
ATLAS

 1st Release page 1
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

ATLAS TDAQ/DCS ROS
Prototype-RobIn HLDD

Document Version: 2.4
Document Date: September 24th, 2002
Document Status: 1st Release

1. Abstract
This document describes the high-level hardware design of the final ATLAS protoype-RobIn, as evolved from a
number of previous prototypes. A dual TDAQ-interface is supported to allow investigations of both bus- and
switch-based ROS implementations up to the TDR.

Keywords: Atlas, DAQ, Read-Out, ROS, RobIn

2. Institutes and Authors
Royal Holloway University of London: B. Green
NIKHEF Amsterdam: G. Kieft
University of Mannheim: A. Kugel

ATLAS

 1st Release page 2
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

3. Revision Log
1. Document title: High Level Design of ATLAS Protoype-RobIn
2. Document Reference Number
4. Issue 5. Revision 6. Date 7. Reason for Change

1 0 25th Feb. 2002 Birth
1 1 11th Mar. 2002 Topics from RobIn Meeting of March 7th added
1 2 18th Mar. 2002 Format changed to match (more or less) SDLT template
1 3 19th Mar. 2002 Some modifications, still very preliminary
1 4 20th Mar. 2002 Diagrams modified, intro added
1 5 26th Mar. 2002 Text added
1 6 27th Mar. 2002 Uses cases and text added
1 7 27th Mar. 2002
1 8 12th Apr. 2002 UR’s added
1 9 15th Apr. 2002 Modifications after Phone Conf
1 10 15th Apr. 2002 More text added
1 11 16th Apr. 2002 Implementation options + Requirements added
1 12 16th Apr. 2002 UR’s modified
1 13 17th Apr. 2002 Minor modifications
1 14 21th Apr. 2002 API section + COTS removed, component text added
1 15 22nd Apr. 2002 Streamlined for High-Level design
1 16 22nd Apr. 2002 More HW details added
1 17 22nd Apr. 2002 Functional diagram added
1 18 22nd Apr. 2002 Typos etc. corrected
1 19 24th Apr. 2002 Some functions added
1 100 26th Apr. 2002 Start of “official” draft. Address “review” comments Apr. 23rd
1 101 2nd May 2002 Comments from JP and RC included
2 0 6th Sept. 2002 Comments from “Review Preparation Team” adopted
2 1 17th Sept. 2002 Minor corrections
2 2 18th Sept. 2002 “Special Issues” appendix added
2 3 23th Sept. 2002 Some corrections of “guidelines” (DJF, MLV,..)
2 4 24th Sept. 2002 Management data structure added

Table 1: Document Change Record

ATLAS

 1st Release page 3
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

Contents
1. Abstract ... 1
2. Institutes and Authors.. 1
3. Revision Log ... 2
4. Introduction ... 4

4.1. Purpose of this document .. 4
4.2. Glossary, acronyms and abbreviations .. 4
4.3. References ... 4

5. Requirements and Constraints... 5
6. Guidelines from previous work... 5

6.1. Hardware ... 5
6.1.1. MFCC.. 5
6.1.2. FPGA/MicroEnable... 6
6.1.3. I960 ... 7
6.1.4. SHARC.. 8
6.1.5. Summary ... 8

6.2. Software .. 9
6.2.1. Local Software .. 9
6.2.2. Host Software .. 9

6.3. Performance .. 10
7. Design ... 11

7.1. Block Diagram .. 11
7.2. Functional Building Blocks... 12
7.3. Complex Functions.. 15

7.3.1. Buffer Management... 15
7.3.2. Download/Configuration... 15

7.4. Hardware Building Blocks .. 16
7.4.1. PCI Bridge... 16
7.4.2. Ethernet MAC/PHY .. 16
7.4.3. ROL-Interface ... 16
7.4.4. Core ... 16
7.4.5. Buffer Memory.. 17
7.4.6. Management Memory ... 17
7.4.7. Processor Memory... 17

7.5. Firmware ... 17
8. Cost Model .. 17

8.1. Multiple ROLs... 18
9. Appendix A ... 19

9.1. Message loss.. 19
9.2. Response shaping .. 19
9.3. Network addressing... 19

10. Appendix B ... 20
10.1. Management memory data structures.. 20

10.1.1. FIFO extension lists... 20
10.1.2. Fragment information entry... 20
10.1.3. Hashing.. 20
10.1.4. Hash-entry ... 20

11. Appendix C ... 21
11.1. List of Tables... 21
11.2. List of Figures ... 21

ATLAS

 1st Release page 4
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

4. Introduction

4.1. Purpose of this document
For the TDR we must be able to present a clear view of a possible implementation (plus options) of the RobIn
component, satisfying the performance requirements. As the final implementation of the ROS is not defined yet
as well, the RobIn required now has to support a variety of options, in particular bus- and switch-based ones.
Therefore the protoype-RobIn – with extended functionality – will be used as an intermediate step, prior to the
final pre-production RobIn.

This document provides the high-level design of the protoype-RobIn. The design is developed as a joint effort of
the three institutes RHUL, NIKHEF and UniMA. The final aim of the design-team is to present a single detailed
design of a prototype RobIn that will allow to study bus and switched based ROS implementations.

4.2. Glossary, acronyms and abbreviations
See [5]

4.3. References
[1] ROBIN Summary Document:

http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/documents/ROBINsummary.pdf
[2] ROS-URD: unreleased, see ROS web site at

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/ros.htm
[3] ATLAS Readout Link recommendation, http://edms.cern.ch/file/332389/1/rod_rol.pdf
[4] HOLA S-Link documentation: http://hsi.web.cern.ch/HSI/s-link/devices/hola
[5] protoype-RobIn URD: http://akugel.home.cern.ch/akugel/robIn/docs/urd.pdf
[6] protoype-RobIn SWID: http://akugel.home.cern.ch/akugel/robIn/docs/swid.pdf
[7] RobIn Measurements Document (preliminary):

http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/documents/ROSSystemTestReport.pdf
[8] RobIn Measurements Presentation July 2002:

http://doc.cern.ch/archive/electronic/other/agenda/a02164/a02164s5t2/transparencies/Matthias_Vers5.pdf
[9] MFCC RobIn: DAQ-2000-53: Read-Out Buffer in DAQ/EF prototype -1
[10] MicroEnable RobIn: ROB meeting, Amsterdam 1999: http://www-li5.ti.uni-mannheim.de/fpga/atlas/rob-in-

new.pdf
[11] I960/UK-RobIn (Measurements): DAQ-2000-053: Read-Out Buffer in DAQ/EF prototype -1
[12] I960/UK-RobIn (Details): DAQ-2000-013: The UK ROB-in a prototype ATLAS readout buffer input

module
[13] I960/UK-RobIn documentation (processor): http://www.hep.ucl.ac.uk/atlas/rob-in/processor.html
[14] Sharc-RobIn: DAQ-2000-021: A SHARC based ROB Complex : design and measurement results
[15] The Active Rob Complex: An SMP-PC and FPGA based solution for the Atlas Readout System. R. Bock, J.

A. Bogaerts, P. Werner , A. Kugel, R. Männer, M. Müller,
http://ific.uv.es/rt2001/proceedings/proceedings.pdf , page 199ff

[16] DAQ-2000-10: The Use of Low-cost SMPs in the Atlas Level-2 Trigger
[17] DAQ-2000-051: DAQ-Unit intra and inter-IOM communications summary document
[18] ROS Workshop Feb 2002 Presentation Bus-Based RobIn:

http://doc.cern.ch/archive/electronic/other/agenda/a0281/a0281s1t21/transparencies/BusBased.pdf
[19] The Message Format used by DataCollection in the ATLAS TDAQ Integrated prototype: DC note, CERN

2002, http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DataFlow/DataCollection/docs/DC-022.pdf

ATLAS

 1st Release page 5
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

5. Requirements and Constraints
User Requirements and Constraints are detailed in [5].

6. Guidelines from previous work
In the previous phases a number of RobIn prototypes have beend developed and used by the ROS community:
MFCC-RobIn [9], I960-RobIn [12][11], FPGA-RobIn [10] and SHARC-RobIn [14]. They all provide basically
the same functionality. Many measurements have been carried out in the past, however a standardized setup has
only been used recently [8] which still needs to be integrated with [7]. In general the performance of the
prototypes depends on the properties of the involved hardware, namely the RobIn itself, the host bus and the bus
interface, but also on the software, again locally (if any) and on the host.

This sections summarises the experience gained with the previous RobIn prototypes and sets guidelines for the
new protoype-RobIn.

6.1. Hardware
All 4 prototypes exhibit a similar architecture: a single S-Link is attached to a programmable logic device
(CPLD or FPGA), data from the S-Link is temporarily stored in a local buffer, requested data are transferred via
a PCI bridge device to the host. All but the FPGA-RobIn use a local processor to manage the buffer. The general
approach to use reconfigurable logic (FPGA) for the high-speed/high-rate part of the design and a (local or
remote) processor for the less time critical parts seems to be all right.
In the following a block diagram of each of the prototypes is presented together with the major conclusions from
[1].

6.1.1. MFCC

Figure 1: MFCC block diagram

Issues
 FPGA at limits
 Multiple ROLs not possible (mechanics, performance)
 CPU performance too low
 Message passing over PCI slow
Conclusions
 OS convenient (application start, memory allocation/management, debugging, remote

access)
 CPU + FPGA good for flexibility, complementary functionality, DAQ-1 ROB

monitoring code could be reused on RobIn CPU (not done yet)
Recommendations
 Better FPGA (Xilinx) and PCI (64 bit) on next generation

ATLAS

 1st Release page 6
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

6.1.2. FPGA/MicroEnable

Figure 2: MicroEnable block diagram

Issues
 Slow memory interface
 API implementation: initially large DMA overhead (improved version used in [8])
 Input bandwidth not fully reached due to memory interface (dual-port emulation with

async. SRAM)
 Small buffer, simple management => buffering of few events only
Conclusions
 Most requirements achieved with simple architecture
Recommendations
 Larger + faster buffer and faster FPGA on next generation

ATLAS

 1st Release page 7
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

6.1.3. I960

Figure 3: I960 block diagram

Issues
 CPLD too small, code changes problematic
 Processor at limits
 SRAM cost + size will limit buffer size
Conclusions
 CPU + FPGA convenient + flexible
 Initial requirements (100MB/s input) achieved
Recommendations
 Faster processor
 FPGA replacing CPLD
 Faster buffer
 Integrated S-Slink
 GE interface for output

ATLAS

 1st Release page 8
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

6.1.4. SHARC

Figure 4: Sharc block diagram

Issues
 FPGA design (no bursts) limits buffer read-out speed to 40MB/s
 PCI speed limited to 80MB/s
 Reduced performance without asynchronous I/O
Conclusions
 Requirements achieved
 Testing facilities useful
Recommendations
 None indicated

6.1.5. Summary
The most important recommendations are:

• Use recent FPGA technology with sufficient capacity and speed
• Use recent processor with sufficient speed
• Larger and faster buffer
• Faster PCI (64 bit)
• Don’t put the buffer on the processor bus
• If using dual-port emulation, watch the memory bandwidth
• Provide local DMA capability (e.g. via host interface), avoid data moved by either processor
• Use distributed (HW/SW, word-level, page-level) paged buffer manager á la I960

ATLAS

 1st Release page 9
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

6.2. Software

6.2.1. Local Software
Despite their similarity in hardware design the previous prototypes have used rather different approaches with
respect to local software. The range spans from using a local OS (MFCC) to using a stand-alone application
(I960, SHARC) to using no local software at all (MicroEnable). While the first two don’t make a big difference
for the hardware design the last one can well do and in fact there are still potential implementation options which
might try to avoid the processor. As a consequence the hardware design of the protoype-RobIn shall provide full
support for a processor with OS as well as the possibility to run a RobIn-application without processor.

6.2.2. Host Software
Although the host software is clearly not an issue of RobIn design the RobIn hardware has to take into account
some particular facts.

• The “official” ROS software used up to summer 2002 implemented a synchronous interface to the
RobIn modules which lead to a significant loss of performance. This can be seen easily when
comparing the results from the improved software version (with asynchronous requests, Figure 5, from
[8]). There are also clear indications for the benefits of asynchronous fragment processing in [15] and
[16]. The protoype-RobIn shall not force the software to use synchronous fragment processing.

Figure 5: Effect of asynchronous fragment processing

• Another important factor is the communication mechanism between the RobIn and the host. In [17] the

message passing used in the MFCC-RobIn is described and the clear conclusion is that this kind of
message passing should be avoided. A simpler and more efficient approach is described in [15] and is
already recommended in [18]. This technique uses the integrated DMA controller of the PCI-bridge
together with a specialized host library to enhance the communication throughput. The following
paragraph explains the idea as presented in the reference:
The principle is to set up an DMA with a large memory buffer of 500 kB or more before the first event
fragment is requested. Using the DMA-on-demand feature the transmission is postponed by the
PLX9080 and the FPGA design as long as no data transfer is in progress. To request an event fragment

Sharc RobIn, # of outstanding requests variation,
 fragment size: 1024 byte

0,0

50,0

100,0

150,0

200,0

250,0

0,0 5,0 10,0 15,0 20,0 25,0 30,0

Request rate (kHz)

M
ax

. L
V

L
1

ra
te

 (
kH

z) 1
2
3
4
5
6

ATLAS

 1st Release page 10
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

from the microEnable RobIn, the ARobC library writes the event information into an FPGA register
using a single cycle I/O. The FPGA localizes the data inside the microEnable memory and reactivates
the delayed DMA-on-demand using the dedicated flow control signal of the PLX9080. To perceive the
arrival of the requested data the host polls the DMA buffer position which has been set to zero before.
After the transmission has started this position contains the length of the requested data fragment.
According to this length the end position of the dataset and the start of the next is computed. To indicate
that the data has completely arrived, a magic word is transmitted as last word and can be polled from
the DMA buffer.
Using this scheme only the data request is a host-initiated single-cycle while the acknowledgments are
performed by the PCI hardware and polling is done in the system memory. This leads to a big
improvement in PCI utilization and performance. protoype-RobIn shall support the required PCI bus
master capability.

• In case the host-software wishes to rely on asynchronously reported “conditions”, the RobIn shall
provide a mechanism to asynchronously generate signals to the host software. In a bus-based
environment the RobIn shall provide a hardware interrupt for this purpose.

• Finally one should take care of not copying data too frequently [8]. One transaction from the RobIn into
host memory and one from host memory to the destination NIC – as used during the recent tests – is
acceptable. Additional copies, e.g. to collect event fragments or from kernel to user memory should be
avoided. No extra copy operations shall be forced by the protoype-RobIn hardware.

6.3. Performance
Figure 6 (derived from [8]) shows the performance which has been achieved with some of the previous RobIn1
prototypes in a stand-alone ROS setup.

Figure 6: Basic RobIn performance

1 The UK-RobIn (I960) suffers most from the missing asynchronous processing in the ROS-software. The
hardware has demonstrated better performance in a different setup. Additionally the two others don’t have real
input in this setup.

1-4 RobIns per bus, 1024 fragment size, ROI 10%, L2A 2%, Standalone ROS

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

Number of RobIns

M
ax

. L
V

L
1

R
at

e
[k

H
z]

FPGA RobIn

Sharc RobIn

UK RobIn

100kHz

75kHz

40kHz

ATLAS

 1st Release page 11
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

At least for a limited number of boards the performance goal is probably in reach for a PCI based ROS, provided
the indicated optimisations are implemented. Therefore, the design of the protoype-RobIn will in general build
upon the common features of the previous prototypes while avoiding the observed bottlenecks.

7. Design
The RobIn requires a very high real-time performance, in particular short response times at high rates, and is
therefore a demanding task. On the input side (from the detector) hardware assistance by a fifo and
programmable hardware is essential. Hardware assistance is also required for the management of the fragment
buffer, if a CPU is used.

Although the prototype will support two flavours of TDAQ-interfaces a major aim of the project is to present a
design which can be turned into the final RobIn version with little modifications, in particular only by removing
(and not by adding) functionality. This approach will be taken down to an as detailed level as possible.

The protoype-RobIn can be used in either a completely bus-based or a completely switch-based environment
simply by changing the local firmware. Additionally it will also support a “hybrid” style, by activating both
TDAQ-interface at the same time, e.g. one for control messages and the other one for data messages (e.g. NET-
based RobIn housed in a PCI system).

The designs starts at the high-level with a simple block-diagram and a subsequent functional decomposition into
fairly independent “boxes”. This approach will help to define later-on clean interfaces for a modular detailed
design both at the hardware and software level. The final design of the RobIn software and the implementation
itself will be a separate task.

7.1. Block Diagram
The design principle presented here builds upon the experience with the previous RobIn prototypes (see section
6.1). The primary functions receive – buffer – deliver – release [5] are mapped onto a small number of
specialised building blocks: ROL-IF – CORE – MEM – TDAQ-IF (Figure 7). This corresponds to the structure
described in [1]. In fact TDAQ-IF represents TWO interfaces, for bus(PCI)- and network(MAC)- oriented
communication. The core has two major aspects, one dealing with high-bandwidth/high-rate requirements of the
internal data-flow (DF-CORE), the other dealing with lower priority requirements (AUX-CORE).

Each of the building blocks comprises a certain functionality (Table 2) which together build up the RobIn
functionality. Functionality is ultimately implemented by physical devices (like CPU, MAC, etc.).

Based upon experience it is straightforward to use an FPGA to implement the DF-CORE functionality. Also the
use of a processor for the AUX-CORE is appropriate (see section 6). However it is not excluded that the FPGA
may alternatively implement the AUX-CORE functionality (for special scenarios).

For the purpose of testing various ROS implementations the interfaces to NET and BUS will both comprise the
full set of required functionality in a way that either of the interfaces can be completely disabled.

ATLAS

 1st Release page 12
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

Figure 7: Basic Block Diagram

7.2. Functional Building Blocks
The basic interactions of the main functional elements are displayed2 in Figure 8. The thick red lines indicate the
main data-path which runs on the path: ROL-IF -> BufMgr-IN -> BUFFER -> DMA -> TDAQ-IF.
The input from the ROL is realised in the usual way via an ATLAS S-Link [2]. The functions related to input
and buffering are already well known from previous RobIn work. Messaging functions are also known, e.g. from
a RobIn in the context of the DAQ-1 EventManager and DC message passing.

Figure 8: Basic Functional Diagram

2 Boundaries for DF-CORE and AUX-CORE are only for illustration of a typical mapping.

ROL-IF

MEM

PCI

ROL

BUS
1..N

DF-CORE

AUX-
CORE

MAC
NETP

H
Y

TDAQ-IF

CORE

ROL-IF ROL-
Handler

BufMgr-
OUT

Monitor-
Mgr

Control

BufMgr-
IN

DMA

Response-
Handler

Msg-
Handler

Msg-
IN

Resp.-
Out

TDAQ-
IF

BUFFER

Input-
Handler

DF-CORE

AUX-CORE

BUFFER-ARBITER

MGMT-
MEM

NET-
MGR

ATLAS

 1st Release page 13
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

A summary of these – plus some more – functional blocks is presented in Table 2.

Certainly the functionality needs to be further detailed, however it is assumed that the presented list is sufficient
to complete the design of the new RobIn hardware, in particular taking into account the flexibility of the
components which will be used.

ATLAS

 1st Release page 14
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

Item # Function Prio. Location(s) Description

1 ROL handler 1 DF-CORE + ROL-IF Attach to ROL-IF and drive protocol. Provide
framed input-data stream

2 Input handler 1 DF-CORE Take fragments from ROL handler, check
header, length, etc

3 Buffer 1 MEM Provide storage for fragment data
4 BufMgrIN 1 DF-CORE Put data put into buffer, update lists (fifos) for

paged buffer
5 BufMgrOut 1 CORE Maintain fragment index list, etc. Provide

fragment address upon request

6 MsgIN 1 AUX-CORE Receive messages from DAQ interface (depends
on BUS vs. NIC)

7 Msg handler 1 AUX-CORE Decode and dispatch DAQ messages, e.g.
fragment requests

8 Response handler 1 AUX-CORE Format/assemble responses incl data for DAQ
interface

9 Response OUT 1 AUX-CORE Send response to DAQ interface (depends on
BUS vs. NIC)

10 Control 1 AUX-CORE Control RobIn state of operation

11 DMA 1 CORE, TDAQ-IF Transfer data between buffer and NIC, or buffer
and BUS

12 NET interface (is part
of TDAQ-IF)

1 MAC (+PHY) TDAQ interface via network

13 BUS Interface (is part
of TDAQ-IF)

1 PCI TDAQ interface via PCI bus

14 MgmtMem 1 NN (addition to
AUX-CORE)

Store monitoring + status information

15 BufferArbiter 1 DF-CORE Provide access to fragment buffer for all clients
(BUFMGR, DMA,MEMMAP,...)

16 NetMgr 1 CORE Handle higher-level of network protocol, e.g.
sequence checking, ICMP, etc.

17 Configuration interface 1 AUX-CORE Provide for software upgrade, power-on
configuration, etc.

18 Local MemMap 2 DF-CORE Let on-board CPU access buffer and peripherals

19 Bus MemMap 2 DF-CORE + PCI Provide local address space for buffer enabling
PCI-bridge to map buffer into BUS address
space. Eventually also map management area(s)

20 Monitor Mgr 2 CORE Support event and operational monitoring,
maintain status information

21 SelfTest 2 CORE Perform basic testing
22 Error handler 2 CORE Perform error specific actions (e.g. send NACK

packet on missing seq#. Drop invalid
packets/fragments)

23 Emulation data
generator

3 NN (CORE) Means to fill buffer and manager with emulated
fragments

24 Fragment processing 3 CORE Placeholder for potential operations like
reformatting, pre-processing, etc.

Table 2 : Functions

ATLAS

 1st Release page 15
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

7.3. Complex Functions

7.3.1. Buffer Management
Buffer management is THE central function of the RobIn and a large amount of experience has been gained in
this area in the previous prototype work. The design presented is based on the paged buffer management scheme
developed by the UK group [12], with some optimisations applied. It involves mainly a buffer manager, a paged3
buffer memory and a set of fifos. The buffer management is performed at two levels, one operating at word-level
(BufMgr IN) and the other operating at page-level (BufMgr OUT). BufMgrIN will always run in the FPGA.
BufMgrOUT will run on the CPU but can be put on the FPGA – in a simplified version – if no CPU is available.

To provide fast access for the BufMgrIN the fifo’s will be implemented in hardware, internally in the FPGA. As
this approach would limit the maximum number of pages available to approximately 1k (= 1MB buffer at 1kB
fragments) the hardware fifo’s are extended by the BufMgrOUT via additional lists of used and free pages.

Upon initialisation all available pages are entered into the free-page fifo (FPF). For each incoming fragment the
BufMgrIN retrieves a page from the FPF and moves it to the used-page fifo (UPF). Fragments longer than a page
will subsequently use additional items from the FPF. Event ID and header information are copied on-the-fly to
the BufMgrOUT via the UPF, as well as status and error information (e.g. last page, truncation, link-error, etc.).
Once the FPF reaches a low watermark the BufMgrIN directs the input handler to stop the ROL-IF.
Transmission resumes after more free pages have become available.
The BufMgrOUT reads entries from the UPF and adds it to it’s list of available events. List management will use
a hashing algorithm derived from the I960 prototype, adapted4 to the new memory layout. As all relevant data
are available in the UPF the BufMgrOUT never needs to access the buffer memory directly.

Upon a data request from the message handler the BufMgrOUT retrieves the pages of the particular fragment
from the event list and provides the address parameters to the DMA engine, which performs the transfer to the
TDAQ-IF. Similarly for release requests the relevant pages are removed from the fragment list entered into the
FPF, which effectively deletes the fragment from the memory.

Both BufMgrIN and BufMgrOUT will perform error detection and handling, where appropriate. BufMgrIN will
detect and flag low level error like transmission errors and incorrect L1ID sequence. BufMgrOUT will detect
errors like duplicate L1ID and will handle the errors indicated by BufMgrIN.

The BufMgrOUT provides various status and error information (e.g. most recent L1ID, fragment error flags) via
a set of registers to the MonitorMgr. The MonitorMgr will in turn update error counters, pending request queue
and local status information.

More information on management data structures is given in section 10.1.

7.3.2. Download/Configuration
The RobIn needs to be in-situ upgradeable and needs permanent store for boot-code [5]. In all cases where a
dedicated bus interface is available the implementation is simple (e.g. flash-eeprom on local bus). For other cases
the AUX-CORE must provide functionality to update the permanent memory:

1. Receive new code via TDAQ-IF and buffer into on-board memory
2. Verify code via TDAQ-IF
3. Reprogram on-board permanent memory
4. Reboot from on-board permanent memory

For factory testing and initialisation a JTAG (or equivalent) interface shall support to download boot code into
the on-board permanent memory.

3 A page here is a synonym for a fixed size fraction of the buffer memory. Its size is determined by the logical
management scheme, not by a physical constraint of the memory. An individual fragment might use multiple
pages.
4 The original I960 hashing uses the lower 10 bits of the event ID. This number is likely to be increased with
larger buffer and management memory.

ATLAS

 1st Release page 16
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

7.4. Hardware Building Blocks
The distribution of the functions across hardware components is a bit more complicated than mapping the block-
diagram, not because of the complexity of individual tasks but because of the number of implementation options.
From a traditional point of view the following major components will be needed for an implementation of the
basic block diagram:

• S-Link
• FPGA
• Memory
• Processor
• Network interface
• PCI bridge
• Some “glue”

For this set of components a preliminary ad-hoc selection has been made to verify the pure existence of devices.
This selection is used as a starting point in section 8.

To achieve a higher degree of integration (and less components) some of these components could be merged into
a single hardware object. Obvious options to achieve a higher degree of integration are:

• Merge processor and network interface into network processor
• Merge processor and BUS interface
• Use FPGA with IP-cores for any combination of Processor, PCI, Network interface

7.4.1. PCI Bridge
In a bus-based ROS environment the PCI-bridge implements the TDAQ-IF. In a switch-based ROS environment
the PCI-bridge can be used for configuration, control and operational monitoring, i.e. it provides a control path
independent of the data path. In the scenarios studied so far the required bandwidth per RobIn can be handled by
a 32bit/33MHz implementation. However for multiple ROLs per RobIn or multiple RobIn’s per PCI bus a 64Bit
PCI architecture should be considered. PCI-master and DMA capabilities are required, supporting the transfer
mechanism5 used by the microEnable prototype (see page 9).

7.4.2. Ethernet MAC/PHY
In a SWITCH-based ROS environment the ethernet MAC implements the TDAQ-IF, together with the physical
interface device (PHY). In a bus-based ROS it will probably not be used. Although modelling shows that the
required bandwidth is just at the limit for 100Mbit/s a GE interface will be used (more headroom, more recent
technology, more flexibility). For flexibility reasons the MAC should use a GMII interface to attach to the PHY
interface. Functionality corresponding to the listed UR’s needs to be available.

7.4.3. ROL-Interface
The ATLAS ROL is realised with an implementation of the ATLAS S-Link, the latest specification supports
160MB/s over a single optical fibre (HOLA, [4]). No return-signals apart from XOFF to stop transmission will
be used (also see UR section). The implementation might either be done using an S-Link mezzanine LDC or by
using an embedded version, integrated into the RobIn PCB.

7.4.4. Core
FPGA
The FPGA is the primary candidate to implement all high-rate, high bandwidth DF-CORE functionality. In
addition to an estimated minimum capacity of 100k Gates support for multiple clock-domains, embedded
memory and asynchronous FIFOs is required. The final resource requirements will depend upon implemented
functionality, e.g. additional IP-Cores. An SRAM-based technology (=> infinite number of reconfigurations)
will be used. FPGA code will be stored in an on-board flash-memory (see configuration section).

Processor
When a dedicated processor is used, which is recommended according to section 6.1, then it is the primary
candidate to implement the functions of the AUX-CORE. Depending on the ROS implementation it will provide
the higher level messaging functions. In particular for switch-based architectures it will be involved in the book-

5 Demand-Mode DMA: the DMA-engine of the PLX chip operates under control of the FPGA.

ATLAS

 1st Release page 17
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

keeping of the events in the buffer memory and handle the different requests from the network and/or PCI bus
and perform monitor and self-test tasks. A processing power of 60 MIPS [13] is required per ROL. The
processor will require memory for code/data at an adequate speed, which is separate from the buffer memory.

7.4.5. Buffer Memory
The buffer memory closely interacts with the buffer management functions to continuously store the event
fragments arriving from the ROD-IF and to provide data requested from the TDAQ-IF. Performance
requirements are given in [2][5], however the required buffer size is not well defined. Previous prototypes have
provided in the order of 0.5 to 2 MB. In [2] a value of 2.5MB is indicated. Recent discussions however suggest
that at least for this prototype a larger buffer would be of benefit (in particular for a switch-based ROS).
Dual-ported static memory is most suitable for this application, but these memories are expensive and not
compact. Normal synchronous static memories (SSRAM) used as pseudo dual-ported memories, are more
compact and cheaper. For easy buffer management and access for monitoring purposes, non-bursting memories
seem more appropriate although the memories will probably be pipe-lined for performance reasons. Because the
memory may alternately be read and written, memories without an additional wait state between consecutive
write and read cycles (e.g. ZBT-SRAM) are preferable. SD-RAM would provide the highest capacity at the
lowest price, however access and arbitration is more complicated. Device densities vary from 18Mbit for ZBT to
256Mbit for SD-RAM.

7.4.6. Management Memory
Management memory will be used by the AUX-CORE to store any kind of book-keeping, e.g. for lists of buffer
pages, monitoring information, message buffers etc. To optimise overall performance the management memory
should be completely separated from the buffer memory. Capacity depends mainly on the number of supported
fragments and buffer pages and is estimated to be in the order of 1MB (per ROL). This memory could eventually
be included in the processor’s main data memory.

7.4.7. Processor Memory
The processor will require separate memory for code/data at an adequate speed. Required capacity varies
depending on functionality, processor type and software implementation (e.g. use of an OS).

7.5. Firmware
The protoype-RobIn will involve two flavours of firmware, one being the software running on the local
processor, the other one being the FPGA design. Programming languages will be C/C++ and VHDL for CPU
and FPGA respectively, with appropriate development tools. Both languages provide (reasonably) good support
for modular designs. Component selection shall consider that adequate development tools are available.

8. Cost Model
For an initial cost estimation a set of components has been used, assuming that the following items have the
major contribution: CPU, FPGA, Buffer Memory, S-Link, PCI-Bridge, GE-NIC, PCB. There will be some more
components for power, control, configuration support etc. summarised as “Misc”. Current prices are for
prototype quantities (approx. 10pcs), not for production quantities.

ATLAS

 1st Release page 18
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

Item Type Estimated Unit Price (€) Comment

CPU Intel IOP321 75
FPGA Xilinx XC2V1000 300 Alt. XC2S300E: 70€
Buffer ZBT RAM 1M*36 140 Might be less
S-Link 2.5Gbit/s optical 200 Opto TX/RX + SerDes
PCI-Bridge PLX9656 60
GE-NIC LTX1000+IXF1002 120 MAC 75$, PHY 25$
PCB 64 Bit PCI, short 150 Volume price much lower
Assembly 200 Volume price much lower
Misc Cap’s, R’s, PLD, Prom 150 Guess only

Total 1395

Table 3 : Cost Estimate

There are additional costs not listed above for the development of the prototype, e.g. for PCB layout (if not done
at an institute), initial PCB and production charges, small-quantity surcharges, and for development tools (CPU,
FPGA).
For volume production one can expect a cost reduction in the order of 10 to 40% for electronic components,
even more for PCB and assembly. According to this estimation the cost of the prototype will be twice the one
aimed at, however with some optimisations and considering the simpler TDAQ-IF and volume prices the cost
goal is within reach for the final version.

8.1. Multiple ROLs
From the use of multiple ROLs on a single RobIn one can expect some cost savings, as not all parts will get the
same multiplicity. There will always be only one PCB and assembly, but at volume production these two don’t
contribute so much. We assume a maximum of 4 ROLs for a PCI board, because it will become very difficult to
get more than 5 links (4 ROLs + 1 GE) through the back panel. An initial calculation (Table 1) shows that the
cost per ROL drops most when going from 1 to 2 ROLs. Considering the increasing complexity of the design
and the more demanding manufacturing process the optimum number of ROLs per RobIn appears to be 2.

Table 4 : Multiple ROLs6

6 Numbers indicate cost equivalent, not necessarily component count

Type 1 ROL 2 ROLs 3 ROLs 4 ROLs
CPU 1 1 2 2
FPGA 1 1,5 2 3
RAM 1 2 3 4
S-LINK 1 2 3 4
PCI 1 1 1 1
NIC 1 1 1 1
PCB 1 1,2 1,5 2
Assembly 1 1,2 1,5 1,8
Misc 1 1,5 2 2,5

100% 76% 70% 70%

ATLAS

 1st Release page 19
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

9. Appendix A
A number of issues related to the design of the RobIn – but not at the level of hardware – will be discussed
elsewhere.

9.1. Message loss
Without a reliable network protocol a strategy to prevent overflow of the buffer, or at least to recover from this
situation, will be needed. The strategy is described in [6].

9.2. Response shaping
In a switch-based scenario care has to be taken that not all RobIn send data to the same destination SFI
simultaneously. The strategy is described in [6].

9.3. Network addressing
For certain DC messages a “third-party” addressing scheme has to be used. To date two different approaches are
proposed, which will be pursued concurrently for a limited time. Refer to the proposal presented in [6].

ATLAS

 1st Release page 20
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

10. Appendix B

10.1. Management memory data structures
The main purpose of the management memory is to keep the extended lists of free and used pages and the
fragment lists. Additionally it will keep a number of error counters, configuration and status information,
however the total size of the latter is negligible compared to the former lists.

10.1.1. FIFO extension lists
The number of buffer pages supported by the prototype-RobIn is much larger than that of the previous
prototypes. As a consequence, the FPGA-embedded hardware fifo’s are not large enough to keep all pages.
Therefore two lists of page-id’s are maintained in the management memory, which extend the size of the
hardware fifo’s. The size of these lists depends on the total number of buffer pages.

10.1.2. Fragment information entry
For each buffer page allocated to the incoming data stream a fragment information entry (FIE) is created by the
BufMgrIn an entered into the UPF. The (preliminary) content of this structure is as follows:

Offset Byte 3 Byte 2 Byte 1 Byte 0
0: ID ECR L1ID
1: Hdr Info 1 Placeholder for additional header information, e.g. RUN number
2: Hdr Info 2 Placeholder for more additional header information
3: Page Info Page number Length within page
4: Status Last page indicator Error + status bits

Table 5: FIE format

The total size of an FIE is 20 bytes, which already accounts for the proposed RUN number and the additional
header field.

10.1.3. Hashing
BufMgrOut uses a hashing algorithm to store event fragment information. Previous prototypes have used the
lower 10 bit of the L1ID as a hash-key, which lead to low memory requirements. For the new prototype-RobIn a
good approach – in particular for an FPGA-based BUfMgrOut – is to match7 the hash-key size with the number
of buffer pages, because this enables a simple and compact8 memory layout. Alternatively – and with a large
amount of management memory available – the key-size can be increased as much as possible in order to
achieve quick search access.

10.1.4. Hash-entry
Each entry in the fragment lists is composed of a pointer field (previous, next) and the FIE. Entries belonging to
the same fragment9 are always added or removed sequentially.

7 Example: 16k pages correspond to a 14 bit hash-key.
8 The first level of indirection is removed, because the first list element is stored directly at the “hash” position.
9 Of a fragment with multiple pages.

ATLAS

 1st Release page 21
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design

11. Appendix C

11.1. List of Tables
Table 1: Document Change Record .. 2
Table 2 : Functions.. 14
Table 3 : Cost Estimate ... 18
Table 4 : Multiple ROLs ... 18
Table 5: FIE format ... 20

11.2. List of Figures
Figure 1: MFCC block diagram .. 5
Figure 2: MicroEnable block diagram... 6
Figure 3: I960 block diagram.. 7
Figure 4: Sharc block diagram .. 8
Figure 5: Effect of asynchronous fragment processing ... 9
Figure 6: Basic RobIn performance .. 10
Figure 7: Basic Block Diagram... 12
Figure 8: Basic Functional Diagram ... 12

