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4. Introduction 

4.1. Purpose of this document 
For the TDR we must be able to present a clear view of a possible implementation (plus options) of the RobIn 
component, satisfying the performance requirements. As the final implementation of the ROS is not defined yet 
as well, the RobIn required now has to support a variety of options, in particular bus- and switch-based ones. 
Therefore the protoype-RobIn – with extended functionality – will be used as an intermediate step, prior to the 
final pre-production RobIn. 
 
This document provides the high-level design of the protoype-RobIn. The design is developed as a joint effort of 
the three institutes RHUL, NIKHEF and UniMA. The final aim of the design-team is to present a single detailed 
design of a prototype RobIn that will allow to study bus and switched based ROS implementations.  

4.2. Glossary, acronyms and abbreviations 
See [5] 

4.3. References 
[1] ROBIN Summary Document: 

http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/documents/ROBINsummary.pdf  
[2] ROS-URD: unreleased, see ROS web site at 

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/ros.htm  
[3] ATLAS Readout Link recommendation,  http://edms.cern.ch/file/332389/1/rod_rol.pdf  
[4] HOLA S-Link documentation: http://hsi.web.cern.ch/HSI/s-link/devices/hola 
[5] protoype-RobIn URD: http://akugel.home.cern.ch/akugel/robIn/docs/urd.pdf  
[6] protoype-RobIn SWID: http://akugel.home.cern.ch/akugel/robIn/docs/swid.pdf  
[7] RobIn Measurements Document (preliminary): 

http://atlasinfo.cern.ch/Atlas/GROUPS/DAQTRIG/ROS/documents/ROSSystemTestReport.pdf  
[8] RobIn Measurements Presentation July 2002: 

http://doc.cern.ch/archive/electronic/other/agenda/a02164/a02164s5t2/transparencies/Matthias_Vers5.pdf  
[9] MFCC RobIn: DAQ-2000-53: Read-Out Buffer in DAQ/EF prototype -1 
[10] MicroEnable RobIn: ROB meeting, Amsterdam 1999: http://www-li5.ti.uni-mannheim.de/fpga/atlas/rob-in-

new.pdf  
[11] I960/UK-RobIn (Measurements): DAQ-2000-053: Read-Out Buffer in DAQ/EF prototype -1 
[12] I960/UK-RobIn (Details): DAQ-2000-013: The UK ROB-in a prototype ATLAS readout buffer input 

module 
[13] I960/UK-RobIn documentation (processor): http://www.hep.ucl.ac.uk/atlas/rob-in/processor.html  
[14] Sharc-RobIn: DAQ-2000-021: A SHARC based ROB Complex : design and measurement results 
[15] The Active Rob Complex: An SMP-PC and FPGA based solution for the Atlas Readout System. R. Bock, J. 

A. Bogaerts, P. Werner , A. Kugel, R. Männer, M. Müller, 
http://ific.uv.es/rt2001/proceedings/proceedings.pdf , page 199ff 

[16] DAQ-2000-10: The Use of Low-cost SMPs in the Atlas Level-2 Trigger 
[17] DAQ-2000-051: DAQ-Unit intra and inter-IOM communications summary document 
[18] ROS Workshop Feb 2002 Presentation Bus-Based RobIn: 

http://doc.cern.ch/archive/electronic/other/agenda/a0281/a0281s1t21/transparencies/BusBased.pdf 
[19] The Message Format used by DataCollection in the ATLAS TDAQ Integrated prototype: DC note, CERN 

2002, http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DataFlow/DataCollection/docs/DC-022.pdf  
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5. Requirements and Constraints 
User Requirements and Constraints are detailed in [5]. 

6. Guidelines from previous work 
In the previous phases a number of RobIn prototypes have beend developed and used by the ROS community: 
MFCC-RobIn [9], I960-RobIn [12][11], FPGA-RobIn [10] and SHARC-RobIn [14]. They all provide basically 
the same functionality. Many measurements have been carried out in the past, however a standardized setup has 
only been used recently [8] which still needs to be integrated with [7]. In general the performance of the 
prototypes depends on the properties of the involved hardware, namely the RobIn itself, the host bus and the bus 
interface, but also on the software, again locally (if any) and on the host. 
 
This sections summarises the experience gained with the previous RobIn prototypes and sets guidelines for the 
new protoype-RobIn. 

6.1. Hardware 
All 4 prototypes exhibit a similar architecture: a single S-Link is attached to a programmable logic device 
(CPLD or FPGA), data from the S-Link is temporarily stored in a local buffer, requested data are transferred via 
a PCI bridge device to the host. All but the FPGA-RobIn use a local processor to manage the buffer. The general 
approach to use reconfigurable logic (FPGA) for the high-speed/high-rate part of the design and a (local or 
remote) processor for the less time critical parts seems to be all right. 
In the following a block diagram of each of the prototypes is presented together with the major conclusions from 
[1]. 

6.1.1. MFCC 

Figure 1: MFCC block diagram 

Issues  
 FPGA at limits 
 Multiple ROLs not possible (mechanics, performance) 
 CPU performance too low 
 Message passing over PCI slow 
Conclusions  
 OS convenient (application start, memory allocation/management, debugging, remote 

access) 
 CPU + FPGA good for flexibility, complementary functionality, DAQ-1 ROB 

monitoring code could be reused on RobIn CPU (not done yet) 
Recommendations  
 Better FPGA (Xilinx) and PCI (64 bit) on next generation 
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6.1.2. FPGA/MicroEnable 

Figure 2: MicroEnable block diagram 

 
Issues  
 Slow memory interface 
 API implementation: initially large DMA overhead (improved version used in [8]) 
 Input bandwidth not fully reached due to memory interface (dual-port emulation with 

async. SRAM) 
 Small buffer, simple management => buffering of few events only 
Conclusions  
 Most requirements achieved with simple architecture 
Recommendations  
 Larger + faster buffer and faster FPGA on next generation 
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6.1.3. I960 

Figure 3: I960 block diagram 

 
Issues  
 CPLD too small, code changes problematic 
 Processor at limits 
 SRAM cost + size will limit buffer size 
Conclusions  
 CPU + FPGA convenient + flexible 
 Initial requirements (100MB/s input) achieved 
Recommendations  
 Faster processor 
 FPGA replacing CPLD 
 Faster buffer 
 Integrated S-Slink 
 GE interface for output 
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6.1.4. SHARC 

Figure 4: Sharc block diagram 

Issues  
 FPGA design (no bursts) limits buffer read-out speed to 40MB/s 
 PCI speed limited to 80MB/s 
 Reduced performance without asynchronous I/O  
Conclusions  
 Requirements achieved 
 Testing facilities useful 
Recommendations  
 None indicated 
 

6.1.5. Summary 
The most important recommendations are: 

• Use recent FPGA technology with sufficient capacity and speed 
• Use recent processor with sufficient speed 
• Larger and faster buffer  
• Faster PCI (64 bit) 
• Don’t put the buffer on the processor bus 
• If using dual-port emulation, watch the memory bandwidth 
• Provide local DMA capability (e.g. via host interface), avoid data moved by either processor 
• Use distributed (HW/SW, word-level, page-level) paged buffer manager á la I960 
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6.2. Software 

6.2.1. Local Software 
Despite their similarity in hardware design the previous prototypes have used rather different approaches with 
respect to local software. The range spans from using a local OS (MFCC) to using a stand-alone application 
(I960, SHARC) to using no local software at all (MicroEnable). While the first two don’t make a big difference 
for the hardware design the last one can well do and in fact there are still potential implementation options which 
might try to avoid the processor. As a consequence the hardware design of the protoype-RobIn shall provide full 
support for a processor with OS as well as the possibility to run a RobIn-application without processor. 

6.2.2. Host Software 
Although the host software is clearly not an issue of RobIn design the RobIn hardware has to take into account 
some particular facts. 
 

• The “official” ROS software used up to summer 2002 implemented a synchronous interface to the 
RobIn modules which lead to a significant loss of performance. This can be seen easily when 
comparing the results from the improved software version (with asynchronous requests, Figure 5, from 
[8]). There are also clear indications for the benefits of asynchronous fragment processing in [15] and 
[16]. The protoype-RobIn shall not force the software to use synchronous fragment processing. 

Figure 5: Effect of asynchronous fragment processing 

 
• Another important factor is the communication mechanism between the RobIn and the host. In [17] the 

message passing used in the MFCC-RobIn is described and the clear conclusion is that this kind of 
message passing should be avoided. A simpler and more efficient approach is described in [15] and is 
already recommended in [18]. This technique uses the integrated DMA controller of the PCI-bridge 
together with a specialized host library to enhance the communication throughput. The following 
paragraph explains the idea as presented in the reference:  
The principle is to set up an DMA with a large memory buffer of 500 kB or more before the first event 
fragment is requested. Using the DMA-on-demand feature the transmission is postponed by the 
PLX9080 and the FPGA design as long as no data transfer is in progress. To request an event fragment 
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from the microEnable RobIn, the ARobC library writes the event information into an FPGA register 
using a single cycle I/O. The FPGA localizes the data inside the microEnable memory and reactivates 
the delayed DMA-on-demand using the dedicated flow control signal of the PLX9080. To perceive the 
arrival of the requested data the host polls the DMA buffer position which has been set to zero before. 
After the transmission has started this position contains the length of the requested data fragment. 
According to this length the end position of the dataset and the start of the next is computed. To indicate 
that the data has completely arrived, a magic word is transmitted as last word and can be polled from 
the DMA buffer. 
Using this scheme only the data request is a host-initiated single-cycle while the acknowledgments are 
performed by the PCI hardware and polling is done in the system memory. This leads to a big 
improvement in PCI utilization and performance. protoype-RobIn shall support the required PCI bus 
master capability. 
 

• In case the host-software wishes to rely on asynchronously reported “conditions”, the RobIn shall 
provide a mechanism to asynchronously generate signals to the host software. In a bus-based 
environment the RobIn shall provide a hardware interrupt for this purpose. 
 

• Finally one should take care of not copying data too frequently [8]. One transaction from the RobIn into 
host memory and one from host memory to the destination NIC – as used during the recent tests – is 
acceptable. Additional copies, e.g. to collect event fragments or from kernel to user memory should be 
avoided. No extra copy operations shall be forced by the protoype-RobIn hardware. 

6.3. Performance 
Figure 6 (derived from [8]) shows the performance which has been achieved with some of the previous RobIn1 
prototypes in a stand-alone ROS setup. 

Figure 6: Basic RobIn performance 

                                                           
1 The UK-RobIn (I960) suffers most from the missing asynchronous processing in the ROS-software. The 
hardware has demonstrated better performance in a different setup. Additionally the two others don’t have real 
input in this setup. 
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At least for a limited number of boards the performance goal is probably in reach for a PCI based ROS, provided 
the indicated optimisations are implemented. Therefore, the design of the protoype-RobIn will in general build 
upon the common features of the previous prototypes while avoiding the observed bottlenecks. 

7. Design 
The RobIn requires a very high real-time performance, in particular short response times at high rates, and is 
therefore a demanding task. On the input side (from the detector) hardware assistance by a fifo and 
programmable hardware is essential. Hardware assistance is also required for the management of the fragment 
buffer, if a CPU is used. 
 
Although the prototype will support two flavours of TDAQ-interfaces a major aim of the project is to present a 
design which can be turned into the final RobIn version with little modifications, in particular only by removing 
(and not by adding) functionality. This approach will be taken down to an as detailed level as possible. 
 
The protoype-RobIn can be used in either a completely bus-based or a completely switch-based environment 
simply by changing the local firmware. Additionally it will also support a “hybrid” style, by activating both 
TDAQ-interface at the same time, e.g. one for control messages and the other one for data messages (e.g. NET-
based RobIn housed in a PCI system). 
 
The designs starts at the high-level with a simple block-diagram and a subsequent functional decomposition into 
fairly independent “boxes”. This approach will help to define later-on clean interfaces for a modular detailed 
design both at the hardware and software level. The final design of the RobIn software and the implementation  
itself will be a separate task. 

7.1. Block Diagram 
The design principle presented here builds upon the experience with the previous RobIn prototypes (see section 
6.1). The primary functions receive – buffer – deliver – release [5] are mapped onto a small number of 
specialised building blocks: ROL-IF – CORE – MEM – TDAQ-IF (Figure 7). This corresponds to the structure 
described in [1]. In fact TDAQ-IF represents TWO interfaces, for bus(PCI)-  and network(MAC)-  oriented 
communication. The core has two major aspects, one dealing with high-bandwidth/high-rate requirements of the 
internal data-flow (DF-CORE), the other dealing with lower priority requirements (AUX-CORE). 
 
Each of the building blocks comprises a certain functionality (Table 2) which together build up the RobIn 
functionality. Functionality is ultimately implemented by physical devices (like CPU, MAC, etc.). 
 
Based upon experience it is straightforward to use an FPGA to implement the DF-CORE functionality. Also the 
use of a processor for the AUX-CORE is appropriate (see section 6). However it is not excluded that the FPGA 
may alternatively implement the AUX-CORE functionality (for special scenarios). 
 
For the purpose of testing various ROS implementations the interfaces to NET and BUS will both comprise the 
full set of required functionality in a way that either of the interfaces can be completely disabled. 
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Figure 7: Basic Block Diagram 

7.2. Functional Building Blocks 
The basic interactions of the main functional elements are displayed2 in Figure 8. The thick red lines indicate the 
main data-path which runs on the path: ROL-IF -> BufMgr-IN -> BUFFER -> DMA -> TDAQ-IF. 
The input from the ROL is realised in the usual way via an ATLAS S-Link [2]. The functions related to input 
and buffering are already well known from previous RobIn work. Messaging functions are also known, e.g. from 
a RobIn in the context of the DAQ-1 EventManager and DC message passing.  
 

Figure 8: Basic Functional Diagram 

                                                           
2 Boundaries for DF-CORE and AUX-CORE are only for illustration of a typical mapping. 
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A summary of these –  plus some more –  functional blocks is presented in Table 2. 
 
Certainly the functionality needs to be further detailed, however it is assumed that the presented list is sufficient 
to complete the design of the new RobIn hardware, in particular taking into account the flexibility of the 
components which will be used. 
 
 



ATLAS 

  1st Release  page 14 
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design  
 

 
Item # Function Prio. Location(s) Description 

1 ROL handler 1 DF-CORE + ROL-IF Attach to ROL-IF and drive protocol. Provide 
framed input-data stream 

2 Input handler 1 DF-CORE Take fragments from ROL handler, check 
header, length, etc 

3 Buffer 1 MEM Provide storage for fragment data 
4 BufMgrIN 1 DF-CORE Put data put into buffer, update lists (fifos) for 

paged buffer 
5 BufMgrOut 1 CORE Maintain fragment index list, etc. Provide 

fragment address upon request 

6 MsgIN 1 AUX-CORE Receive messages from DAQ interface (depends 
on BUS vs. NIC) 

7 Msg handler 1 AUX-CORE Decode and dispatch DAQ messages, e.g. 
fragment requests 

8 Response handler 1 AUX-CORE Format/assemble responses incl data for DAQ 
interface 

9 Response OUT 1 AUX-CORE Send response to DAQ interface (depends on 
BUS vs. NIC) 

10 Control 1 AUX-CORE Control RobIn state of operation 

11 DMA 1 CORE, TDAQ-IF Transfer data between buffer and NIC, or buffer 
and BUS 

12 NET interface (is part 
of TDAQ-IF) 

1 MAC (+PHY) TDAQ interface via network 

13 BUS Interface (is part 
of TDAQ-IF) 

1 PCI TDAQ interface via PCI bus 

14 MgmtMem 1 NN (addition to 
AUX-CORE) 

Store monitoring + status information 

15 BufferArbiter 1 DF-CORE Provide access to fragment buffer for all clients 
(BUFMGR, DMA,MEMMAP,...) 

16 NetMgr 1 CORE Handle higher-level of network protocol, e.g. 
sequence checking, ICMP, etc. 

17 Configuration interface 1 AUX-CORE Provide for software upgrade, power-on 
configuration, etc. 

18 Local MemMap 2 DF-CORE Let on-board CPU access buffer and peripherals 

19 Bus MemMap 2 DF-CORE + PCI Provide local address space for buffer enabling 
PCI-bridge to map buffer into BUS address 
space. Eventually also map management area(s) 

20 Monitor Mgr 2 CORE Support event and operational monitoring, 
maintain status information 

21 SelfTest 2 CORE Perform basic testing 
22 Error handler 2 CORE Perform error specific actions (e.g. send NACK 

packet on missing seq#. Drop invalid 
packets/fragments) 

23 Emulation data 
generator 

3 NN (CORE) Means to fill buffer and manager with emulated 
fragments 

24 Fragment processing 3 CORE Placeholder for potential operations like 
reformatting, pre-processing, etc. 

Table 2 : Functions 
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7.3. Complex Functions 

7.3.1. Buffer Management 
Buffer management is THE central function of the RobIn and a large amount of experience has been gained in 
this area in the previous prototype work. The design presented is based on the paged buffer management scheme 
developed by the UK group [12], with some optimisations applied. It involves mainly a buffer manager, a paged3 
buffer memory and a set of fifos. The buffer management is performed at two levels, one operating at word-level 
(BufMgr IN) and the other operating at page-level (BufMgr OUT). BufMgrIN will always run in the FPGA. 
BufMgrOUT will run on the CPU but can be put on the FPGA – in a simplified version – if no CPU is available.  
 
To provide fast access for the BufMgrIN the fifo’s will be implemented in hardware, internally in the FPGA. As 
this approach would limit the maximum number of pages available to approximately 1k (= 1MB buffer at 1kB 
fragments) the hardware fifo’s are extended by the BufMgrOUT via additional lists of used and free pages. 
 
Upon initialisation all available pages are entered into the free-page fifo (FPF). For each incoming fragment the 
BufMgrIN retrieves a page from the FPF and moves it to the used-page fifo (UPF). Fragments longer than a page 
will subsequently use additional items from the FPF. Event ID and header information are copied on-the-fly to 
the BufMgrOUT via the UPF, as well as status and error information (e.g. last page, truncation, link-error, etc.). 
Once the FPF reaches a low watermark the BufMgrIN directs the input handler to stop the ROL-IF. 
Transmission resumes after more free pages have become available.  
The BufMgrOUT reads entries from the UPF and adds it to it’s list of available events. List management will use 
a hashing algorithm derived from the I960 prototype, adapted4 to the new memory layout. As all relevant data 
are available in the UPF the BufMgrOUT never needs to access the buffer memory directly.  
 
Upon a data request from the message handler the BufMgrOUT retrieves the pages of the particular fragment 
from the event list and provides the address parameters to the DMA engine, which performs the transfer to the 
TDAQ-IF. Similarly for release requests the relevant pages are removed from the fragment list entered into the 
FPF, which effectively deletes the fragment from the memory. 
 
Both BufMgrIN and BufMgrOUT will perform error detection and handling, where appropriate. BufMgrIN will 
detect and flag low level error like transmission errors and incorrect L1ID sequence. BufMgrOUT will detect 
errors like duplicate L1ID and will handle the errors indicated by BufMgrIN.  
 
The BufMgrOUT provides various status and error information (e.g. most recent L1ID, fragment error flags) via 
a set of registers to the MonitorMgr. The MonitorMgr will in turn update error counters, pending request queue 
and local status information. 
 
More information on management data structures is given in section 10.1. 
 

7.3.2. Download/Configuration 
The RobIn needs to be in-situ upgradeable and needs permanent store for boot-code [5]. In all cases where a 
dedicated bus interface is available the implementation is simple (e.g. flash-eeprom on local bus). For other cases 
the AUX-CORE must provide functionality to update the permanent memory: 

1. Receive new code via TDAQ-IF and buffer into on-board memory 
2. Verify code via TDAQ-IF 
3. Reprogram on-board permanent memory 
4. Reboot from on-board permanent memory 

 
For factory testing and initialisation a JTAG (or equivalent) interface shall support to download boot code into 
the on-board permanent memory. 

                                                           
3 A page here is a synonym for a fixed size fraction of the buffer memory. Its size is determined by the logical 
management scheme, not by a physical constraint of the memory. An individual fragment might use multiple 
pages. 
4 The original I960 hashing uses the lower 10 bits of the event ID. This number is likely to be increased with 
larger buffer and management memory. 
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7.4. Hardware Building Blocks 
The distribution of the functions across hardware components is a bit more complicated than mapping the block-
diagram, not because of the complexity of individual tasks but because of the number of implementation options. 
From a traditional point of view the following major components will be needed for an implementation of the 
basic block diagram: 

• S-Link 
• FPGA 
• Memory 
• Processor 
• Network interface 
• PCI bridge 
• Some “glue” 

 
For this set of components a preliminary ad-hoc selection has been made to verify the pure existence of devices. 
This selection is used as a starting point in section 8. 
 
To achieve a higher degree of integration (and less components) some of these components could be merged into  
a single hardware object. Obvious options to achieve a higher degree of integration are: 

• Merge processor and network interface into network processor 
• Merge processor and BUS interface 
• Use FPGA with IP-cores for any combination of Processor, PCI, Network interface 

7.4.1. PCI Bridge 
In a bus-based ROS environment the PCI-bridge implements the TDAQ-IF. In a switch-based ROS environment 
the PCI-bridge can be used for configuration, control and operational monitoring, i.e. it provides a control path 
independent of the data path. In the scenarios studied so far the required bandwidth per RobIn can be handled by 
a 32bit/33MHz implementation. However for multiple ROLs per RobIn or multiple RobIn’s per PCI bus a 64Bit 
PCI architecture should be considered. PCI-master and DMA capabilities are required, supporting the transfer 
mechanism5 used by the microEnable prototype (see page 9).  

7.4.2. Ethernet MAC/PHY 
In a SWITCH-based ROS environment the ethernet MAC implements the TDAQ-IF, together with the physical 
interface device (PHY). In a bus-based ROS it will probably not be used. Although modelling shows that the 
required bandwidth is just at the limit for 100Mbit/s a GE interface will be used (more headroom, more recent 
technology, more flexibility). For flexibility reasons the MAC should use a GMII interface to attach to the PHY 
interface. Functionality corresponding to the listed UR’s needs to be available. 

7.4.3. ROL-Interface 
The ATLAS ROL is realised with an implementation of the ATLAS S-Link, the latest specification supports 
160MB/s over a single optical fibre (HOLA, [4]). No return-signals apart from XOFF to stop transmission will 
be used (also see UR section). The implementation might either be done using an S-Link mezzanine LDC or by 
using an embedded version, integrated into the RobIn PCB. 

7.4.4. Core 
FPGA 
The FPGA is the primary candidate to implement all high-rate, high bandwidth DF-CORE functionality. In 
addition to an estimated minimum capacity of 100k Gates support for multiple clock-domains, embedded 
memory and asynchronous FIFOs is required. The final resource requirements will depend upon implemented 
functionality, e.g. additional IP-Cores. An SRAM-based technology (=> infinite number of reconfigurations) 
will be used. FPGA code will be stored in an on-board flash-memory (see configuration section).  
 
Processor 
When a dedicated processor is used, which is recommended according to section 6.1, then it is the primary 
candidate to implement the functions of the AUX-CORE. Depending on the ROS implementation it will provide 
the higher level messaging functions. In particular for switch-based architectures it will be involved in the book-

                                                           
5 Demand-Mode DMA: the DMA-engine of the PLX chip operates under control of the FPGA.  
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keeping of the events in the buffer memory and handle the different requests from the network and/or PCI bus 
and perform monitor and self-test tasks. A processing power of 60 MIPS [13] is required per ROL. The 
processor will require memory for code/data at an adequate speed, which is separate from the buffer memory. 

7.4.5. Buffer Memory 
The buffer memory closely interacts with the buffer management functions to continuously store the event 
fragments arriving from the ROD-IF and to provide data requested from the TDAQ-IF. Performance 
requirements are given in [2][5], however the required buffer size is not well defined. Previous prototypes have 
provided in the order of 0.5 to 2 MB. In [2] a value of 2.5MB is indicated. Recent discussions however suggest 
that at least for this prototype a larger buffer would be of benefit (in particular for a switch-based ROS). 
Dual-ported static memory is most suitable for this application, but these memories are expensive and not 
compact. Normal synchronous static memories (SSRAM) used as pseudo dual-ported memories, are more 
compact and cheaper. For easy buffer management and access for monitoring purposes, non-bursting memories 
seem more appropriate although the memories will probably be pipe-lined for performance reasons. Because the 
memory may alternately be read and written, memories without an additional wait state between consecutive 
write and read cycles (e.g. ZBT-SRAM) are preferable. SD-RAM would provide the highest capacity at the 
lowest price, however access and arbitration is more complicated. Device densities vary from 18Mbit for ZBT to 
256Mbit for SD-RAM. 

7.4.6. Management Memory 
Management memory will be used by the AUX-CORE to store any kind of book-keeping, e.g. for lists of buffer 
pages, monitoring information, message buffers etc. To optimise overall performance the management memory 
should be completely separated from the buffer memory.  Capacity depends mainly on the number of supported 
fragments and buffer pages and is estimated to be in the order of 1MB (per ROL). This memory could eventually 
be included in the processor’s main data memory. 

7.4.7. Processor Memory 
The processor will require separate  memory for code/data at an adequate speed. Required capacity varies 
depending on functionality, processor type and software implementation (e.g. use of an OS). 

7.5. Firmware 
The protoype-RobIn will involve two flavours of firmware, one being the software running on the local 
processor, the other one being the FPGA design. Programming languages will be C/C++ and VHDL for CPU 
and FPGA respectively, with appropriate development tools. Both languages provide (reasonably) good support 
for modular designs. Component selection shall consider that adequate development tools are available. 

8. Cost Model 
For an initial cost estimation a set of components has been used, assuming that the following items have the 
major contribution: CPU, FPGA, Buffer Memory, S-Link, PCI-Bridge, GE-NIC, PCB. There will be some more 
components for power, control, configuration support etc. summarised as “Misc”. Current prices are for 
prototype quantities (approx. 10pcs), not for production quantities. 
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Item Type Estimated Unit Price (€) Comment 

CPU Intel IOP321 75  
FPGA Xilinx XC2V1000 300 Alt. XC2S300E: 70€ 
Buffer ZBT RAM 1M*36 140 Might be less 
S-Link 2.5Gbit/s optical 200 Opto TX/RX + SerDes 
PCI-Bridge PLX9656 60  
GE-NIC LTX1000+IXF1002 120 MAC 75$, PHY 25$ 
PCB 64 Bit PCI, short 150 Volume price much lower 
Assembly  200 Volume price much lower 
Misc Cap’s, R’s, PLD, Prom 150 Guess only 
    
Total  1395  

Table 3 : Cost Estimate 

There are additional costs not listed above for the development of the prototype, e.g. for PCB layout (if not done 
at an institute), initial PCB and production charges, small-quantity surcharges,  and for development tools (CPU, 
FPGA). 
For volume production one can expect a cost reduction in the order of 10 to 40% for electronic components, 
even more for PCB and assembly. According to this estimation the cost of the prototype will be twice the one 
aimed at, however with some optimisations and considering the simpler TDAQ-IF and volume prices the cost 
goal is within reach for the final version. 

8.1. Multiple ROLs 
From the use of multiple ROLs on a single RobIn one can expect some cost savings, as not all parts will get the 
same multiplicity. There will always be only one PCB and assembly, but at volume production these two don’t 
contribute so much. We assume a maximum of 4 ROLs for a PCI board, because it will become very difficult to 
get more than 5 links (4 ROLs + 1 GE) through the back panel. An initial calculation (Table 1) shows that the 
cost per ROL drops most when going from 1 to 2 ROLs. Considering the increasing complexity of the design 
and the more demanding manufacturing process the optimum number of ROLs per RobIn appears to be 2. 

Table 4 : Multiple ROLs6 

                                                           
6 Numbers indicate cost equivalent, not necessarily component count 

Type 1 ROL 2 ROLs 3 ROLs 4 ROLs
CPU 1 1 2 2
FPGA 1 1,5 2 3
RAM 1 2 3 4
S-LINK 1 2 3 4
PCI 1 1 1 1
NIC 1 1 1 1
PCB 1 1,2 1,5 2
Assembly 1 1,2 1,5 1,8
Misc 1 1,5 2 2,5

100% 76% 70% 70%



ATLAS 

  1st Release  page 19 
 ATLAS TDAQ/DCS ROS Protoype-RobIn High-Level-Design  
 

9. Appendix A 
A number of issues related to the design of the RobIn – but not at the level of hardware – will be discussed 
elsewhere. 

9.1. Message loss 
Without a reliable network protocol a strategy to prevent overflow of the buffer, or at least to recover from this 
situation, will be needed. The strategy is described in [6]. 

9.2. Response shaping 
In a switch-based scenario care has to be taken that not all RobIn send data to the same destination SFI 
simultaneously. The strategy is described in [6]. 

9.3. Network addressing 
For certain DC messages a “third-party” addressing scheme has to be used. To date two different approaches are 
proposed, which will be pursued concurrently for a limited time. Refer to the proposal presented in [6]. 
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10. Appendix B 

10.1. Management memory data structures 
The main purpose of the management memory is to keep the extended lists of free and used pages and the 
fragment lists. Additionally it will keep a number of error counters, configuration and status information, 
however the total size of the latter is negligible compared to the former lists. 

10.1.1. FIFO extension lists 
The number of buffer pages supported by the prototype-RobIn is much larger than that of the previous 
prototypes. As a consequence, the FPGA-embedded hardware fifo’s are not large enough to keep all pages. 
Therefore two lists of page-id’s are maintained in the management memory, which extend the size of the 
hardware fifo’s. The size of these lists depends on the total number of buffer pages.  

10.1.2. Fragment information entry 
For each buffer page allocated to the incoming data stream a fragment information entry (FIE) is created by the 
BufMgrIn an entered into the UPF. The (preliminary) content of this structure is as follows: 
 
Offset Byte 3 Byte 2 Byte 1 Byte 0 
0: ID ECR L1ID 
1: Hdr Info 1 Placeholder for additional header information, e.g. RUN number 
2: Hdr Info 2 Placeholder for more additional header information 
3: Page Info Page number Length within page 
4: Status Last page indicator Error + status bits 

Table 5: FIE format 

The total size of an FIE is 20 bytes, which already accounts for the proposed RUN number and the additional 
header field.  

10.1.3. Hashing 
BufMgrOut uses a hashing algorithm to store event fragment information. Previous prototypes have used the 
lower 10 bit of the L1ID as a hash-key, which lead to low memory requirements. For the new prototype-RobIn a 
good approach – in particular for an FPGA-based BUfMgrOut – is to match7 the hash-key size with the number 
of buffer pages, because this enables a simple and compact8 memory layout. Alternatively – and with a large 
amount of management memory available – the key-size can be increased as much as possible in order to 
achieve quick search access. 

10.1.4. Hash-entry 
Each entry in the fragment lists is composed of a pointer field (previous, next) and the FIE. Entries belonging to 
the same fragment9 are always added or removed sequentially. 
 

                                                           
7 Example: 16k pages correspond to a 14 bit hash-key. 
8 The first level of indirection is removed, because the first list element is stored directly at the “hash” position. 
9 Of a fragment with multiple pages. 
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