
Atlas Trigger & DAQ

The raw event format in the ATLAS
Trigger & DAQ

Authors:C. Bee, D. Francis, L. Mapelli, R. McLaren, G. Mornacchi, J. Petersen, F. Wickens

Abstract

This note presents the ATLAS raw event format. It covers the format of data
from the ReadOut Drivers to the output of the Event Filter. It does not cover
the detector specific event data.

EDMS: ATL-D-ES-0019
ATLAS Communication: ATL-DAQ-98-129

Major version: 2.4
Date: 2004-02-01

- 2 -

Summary document Change Record

Table 1. Summary document Change Record.

1. Document Title: The raw event format in the ATLAS Trigger & DAQ

2. Document Reference Number ATL-D-ES-0018

4. Issue 5. Revision 6. Date 7. Reason for change

1 0 01 Apr ‘97 Birth.

1 1 07 Oct. ‘97 General update of all sections.

1 2 20 Oct. ‘97 Muon sub-detector IDs changed at the request of S. Falciano.

1 3 14-Aug. ‘98 Add an offset to ROD trailer that indicates the relative order of
Data/status information. General clean-up. Appendix with an ini-
tial header file and an appendix of an example use of the header
file.

1 4 05-Sept.’98 Redefined last word of ROD trailer. Comments on sub-detector
ID’s from Philippe Farthouat. Comments from Jorgen Petersen.

1 5 15-Oct. ‘98 Tidy-up ready for release as ATLAS note
Remove Appendices.

2 0 11-Mar.‘02 Include feedback on version 1.5 from detector community

Increase scope to include Level 2

Change from DAQ -1 specific terminology

Re-define Source ID

Change Level 1 ID element to be defined as the combination of the
24-bit L1ID and the 8-bit ECRID.

Add mechanism to determine byte ordering dynamically

Remove section on ROL implementation

Change unit of Total fragment size and Header size element to be
32-bit integer (see section section).

Re-define the Format version number so that it may also be used
to identify the format version of the detector Data.

Distribute to author list

General Distribution

2 2 11-Oct. ‘02 Added Appendix A on ROL implementation issues.

Clean-up of section 2.1 (main requirements).

Implementation of Source ID element re-defined, i.e. Module ID
now byte wide, see section 5.2.

Global event ID removed from ROS specific header, section
5.10.3.

Introductory text in section 5 re-written.

- 3 -

Description of “Format version number” element re-written, sec-
tion 5.6.

Corrected description of Bunch Crossing ID, Tables 8, 9 & 10.

Table 3 defining values for Sub-detector IDs updated to match
known TTC partitions.

Error in description of extended level 1 ID corrected, sections 4 &
5.10.1.

Clarified meaning of Detector Event Type element, section 4.

Remove Level 1 Trigger Info. from Full Event Specific header, sec-
tion 5.10.1.

Initial values and meanings for generic status field (adopted from
Level1 - DataFlow interface document), section 5.8.

Remove LVL2-Data and LVL2-Result, table 2.

Added RoI Builder Module Type, table 4.

Deleted sections 5.10.6 and 5.10.7.

Expanded scope to include output of Event Filter, section 1.3.

Added section on Event Filter Output, section 5.11.

2 4 1 Feb. ‘04 Date and time element in Full Event Specific element (Section
5.10.1) redefined to be the number of seconds elapsed since
00h00.00 on 1st Jan. 1970, i.e. in line with Posix.

Run number added to Generic fragment and ROD fragment (sec-
tion 3,4 and 5). Remove run number from Full Event Specific ele-
ment (section 5.11.1) and ROS Specific Header (section 5.11.3)

A default sub-detector type added to Table 3. to be used for equip-
ment which is not specific to any single detector.

Module type ‘Level 2 Processor’ in Table 4. changed to ‘HLT
Processor’.

Added ‘Event Filter Info’ in section 5.11.1 and Table 7.

Changed ‘Level 1 ID’ to ‘Extended Level 1 ID’ where appropri-
ate.

Updated some of the references.

Cleaned up some typing errors.

Table 1. Summary document Change Record.

- 4 -

1 Introduction

1.1 Purpose of the document

This document describes the event format and its initial implementation in the ATLAS Trigger
and DAQ. The proposed format is a further step in defining the final ATLAS raw event format.

1.2 Overview of document

In section 2 the requirements, function, purpose and a high-level description of the event for-
mat is given. In section 3 a detailed description is given. Section 4 presents a description of the
format of a fragment received by the ROB from the ROD over a ROL and is aimed principally
at ROD designers. In section 5 an initial implementation of the event format described in the
sections 3 and 4 is given. Appendix A: covers the framing information and transmission errors
on the ROL.

1.3 Boundaries

This document relates to the format of data into and out of the: Read-Out Sub-system (ROS),
DataCollection sub-system, the LVL2 Selection and Event Filter sub-systems of the Higher
Level Trigger (HLT). The framing information, necessary to ensure the correct transmission of
data between applications, e.g. ROD-to-ROB, is technology specific and therefore not part of
the event format.

1.4 Definitions, acronyms and abbreviations

See reference [1].

2 General description

2.1 Requirements

This sub-section lists a set of requirements on the various components of the event format. The
categories of requirements follow the guidelines given in [2]. Requirements containing the
word shall are mandatory. Those containing the word should are strongly recommended, justi-
fication is needed if they are not followed. Sentences containing the word may are guidelines,
no justification is required if they are not followed.

The event format shall fulfil the following requirements:

1. The event format shall allow the size of an event to increase or decrease depending on the
specific data taking configuration.

2. There shall be no minimum or maximum event data size implied by the format.

3. The event format should provide information redundancy to allow self consistency checks
of the event to be made. The consistency checks will be defined at a latter stage in time.

4. The event formatting information shall not exceed 20% of the typical full ATLAS event
data size.

- 5 -

5. The event format should be modular1.

6. The basic unit should be a fragment. Fragments are: data coming from a ROD, ROB or
ROS, all the data associated to a single sub-detector and the data input to the Event Filter.

7. The fragments should have identical structure.

8. The event format shall facilitate the identification of fragments.

9. The event format shall provide an event header.

10.The event format shall provide the event identifier and trigger type within the event header.

11.The event format shall provide a means of identifying whether the event has been cor-
rupted during transmission within the DataFlow, e.g. DMA time-out, truncation etc.

12.The event format shall provide a means of identifying whether the event has been cor-
rupted due to hardware problems, e.g. a bit error.

2.2 Function and purpose

The event format defines the structure of the data at various stages within the Trigger and DAQ
and allows elements of the DataFlow and processing tasks to access the data without resorting
to the use of other resources, e.g. databases. In addition, it defines additional data that is added
to the detector data, by elements of the TDAQ, allowing processing tasks to quickly identify
the type and origin of event.

2.3 General format

The general format of a Full Event is shown in Figure 1. As can be seen it is built from frag-
ments (see requirement 6. in section 2.1). A Full event is an aggregation of sub-detector frag-
ments and each sub-detector fragment is an aggregation of ROS fragments. In turn, each ROS
fragment is an aggregation of ROB fragments. Each of the latter map on to one or more ROD
fragments. Note: depending on the architecture of the DataFlow system, a sub-detector frag-
ment may be an aggregation of ROB fragments instead of ROS fragments (not shown in).
Each fragment, except the ROD fragment, has a header which contains all the event formatting
information. For ROD fragments, hardware considerations have led to the combination of a
header and a trailer, however, the general principles are similar and it is the combination of the
header and trailer which provide the event formatting information. Details of ROD fragments
are given in section 4.

The class diagram of the event format is shown in Figure 2. Referring to the latter, it can be
seen that a Full Event is one or more Fragments. A Fragment may be associated to zero or
more other Fragments. Each Fragment consists of an instance of the Header class and zero or
more instances of the Data class. A Header is an aggregation of Generic and Specific classes.
The latter being a generalization of: Event, Sub-detector, ROS, ROB and ROD. Headers are
invariant of sub-detectors. However the details of the header, for example in a ROB fragment,
may vary with respect to a header in a sub-detector fragment.

1. Adjective, (1) of, relating to, or based on a module or a modulus, (2) constructed with standardised
units or dimensions for flexibility and variety in use.

- 6 -

As can be seen from Figure 2 the proposed event format is modular and based on event frag-
ments (see section 2.1). All event fragments have the same structure, except the ROD fragment
due to identified implementation issues. This fulfils requirement 7. (see section 2.1).

Figure 1. The general event format.

Event Header

Sub-detector Header

ROS Header

Sub-detector

Fragments

ROS or ROB
Fragments

ROB Fragments

ROD header

ROB Header

ROD data
ROD trailer

ROD Fragment(s)

- 7 -

3 Header formats

3.1 The Header

The class Header is an aggregation of Generic and Specific parts, see Figure 3. The Generic
part is the same for all event fragments, except the ROD fragment (see section 4). While the
Specific part allows fragment specific information to be included in the header, e.g. informa-
tion generated specific to a sub-detector.

Figure 2. The class diagram of the event format.

Figure 3. The fragment header.

Event Sub-detector ROS ROB

FragmentFull Event

Header Data

+1

Generic Specific

Consists of

Consists of

is a generalisation of

ROD

Trailer

0 or 1

Number of status elements (n)

Source identifier

Offset 0

Offset (m-1)

Status element 0
. . .

Status element (n-1)

Header size

Number of offset elements (m)

Start of header marker

Format version number

Fragment specific
Number of fragment specific

. . .

Generic

Specific

Total fragment size

. . .

Run number

- 8 -

3.1.1 The Generic component

The Generic component consists of the following elements:

1. Start of header marker. This marker indicates the start of a fragment header and is itself part
of the header. Hence, it is the first word of a fragment. The value of this element will be
unique for each type of fragment, but the structure shall be identical. The structure will
allow the endianess of the fragment header to be determined.

2. Total fragment size. This element indicates the total size of the fragment, including the
Header.

3. Header size. The element indicates the total size of the Header.

4. Format version number. This element gives the format version of the fragment. For exam-
ple, if this is a ROB fragment, it defines the format version of the ROB fragment. It allows
the format of a ROB fragment to change independently of, for example, a sub-detector frag-
ment.

5. Source identifier. This element identifies the origin of the fragment. It consists of a sub-
detector ID, Module Type and Module ID. The combination of these fields should allow the
Source identifier to be unique across the whole of Atlas. The Module type and ID refer to
the module which builds and adds the header to the event fragment.

6. Run Number: A 32-bit integer whose value is unique during the lifetime of the experiment.

7. Number of status elements. The value of this element is the number of status elements in the
Header.

8. Status element. This element contains information about the status of the data within the
fragment. The structure of this element is specific to the module which builds the header.

9. Number of offset elements. The value of this element indicates how many Offset elements
are contained within the Header.

10.Offset. This element contains an identifier and offset to a fragment contained within this
fragment. The offset is relative to the start of this fragment. The use of this element is
shown in Figure 4.

Figure 4. The use of the Offset element.

Other header elements

Number of offset elements = 2
Offset element: Fragment ID “a”, offset of 11 units

Fragment with ID = a

Fr
ag

m
en

t

H
ea

de
r

11 units

Start of header marker

Fr
ag

m
en

t

Another Offset element

- 9 -

3.1.2 .The Specific component

Following the Generic component of the header there is a fragment Specific component con-
sisting of:

1. Number of fragment specific. An element which gives the number of elements following
this element

2. Zero or more elements, as specified in the previous element, which are specific to the type
of fragment, e.g. ROB fragment, see section 5.11 for details.

4 ROD data format

The definition of the format of the data transferred between the ROD and ROB must take into
account factors such as: the data is formatted in hardware and not necessarily by programma-
ble devices; the information within the header may influence component cost and ROD per-
formance; the actual current understanding of ROD designs (a ROD may not buffer data).

Current designs of the ROD indicate that the data transferred from a ROD to a ROB should
have both a Header and a Trailer as shown in Figure 5.

Figure 5. The ROD data format.

Start of header marker

Source identifier
Format version number

Status elements
. . .

Data elements

Header size

Bunch crossing ID
Extended Level 1 ID

Number of status elements
Number of data elements

Status elements

Level 1 trigger type
Detector event type

Status block position

Status elements
. . .

Data elements

Status elements
OR

Trailer

Header
Run number

- 10 -

The Trailer contains the Number of data elements, Number of Status elements and the status
block position. Some detector groups have voiced a preference for having the Status elements
proceeding the Data elements. Instead of imposing an order, an additional element, Status
block position, has been added to the trailer. The value of this element defines the relative
order of the Data and Status elements. A value of zero indicates that the status block precedes
the data block and a value of one indicates that the status block follows the data block. These
two cases are shown in Figure 5 for reasons of clarity. The Data and Status elements are 32-bit
integers.

The header is derived from that presented in section 3.1 and the elements have the same mean-
ing. Note, in addition, the value of the Start of Header Marker also identifies the byte order of
the ROD fragment Data and Status elements. Within the header four additional elements are
explicitly defined, these are:

1. Extended Level 1 ID: The Extended L1ID [3] formed by the 24-bit L1ID generated in the
TTCrx and the 8-bit ECRID implemented in the ROD.

2. Bunch Crossing ID: The 12-bit bunch crossing identifier generated in the TTCrx.

3. Level 1 Trigger Type: The 8-bit word generated by the Central Trigger Processor and trans-
mitted by the TTC system [4].

4. Detector event type: This element allows additional information to be supplied on the type
of event, particularly in the case of calibration events. It allows the detectors to specify the
exact type of calibration event that they have generated.

In addition, the first status word must indicate the global status of the fragment, i.e. there shall
be at least one status element in a fragment. A non-zero value of this element indicates that the
fragment is corrupted, e.g. missing data and or bit errors. The exact details of this element are
still to be defined.

5 Initial implementation

This section presents an implementation of the event format described in the previous sections.
It defines the Start of Header Markers, the Fragment IDs, the sub-detector IDs and the ele-
ments specific to the different types of fragments. This implementation is for 32-bit machines
and demands that the Generic Header, ROD Header and Trailer are aligned on four byte
boundaries. All header and trailer elements are 32-bit integers. For the presentation of the
implementation of the event format, Big-endian ordering has been chosen, as it is used in
established network header formats.

In this implementation: the ROD, ROB and ROS header are built by the ROD, ROB and ROS
respectively; the Sub-detector and Event Header are built by the SFI. It is not excluded that
some information from the ROD header and trailer be copied into the ROB header and the
ROD header and trailer be discarded. In addition, this implementation does not impose a spe-
cific order of the fragments. For example, the first sub-detector fragment in event N may be
that of the Pixel Barrel and in event N+1, the first sub-detector fragment may be that of LArg.
Barrel right.

The following points have also been taken into account:

- 11 -

• Bit fields allow efficient use of memory and matching to hardware-defined data structures.
However, they are not portable and therefore not used.

• Floating point types are not used in this implementation as they are not portable.

• Byte ordering. The endianness of the ROD fragment is Little-endian. This standardisation is
defined in [5].

The endianness of the fragments exchanged between the different components of the
TDAQ cannot be defined as it cannot be excluded that processors implementing Big or Lit-
tle-endianness will be deployed. In the absence of a standardisation, the identification of the
endian order of a fragment is addressed by the implementation of the Start of header marker,
see section 5.12.

• Alignment. The implementation demands that all headers are aligned on 4-byte boundaries.

5.1 Start of Header Markers

Each fragment header begins with a Start of Header Marker. These markers fulfil requirements
7, 8 and 9 as described in section 2.1. The markers at each level of the event format are given
in Table 2.

The asymmetry in the value of the header marker allows for the byte ordering used in the frag-
ment Header to be identified. Note for the ROD fragment it refers to the byte order of the ROD
fragment as a whole.

5.2 Source IDs

The structure of the Source ID, as shown below, consists of four byte fields. The combination

of these four fields allows the Source ID to be unique across all sub-detectors. The possible
values of the Sub-detector ID and Module Type are defined in section 5.3 and section 5.4. The
values that may be assigned to the Module ID are free to be defined by the system or sub-sys-
tem implementers concerned. The third byte is reserved and should be initialised to a value of
zero.

Table 2. Start of Header Markers.

Fragment Type Header Marker

ROD
ROB
ROS

Sub-Detector
Full Event

LVL1a Result

a. This is the data sent by LVLl to the RoI Builder.

0xee1234ee
0xdd1234dd
0xcc1234cc
0xbb1234bb
0xaa1234aa
0x99123499

Byte 3 2 1 0

Sub-detector IDReserved Module Type Module ID

- 12 -

5.3 Sub-Detector IDs

A proposal for sub-detector IDs is given. The detectors (TRT, Pixel, etc.) and TDAQ assigned
a unique major-id and up to fifteen possible minor-ids. These values are shown in Table 3.

Table 3. Sub-detector IDs.

Detector ID

Full Event 0x00

Pixel

Barrel 0x11

Forward A side 0x12

Forward C side 0x13

B-layer 0x14

SCT

Barrel A side 0x21

Barrel C side 0x22

Endcap A side 0x23

Endcap C side 0x24

TRT

Barrel A side 0x31

Barrel C side 0x32

Endcap A side 0x33

Endcap C side 0x34

LAr

EMB A side 0x41

EMB C side 0x42

EMEC A side 0x43

EMEC C side 0x44

HEC A side 0x45

HEC C side 0x46

FCAL A side 0x47

FCAL C side 0x48

TileCal

Barrel A side 0x51

Barrel C side 0x52

Extended A side 0x53

Extended C side 0x54

- 13 -

5.4 Module Type

For the format described here the Module Type is byte wide, allowing a maximum of 256 pos-
sible modules to be enumerated. A list of identified module types is enumerated in Table 4.

Muon

MDT Barrel A side 0x61

MDT Barrel C side 0x62

MDT Endcap A side 0x63

MDT Endcap C side 0x64

RPC Barrel A side 0x65

RPC Barrel C side 0x66

TGC Endcap A side 0x67

TGC Endcap C side 0x68

CSC Endcap A side 0x69

CSC Endcap C side 0x6a

T/DAQ

Calorimeter preprocessor 0x71

Calorimeter Cluster processor 0x72

Calorimeter Jet/Energy processor 0x73

CTP 0x74

Muon Interface 0x75

DataFlow 0x76

LVL2 0x77

Event Filter 0x78

Othera 0x81

a. An example is the beam crate used at test beams.

Table 4. Enumeration of Module Type.

Module Type Value

ROD 0x00

ROB 0x01

ROS 0x02

RoI Builder 0x03

Supervisor 0x04

HLT Processor 0x05

SFI 0x06

Table 3. Sub-detector IDs.

Detector ID

- 14 -

5.5 Run number

The run number is a 32-bit integer. The 8 highest bits are defined by the run control and iden-
tify the type of run. Examples of run types: sub-detector calibration; physics running; com-
bined detectors run, e.g. Level 1 calorimeter and a Liquid Argon sub-detector. The value of
lower 24-bits represent the ordered sequence of runs within a type. The structure of the run
number is shown below.

An enumeration of Run Type is shown in Table 5.

5.6 Total fragment and Header size

These elements are each 32-bit integers and their values give the total size of the fragment and
the size of the fragment header in units of 32-bit integers.

5.7 Format Version Number

This element consists of two 16-bit fields, as shown below. The combined value of these fields

identifies the fragment format version. The Major version number shall be the same for all
fragments in the event, i.e. it refers to the format of the Generic Header, the ROD Header and
the ROD trailer. The Minor version number has a value dependent on the fragment type and
will be used to identify the format of the specific part of the fragment header and in a ROD
fragment the format of the sub-detector Data.

The implementation described in this document defines the Format Version Number to be
2.4.0.0 (0x02040000), i.e. Major version number is 2.4 and the Minor version number is 0.0.

SFO 0x07

Othera 0x0a

a. An example of this is a VMEbus module emu-
lating a ROD.

Table 5. Enumeration of Run Type.

Run Type Value

Physics 0x00

Calibration 0x01

Cosmics 0x02

Table 4. Enumeration of Module Type.

Module Type Value

Byte 3 2 1 0

Run type Sequence number within run type

Byte 3 2 1 0
Minor version numberMajor version number

- 15 -

5.8 Number of Status elements

For the initial implementation there should be at least one status element, see below. Therefore
this element must have a value greater than or equal to one.

5.9 Status element

This element is a 32-bit integer. There must be at least one Status element in a Fragment. A
non-zero value of the first status element indicates that the event fragment is corrupted, e.g.
truncated. The first Status element, as shown below, is divided into two 2-byte fields labelled
Generic and Specific. The values and error conditions indicted by the Generic field are the
same for all fragments, while the values and error conditions indicated by the Specific field
have meanings specific to the fragment.

The currently defined values and meanings of the Generic field are given in Table 6.

The structure and values of subsequent Status elements are free to be defined by the designers
of the modules which build the specific Event fragment header.

5.10 Offset element

This element is 32-bits wide and has the structure shown below.

Bytes 0 to 2 are the offset to the fragment identified by the value in byte 3 and is in units of 32-
bit integers. Byte 3 identifies the fragment found at the offset. For example: if this element is
part of a Full Event header then Fragment ID takes the value of a Sub-detector ID; if this ele-
ment is part of a Sub-detector header then Fragment ID takes the value of a ROS ID; If this ele-
ment is part of a ROS Fragment header then Fragment ID takes the value of a ROB Module

Table 6. Values and meaning for the Generic field of the mandatory first status element.

Generic field value Description

1 An internal check of the BCID has failed

2 An internal check of the EL1ID has failed

4 A time out in one of the modules has occurred.
The fragment may be incomplete

8 Data may be incorrect. Further explanation in
Specific field

16 An overflow in one of the internal buffers has
occurred. The fragment may be incomplete

Byte 3 2 1 0

Specific Generic

Byte 3 2 1 0

Fragment ID Offset

- 16 -

ID; If this element is part of a ROB Fragment header then Fragment ID takes the value of a
ROD Module ID.

5.11 Fragment specific elements

5.11.1 Full Event Specific elements

The Full Event specific elements are defined in Table 7. Each element is a 32-bit integer. The
table also presents the required order of the specific elements.

• Date & Time: This element encodes the date and time as the number of seconds elapsed
since 00h00.00 on 1st January 1970. It provides a constantly increasing number with which
one may use to time-order events. The Full Event fragment is built by the SFI, hence this
element is the time at which the event was built.

• Global event ID: The value of this 32-bit integer will be provided by the DFM component
of the Event Building subsystem. The value will be unique within a run.

• Extended Level 1 ID: The extended LVL1 ID [3] formed by the 24-bit L1ID generated in the
TTCrx and the 8-bit ECRID implemented in the ROD.

• Level 1 Trigger Type: An 8-bit word as generated by the Central Trigger Processor and
transmitted by the TTC system [4]. The remaining 24-bits are un-used.

• Level 2 Trigger Info: Summary information regarding the event. The element is one 32-bit
integer. The possible values that this element may take are still to be defined.

• Event Filter Info: Summary information regarding the event. This element is four 32-bit
integers in size. The possible values that this element may take are still to be defined.

5.11.2 Sub-Detector Specific Header

The fragment specific elements for a Sub-detector header are defined in Each element is a 32-
bit integer.

Table 7. Fragment Specific Header for the full event.

Event Header Words Definition

Date & Time
Global event ID

Extended Level 1 ID
Level 1 Trigger Type
Level 2 Trigger Info

Event Filter Info

0xssssssss
32-bit integer
0xnnnnnnnn
0x000000tt
0xnnnnnnnn
0xnnnnnnnn
0xnnnnnnnn
0xnnnnnnnn
0xnnnnnnnn

Table 8. Fragment Specific Header for a sub-detector.

Sub-Detector specific Definition

Level 1 Trigger Type 0x000000tt

- 17 -

• Level 1 Trigger type: see section 5.11.1.

5.11.3 ROS Specific Header

The elements specific to a ROS fragment are shown below. There are currently two elements
defined. The Extended Level 1 ID is defined in section 5.11.1. The Bunch crossing ID is as
defined in section 4. Only the lower 12-bits of this element are used, the upper 20-bits are set
to zero.

5.11.4 ROB Specific Header

The elements specific to a ROB fragment are shown below. There are currently four elements
defined. The Extended Level 1 ID, the Bunch crossing ID, the Level 1 Trigger Type and the
Detector specific Type, see section 5.11.1, section 5.11.3 and section 4.

5.11.5 LVL1-Result Specific Header

The elements specific to a LVL1-Result fragment are shown in Table 11. (this is the fragment
sent from the LVL2 Supervisor to the LVL2 Processor informing the latter of the LVL1
Regions of interest for the event). There are currently three elements defined. The Extended
Level 1 ID, the Bunch crossing ID and the Level 1 Trigger Type, see section 5.11.1, section
5.11.3 and section 4.

5.12 Event Filter Output

The input to the Event Filter is a Full Event fragment. The output of the Event Filter shall be
the same Full Event fragment with an additional Sub-detector fragment appended. To mini-

Table 9. Fragment Specific Header for a ROS

ROS specific Definition

Bunch Crossing ID 0x00000xxx

Extended Level 1 ID 0xnnnnnnnn

Table 10. Fragment Specific Header for a ROB.

ROB specific Definition

Extended Level 1 ID 0xnnnnnnnn

Bunch Crossing ID 0x00000xxx

Level 1 Trigger Type 0x000000tt

Detector Event type to be defined

Table 11. Fragment Specific Header for the LVL1-Result.

LVL1-Result specific Definition

Extended Level 1 ID 0xnnnnnnnn

Bunch Crossing ID 0x00000xxx

Level 1 Trigger Type 0x000000tt

- 18 -

mise manipulation of the Full Event fragment header and to take into account the appending of
the additional detector fragment, when the Full Event fragment header is built by the SFI it
shall place in the header an Offset element whose Fragment ID has a value equal to that of the
“TDAQ Event Filter” Sub-detector ID and an Offset value equal to the value of the second ele-
ment of the fragment header, i.e. “Total fragment size” element.

5.13 ROD Header and trailer

The initial implementation of the ROD header and trailer has been given in section 4. These
elements, including the Data and Status elements, are 32-bit integers, e.g. The Level 1 Trigger
type is an 8-bit value, therefore the remaining 24-bits are un-used.

- 19 -

Appendix A: Framing

In transmitting an event or an event fragment between: elements of the Trigger and DAQ; the
ROD and the ROB; elements within the DataFlow, the fragment must be framed by technology
specific information. This framing information is not part of the event format, it is specific to
the link technology used and will be removed by a receiving element. Any status information
contained in the framing information will, of course, be preserved.

Current ROLs are an implementation of the S-LINK specification. This section spells out the
use of S-LINK control words for framing the ROD fragments and also the detection of errors
during transmission over an S-LINK ROL.

Each ROD fragment is preceded and terminated by a single S-LINK control word. These con-
trol words are referred to as the Beginning of Fragment and the End of Fragment. The words
are 32-bits integers and take the values shown in Table 12.

The lower sixteen bits of the Beginning of Fragment and End of Fragment control words are
used by S-LINK to report transmission errors and are therefore subsequently reserved. All bits
should be set to zero prior to transmission of the control words. Only bits [1..0] are currently
used. The description and meaning of these bits is shown in Table 13.

Table 12. Beginning and End of fragment control words.

Control word Value

Beginning of Fragment 0xb0f0rrrr

End of Fragment 0xe0f0rrrr

Table 13. The meaning of the reserved bits in the S-LINK control words.

Meaning when

Value is 0 Value is 1

Bit 0 Previous data fragment ok Transmission error in previous data fragment

Bit 1 Control word ok Transmission error in control word

- 20 -

References

[1]ATLAS High-Level Trigger Data Acquisition and Controls Technical Design Report,
Appendix B, CERN/LHCC/2003-022 (2003)

[2]C. Mazza et. al., Software Engineering Standards. Prentice Hall. ISBN 0-13-106568-8

[3]R. Spiwoks, Presentation given to the Front-end Electronics Co-ordination - 27/02/02

(c.g. http://documents.cern.ch/AGE/current/fullAgenda.php?ida=a02188&)

[4]Definition of the trigger-type word, ATL-DA-ES-0022

[5]R. McLaren, ATLAS Read Out Drivers: Endianness, EDMS Note, ATC-TD-EC-0001,
(2003)

