initial gluon as valence gluon g → gb+X (section 9).

3.2.2. Suppression of glueballs in γγ processes. Having neutral constituents a glueball

couples to photons only through loop processes and then it is suppressed in γγ reactions.

3.3. Supernumerous states among qq̄ nonets?

Mesons with light quark constituents (u, d, s quarks) are classified in nonets of 3 × 3

states (octet+singlet). A well known example is the pseudoscalar nonet of lowest mass

with π, K, η near flavour octet and η′ near singlet. It is the aim of meson spectroscopy

to establish the appropriate classification of mesons. They should fit into nonets of qq̄

states - possibly, there are also exotic states like tetra-quark qqq̄q̄ or hybrid qq̄g states.
If there are glueballs in addition there should be supernumerous states which do not fit

into a nonet classification of the meson spectrum.

• Basic idea: expect production of glueballs to be enhanced where 
gluonic transitions are favoured       “glue-rich environments”.!

• Principle cases considered:

‣            decay : C-odd Scattering in QCD

 qg ® qg

 l  k  c

Figure 26: Leading–order Feynman diagrams for qg → qg scattering. The s, u and t channel
diagrams are shown in a, b and c, respectively.

16.3 Example Process: qg → qg scattering

As an example we can consider the q(p1)g(q1) → q(p2)g(q2) scattering process, which

at the LHC would contribute to inclusive jet production. The contributing Feynman

diagrams at leading order are shown in Fig. 26, along with the corresponding colour

labelling. Setting the quark masses to zero for simplicity we have

iMs =
−ig2

s

(
T bT a

)
ji
u(p2) [ε/∗2(p/1 + q/1)ε/1]u(p1) , (16.11)

iMu =
−ig2

u

(
T aT b

)
ji
u(p2) [ε/1(p/1 − q/2)ε/∗2]u(p1) , (16.12)

iMt =
g2

t
fabcT cji [(q1 + q2)σ(ε1 · ε∗2) + (q1 − 2q2) · ε1εσ∗2 + (q2 − 2q1) · ε2εσ1 ]u(p2)γσu(p1) ,

where we drop the spin labels on the spinor for brevity, but these are implied. We

can then square the total amplitude and after averaging/summing over spins apply the

same relations as in the QED case to calculate the factors associated with the kinematic

terms above. However we now also have the factors associated with colour to deal with.

Consider

|Mcolour
s |2 =

(
T bT a

)
ji

[(
T bT a

)
ji

]∗
=
(
T bT a

)
ji

(
T aT b

)
ij
, (16.13)

where we have used that the generator matrices are Hermitian in the last step, and

repeated indices are not summed over (yet). Now, the important point here is that we

never directly observe the individual colours of the quarks and gluons in any particular

scattering process. Indeed only colour neutral hadrons are actually observed in Nature.

To account for this, we must average over the colour indices of the quarks and gluons
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in the initial state, and sum over those in the final state. This gives

〈|Mcolour
s |2〉 =

1

N

1

N2 − 1

(
T bT a

)
ji

(
T aT b

)
ij

=
1

N

1

N2 − 1
Tr[T bT aT aT b] , (16.14)

=
1

N(N2 − 1)
C(N)2δii =

N2 − 1

4N2
, (16.15)

=
2

9
, (16.16)

where repeated indices are now summed over. In the first line we divide by the N = 3

and N2 − 1 = 8 colours of the initial–state quark and gluon, as we are averaging over

colour, and in the second line we have applied (15.32) and (15.33).

In fact these latter relations can always be used to express any combination of

generator matrices and structure constants that appear in the colour averaged/summed

amplitude squared. To give a couple more examples, we have

〈|Mcolour
t |2〉 =

1

N(N2 − 1)
fabcfabdTr[T cT d] , (16.17)

=
1

N(N2 − 1)
T (N)fabcfabc =

1

N(N2 − 1)
T (N)C(A)δaa , (16.18)

=
1

2
, (16.19)

and finally for an interference term

〈MtM∗
s〉 =

1

N(N2 − 1)
fabcTr[T aT bT c] , (16.20)

=
1

N(N2 − 1)

1

2
fabcTr[T a[T b, T c]] , (16.21)

=
1

N(N2 − 1)

i

2
fabcf bcdTr[T aT d] , (16.22)

=
1

N(N2 − 1)

i

2
C(A)T (N)δaa , (16.23)

=
i

4
. (16.24)

Using similar results for the remaining terms, and evaluating the kinematic parts via

the usual spin and polarization sum relations, we can then readily evaluate the cross

section for spin and colour averaged/summed qg scattering.
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16.4 Radiative Corrections

We can write the renormalized QCD Lagrangian as

L =
1

2
Z3A

aµ(gµν∂
2 − ∂µ∂ν)Aaν −

1

2ξ
∂µA

aµ∂νA
av − Z3ggf

abcAaµAbν∂µA
c
ν

− 1

4
Z4gg

2fabcf cdeAaµAbνAcµA
d
ν + Z2′∂

µca∂µc
a − Z1′gf

abcAcµ∂
µcacb

+ iZ2ψi∂/ψi − Zmmψiψi + Z1gA
a
µψiγ

µT aijψj . (16.25)

Note that the gauge–fixing term does not require a renormalization factor; as with the

photon propagator this term receives no corrections at higher order and hence does

not require renormalization. Now, the coupling g appears in multiple places in the

Lagrangian, but gauge invariance tells us that this should be universal, and therefore

renormalize in the same way in each place, i.e. if the theory is to make any sense at all,

higher–order corrections cannot break gauge invariance. Replacing the renormalized

fields and couplings with their bare counterparts, A0
µ = Z

1/2
3 Aµ, we find that this

requires

g2
0 =

Z2
1

Z2
2Z3

g2µ̃ε =
Z2

1′

Z2
2′Z3

g2µ̃ε =
Z2

3g

Z2
3

g2µ̃ε =
Z4g

Z2
3

g2µ̃ε . (16.26)

These relations do indeed hold, and are a result of the Slavnov–Taylor identities, which

are the direct non–abelian analogue of the Takahashi–Ward identities we met in the

case of QED. The proof of these relies on the fact that the above QCD Lagrangian,

including the ghost terms, obeys a generalisation of gauge invariance known as BRST

symmetry. We will discuss these further below.

In the following sections we will derive the β–function in the case of QCD. In a

similar way to QED, we have

g0 = Z1Z
−1
2 Z

−1/2
3 µ̃

ε
2 g , (16.27)

however we no longer have Z1 = Z2, which only holds in the abelian case. To motivate

why, recall that the simplest argument for expecting this to hold in QED was that gauge

invariance requires all derivatives in the Lagrangian to become covariant derivatives,

∂µ → ∂µ + ieAµ. Then, demanding that this form is preserved after renormalization,

in order to maintain gauge invariance of the Lagrangian, implied Z1 = Z2. While not

watertight, this result does indeed follow when derived more rigourously. However,

for QCD after gauge fixing, things are not quite so simple. In particular, we have

introduced a ghost term

∂µcaDab
µ c

b (16.28)
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which does not only feature a covariant derivative, and indeed we have introduced new

ghost fields, for which their corresponding gauge transformation properties is far from

clear. The symmetry that is preserved in this case is a more general BRST symmetry,

and we find in this case that the implications are not as simple, with Z1 6= Z2 in general.

Thus we must calculate the renormalization factors Z1, Z2 and Z3, which are associated

with the qqg vertex, the quark propagator and the gluon propagator, respectively.

16.5 1–loop Correction to Quark Propagator73: The Beta Function in Nonabelian Gauge Theory 428
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p p p p p+l
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iij jk

Figure 73.1: The one-loop and counterterm corrections to the quark prop-
agator in quantum chromodynamics.
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a µ

νν
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ij l l l

νρ

c

Figure 73.2: The one-loop corrections to the quark–quark–gluon vertex in
in quantum chromodynamics.

in Yang–Mills gauge theory, the divergent part of this diagram contributes
−(g2/8π2ε)C(R)δij /p to the quark self-energy Σij(/p). This divergent term
must be cancelled by the counterterm contribution of −(Z2−1)δij /p. There-
fore, in Yang–Mills theory, with a quark in the representation R, using
Feynman gauge and the MS renormalization scheme, we have

Z2 = 1 − C(R)
g2

8π2

1

ε
+ O(g4) . (73.3)

Moving on to the quark-quark-gluon vertex, we the contributing one-
loop diagrams are shown in fig. (73.2). The first diagram is again the same
as it is in spinor electrodynamics, except for the color factor of (T bT aT b)ij .
We can simplify this via

T bT aT b = T b
(
T bT a + ifabcT c

)

= C(R)T a + 1
2 ifabc[T b, T c]

= C(R)T a + 1
2(ifabc)(if bcd)T d

= C(R)T a − 1
2(T a

A)bc(T d
A)cbT d

=
[
C(R) − 1

2T (A)
]
T a . (73.4)

In the second line, we used the complete antisymmetry of fabc to replace
T bT c with 1

2 [T b, T c]. To get the last line, we used Tr(T a
AT d

A) = T (A)δad. In

Figure 27: 1–loop corrections to quark propagator. Note here the wavy line represents an
internal gluon.

The diagrams contributing at 1–loop to the fermion self–energy are shown in

Fig. 27, and are exactly the same ones as those which contribute in the QED case,

but with the photon simply replaced by a gluon. In Section 14.7 we found for the QED

1–loop self–energy:

Σ(p/)QED = − e2

8π2

∫ 1

0

dx ((ε− 2)(1− x)p/+ (4− ε)m)

[
1

ε
− 1

2
ln

(
−X
µ2

)]
,

+ (Z2 − 1)p/− (Zm − 1)m+O(e4) . (16.29)

The QCD case will be exactly the same, except with e → −g (minus as the electric

charge of the electron is negative and we define e > 0), δ2,m → δ2,mδij, and an additional

colour factor associated with the 1–loop diagram. This is

(T aT a)ij = C(N)δij , (16.30)

so that

ZMS
2 = 1− C(N)

g2

8π2

1

ε
, (16.31)

and similarly for the mass renormalization. We note that here and in what follows we

work in the Feynman gauge for the gluon propagator, i.e. with ξ = 1. As in QED,

the individual renormalization constants do in general depend on ξ, but as usual the

physical result does not. In particular, when we calculate the running of the QCD

coupling at the end, these ξ dependent factors cancel, and so for simplicity we take this

gauge in what follows.
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16.6 1–loop Correction to QCD Vertex

73: The Beta Function in Nonabelian Gauge Theory 428
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Figure 73.1: The one-loop and counterterm corrections to the quark prop-
agator in quantum chromodynamics.
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Figure 73.2: The one-loop corrections to the quark–quark–gluon vertex in
in quantum chromodynamics.

in Yang–Mills gauge theory, the divergent part of this diagram contributes
−(g2/8π2ε)C(R)δij /p to the quark self-energy Σij(/p). This divergent term
must be cancelled by the counterterm contribution of −(Z2−1)δij /p. There-
fore, in Yang–Mills theory, with a quark in the representation R, using
Feynman gauge and the MS renormalization scheme, we have

Z2 = 1 − C(R)
g2

8π2

1

ε
+ O(g4) . (73.3)

Moving on to the quark-quark-gluon vertex, we the contributing one-
loop diagrams are shown in fig. (73.2). The first diagram is again the same
as it is in spinor electrodynamics, except for the color factor of (T bT aT b)ij .
We can simplify this via

T bT aT b = T b
(
T bT a + ifabcT c

)

= C(R)T a + 1
2 ifabc[T b, T c]

= C(R)T a + 1
2(ifabc)(if bcd)T d

= C(R)T a − 1
2(T a

A)bc(T d
A)cbT d

=
[
C(R) − 1

2T (A)
]
T a . (73.4)

In the second line, we used the complete antisymmetry of fabc to replace
T bT c with 1

2 [T b, T c]. To get the last line, we used Tr(T a
AT d

A) = T (A)δad. In

Figure 28: 1–loop corrections to qqg vertex. Note here the wavy line represents an internal
gluon.

The 1–loop diagrams contributing to the QCD vertex are shown in Fig. 28. The

‘abelian’ left hand diagram is identical to the QED case, with the photon replaced by

a gluon, whereas the right hand ‘non–abelian’ diagram, which contains a gluon self–

coupling, is new. As with the quark propagator, we can simply read off the associated

correction for the abelian diagram once we have worked out the corresponding colour

factor. This is

T bT aT b = T b
[
T bT a + ifabcT c

]
, (16.32)

= C(N)T a +
i

2
fabc

[
T b, T c

]
, (16.33)

= C(N)T a +
1

2
(ifabc)(if bcd)T d , (16.34)

= C(N)T a − 1

2
(T aA)bc(T dA)cbT d , (16.35)

=

(
C(N)− 1

2
T (A)

)
T a . (16.36)

As discussed in the case of scalar QED, as we are only interested in the divergent

piece we are free to set the external momenta to zero. Given we work in the MS

scheme, where we are only interested in the ε poles, up to the usual µ̃→ µ redefinition,

this is indeed all we need. The contribution to the exact vertex iV aµ
ij (p′, p) from the

non–abelian diagram is then

(ig)2gfabc(T cT b)ij(−i)2i

∫
d4l

(2π)4

γν(l/+m)γρ
l4(l2 −m2)

[(0 + l)ρgµν + (−l − l)µgνρ + (l − 0)νgµρ] ,

(16.37)

where here and in what follows we work in the Feynman gauge. We can simplify the
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colour factor with

fabc(T cT b) =
1

2
fabc[T c, T b] =

i

2
fabcf cbdT d = − i

2
T (A)T a . (16.38)

The numerator is

Nµ = γν(l/+m)γρ(l
ρgµν + lνgµρ − 2lµgνρ) , (16.39)

!
=
l2

D
γνγσγρ(g

σρgµν + gνσgµρ − 2gµσgνρ) , (16.40)

=
l2

D
(γµγσγ

σ + γσγ
σγµ − 2γσγµγσ) , (16.41)

=
l2

D
(2D − 2(2−D))γµ , (16.42)

= 3l2γµ , (16.43)

where in the second line we have dropped the terms proportional to m, which are odd

in l, and used lµlν → l2gµν/D. We have then made use of the standard results for

gamma matrices, and finally set D = 4 for simplicity, as we are only interested in

the divergent pieces, and any O(ε) contribution will only affect the finite part of the

correction. Combining the above our result becomes

3

2
T (A)g3T aijγ

µ

∫
d4l

(2π)4

1

l2(l2 −m2)
. (16.44)

From our master formula we have∫
d4l

(2π)4

1

l2(l2 −m2)
=

i

8π2

1

ε
+O(ε) . (16.45)

Finally, recalling from (14.94) that we have

V µ
QED(p′, p) = −Z1eγ

µ − e3

8π2

1

ε
γµ + finite , (16.46)

we can readily read off the divergent part associated with the abelian contribution.

Combining the above we then get

V aµ
ij (p′, p) =

(
Z1 +

[
C(N)− 1

2
T (A)

]
g2

8π2

1

ε
+

3

2
T (A)

g2

8π2

1

ε

)
gT aijγ

µ + finite , (16.47)
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from which we have

ZMS
1 = 1− [C(N) + T (A)]

g2

8π2

1

ε
. (16.48)

16.7 1–loop Correction to Gluon Propagator
73: The Beta Function in Nonabelian Gauge Theory 430
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Figure 73.3: The one-loop and counterterm corrections to the gluon prop-
agator in quantum chromodynamics.

After continuing to d dimensions, the integral becomes i/8π2ε + O(ε0).
Combining eqs. (73.5) and (73.6), we find that the divergent part of the
quark-quark-gluon vertex function is

Vaµ
ij (0, 0)div =

(

Z1 +
[
C(R)−1

2T (A)
] g2

8π2ε
+ 3

2T (A)
g2

8π2ε

)

gT a
ijγ

µ .

(73.12)
Requiring Vaµ

ij (0, 0) to be finite yields

Z1 = 1 −
[
C(R) + T (A)

] g2

8π2

1

ε
+ O(g4) (73.13)

in Feynman gauge and the MS renormalization scheme.
Note that we have found that Z1 does not equal Z2. In electrodynamics,

we argued that gauge invariance requires all derivatives in the lagrangian
to be covariant derivatives, and that both pieces of Dµ = ∂µ − ieAµ should
therefore be renormalized by the same factor; this then implies that Z1

must equal Z2. In Yang–Mills theory, however, this argument fails. This
failure is due to the introduction of the ordinary derivative in the gauge-
fixing function for Rξ gauge: once we have added Lgf and Lgh to LYM, we
find that both ordinary and covariant derivatives appear. (This is especially
obvious for Lgh.) Therefore, to be certain of what gauge invariance does and
does not imply, we must derive the appropriate Slavnov-Taylor identities,
a subject we will take up in section 74.

Next we turn to the calculation of Z3. The O(g2) corrections to the
gluon propagator are shown in fig. (73.3). The first diagram is proportional
to
∫

d4ℓ/ℓ2; as we saw in section 65, this integral vanishes after dimensional
regularization.

Figure 29: 1–loop corrections to gluon propagator. Note here the wavy line represents an
internal gluon.

The 1–loop diagrams contributing to the gluon vacuum polarization are shown in

Fig. 29. In addition to the abelian diagram we have three extra contributions, two due

to the gluon self–coupling and one from a ghost loop. The first diagram, due to the

4–gluon coupling, will yield an integral∫
d4l

(2π)4

1

l2
. (16.49)

We saw for the γγφφ correction to the scalar propagator in scalar QED that such an

integral vanishes, see (8.97). Indeed it is no coincidence that the same integral occurs

here, as the diagrams are of similar forms. Therefore it will not contribute.

The second diagram, due to the 3–gluon vertex, gives the contribution to the self–

energy

iΠµν,ab
3g (k) =

1

2
g2facdf bcd(−i)2

∫
d4l

(2π)4

Nµν

l2(l + k)2
, (16.50)

where the 1/2 is a symmetry factor, as the loop integration will map the gluons in the

loop onto each other, and therefore we will double count without it.

The colour factor is simply facdf bcd = T (A)δab, while the numerator is

Nµν = [(2k + l)σgµρ − (2l + k)µgρσ + (l − k)ρgµσ]

·
[
−(2k + l)σg

ν
ρ + (2l + k)νgρσ + (k − l)ρg ν

σ

]
. (16.51)
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Introducing Feynman parameters as usual, and continuing to D dimensions we get

iΠµν,ab
3g (k) = −1

2
g2T (A)δabµ̃

ε
2

∫ 1

0

dx

∫
dDq

(2π)D
Nµν

(q2 +X)2
, (16.52)

where X = x(1− x)k2 and q = l + xk. The numerator thus becomes

Nµν = [(q + (2− x)k)σgµρ − (2q + (1− 2x)k)µgρσ + (q − (1− x)k)ρgµσ]

·
[
−(q + (2− x)k)σg

ν
ρ + (2q + (1− 2x)k)νgρσ − (q − (1− x)k)ρg

ν
σ

]
. (16.53)

The terms linear in q will integrate to zero, and we end up with

Nµν !
= −q2gµν − (4D − 6)qµqν − [(1 + x)2 + (2− x)2]k2gµν

− [D(1− 2x)2 + 2(1− 2x)(1 + x)− 2(2− x)(1 + x)− 2(2− x)(1− 2x)]kµkν .

(16.54)

Again we are free to put D = 4, as we are only interested in the divergent piece. Doing

this, and replacing qµqν → q2gµν/4 we get

Nµν !
= −9

2
q2gµν − (5− 2x+ 2x2)k2gµν + (2 + 10x− 10x2)kµkν . (16.55)

Now, we apply (8.66) to replace

q2 → D

2−D
X = −2x(1− x)k2 , (16.56)

and we finally get

Nµν !
= −(5− 11x+ 11x2)k2gµν + (2 + 10x− 10x2)kµkν , (16.57)

Again applying (16.45) we get

iΠµν,ab
3g (k) = − ig2

16π2

1

ε
T (A)δab

∫ 1

0

dxNµν + finite , (16.58)

= − ig2

16π2

1

ε
T (A)δab

(
−19

6
k2gµν +

11

3
kµkν

)
+ finite , (16.59)

which is not transverse. However we are not in trouble yet, as we have not included
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the contribution from the ghost loop. This gives

iΠµν,ab
gh (k) = (−1)g2facdf bdci2

∫
d4l

(2π)4

(l + k)µlν

l2(l + k)2
, (16.60)

where the (-1) sign comes from the ghost loop. The colour factor is facdf bdc =

−T (A)δab. The numerator is

(l + k)µlν = (q + (1− x)k)µ(q − xk)ν . (16.61)

!
=

1

4
q2gµν − x(1− x)kµkν , (16.62)

!
= −1

2
x(1− x)k2gµν − x(1− x)kµkν , (16.63)

where we have shifted variables after introducing Feynman parameters and applied the

usual tricks (taking D = 4 when applying PV reduction, as we are only interested in

the ε poles here). Using (16.45) and integrating over x we end up with

iΠµν,ab
gh (k) = − ig

2

8π2

1

ε
T (A)δab

(
− 1

12
k2gµν − 1

6
kµkν

)
+ finite . (16.64)

Now adding these contribution together we find

iΠµν,ab
3g (k) + iΠµν,ab

gh (k) =
ig2

8π2

1

ε

5

3
T (A)δab

(
kµkν − k2gµν

)
+ finite , (16.65)

which is transverse; although we have not shown it explicitly here, this also holds for

the finite part. Thus we see the importance of including the ghost loops. It is only

when this is done that the physical degrees of freedom of the gluon propagate and the

corresponding self–energy remains transverse at higher orders, as required by gauge

invariance.

We now turn to the final diagram, due to an internal quark loop. This is of exactly

the same form as in QED, but with a colour factor

Tr(T aT b) = T (N)δab . (16.66)

Thus reading off from (14.66) we have

iΠµν,ab
q (k) = − ig

2

6π2

1

ε
nFT (N)δab

(
kµkν − k2gµν

)
+ finite , (16.67)

where we have multiplied by a factor of the number of quark flavours, nF , as each one
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will give a separate contribution to the loop14. Writing

iΠµν,ab(k) = Π(k2)(kµkν − k2gµν)δab , (16.68)

and combining the above results, we find

Π(k2) =

[
5

3
T (A)− 4

3
nFT (N)

]
g2

8π2

1

ε
− (Z3 − 1) + finite , (16.69)

at 1–loop, and thus

ZMS
3 = 1 +

[
5

3
T (A)− 4

3
nFT (N)

]
g2

8π2

1

ε
(16.70)

16.8 QCD β–Function

In summary, we have

ZMS
1 = 1− [C(N) + T (A)]

αS
2π

1

ε
, (16.71)

ZMS
2 = 1− C(N)

αS
2π

1

ε
. (16.72)

ZMS
3 = 1 +

[
5

3
T (A)− 4

3
nFT (N)

]
αS
2π

1

ε
, (16.73)

where we have defined the strong coupling αS = g2/4π in direct analogy to the fine–

structure constant. We now have

αS,0 = Z2
1Z
−2
2 Z−1

3 µ̃εαS . (16.74)

Taking the logarithm and differentiating we then get

∂αS
∂ lnµ

= αS

[
∂αS
∂ lnµ

(
−2

∂ lnZ1

∂αS
+ 2

∂ lnZ2

∂αS
+
∂ lnZ3

∂αS

)
− ε
]
. (16.75)

14More precisely, only those active quark flavours for which |k2| & m2
q contribute here, and thus

nF ≤ 6. As we will see below, this does not effect the conclusions about the QCD beta function.
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Rearranging we get

∂αS
∂ lnµ

= −εαS
[
1− αS

(
−2

∂ lnZ1

∂αS
+ 2

∂ lnZ2

∂αS
+
∂ lnZ3

∂αS

)]−1

, (16.76)

= −εαS
[
1 + αS

(
−2

∂ lnZ1

∂αS
+ 2

∂ lnZ2

∂αS
+
∂ lnZ3

∂αS

)]
+O(α3

S) , (16.77)

and thus to the order we are calculating in we have

β(αS) = −α2
Sε

(
−2

∂ lnZ1

∂αS
+ 2

∂ lnZ2

∂αS
+
∂ lnZ3

∂αS

) ∣∣∣∣
ε=0

, (16.78)

= −α2
Sε

(
−2

∂Z1

∂αS
+ 2

∂Z2

∂αS
+
∂Z3

∂αS

) ∣∣∣∣
ε=0

+O(α3
S) , (16.79)

= −α
2
S

2π

(
2 [C(N) + T (A)]− 2C(N) +

[
5

3
T (A)− 4

3
nFT (N)

])
, (16.80)

which recalling (14.117) for

αS(µf ) =
αS(µi)

1− b0αS(µi) ln
(
µf
µi

) . (16.81)

gives

b0 = − 1

2π

[
11

3
T (A)− 4

3
nFT (N)

]
. (16.82)

For QCD we have T (A) = N = 3 and T (N) = 1/2, and thus

b0 = − 1

2π

[
11− 2

3
nF

]
, (16.83)

which is negative provided the number of quark flavours nf ≤ 16, which it certainly is

for QCD.

This calculation tells us that the QCD coupling is asymptotically free, and has

important physical consequences:

• As the scale µ decreases the coupling αS increases, and thus at low energies QCD

becomes strongly coupled, that is αS ∼ 1 or higher and perturbation theory can

no longer be reliably applied. This is completely consistent with what we see in

Nature: we do not observe free quarks and gluons, but rather hadrons which are

invariant under SU(3) (‘colour singlet’) and correspond to tightly bound systems
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of quarks and gluons15

• As the scale µ increases the coupling αS decreases to zero. Thus if we probe

QCD at sufficiently high scales the coupling becomes small and hence amenable

to perturbation theory. So, in for example the Deep Inelastic Scattering (DIS)

of a lepton off a proton lp → l + X, provided the virtuality of the exchanged

photon is large enough, we can describe the reaction in terms of the scattering

of the lepton off free quarks within the proton, and include a range of higher–

order QCD corrections to this picture. More generally this fact is responsible for

us being able to calculate essentially anything in high–energy hadron colliders;

prior to this physicists had to resort to making general statements based on basic

symmetry and unitarity requirements, via so–called S–Matrix and Regge theory.9. Quantum chromodynamics 39

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).
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The fact that we can say anything at all about the strong force using perturbative

methods is quite a remarkable one, and as such this calculation is arguably the most

important one in the history of high–energy collider physics. Without it, there would

be no LHC. It is no surprise then that the Nobel prize for physics in 2004 went to

Gross, Politzer and Wilczek ‘for the discovery of asymptotic freedom in the theory of

the strong interaction’. An up–to–date summary of the measurements of αS is shown

15Note that some care in naively applying (16.81) is needed here, and in particular it is not the
case that αS becomes arbitrarily large at low energies, as this expression might suggest. Rather, the
whole argument leading up to it relies on the perturbative approach of throwing away of higher–order
terms in αS . Thus while we know that αS becomes large at low scale, we cannot predict its behaviour
using the above methods. Indeed, the fact that quarks and gluons can only exist in colour–singlet
hadrons, known as confinement has still yet to be proved; in fact, doing so is one of the millennium
prize problems.
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in Fig. 30, taken from the Particle Data Group (PDG). The decrease in the coupling

as the scale increases is clear, and is found to be exactly in line with the expectations

from QCD.

17. BRST

BRST (Becchi, Rouet, Stara, Tyutin) symmetry is an additional exact symmetry

present in the QCD Lagrangian when ghost fields are added. It guarantees that addi-

tional gauge–violating terms, on top of the usual gauge–fixing term, do not appear at

higher orders and e.g. spoil the universality of the gauge coupling g. In addition to this,

it guarantees that the ghost fields themselves, as well as the unphysical longitudinal

polarization states of the gluons, do not propagate as external physical modes.

17.1 Abelian Case

BRST symmetry can be demonstrated most simply by considering the Abelian limit of

the Faddeev–Popov Lagrangian with complex scalar matter field φ

L = −1

4
FµνF

µν + (Dµφ
∗)(Dµφ)−m2φ∗φ− 1

2ξ
(∂µA

µ)2 − c∂2c . (17.1)

Due to the gauge fixing term this is no longer invariant under a general gauge trans-

formation

Aµ → Aµ + ∂µα , (17.2)

but there is still a residual symmetry under this transformation if α(x) satisfies ∂2α = 0.

Instead of the gauge transformation parameter α(x), let us take α(x) = θc(x) for

some Grassmann number θ. Then consider

φ(x)→ e−ieθc(x)φ(x) = φ(x)− ieθc(x)φ(x) , (17.3)

Aµ(x)→ Aµ(x) + θ∂µc(x) . (17.4)

As these are of the same form as a local gauge transformation, the first three terms in

(17.1), which are manifestly gauge invariant, are also invariant under this. Now, the

equations of motion for the ghost fields are

∂2c = ∂2c = 0 , (17.5)

and thus provided we can use the equations of motion for the ghost fields, the gauge

fixing term is also invariant, and hence the entire Lagrangian. If we do not use these,
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then for the gauge fixing term we have

(∂µA
µ)2 → (∂µA

µ)2 + 2(∂µA
µ)(θ∂2c) , (17.6)

where we have dropped a term ∼ θ2 = 0 due to the Grassmannian nature of θ. Clearly

this is invariant if the equations of motion are satisfied, as we expect. However, even if

they are not, comparing with the final term of (17.1) we can see that the Lagrangian

will still be invariant if we require that the field c transforms as

c(x)→ c(x)− 1

ξ
θ∂µA

µ(x) . (17.7)

This, combined with (17.3) and (17.4), are known as a BRST transformation, and the

Lagrangian (17.1) is said to be BRST invariant. We can see that it is essentially a

generalization of gauge invariance that still holds despite the presence of the gauge

fixing term.

17.2 Non–Abelian Case

The Lagrangian is now

L = L[Aaµ, ψi]−
1

2ξ
(∂µAaµ)2 + (∂µc

a)(Dµc
a) , (17.8)

where

Dµc
a = ∂µc

a + gfabcAbµc
c . (17.9)

We can then proceed in a similar way to the abelian case, with

ψi(x)→ ψi(x) + igθcaT aijψj , (17.10)

Aaµ → Aaµ + θDµc
a , (17.11)

ca → ca − 1

ξ
θ∂µAaµ , (17.12)

under which the first term is manifestly invariant, as this corresponds to a gauge trans-

formation with θa(x) = θca(x). The transformation of ca is then designed to exactly

cancel the transformation of the gauge fixing term, as in the Abelian case. However,

unlike in the Abelian case the Dµc
a is not invariant by default, because of the presence

of the Aaµ field in the covariant derivative. We have

Dµc
a → Dµc

a + gθfabc(Dµc
b)cc . (17.13)
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After a few lines of algebra it can be shown that the non–trivial BRST transformation

of ca via

ca → ca − 1

2
gθfabccbcc , (17.14)

will cancel this additional term and leave Dµc
a invariant. To see this, we have

Dµc
a → Dµc

a + gθfabc(Dµc
b)cc − 1

2
gθfabc

[
(∂µc

b)cc + cb(∂µc
c) + gf cdeAbµc

dce
]
,

where the second term is already invariant, as shifting either c field leads to terms

∼ θ2 = 0. The first two terms in the brackets are equal, as (∂µc
b)cc = −cc(∂µcb) and

fabc = −facb. For the third term, we have

fabcf cdeAbµc
dce = −f bdcf caeAbµcdce − fdacf cbeAbµcdce ,

= 2fabcf bedAeµc
dcc , (17.15)

where in the first line we have used the Jacobi identity

fabdfdce + f bcdfdae + f cadfdbe = 0 , (17.16)

which automatically follows from the complete antisymmetry of the structure constants.

In the second we have used the antisymmetry of fabc and some index relabelling. Thus

Dµc
a → Dµc

a + gθfabc(Dµc
b)cc − gθfabc

[
(∂µc

b)cc + gf bedAeµc
dcc
]
,

= Dµc
a + gθfabc(Dµc

b)cc − gθfabc(Dµc
b)cc = Dµc

a , (17.17)

as required.

Now, we may object that the transformation of c and c are inconsistent with these

being related by complex conjugation, and indeed it is. However, there is in fact

no requirement at all to identify the fields in this way. We simply needed a path

integral over two Grasmmann valued fields in order to calculate the Faddeev–Popov

determinant, and the logic follows through irrespective of whether these are related in

this way or not. Indeed they do not even have to be complex. We are therefore free to

give them completely distinct transformation properties.

17.3 BRST operator

n.b. This section is non–examinable

Writing the BRST transformations as ψi → ψi + θδBψi, A
a
µ → Aaµ + θδBA

a
µ etc, we
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have

δBA
a
µ(x) = Dab

µ c
b(x) = ∂µc

a(x)− gfabcAcµ(x)cb(x) , (17.18)

δBψi(x) = igca(x)(T aR)ijψj(x) , (17.19)

δBc
c(x) = −1

2
gfabcca(x)cb(x) , (17.20)

δBc
a(x) = −1

ξ
∂µAaµ . (17.21)

More generally, one can consider the action of this symmetry by introducing a further

field Ba(x), which is scalar and not Grassmann valued. In this case the Lagrangian

(17.8) becomes

L = L[Aaµ, ψi] +
ξ

2
(Ba)2 +Ba∂µAaµ + (∂µc

a)(Dµc
a) . (17.22)

This is required to be invariant under a BRST transformation, while the transformation

of the anti–ghost field is defined in terms of this, with

δBB
a(x) = 0 , (17.23)

δBc
a(x) = Ba(x) . (17.24)

As this has a quadratic term without derivatives, it is not interpreted as a standard

propagating field. Indeed the functional integral over Ba can be performed by com-

pleting the square in (17.22), which is equivalent to substituting for Ba in terms of the

classical equations of motion that follow from this Lagrangian:

Ba(x) = −1

ξ
∂µAaµ . (17.25)

This then gives us back (17.8) as before.

One then finds that the BRST operator has the property that δ2
B = 0, i.e. it

is nilpotent. This can be explicitly shown by acting with δB on any of the above

transformations, which will give 0; this happens automatically when written in terms

of the auxillary field Ba, while taking (17.21) one has to assume the equations of motion

for c are satisfied. One consequence of this is that we are free to add any term that is

the BRST variation of some object O to the Lagrangian

L = LYM + δBO , (17.26)
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and this will still be BRST invariant (remember LYM is automatically invariant, as in

this case a BRST transformation simply corresponds to a gauge transformation). With

a suitable choice of O this can in fact be used to recover the gauge fixing and ghost

contributions to the Lagrangian we found before, via an alternative route (see Srednicki

chapter 74 for details, using a slightly different notation).

The symmetries of the action are (1) Lorentz invariance; (2) CPT; (3) global gauge

invariance; (4) BRST invariance; (5) ghost number conservation; (6) anti–ghost trans-

lation invariance. Ghost number conservation corresponds to assigning a ghost number

+1 to ca and −1 to ca and demanding that every term in L has ghost number zero.

Anti–ghost translation invariance corresponds to ca(x)→ ca(x)+χ, where χ is a Grass-

mann constant. This follows because the Lagrangian (17.8) only contains derivatives

in ca.

Now, this Lagrangian (17.8) in fact includes all terms consistent with these symme-

tries that have coefficients with positive or zero mass dimension. Now BRST symmetry

requires that g renormalize in the same way at each of its appearances, and as loop

corrections should respect the symmetry of the Lagrangian, this guarantees that the

various renormalization parameters are related as we required above.

17.4 Physical states

n.b. This section is non–examinable

Regarding the BRST transformation as infinitesimal, we can construct a Noether

current via the standard formula

jµB(x) =
∑
I

∂L
∂(∂ΦI(x))

δBΦI(x) , (17.27)

where ΦI(x) stands for all fields, including matter (scalar and/or spinor), gauge and

ghost. We can then define a BRST charge

QB =

∫
d3xj0

B(x) . (17.28)

In a QFT this charge is an operator, as the fields themselves which enter (17.27) are

operators. By considering the (anti) commutation relations between the canonically

conjugate field variables, it is possible to show that

[QB,ΦI ]± = −iδBΦI , (17.29)

where the ± indicates a commutator of anti–commutator, depending on whether the
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field is scalar or fermionic. We write this for the explicit case of BRST, but this holds

for any general charge. Thus QB generates a BRST transformation, with

i[QB, Aµ(x)] = Dab
µ c

b(x) , (17.30)

i{QB, c
a(x)} = −1

2
gfabccb(x)cc(x) , (17.31)

i{QB, c
a} = −1

ξ
∂µAaµ , (17.32)

i[QB, φx(x)]± = igca(x)(T aR)ijφj(x) , (17.33)

where in the last line φ is a scalar or fermion transforming in the representation R. As

the BRST transformation of a BRST transformation is zero, QB is nilpotent

Q2
B = 0 . (17.34)

Now, consider the action of QB on some state |ψ〉, then if

|ψ〉 = QB|φ〉 (17.35)

for some state |φ〉, we automatically have

QB|ψ〉 = 0 . (17.36)

In this case, the state |ψ〉 is said to be in the image of QB. If (17.36) is satisfied, but

|ψ〉 6= QB|φ〉 (17.37)

then this state is said to belong to the cohomology of QB. In both cases these are

annihilated by QB and are said to be in the kernel of QB. A third option is that the

state is not in the kernal, and is not annihilated by QB. Note that any state that is in

the image of QB has zero norm, as

〈ψ|ψ〉 = 〈φ|Q2
B|φ〉 = 0 . (17.38)

and so we are led to identify such states as unphysical. Moreover, as the Lagrangian

is BRST invariant, the Hamiltonian H that we derive from it must commute with the

BRST charge

[H,QB] = 0 , (17.39)

and thus a state which is annihilated by QB at earlier times will be annihilated at later
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times, as QBe
−iHt|ψ〉 = e−iHtQB|ψ〉. Furthermore, as unitary time evolution does not

change the norm of a state, any state in the cohomology will remain so at later times.

We therefore claim that all physical states of a theory correspond to the cohomology

of QB.

Consider an initial state of widely separated wave packets of incoming particles,

with the usual expansions

Aµ(x) =
∑
λ

∫
d3k

(2π)3k0

[
εµ∗λ (k)aλ(k)eikx + εµλ(k)a†λ(k)e−ikx

]
, (17.40)

c(x) =

∫
d3k

(2π)3k0

[
c(k)eikx + c†(k)e−ikx

]
, (17.41)

c(x) =

∫
d3k

(2π)3k0

[
b(k)eikx + b†(k)e−ikx

]
, (17.42)

φ(x) =

∫
d3k

(2π)3k0

[
aφ(k)eikx + a†φ(k)e−ikx

]
, (17.43)

where for the gauge field we sum over all four polarization states. For k = ω(1, 0, 0, 1)

these are given by

εµ> =
1√
2

(1, 0, 0, 1) , (17.44)

εµ< =
1√
2

(1, 0, 0,−1) , (17.45)

εµ+ =
1√
2

(0, 1,−i, 0) , (17.46)

εµ− =
1√
2

(0, 1, i, 0) . (17.47)

The first two correspond to the unphysical longitudinal polarization states, while the

last two are the usual physical transverse ones.

Setting g = 0, as we are interested in the asymptotic states, and substituting

(17.40)–(17.43) into (17.30)–(17.33) and matching coefficients of e−ikx, we find

[QB, a
†
λ(k)] =

√
2ωδλ>c

†(k) , (17.48)

{QB, c
†(k)} = 0 , (17.49)

{QB, b
†(k)} =

1

ξ

√
2ωa†<(k) , (17.50)

[QB, a
†
φ(k)] = 0 . (17.51)
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Now if we start with some normalized state |ψ〉 that is in the cohomology:

〈ψ|ψ〉 = 1 , QB|ψ〉 = 0 , (17.52)

then (17.48) gives

QBa
†
>(k)|ψ〉 ∝ c†(k)|ψ〉 , (17.53)

and thus if we create a photon with polarization state > by acting with a†> then this

state is not annihilated by QB and is therefore not in the cohomology. In addition, if

we create a ghost field by acting with c†, then this is proportional to QB acting on a

state, and is also not in the cohomology. In a similar way (17.50) gives

QBb
†(k)|ψ〉 ∝ a†<(k)|ψ〉 , (17.54)

demonstrating that the < polarization state and the anti–ghost fields are also not in

the cohomology.

On the other hand, if we create physical polarization states by acting with a†±, then

(17.48) gives that

QBa
†
±(k)|ψ〉 = 0 (17.55)

and so these are annihilated by QB. As these cannot be written as QB acting on some

other state, these are in the cohomology. A similar result holds for the matter fields.

Thus we can build an initial state of widely separated particles in the cohomology

only if we exclude (massless) gauge boson fields with unphysical polarization states,

and any ghost fields. As a state in the cohomology cannot evolve to a state not in the

cohomology, these can also not be produced in the scattering process.

18. Spontaneous Symmetry Breaking

In this section we discuss the concept of spontaneous symmetry breaking. In a nutshell,

this is the idea that while the physics describing a system may possess some symmetry,

the ground state of this system may not itself be invariant under this symmetry. In QFT

language, while the Lagrangian itself may possess some symmetry, the vacuum state

may not. Though we will focus on particle physics here, this possibility is widespread

in other areas, for example Bose–Einstein condensates, superfluids, superconductors,

crystals and ferromagnetic materials all exhibit this phenomenon. In the latter case,

within the so–called Ising model the atoms interact through a spin–spin interaction,

– 170 –



with corresponding Hamiltonian (in the absence of any external magnetic field):

H = −
∑
i,j

JijSi · Sj , (18.1)

where Jij > 0. This is itself invariant under rotations, as we might expect, i.e. there is

no preferred direction with respect to which the atomic spins might align. However we

can clearly see that the minimum energy state for the above expression is achieved by

having all spins aligned with each other, maximising the dot product of spin vectors.

Yet we have just stated that within our theory there is no preferred direction along

which these might align. So what happens in reality? Well, if one takes such a material

and lowers the temperature, then at some point the spins will all align into exactly such

a ground state, with the overall direction of this being random. This ground state is no

longer rotationally invariant, and we talk of the original symmetry being spontaneously

broken.

The reason this is a particularly attractive idea from the point of view of particle

physics is because it has been known for a long time that the force carrying particles

of the weak nuclear force, the W and Z bosons, are massive. The latest experimental

values are:

MZ = (91.1876± 0.0021) GeV , MW = (80.385± 0.015) GeV . (18.2)

Given the success in describing QED and QCD as gauge theories, it is tempting to try

the same for the weak interaction. However we immediately run into a problem, as we

recall from (5.34) that a photon mass term in our Lagrangian for the case of e.g. QED:

Lkin =
1

2
m2
AAµA

µ , (18.3)

is definitely not gauge invariant. For more complicated non-abelian symmetries the

result is the same, namely we cannot explicitly write down a mass term for the gauge

bosons of our theory that respects gauge invariance. One might still be tempted to

disregard the requirement of gauge symmetry, and put in some sort of mass term by

hand. However it turns out that if we try this the resulting theory exhibits all sorts

of bad behaviour: particular scattering cross sections become arbitrarily large at high

energies, breaking the conservation of probability, and moreover the theory itself is not

renormalizable.

Given this, it is natural to ask whether SSB might come to the rescue, i.e. might

it be possible to start off with a gauge theory of the weak interaction, but for which

the ground state does not preserve the underlying gauge symmetry, and hence it might
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be permitted to have massive gauge bosons. We can then hope that the underlying

(albeit broken) gauge symmetry preserves the nice features we see in QED and QCD,

i.e. well behaved scattering cross sections and renormalizability, while still allowing for

massive gauge bosons. As we will see, this is indeed possible, and is (as far as we know

today) precisely what is realised in our gauge theory for the electroweak interaction, as

it appears in the Standard Model.

18.1 Global Symmetries – Abelian Case
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Figure 31: Potential for complex scalar field with positive (negative) mass term shown in
the left (right) figure.

To introduce the basic concept, we first consider a theory which is invariant under

a global symmetry, i.e. not a gauge theory. Consider in particular the Lagrangian for

one complex scalar field

L = ∂µφ
∗∂µφ−m2φ∗φ− 1

4
λ(φ∗φ)2 , (18.4)

which is invariant under the global U(1) transformation

φ(x)→ e−iαφ(x) , (18.5)

where we absorb the charge labelling q into α for simplicity. For m2 > 0 the second

piece in (18.4) will enter the equations of motion for φ and φ∗ in the usual way, and we

interpret m as the mass of the particles φ (and antiparticle φ∗) in the quantum theory.

Now, what happens if we instead take m2 < 0? We can certainly no longer interpret

this as a mass term in any straightforward sense. This corresponds to a so–called

tachyonic field configuration, for which the usual relativistic relation γ2 = E2/m2 tells

us that a negative m2 corresponds to v > c, i.e. faster than light propagation. This is

certainly not something we would like to be present in our theory.
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Fortunately we do not have deal with such a field configuration, as in this case the

potential term in the Lagrangian has the form shown in Fig. 31, with

V (φ) = m2φ∗φ+
1

4
λ(φ∗φ)2 , (18.6)

which has a stable minimum for the non–zero constant field configuration

φ(x) =
1√
2
ve−iθ . (18.7)

where

v =

(
4|m2|
λ

)1/2

, (18.8)

and the phase θ is arbitrary. This corresponds to the minimum energy ground state

configuration, i.e. which minimises the Hamiltonian corresponding to (18.4). Thus in

this ground state configuration, the field has a constant and non–zero value. This is in

contrast to the positive m2 case, where the stable minimum simply occurs at φ = 0, i.e.

with the field turned off, as one might more naturally expect. In the m2 < 0 case there

is also a minimum here, which would correspond to the tachyonic field configuration

discussed above, however as this is unstable this will not correspond to a (stable) ground

state.

Under U(1) transformations θ changes to θ + α, and thus different minimum en-

ergy configurations are related by this symmetry. In the quantum theory, there is a

continuous family of ground states, labelled by θ, with

〈θ|φ(x)|θ〉 =
1√
2
ve−iθ , (18.9)

and 〈θ|θ′〉 = 0. That is, the non–zero value of the ground–state field configuration in

the classical case corresponds to a non–zero vacuum expectation value, with magnitude

v, in the quantum case.

In the classical language, there is a flat direction in field space along which we can

move without changing energy. The physical consequence of this is the existence of a

massless particle known as a Goldstone boson in the spontaneously broken theory. To

see this, we first choose our phase θ = 0, which we are completely free to do due to

the global U(1) symmetry of the Lagrangian; this corresponds to a coordinate choice,

if you like. We then parameterise our field as

φ(x) =
1√
2

(v + ρ(x))e−iχ(x)/v , (18.10)
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where χ and ρ are real scalar fields. Physically, this corresponds to expanding around

the vacuum, i.e.

〈0|φ(x)|0〉 =
1√
2
v , (18.11)

implies that

〈0|ρ(x)|0〉 = 〈0|χ(x)|0〉 = 0 . (18.12)

Substituting this into (18.4) and dropping an overall constant ∼ v4λ/16, which doesn’t

contribute to the physics, we find

L =
1

2

(
1 +

ρ

v

)2

∂µχ∂
µχ

+
1

2
∂µρ∂

µρ− |m2|ρ2 − 1

4
λvρ3 − 1

16
λρ4 , (18.13)

and thus by expanding around the minimum in this way we can see that the two

degrees of freedom of our original complex scalar field in the unbroken theory behave

quite differently. We in particular have one real ρ field with mass m2
ρ = 2|m2| and

zero vacuum expectation value (vev), and a massless field χ. This second field does

not appear in the potential at all, and thus parameterises the flat direction. The U(1)

transformation of the field φ simply corresponds to χ(x)→ χ(x)+vα. However, we can

see that the fields χ and ρ which now describe our Lagrangian no longer have a U(1)

symmetry. We therefore say that this symmetry is spontaneously broken by the choice

of ground state; the theory has undergone spontaneous symmetry breaking (SSB).

Note also that both of these physical fields are perfectly well–behaved, i.e. the

apparently tachyonic behaviour implied by the original Lagrangian is absent once we

expand about the correct ground state. We can also see that a quartic and a new cubic

interaction term between the ρ fields are present in this physical Lagrangian. That is,

as well as changing the mass spectrum of our theory, SSB introduces new interactions

between the fields. Both of these properties will be present in the more general case of

gauge symmetry breaking we will consider below, albeit in a slightly different form.

Now this may seem like mathematical trickery, as all we have done is rewrite our

original Lagrangian via a simple substitution (18.10), which defines ρ and χ in terms

of φ. How can this have introduced any genuine physical results? The crucial point is

(18.12), i.e. that the vacuum expectation values of these new fields is 0. We expect

our physical degrees of freedom to be turned off in the vacuum, and when we scatter

particles we excite this vacuum. Thus it is indeed the new fields ρ and χ, and not the

field φ that represent the physical states in the system.

Does χ remain massless in the full quantum theory, i.e. after including quantum

– 174 –



corrections? If this is the case, its exact propagator ∆̃exact
χ (k2) should have a pole at

k2 = 0, that is the self–energy should satisfy Πχ(k2 = 0) = 0. The diagrams that

generate these corrections will come from summing all IPI diagrams with two external

χ lines. The ρρχχ and ρχχ vertices which will generate these are, due to the derivative

acting on the χ fields in these terms in the Lagrangian, proportional to k1 · k2, where

k1,2 are the momenta of the two χ lines at the vertex. Thus as the external lines have

zero momenta, the attached vertices vanish, and we do indeed have Πχ(k2 = 0) = 0, as

required.

18.2 Global Symmetries – Non–Abelian Case

The above results can be generalised straightforwardly to the non–abelian case. Con-

sider the Lagrangian

L =
1

2
∂µφi∂

µφi −
1

2
m2φiφi −

1

16
λ(φiφi)

2 , (18.14)

for a set of N real scalar fields, and where repeated indices are summed over as usual.

This is invariant under the SO(N) transformation

φi → Oijφj , (18.15)

where the real transformation matrices satisfy OT = O−1 and det(O) = 1. As usual,

we can write the transformation matrix in the infinitesimal form

Oij = δij + iθa(T a)ij , (18.16)

in terms of a basis of generator matrices T a and real infinitesimal parameters θa. The

orthogonality condition for the real matrices O implies that the T a must be imaginary

and anti–symmetric, for which there are 1
2
N(N−1) independent matrices. A convenient

choice for these generators is to take for each T a that it has one single non–zero entry

−i above the main diagonal, and a corresponding +i below, e.g.

T 1 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

· · ·

 , (18.17)

and so on. Taking as before m2 < 0 in the Lagrangian, the minimum of the potential
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is now achieved for
∂V

∂φj
= 0⇒ φiφi =

4|m2|
λ

, (18.18)

which is satisfied for φi = vi with

v2 = vivi =
4|m2|
λ

, (18.19)

and the direction in which this N–component vector ~v points is arbitrary. This vi is

the vev of the fields φi. We are free to choose our coordinate system so that

vi = vδiN , (18.20)

and the vev lies entirely in the last component. This will simplify the considerations

below, but the physics will not depend on this choice. Now, consider the impact on the

vev of making an infinitesimal SO(N) transformation. This gives

vi → vi + iθa(T a)ijvj = vδiN + iθa(T a)iNv . (18.21)

Crucially for many values of a the second term on the right hand side of this expression

vanishes. The only cases where this is non–vanishing is where the corresponding T a

has a non–zero entry in the last column. There are N − 1 of these, corresponding to

the case of an −i in the first row and last column, second row and last column etc

up to the (N − 1)th row. An SO(N) transformation involving these changes the vev

of the fields, but not the energy. Thus this corresponds to a flat direction in field

space, in a direct generalization of the U(1) case discussed before. These are known

as broken generators, while those for which the contribution from the T a vanishes are

known as unbroken generators, as these act on a subspace that is orthogonal to the vev

direction, and are thus unaffected by the SSB. Considering for concreteness the case of

SO(3), with a vev chosen to lie along the z direction, the unbroken case corresponds

to a rotation in the x − y plane, with the remaining two independent rotations being

broken.

In the above case we therefore have

(T a)ijvj = 0⇒ Unbroken , (18.22)

(T a)ijvj 6= 0⇒ Broken , (18.23)

although some care is needed in interpreting this for a general coordinate choice; we

will comment on this below.
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As the unbroken generators do not change the vev of the field, after rewriting the

Lagrangian in terms of the shifted fields (each with zero vev), there should still be a

manifest symmetry corresponding to the number of unbroken generators. In the present

case the number of these is

1

2
N(N − 1)− (N − 1) =

1

2
(N − 1)(N − 2) , (18.24)

which is the number of generators for a SO(N − 1) symmetry. Thus, we expect our

Lagrangian, when it is rewritten in terms of shifted fields, to still have a SO(N − 1)

symmetry.

To see that this is indeed the case, it simplifies things if we note that

V (φ) =
1

2
m2φiφi +

1

16
λ(φiφi)

2 =
λ

16
(φiφi − v2)2 − λv4

16
, (18.25)

and then drop the last constant term, which plays no role in the physics. We can thus

rewrite our Lagrangian as

L =
1

2
∂µφi∂

µφi −
1

16
λ(φiφi − v2)2 , (18.26)

where the repeated index i sums from 1 to N . Now, we take our coordinate choice

(18.20), which allows us to simply expand

φN(x) = v + ρ(x) , (18.27)

with the other field components unchanged. Plugging this into (18.26) we have

L =
1

2
∂µφi∂

µφi +
1

2
∂µρ∂

µρ− V (ρ, φ) , (18.28)

where i now sums from 1 to N − 1, and

V (ρ, φ) =
1

16
λ[(v + ρ)2 + φiφi − v2]2 ,

=
1

16
λ(2vρ+ ρ2 + φiφi)

2 ,

=
1

4
λv2ρ2 +

1

4
λvρ(ρ2 + φiφi) +

1

16
λ(ρ2 + φiφi)

2 , (18.29)

which indeed has a manifest SO(N − 1) symmetry in the fields φi=1...N−1.

The first term in the last line above corresponds to the ρ mass, with m2
ρ = λv2/2.
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The remaining terms correspond to new interactions between the ρ and φ fields: we have

in particular cubic ρρρ, ρφφ as well as the usual quartic ρ4, ρρφφ and φ4 interactions.

Crucially, we can see that there is no mass term for the fields φi, and thus we now

have N − 1 massless Goldstone bosons, which corresponds to the number of broken

generators. This is no accident, but is rather a specific example of the more general

Goldstone’s theorem, which states that for each spontaneously broken generator there

will exist a massless particle. We now consider this theorem in a little more detail.

18.3 Goldstone’s Theorem

This states that whenever a continuous symmetry of the Lagrangian is spontaneously

broken, massless ‘Goldstone bosons’ emerge, with one present for each broken generator

of the symmetry. To prove this, we note that the potential before spontaneous sym-

metry breaking will be invariant under the relevant global symmetry transformation.

Considering the infinitesimal case

φi → φi + δφi = φi + i(θa)T aikφk . (18.30)

where δφi denotes an arbitrary infinitesimal group transformation, which we can also

expand in terms of the generators T a. Keeping it general for now, we required that

V (φi + δφi) = V (φi) . (18.31)

This implies that
∂V

∂φj
δφj = 0 . (18.32)

Differentiating with respect to φi we have

∂2V

∂φi∂φj
δφj +

∂V

∂φj

∂(δφj)

∂φi
= 0 , (18.33)

where we can see from (18.30) that the δφj is a function of the fields and hence the

second term is in general non–zero. Now, after SSB we expand in terms of

φi(x) = vi + χi(x) . (18.34)

Evaluating (18.33) at the minimum φi = vi the second term by definition vanishes and

we have
∂2V

∂φi∂φj

∣∣∣∣
φi=vi

δφj ≡ (M2
χ)ijδφj = 0 , (18.35)
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where the symmetric matrix (M2)ij has eigenvalues corresponding to the squared

masses of the fields. Now, if the transformation (18.30) leaves the vev vi invariant,

we will have δφj = 0 and hence this is satisfied automatically. This corresponds pre-

cisely to the subspace that is orthogonal to the vev direction discussed in the previous

section, that is the unbroken SO(N − 1) symmetry transformations that leave the vev

untouched. On the other hand if the transformation does change the vev direction

(i.e. corresponds to the broken symmetry direction), then δφj 6= 0, and hence this

corresponds to an eigenvector of this mass matrix with zero eigenvalue, i.e. precisely a

massless Goldstone boson, with one occurring for each broken symmetry direction.

To be concrete, we can return to the choice of vev (18.20) and basis of generators

(18.17) considered in the previous section. Writing our transformation in terms of the

generators (18.35) becomes

(M2
χ)ij(T

av)j = 0 . (18.36)

We can therefore immediately see that the N − 1 generators for which T av 6= 0, and

which we identified as the broken generators, are precisely those which require a zero

eigenvector of the mass matrix, and hence a massless Goldstone boson for each of these

broken generators. On the other hand, some care is needed in making use of such a

result for a general choice of vev and/or representation of the generator matrices. In

particular, Goldstone’s theorem tell us that we should identify the remaining symmetry

that occurs for the Lagrangian, once it has has been rewritten in term of the shifted

fields, i.e. after SSB. In the current case, irrespective of the choice of vev direction

(and generator representation), this is SO(N −1). We therefore identify from this that

there are
1

2
(N − 1)(N − 2) (18.37)

unbroken generators. To identify the number of broken generators, and hence massless

Goldstone bosons, we should identify the overall symmetry breaking pattern

SO(N)→ SO(N − 1) , (18.38)

where the LHS corresponds to the original symmetry of the Lagrangian, and the RHS

to the symmetry after SSB. Then the number of broken generators is given by

1

2
N(N − 1)− 1

2
(N − 1)(N − 2) = N − 1 , (18.39)

as found in the explicit example.

In this example, we for demonstration instead identified the number of broken

generators by directly confirming whether T av 6= 0 was satisfied, in order to motivate
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the underlying result. However, one cannot in general proceed in this way. In particular,

in general we can have in (18.36) that T av 6= 0 is satisfied for more than N − 1

generators. While this might suggest there are more than N−1 Goldstone bosons, this

will not be the case if some of these are not linearly independent. To be concrete, we

can consider SO(3), for which our choice of generators is

T 1 =

0 −i 0

i 0 0

0 0 0

 , T 2 =

0 0 −i
0 0 0

i 0 0

 , T 3 =

0 0 0

0 0 −i
0 i 0

 . (18.40)

Now, if we instead of (18.20) take

v =
1√
3

1

1

1

 , (18.41)

then clearly T av 6= 0 is satisfied for all 3 (and not N − 1 = 2) generators.

What is going on? Well, we can see that

T 3v = T 2v − T 1v , (18.42)

i.e. only 2 of the 3 apparent requirements (18.36) are in fact independent. Hence, for

this choice of vev the mass matrix continues to have 2 and not 3 zero eigenvalues. To

be concrete, by explicitly writing down (M2
χ)ij in terms of v we find that this has two

linearly independent eigenvectors with zero eigenvalue, e.g.

1√
2

 1

−1

0

 ,
1√
2

 1

0

−1

 . (18.43)

Therefore, one cannot immediately identify the number of broken generators by simply

considering whether T av 6= 0 is in general true. This procedure in particular worked

in the previous example precisely because we chose our vev direction (or equivalently

our basis of generators) such that for the SO(3) case the T 1 generator corresponds to a

rotation that is orthogonal to the direction of the vev, allowing us to simply read this

off as the unbroken generator of the remaining SO(2) symmetry. For the choice above,

on the other hand, none of the three generators act in a way that is purely orthogonal

to the vev direction and so the result cannot be read off so simply. However, clearly

there is an unbroken rotation in SO(3) space that acts orthogonally to v (and indeed
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any particular choice of it), i.e. that leaves this vev untouched, but which corresponds

to some linear combination of the three generators in this basis. That is, the physics

and in particular the number of Goldstone bosons remains the same.

In summary, to identify the number of Goldstone bosons one should instead expand

around the new vev and determine the symmetry breaking pattern, in order to identify

the remaining symmetry of the Lagrangian after SSB. From this, one can determine

the number of broken generators and hence Goldstone bosons (see (18.37) to (18.39)

and the discussion there).

To clarify this, and the role of Mij further, we note if we write the quadratic term

in the potential after SSB as

V (φi) =
1

2
(M2

ij)χiχj + · · · (18.44)

then this precisely corresponds to

∂2V

∂φi∂φj

∣∣∣∣
φi=vi

=
∂2V

∂χi∂χj

∣∣∣∣
χi=0

= (M2)ij , (18.45)

as claimed. One can in particular define mass eigenstates ρ̃ such that

V (φi) =

Neig∑
i=1

1

2
m2
i ρ̃

2
i , (18.46)

where m2
i corresponds to eigenvalue i of M2

ij. This corresponds precisely to a mass term

for each field ρ̃.

In the example of Section 18.2 we have simply

(M2)ij =
λ

2
vivj . (18.47)

Which if we consider a basis of vectors formed by vj/v
2 and N − 1 vectors nIj (with

I = 1, · · · , N − 1) orthogonal to this, will give

(M2)ij

(vj
v2

)
=
λ

2
v2
( vi
v2

)
, (M2)ijn

I
j = 0 . (18.48)

Thus, this has precisely N − 1 eigenvectors with zero eigenvalue. The massive state is

then given by

ρ̃i =
ρjvj
v2

vi , (18.49)
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which gives
1

2
(M2)ij ρ̃iρ̃j =

λ

4
v2ρ̃iρ̃i , (18.50)

consistent with our result when we took vi = δiNv.

18.4 SU(N)

In this case the Lagrangian takes the form

L = ∂µφ
∗
i∂

µφi −m2φ∗iφi −
1

4
λ(φ∗iφi)

2 , (18.51)

and minimising the potential gives a ground state for

φ∗iφi =
2|m2|
λ

. (18.52)

Similarly to SO(N), we are free to choose a coordinate system so that

vi = ve−iθδiN , (18.53)

where the vi is now in principle complex, hence the introduction of the phase θ as in

the original U(1) example. We can then take a convenient basis for the generators of

SU(N), in this case a set of matrices with a factor of −i above the main diagonal and

a corresponding i below (as in SO(N)), and a set of matrices with a factor of 1 above

the main diagonal and a corresponding 1 below. Finally, we in general have N − 1

linearly independent traceless matrices with elements purely along the diagonal. We

can choose these such that we take N − 2 matrices with a zero in the final, Nth row,

Nth column entry (i.e. traceless with respect to the N − 1 other diagonal elements)

and a final generator that has a non-zero value in this entry. In the first two cases there

are N(N − 1)/2 matrices, while in the latter there are N − 1, giving N2− 1 in total as

expected.

In such a case we will have N − 1 generators for the first two sets of generators

for which (T a)iN is non–zero, and one from the diagonal set of matrices, giving in total

2N−1 broken generators. Now, when we expand our fields around the vacuum (18.53),

we should still have a SU(N − 1) symmetry in the first N − 1 components of φi. In

other words, we have a SU(N)→ SU(N−1) breaking pattern, and counting generators

before and after this corresponds to precisely

(N2 − 1)− ((N − 1)2 − 1) = 2N − 1 , (18.54)
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broken generators, as anticipated by our choice of basis above. We note that, as

discussed above this particular choice of generators and vev direction allows us to

read off the number of broken and unbroken generators directly, but for other choices

this will not be manifest, although the physics (i.e. number of Goldstone bosons) will

remain the same.

In fact (18.51) has a larger symmetry than SU(N). Writing the fields as φi =

(φRi + iφIi )/
√

2 we find

L =
1

2
∂µφ

R
i ∂

µφRi +
1

2
∂µφ

I
i ∂

µφIi −
1

2
m2(φRi φ

R
i + φIiφ

I
i )−

1

16
λ(φRi φ

R
i + φIiφ

I
i )

2 , (18.55)

which we can see by comparing to (18.14) corresponds to a SO(2N) symmetry. Ac-

cording to the above logic, after SSB one might expect the Lagrangian to retain a

SO(2N − 2) symmetry, however in this basis, we can write the potential in a similar

form to the SO(N) case, with

V (φ) =
1

16
λ(φRi φ

R
i + φIiφ

I
i − v2)2 . (18.56)

Now, the vev can be chosen to be aligned with one of the φR (say), and so in fact the

broken potential retains a larger SO(2N − 1) symmetry, i.e.

SO(2N)→ SO(2N − 1) . (18.57)

Counting generators this gives

N(2N − 1)− (2N − 1)(N − 1) = 2N − 1 , (18.58)

broken generators, consistent with the above. We note that, having written things in

terms of the SO(2N) symmetry, the same logic as described at the end of Section 18.3

immediately follows. That is, irrespective of the particular choice of vev direction, there

are indeed 2N − 1 Goldstone bosons.

18.5 Gauge symmetry breaking – Abelian Case

So far, we have considered the case of spontaneously broken global symmetries. What

happens if we consider a local symmetry, and gauge this in the usual way? Consider

the Lagrangian for a complex scalar field invariant under a U(1) symmetry

L = (Dµφ)∗(Dµφ)− V (φ)− 1

4
F µνFµν , (18.59)
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where Dµ = ∂µ − igAµ and

V (φ) = m2φ∗φ+
1

4
λ(φ∗φ)2 . (18.60)

Minimising the potential as before, we have that classically this has a non–zero vev

given by

〈0|φ(x)|0〉 =
1√
2
v , (18.61)

where we have made a global U(1) transformation to set the phase of the vev to zero,

and

v2 =

(
4|m2|
λ

)
. (18.62)

We can therefore write, as before,

φ(x) =
1√
2

(v + ρ(x))e−iχ(x)/v . (18.63)

Substituting this into the potential, we find (dropping a constant term as before)

V (φ) =
1

4
λv2ρ2 +

1

4
λvρ3 +

1

16
λρ4 . (18.64)

As χ does not appear in the potential, it is massless, and it corresponds to the Goldstone

boson of the spontaneously broken U(1) symmetry, while as before we have a massive

state ρ, with m2
ρ = 1

2
λv2. At this stage, everything very closely resembles the case of a

global symmetry, however here we have the big difference that for a gauge symmetry

we can make a gauge transformation that shifts the phase of φ(x) to an arbitrary space

time function

φ(x)→ eiα(x)φ(x) . (18.65)

We are then free to choose α(x) = χ(x)/v in order to shift the χ dependence away,

setting χ(x) = 0 in (18.63). In other words, as we have

Dµφ = (∂µ − igAµ)
1√
2

(v + ρ(x))e−iχ(x)/v ,

=
1√
2
e−iχ(x)/v

[
∂µρ− ig(v + ρ)

(
Aµ +

1

g

∂µχ

v

)]
, (18.66)
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we can simply transform

φ′(x) = eiχ(x)/vφ(x) , A′µ = Aµ +
1

g

∂µχ

v
, (18.67)

This choice is known as the unitary gauge. As the Goldstone field χ is no longer present

in the gauge transformed Lagrangian, it cannot play the role of a physical field in the

theory (in contrast to the global SSB case). Where has this degree of freedom gone?

To see this, we expand the kinetic term in this gauge to give

(Dµφ)∗(Dµφ) =
1

2
(∂µρ+ ig(v + ρ)Aµ)(∂µρ− ig(v + ρ)Aµ) ,

=
1

2
∂µρ∂µρ+

1

2
g2ρ2AµA

µ + g2vρAµA
µ +

1

2
g2v2AµAµ .

While the second and third terms corresponds to new interactions between the field ρ

and the U(1) gauge boson, this last contribution corresponds to precisely a mass term,

with

M = gv . (18.68)

This is the Higgs Mechanism. When a gauge symmetry undergoes SSB the Goldstone

boson disappears from the theory entirely, and the gauge boson instead acquires a

mass. We say that the gauge boson has ‘eaten’ the Goldstone boson. Note that the

number of degrees of freedom is preserved, as the impact of the Goldstone boson is felt

through the gauge transformed field in (18.67). In particular, while a massless gauge

boson has only two transverse spin states and hence two degrees of freedom, a massive

gauge boson has an additional longitudinal spin state, and therefore has three.

18.6 Massive Gauge Bosons

What does the solution for a massive gauge boson look like? In the unitary gauge, the

terms in L that are quadratic in Aµ are

L0 = −1

4
F µνFµν +

1

2
M2AµAµ , (18.69)

with the gauge boson mass given as in (18.68). The equations of motion that follow

from this are [
(∂2 +M2)gµν − ∂µ∂ν

]
Aν = 0 . (18.70)

Now, at this point in the consideration of the equations of motion for the massless

photon field, we had additional gauge symmetries that we could use to further restrict

the degrees of freedom of the solution. However, here we have already entirely fixed
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Aµ through our choice of unitary gauge fixing (18.67), and so this option is no longer

open to us. On the other hand, if we act again with ∂µ on the above expression we find

M2∂µAµ = 0 , (18.71)

which does restrict the 4 degrees of freedom of Aµ to 3. Substituting this back into the

equations of motion we have

(∂2 +M2)Aν = 0 . (18.72)

The general solution to this is

Aµ(x) =
∑
λ

∫
d3k

(2π)32k0

[
εµ∗λ (k)aλ(k)eikx + εµλ(k)a∗λ(k)e−ikx

]
, (18.73)

where k2
0 = k2 + M2 and the sum is over the three independent polarization states

which from (18.71) must satisfy

kµεµ(k) = 0 . (18.74)

These correpond to the usual transverse components we met in the case of the photon,

and an additional longitudinal component, which is new. In the particle rest frame,

with k = (M,0), we can choose the polarization vectors to correspond to a definite

spin along the z axis. This gives

ε+(0) = − 1√
2

(0, 1, i, 0) ,

ε−(0) =
1√
2

(0, 1,−i, 0) ,

ε0(0) = (0, 0, 0, 1) . (18.75)

These can be related to other frames by appropriate boosts and/or rotations. For

example, for a particle moving along the z axis with momentum k, the transverse

vectors are unchanged, and we have

ε0(k) =
1

M
(|k|, 0, 0, k0) . (18.76)

More generally, the three polarization vectors along with the timelike vector kµ/M form
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an orthonormal and complete set, satisfying

k · ελ(k) = 0 ,

ελ′ · ε∗λ = −δλ′λ ,∑
λ

εµ∗λ (k)ενλ(k) = −gµν +
kµkν

M2
. (18.77)

What about the propagator? To calculate this, we follow the logic of Section 6.3. The

Lagrangian including the source term now becomes

LQED = −1

4
FµνF

µν − JµAµ →
1

2
Aµ(∂2gµν − ∂µ∂ν +M2gµν)Aν − JµAµ . (18.78)

Translating to momentum space as before, we have

S = −1

2

∫
d4p

(2π)4
Ãµ(p)

[
p2P µν

]
Ãν(−p) + J̃µ(p)Ãµ(−p) + J̃µ(−p)Ãµ(p) , (18.79)

but where the projection matrix is now given by

P µν(p) =
p2 −M2

p2
gµν − pµpν

p2
. (18.80)

In contrast to the massless photon case, the presence of the mass term means that this

is invertible, with

(P µν)−1 =
p2

p2 −M2

(
gµν − pµpν

M2

)
. (18.81)

This corresponds to a propagator given by

∆̃µν(p) =
gµν − pµpν

M2

p2 −M2
. (18.82)

18.7 Unitary Gauge Fixing

While the above formulation is sufficient at tree–level, when going to higher orders we

have to be a bit more careful. In particular, all of this has been defined in the specific

unitary gauge, and we know that in general care must be taken to properly gauge fix the

Lagrangian when considering the full quantum path integral. In the unitary gauge we

have imposed the gauge condition χ(x) = 0, which corresponds to taking a functional

delta function Πxδ(χ(x)) in the path integral. In order to integrate over χ and impose

this condition, we must make a change of variables from Reφ and Imφ (or equivalently

– 187 –



φ and φ∗) to ρ and χ. We have

dReφ dImφ =
1

2

(
1 +

ρ

v

)
dρ dχ , (18.83)

and hence ∏
i

dReφi dImφi =
∏
i

1

2

(
1 +

ρi
v

)
dρi dχi , (18.84)

where the product is over i = 1 · · ·n discrete spacetime points, which we will in a

moment send to the n → ∞ continuum limit to recover our path integral. For now

though we note that∏
i

(
1 +

ρi
v

)
= det

([
1 +

ρi
v

]
δij

)
=

∫
dnχdnχ exp

(
χi

[
1 +

ρi
v

]
χi

)
, (18.85)

where χ and χ are Grassmann valued, as usual. Then, taking the continuum limit and

associating these with ghost fields c and c we have∫
DReφDImφ δ(χ) ∝

∫
Dρ
∫
DcDc eim2

gh

∫
d4xc(1+ρ/v)c (18.86)

where in the last line we have introduced an arbitrary mass parameter mgh, correspond-

ing to a choice of normalization. Thus as in the case of non–Abelian gauge theories,

to correctly define the spontaneously broken Abelian theory we are lead to introduce

additional unphysical ghost fields. Indeed, these have no kinetic term, and so the

propagator is simply given by

∆̃(k2) =
1

m2
gh

. (18.87)

In addition, the ghost term has introduced a ρcc vertex, with an associated factor of

−im2
gh/v; as the number of ghost propagators and vertices will be equal in any Feynman

diagram, this means that the dependence on the arbitrary factor mgh will cancel in the

end.

This all seems quite convenient for calculating loop diagrams. We simply apply

the propagator (18.82) and take care to include ghosts in the loops where appropriate,

which have particularly simple, momentum-independent, propagators. However, this

property of the ghost propagator is in fact highly problematic, as its independence

from the loop momenta in general leads to poorly convergent loop integrals. This same

property can be seen in the gauge boson propagator, for which as k → ∞, it again

scales as a constant ∼ 1/M2. This property means that it is, for example, quite difficult

to establish renormalizability in this gauge. In the following section we therefore take
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a more general approach.

18.8 Rξ gauge

To overcome the issues discussed above with the unitary gauge, we can instead consider

a generalization of the Rξ gauge considered in the case of unbroken gauge theories

before. To do this, we introduce a Cartesian basis for φ

φ =
1√
2

(v + h+ ib) , (18.88)

where h and b are real scalar fields. In terms of these, the potential is (again dropping

the constant term)

V (φ) =
1

4
λv2h2 +

1

4
λvh(h2 + b2) +

1

16
λ(h2 + b2)2 , (18.89)

and the covariant derivative is

Dµφ =
1√
2

[(∂µh+ gbAµ) + i(∂µb− g(v + h)Aµ)] . (18.90)

The kinetic term in φ can then be expanded out and written as

(Dµφ)∗Dµφ =
1

2
∂µb∂

µb+
1

2
∂µh∂

µh+
1

2
g2v2AµA

µ − gvAµ∂µb

− gAµ(h∂µb− b∂µh)

+ g2vhAµAµ +
1

2
g2(h2 + b2)AµAµ . (18.91)

The first line contains all terms quadratic in the fields. The first two are the kinetic

terms for the b and h fields, the third is the mass term for the gauge field, and the

last term is difficult to identify, and is somewhat undesirable–looking, but seems to

corresponds to a transition between the A and b fields. The remaining terms in the

second and third lines correspond to interaction vertices between the h, b and A fields.

To implement the Rξ gauge we proceed via Fadeev–Popov gauge fixing. For our

gauge fixing function we make the choice

f(A) = ∂µA
µ + ξgvb− σ(x) , (18.92)

the reason for which will become clear below. This defines our generalisation of the Rξ

gauge. Here σ(x) is an arbitrary function, as in the unbroken abelian case, and for v = 0

we go back to the choice (6.48). As in Section 6.4 we can add an arbitrary constant
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Zσ term to the path integral, however with the additional term, the gauge–fixing part

of the Lagrangian becomes

Lgf = − 1

2ξ
(∂µA

µ + ξgvb)2 ,

= − 1

2ξ
(∂µAµ)2 − gvb∂µAµ −

1

2
ξg2v2b2 , (18.93)

= − 1

2ξ
(∂µAµ)2 + gvAµ∂

µb− 1

2
ξg2v2b2 , (18.94)

where in the third line we have integrated by parts and dropped the surface term.

Thus we have two additional contributions in comparison to the unbroken abelian case.

Crucially, the second term on the third line cancels the unwanted piece on the first line

of (18.91). The last term gives a mass ξ1/2M to the b field.

What is the ghost term corresponding to the choice (18.92)? We are interested, as

before, in the functional determinant ∆(A), given by

[∆(A)]−1 =

∫
Dθ δ(f(Aθ)) . (18.95)

Under a gauge transformation with infinitesimal parameter θ we have

Aµ → Aµ + ∂µθ , φ→ φ+ igθφ . (18.96)

In terms of the Cartesian fields, the latter corresponds to

h→ h− gθb , b→ b+ gθ(v + h) , (18.97)

and thus we have

f(Aθ) = f(A) + (∂2 + ξg2v(v + h))θ . (18.98)

As usual, the f(A) term can be dropped, and we are left with the second piece to

evaluate. Note in the unbroken abelian case, this would simply give an overall factor of

∂2θ, which was dropped. Here, due to the second term we cannot do this, and instead

we must follow the same approach as in Section 15.5 for the treatment of non–abelian

gauge theories. That is, we introduce a ghost term to the action

Sgh =

∫
d4xd4yc(x)K(x, y)c(y) , (18.99)

where ∆(A) = det(K) and we have dropped the gauge indices, as we are considering
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the abelian case. Explicitly we have

K(x, y) = −δ4(x− y)(∂2 + ξg2v(v + h)) (18.100)

where the overall sign corresponds to a choice of convention that we take for consistency

with the case of QCD, and so

Lgh = −c
[
∂2 + ξg2v(v + h)

]
c ,

= ∂µc∂
µc− ξg2v2cc− ξg2vhcc . (18.101)

From the second line we can see that the ghost has acquired the same mass ξ1/2M as

the b field.

Turning to the vector field, including the gauge fixing piece the terms quadratic in

the field can be written as

L0 =
1

2
Aµ
[
gµν(∂2 +M2)− (1− ξ−1)∂µ∂ν

]
Aν , (18.102)

which in momentum space corresponds to

L̃0 = −1

2
Ãµ(−k)

[
gµν(k2 −M2)− (1− ξ−1)kµkν

]
Ãν(k) . (18.103)

We can rewrite the kinematic matrix as

[· · · ] = (k2 −M2)gµν − (1− ξ−1)kµkν ,

= (k2 −M2)

(
P µν(k) +

kµkν

k2

)
−
(

1− 1

ξ

)
kµkν , (18.104)

= (k2 −M2)P µν(k) +
1

ξ

k2 − ξM2

k2
kµkν , (18.105)

where P µν = gµν − kµkν/k2 projects onto the subspace transverse to k; thus this and

kµkν are orthogonal projection matrices. It is therefore straightforward to invert the

above formula, and we are left with the gauge boson propagator

∆̃µν(k) =
P µν(k)

k2 −M2 + iε
+

ξkµkν/k2

k2 − ξM2 + iε
, (18.106)

where have included the iε term as usual. We can see that the transverse compo-

nents of the vector field propagate with the mass M , while the longitudinal component

propagates with the same mass as the b and ghost fields, ξ1/2M .
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If we take ξ = 1, the propagator greatly simplifies to

∆̃µν(k) =
gµν

k2 −M2 + iε
, (18.107)

although it can also be useful to leave ξ general, as the final result should not depend

on this.

In summary, in the Rξ gauge we are left with unphysical ghost fields c and c, and

a b field, with propagators

∆̃(k) =
1

k2 − ξM2
. (18.108)

These must be included in loops, but not as physical external states. We can also see

from (18.89) that the scalar field that we have suggestively labelled as h is a physical

propagating state with mass m2
h = 1

2
λv2, and propagator

∆̃(k) =
1

k2 −m2
h

. (18.109)

An equivalent h scalar boson will also be present when we break the gauge symmetry

of the Standard Model, in which case it corresponds to the well known Higgs boson.

Finally, the interactions are given by

LI = −1

4
λvh(h2 + b2)− 1

16
λ(h2 + b2)2

− gAµ(h∂µb− b∂µh) + g2vhAµAµ +
1

2
g2(h2 + b2)AµAµ

− ξg2vhcc , (18.110)

It is interesting to consider the ξ →∞ limit. In this case we have

∆̃µν(k) =
gµν − kµkν/M2

k2 −M2 + iε
, (18.111)

which corresponds exactly to the propagator (18.82) in the unitary gauge. The b field

becomes infinitely heavy, and so can be dropped. For the ghost fields we have to be

a bit more careful, as the hcc vertex contains a ξ, and so these cannot necessarily be

dropped. However we can omit the k2 � m2
gh = ξM2 term in the propagator, and

so we are indeed back to the case of a 1/m2
gh propagator; for every ghost loop we will

have two powers of ξ in the numerator from the hcc vertices at each end, and two in

the denominator from the ghost propagators, which will then cancel. Thus the ξ →∞
limit does indeed correspond to the unitary gauge.
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18.9 Non–Abelian Gauge Symmetry Breaking

The basic ingredients, and implications, are the same as above but with the added

complication that one has to keep track of the non–abelian nature of the gauge symme-

try when gauge fixing. In particular, in the end one can define a mass squared matrix

analogous to Section 18.3 and which can be divided into two orthogonal subspaces, one

of which describes the physical massive scalar states and one the unphysical goldstone

bosons that result from the symmetry breaking. A ghost Lagrangian must also be

included, again suitably generalised. Further details are given in e.g. Srednicki chapter

86, where this is dealt with in full generality. However, to get a more concrete idea of

how this works we will simply jump straight to the explicit case of the Standard Model.

19. The Standard Model

19.1 Electroweak Symmetry Breaking

We know experimentally that the weak force has three massive gauge bosons associated

with it, the electrically neutral Z boson, and the electrically charged W+ and W−

bosons. The most up–to–date values for the masses of these gauge bosons are

MZ = (91.1876± 0.0021) GeV , MW = (80.385± 0.015) GeV , (19.1)

Now, we wish to describe this interaction via a gauge theory, and a natural (and it turns

out, the correct) choice is to consider SU(2), for which we have precisely N2 − 1 = 3

gauge bosons. To do this we deal with introduce the electroweak symmetry

SU(2)× U(1)Y , (19.2)

which provides a unified description of the weak and EM interactions. After SSB

we will arrive at three massive fields, which we associate with the W and Z bosons

and one massless field, which corresponds to a particular combination of the unbroken

generators, and which we associate with the photon. The breaking pattern is

SU(2)× U(1)Y → U(1)EM . (19.3)

Note that it is only after SSB that the remaining U(1) symmetry is associated with

QED. The U(1) symmetry prior to SSB is completely distinct, and we give it the label

hypercharge. The SU(2) symmetry we label weak isospin.

To see how this works in practice, we first consider a few general points about the

breaking of non–abelian gauge symmetry. Consider some scalar field that transforms
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according to an arbitrary non–abelian gauge symmetry as

φ(x)→ exp [igΓa(x)T a]φ(x) , (19.4)

where the T a are as usual the generators of the group. We have

(Dµφ)i = ∂µφi − igAaµT aijφj , (19.5)

(Dµφ)∗i = ∂µφ
∗
i + igAaµ(T aijφj)

∗ = ∂µφ
∗
i + igAaµφ

∗
jT

a
ji , (19.6)

where we have used the fact that the generators are Hermitian in the last step. In our

Lagrangian we will then have

(Dµφ)∗Dµφ = ∂µφ
∗
i∂

µφi + igAaµ(φ∗jT
a
ji[∂

µφi]− [∂µφ∗i ]T
a
ijφj) + g2AaµA

µbφ∗j(T
aT b)jkφk .

(19.7)

It is the final term which will generate gauge boson mass terms after SSB, with

g2AaµA
µbφ∗j(T

aT b)jkφk →
1

2
g2AaµA

µbvj(T
aT b)jkvk ≡

1

2
AaµA

µb(M2)ab , (19.8)

where 〈0|φi|0〉 = vi/
√

2, and we assume for simplicity that vi is real. The mass–squared

matrix M2 has eigenvalues corresponding to the masses of the gauge bosons, and we

have precisely one such state for each broken generator, T aijvj 6= 0. The zero eigenvalues

correspond to the unbroken generators, and in these cases the gauge boson will remain

massless.

We now return to the specific case of the SM. In general we can associate different

couplings g and g′ to the SU(2) and U(1)Y symmetries we are interested in, in which

case our covariant derivative can be written as

Dµ = ∂µ − igW a
µ τ

a − ig′Y Bµ , (19.9)

where W a
µ and Bµ are the SU(2) and U(1)Y gauge bosons, Y is the hypercharge of the

field acted on, and the generators τa = σa/2 are given in terms of the usual Pauli spin

matrices, with a = 1, 2, 3.

To our gauge theory we now add a completely new complex scalar field doublet

φ = (φ1, φ2), which we assume to have hypercharge Y = 1/2. In this case the field

transforms as

φ→ eiα
aτaeiβ/2φ , (19.10)
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for arbitrary parameters αa and β. The action of the covariant derivative is

Dµφ = (∂µ − igW a
µ τ

a − i1
2
g′Bµ)φ , (19.11)

We then introduce a scalar potential V (φ) to the Lagrangian

V (φ) = −µ2(φ†φ) + λ(φ†φ)2 , (19.12)

where µ, λ > 0. The minimum of the potential corresponds to

|φ| =
√
µ2

2λ
≡ v√

2
, (19.13)

and so our field has a non–zero vev, that for simplicity we can take to be

〈0|φ|0〉 =
1√
2

(
0

v

)
, (19.14)

although the physics does not depend on this choice.

Now, it turns out that this results in precisely the pattern of SSB of our original

SU(2)× U(1)Y that is required experimentally to reproduce the electroweak sector of

the SM. To see how this works, we can consider the corresponding term as in (19.8)

which will generate the gauge boson masses. Taking into account the differing couplings

we can write the mass–squared matrix as

M2
ab = gagbvj(T

aT b)jkvk
!

=
1

2
gagbvj({T a, T b})jkvk , (19.15)

where we can make the replacement due to the contraction with the A fields, which are

symmetric in a ↔ b; this simplifies the calculation below. Here we define T a = σa/2

and ga = g for a = 1, 2, 3 and T a = I/2 and ga = g′ for a = 4. Making use of the usual

relation {σa, σb} = 2δab we get

M2
ab =

g2v2

4


1 0 0 0

0 1 0 0

0 0 1 −g′/g
0 0 −g′/g g′2/g2

 , (19.16)

which has determinant zero and hence at least one massless gauge boson remains. In

fact, we can read off immediately from the first two diagonal components that we have
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two identical non–zero eigenvalues, given by

M2
W =

g2v2

4
, (19.17)

and thus we have one remaining non–zero eigenvalue, with

M2
Z =

(g′2 + g2)v2

4
. (19.18)

Thus this does indeed have exactly the pattern of symmetry breaking we require to

produce the observed electroweak sector of the SM, i.e. with three massive gauge

bosons for the three broken generators of SU(2) weak isospin. We associate the above

masses with those of the W and Z bosons, while we associate the final massless gauge

boson with the photon. The mass eigenstates which diagonalise M2, corresponding to

the Z and the photon are

Zµ ≡ cos θWW
3
µ − sin θWBµ ,

Aµ ≡ sin θWW
3
µ + cos θWBµ , (19.19)

where we have introduced the weak mixing angle θW via

tan θW ≡
g′

g
⇒ cos θW =

g√
g′2 + g2

, sin θW =
g′√

g′2 + g2
. (19.20)

Thus, indeed as claimed the photon field Aµ is a mixture of the original W 3 and B

gauge fields from the combined SU(2)×U(1)Y symmetry of our unbroken theory, and

QED and the weak force are embedded, or unified, within a larger electroweak sector.

We can also define the fields

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) , (19.21)

which we will see when we consider interactions with quarks and leptons correspond

to the positively and negatively electrically charged W bosons. Inverting the above

relations, we can write the covariant derivative in terms of these new fields, giving

Dµ = ∂µ−i
g√
2

(W+
µ T

+ +W−
µ T

−)−iZµ(g cos θWT
3−g′ sin θWY )−ig sin θWAµ(T 3 +Y ) ,

(19.22)

where T± = T 1 ± iT 2. We can then read off from this that we should associate the
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unbroken generator with the electric charge

Q = T3 + Y (19.23)

and identify the coefficient of the EM interaction with the (positive) electric charge e

e = g sin θW . (19.24)

The covariant derivative then becomes

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−
µ T

−)− i g

cos θW
Zµ(T 3 − sin2 θWQ)− ieAµQ . (19.25)

Finally, we can see that the W and Z boson masses are not independent, but rather

are related by

MW = MZ cos θW , (19.26)

where the weak mixing angle can be calculated from the measured couplings e and g.

This is a remarkable constraint, which relates the seemingly unrelated masses of the

W and Z bosons with the electroweak and EM couplings. By measuring all of these

quantities we can then place tight consistency checks on the SM, which would not

necessarily hold if there were some physics beyond it hiding in e.g. loop corrections16.

So far, it has passed these with essentially flying colours.

19.2 The Higgs Potential

This section is non–examinable

We now return to the kinetic and potential terms for our scalar field φ. Working

in the unitary gauge for simplicity, we expand around our vev with

φ(x) =
1√
2

(
0

v + h(x)

)
, (19.27)

where h is a real scalar field. This is the famous Higgs field, and the corresponding

particle is the Higgs boson. Substituting this into our expression for the potential

(19.12) we find

V (φ) =
1

4
λh4 + vλh3 + λv2h2 , (19.28)

16Indeed, even within the SM these exact results only hold at tree–level and will receive loop
corrections. These however can be calculated to a high degree of precision.
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and therefore the Higgs particle has a mass

mh =
√

2λv , (19.29)

which is directly proportional to the vev of the scalar field undergoing SSB. We can

also see that this has introduced cubic and quartic self–interaction term for the Higgs.

While the Higgs itself has indeed been seen, with roughly

mh = (125.1± 0.2) GeV , (19.30)

it is currently an ongoing effort to measure these cubic and quartic self–couplings,

and see if they really conform to the expectations from the SM Higgs, or have some

different form, which would indicate a more complicated and non–standard form of

SSB had taken place.This is a very difficult thing to measure, and will no doubt take

many years, and perhaps even a new collider to do well.

19.3 Gauge boson Interactions

This section is non–examinable

As we are dealing with a non–abelian gauge theory, we will expect there to be

couplings between the gauge bosons. These are contained as usual within the kinetic

term

Lkin = −1

4
F a,µνFaµν −

1

4
BµνBµν , (19.31)

where a = 1, 2, 3 are the SU(2) group indices and

F c
µν = ∂µW

c
ν − ∂νW c

µ + gεabcW
a
µW

b
ν , (19.32)

Bµν = ∂µBν − ∂νBµ , (19.33)

We can then simply substitute our known expressions (19.19) and (19.21) for our basis

of W±, Z and A gauge fields to work out the corresponding interactions between these.

Instead of going through all of this in detail (see any good textbook and the following

Standard Model course for more), we will simply concentrate on one example, namely

the γW+W− vertex. With a little algebra it is possible to show that

−1

4
(F 1µνF1µν+F

2µνF2µν) = (∂µ+igW 3
µ)W−

ν

[
(∂ν − igW 3ν)W+µ − (∂µ − igW 3µ)W+ν

]
.

(19.34)

This gives contributions of the form

igW 3
µW

−
ν ∂

νW+µ = ig(sin θWAµ + cos θWZµ)W−
ν ∂

νW+µ , (19.35)
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and thus a γW+W− vertex

ig sin θWAµW
−
ν ∂

νW+µ = ieAµW
−
ν ∂

νW+µ , (19.36)

thus justifying our association of the W± fields with unit charge.

19.4 The Weak Interaction

This section is non–examinable

The covariant derivative (19.25) uniquely determines the couplings of the W and

Z bosons to fermions, once we have specified the quantum numbers of these under the

SU(2)× U(1)Y group. To do this, we use the experimental observation that the weak

interaction is known to violate parity, and in particular the W boson only couples to

the left–handed chiral states of quarks and leptons. Our theory will therefore be chiral,

that is it will distinguish between the left and right handed fermion components.

To reproduce the known form of the weak interaction, we assign our left–handed

fermion fields to doublets of SU(2), that is for the leptons we write our theory in terms

of

Li =

(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
. (19.37)

where the i labels the three generations of leptons in the SM. We then assign by hand

hypercharge quantum numbers so that these reproduce the correct electric charges

according to (19.23). Thus

eL : Y = Q− T3 = −1 +
1

2
= −1

2
, (19.38)

νeL : Y = Q− T3 = 0− 1

2
= −1

2
. (19.39)

We then take that the right–handed field components are uncharged under weak isospin,

i.e. are singlets, in order to remove interactions via the weak force. We have

eiR = {eR, µR, τR} , (19.40)

which following the logic above have hypercharge Y = Q = −1 (as T3 = 0). As

neutrinos have zero electric charge, this implies they cannot be produced at all in the

SM, and so we do not include a right–handed neutrino component. The interactions

between the leptons and gauge bosons are then determined from the Lagrangian term

−ieR(/∂ − ig′YRB/)eR + iL(∂/− ig /W · τ − ig′YL /B)L , (19.41)
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where we omit the family index for simplicity, and the e has the usual meaning when

we interpret these as 4–component Dirac spinors. For the Z boson interactions, we

read off from (19.25) that the relevant term is

−i g

cos θW

[
− sin2 θWQfR /ZfR + (T 3 − sin2 θWQ)fL /ZfL

]
, (19.42)

where f = e, µ, u, d · · · corresponds to the lepton or quark flavour, and we have used

that T3 = 0 for the right–handed fields. To avoid working in terms of Weyl spinors, we

can then use the chirality projection as in (10.35), i.e.

ψL,R =
1

2
(1∓ γ5)ψ , (19.43)

where again we deal with 4–component Dirac spinors here (thus ψL,R = (1
2
(1∓γ5)ψ)†γ0).

Then, from the usual properties of the γ matrices, we find

ψLγ
µψL =

1

2
ψγµ(1− γ5)ψ , ψRγ

µψR =
1

2
ψγµ(1 + γ5)ψ , (19.44)

allowing us to write (19.42) as

−i gW
2 cos θW

fγµ(gfV − g
f
Aγ5)f , (19.45)

where θW is the weak mixing angle, with e = gW sin θW , and the vector and axial–vector

couplings are given by

gfV = T 3
f − 2Ql sin

2 θW , (19.46)

gfA = T 3
f . (19.47)

Here T 3
f is the weak isospin of the left–handed fermion field. Thus for example for an

electron we have the interaction vertex

−i g

2 cos θW
γµ
[(
−1

2
+ 2 sin2 θW

)
+

1

2
γ5

]
. (19.48)

The interaction between a W± boson and a lepton SU(2) doublet can be read off from

(19.25), i.e. we are interested in

−i g√
2
L( /W

+
T+ + /W

−
T−)L . (19.49)
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The T± are given explicitly by

T+ =

(
0 1

0 0

)
, T− =

(
0 0

1 0

)
(19.50)

which we can see pick out a single component of the lepton doublet; these are the weak

isospin raising and lowering operators. Applying (19.44) as before we get, for e.g. the

interaction between an electron and neutrino we have the terms in the Lagrangian

−i g

2
√

2

(
W−
µ eγ

µ(1− γ5)ν +W+
µ νγ

µ(1− γ5)e
)
, (19.51)

from which the interactions can be read off. A similar term can be written down for

quark transitions, with e.g.

−i g

2
√

2

(
VudW

−
µ uγ

µ(1− γ5)d+ V ∗udW
+
µ dγ

µ(1− γ5)u
)
, (19.52)

where V is the CKM matrix, which describes the fact that the quark mass and weak

eigenstates are not aligned, and allows for further, e.g. u → s transitions. This will

be discussed in detail in the Standard Model course, and so we will not consider this

further here.

19.5 Fermion masses

This section is non–examinable

The observed masses of the W and Z bosons are in fact not the only issue that

arises if we attempt to describe the weak interaction with an unbroken gauge theory.

In particular, we saw in Section 10.3 that a fermion mass term must mix left and

right–handed chiral components in order to be Lorentz invariant. However, we know

experimentally that the weak interaction treats such left and right–handed components

quite differently, and in order to describe this we have had to introduce additional

quantum numbers into the game. In particular, the combination eLeR carries non–zero

weak isospin and hence is not SU(2) invariant. It is therefore impossible to write down

a gauge–invariant fermion mass term in our unbroken chiral weak gauge theory.

Here again, the Higgs field saves the day. In particular, we saw before that the Higgs

is charged under SU(2), and therefore we can write down gauge–invariant interactions

terms of the type

−λfLφeR + h.c. , (19.53)

where ‘h.c.’ stands for the Hermitian conjugate expression. This is indeed SU(2)

invariant as our choice of Higgs field (19.27) has T3 = −1/2, while the L has T3 = 1/2.
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Here λf is the Yukawa coupling between the Higgs and fermion. Expanding our Higgs

fields as in (19.27) this becomes

− λf√
2

(v + h)
(
f lfR + fRfl

)
= − λL√

2
(v + h)ff , (19.54)

= −mfff −
mf

v
hff . (19.55)

That is, the fermions acquire a mass given by

mf =
λfv√

2
. (19.56)

19.6 The Higgs Interactions

This section is non–examinable

The new h field we have introduced via (19.27) will interact with the SM particles

in a number of ways. We can immediately read off from (19.55) that there will be a

hff interaction due to the term

−mf

v
hff . (19.57)

The gauge boson interactions come from the action of the covariant derivative on the

Higgs field. From (19.25) we have

Dµh =
1√
2

(
∂µ − i

g√
2
W+
µ + i

g

2 cos θW
Zµ

)
(v + h) , (19.58)

where we have used that T−φ = 0, T+φ = (v+h)/
√

2, for our choice of vacuum (19.27)

and T3 = −1/2, Q = 0 for the Higgs. After a little rearranging, this gives

(Dµh)∗Dµh =
1

2
∂µh∂

µh+

[
m2
WW

+
µ W

µ− +
1

2
m2
ZZµZ

µ

](
1 +

h

v

)2

. (19.59)

We can read off the usual mass terms for the W and Z from this, but in addition we

can see that hW+W− and hZZ interactions are present, with vertices

2i
M2

V

v
gµν , (19.60)

and hhW+W− and hhZZ interactions, with vertices

2i
M2

V

v2
gµν , (19.61)
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where MV = MW,Z . In all cases we can see that the strength of the interaction grows

with the mass of the fermion or gauge boson. Thus the Higgs boson interacts more

strongly with the heavier SM particles, such as the top quark and W,Z bosons, and

only quite weakly with the lighter particles such as the electron and u, d, s quarks. This

has a wide range of phenomenological consequences when it comes to measuring this

object in the collider.
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