ATLAS

ATLAS TDAQ/DCS ROS
Prototype-Robin HLDD

Document Version: 2.4

Document Date: September 24”‘, 2002
Document Status: 1% Release

1. Abstract

This document describes the high-level hardware design of the final ATLAS protoype-Rabln, as evolved from a
number of previous prototypes. A dua TDAQ-interface is supported to alow investigations of both bus- and
switch-based ROS implementations up to the TDR.

Keywords: Atlas, DAQ, Read-Out, ROS, Robln

2. I nstitutes and Authors

Royal Holloway University of London: B. Green
NIKHEF Amsterdam: G. Kieft
University of Mannheim: A. Kugel

1* Release page 1
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

3. Revision Log

1. Document title: High Level Design of ATLAS Protoype-Robln

2. Document Reference Number
4. |ssue 5. Revision 6. Date 7. Reason for Change
1 0 25" Feb. 2002 Birth
1 1 11" Mar. 2002 Topics from Robln Meeting of March 7" added
1 2 18" Mar. 2002 Format changed to match (more or less) SDLT template
1 3 19" Mar. 2002 Some modifications, still very preliminary
1 4 20" Mar. 2002 Diagrams modified, intro added
1 5 26" Mar. 2002 Text added
1 6 27" Mar. 2002 Uses cases and text added
1 7 27" Mar. 2002
1 8 12" Apr. 2002 UR’s added
1 9 15" Apr. 2002 M odifications after Phone Conf
1 10 15" Apr. 2002 More text added
1 11 16" Apr. 2002 Implementation options + Requirements added
1 12 16" Apr. 2002 UR’s modified
1 13 17" Apr. 2002 Minor modifications
1 14 21" Apr. 2002 API section + COTS removed, component text added
1 15 22" Apr. 2002 Streamlined for High-L evel design
1 16 22" Apr. 2002 More HW details added
1 17 22" Apr. 2002 Functional diagram added
1 18 22" Apr. 2002 Typos etc. corrected
1 19 24" Apr. 2002 Some functions added
1 100 26" Apr. 2002 Start of “official” draft. Address “review” comments Apr. 23"
1 101 2" May 2002 Comments from JP and RC included
2 0 6™ Sept. 2002 Comments from “Review Preparation Team” adopted
2 1 17" Sept. 2002 Minor corrections
2 2 18" Sept. 2002 “Specia Issues’ appendix added
2 3 23" Sept. 2002 Some corrections of “guidelines’” (DJF, MLV,..)
2 4 24™ Sept. 2002 Management data structure added

Table 1: Document Change Record

1* Release page 2
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

Contents
O A o - o SRS 1
FZ2 [4TS) 001150 AN 14 g S 1
I S Y= To g 1 oo OO 2
N 1 011 0o (1 o SR 4
4.1, PUrpose Of thiSHOCUMENLceiiriiiiiriererie ettt b et bbb b et b e 4
4.2. Glossary, acronyms and abbreviations............cooicieeicie s 4
G R C 1 (= 0100 F YU PR 4
5. RequiremMents and CONSLIAINTS.cc.oiiiiriereeirieee sttt sttt se et et b e et sae e e e seess e besbesaesbesaeesse s eneeseesbenaas 5
6. GUIEINES TrOM PIrEVIOUS WOTKc.eiiiiitiiteitieteetete ettt bbbt bt e e se et b e sbeebe et e e e s e beseesbeenas 5
3N T o F= (0 V= = T USSP PR 5
G300 S |V [SRR 5
6.1.2. FPGA/MICIOENGDIE.cceeeeeece ettt sttt e et seesresae e e ene e e eneeseesrenns 6
S0 L 1 SRS 7
T S A SRS 8
6.1.5. SUMMIBIY ettt r et s e e s bbbt e h e e e e se e e R e e Rt eheeh e e e e s e ne e er e s bt ebeeb e e e e s e nnennenre e 8
TS 1 1.1 RSP 9
6.2.1. L OCEI SOFIWEIE ...ttt bbb bt s e e b s b sbeebe e it et e e e beseesrennas 9
6.2.2. HOSE SOFtWAIE ...ttt st b e bbbttt e s e e b e s b sbesbeeae e e e e e besbesbeneas 9
8.3, PEITOIMMANCE ...t bt e bbbt b e et e st e se e be s bt sh e eb e e aeene et e beneeerenns 10
A B == o | o [P RURURRTUPPURPRN 11
25 T = 1 Lo Tox QD = = 11
7.2. Functiona BUuilding BIOCKS..........cciiiiiii ettt sttt et et neene e 12
7.3, COMPIEX FUNCHIONS.....c.eetiiteieteiteiete sttt sttt st b e st b e st b e bbbt b e b et b e b et be st et st e 15
7.3 1. BUFfEr MaANAOBMENT......c.oiiiierieete ettt bbbt bbbt b e enes 15
AR I B o 1Y g e ="o [@l 1o BT i) PO PSPPSR 15
7.4, Hardware BUilding BIOCKS ..ottt bbbt st 16
A = O =1 o o= TP 16
A A = {11= 1 0= Y O S 16
7.4.3. ROL-INEEITACE ...ttt bbbt et se e b e s b e be e b e et e e e seenbesbenneas 16
7.4.4. Lo (TSP U PR URTURTPRUPRON 16
7.4.5. LU= Y = 0o Y 17
7.4.6. MaNAGEMENT MEBIMOTY .. .veiiiii ittt st e e st e sbe e s beesabeesbeesnbeesbeesnrenans 17
7.4.7. PrOCESSON IMIBIMONYtii ittt et e st e s be e e b e s be e sabe e sbeeenbeesnbeesnbeesbeesnrenans 17
A T = 110 1= P 17
S o= 1Y oo = RS 17
8.1, MUIIPIE ROLS....ctiiteiettste ettt ettt b et b et b e st bt b se ekt s b e st e bt s b e neeb e s b e ne et e nbeneebenbe e 18
LS N o0 = 1 o [NPT 19
0.1, IMESSAOE 0SS eeeterteeete sttt sttt sttt b bbbt b e bt b e bbb e Rt b e bt E e e bt b et be bt b et e be b e 19
0.2, RESPONSE SNBPING ..c.vereetirtieetestereete sttt sttt st s ettt eb e sbe st e bt b e st e b e s b e st e bt sbese ek e s beseebeebeneebesbeneebenbeneebenbe e 19
Lo G T 1= Vo Q= o [0 1=] o 19
JO. APPENGIX B .ottt bt e R bRt b £ e e Rt e R e Ee Rt ehe bt eReeRe e e et neeere e ae 20
10.1. Management MEMOrY data SETUCLUIES..........c.cuiiieieeie ettt e ee e sre et e et esaaesaaesreesreenneennas 20
10.1. 1. FIFO EXIENSION lISES. ..ttt ettt b bbbt se bbb e sb et se e e e b e sre e 20
10.1.2. Fragment infOrmMation ENEIY........cccueiieiiee ettt te e s re e s re et e st e sae e sne e reenreentesneesneens 20
O S T o P 0T oo TR USSP 20
FO.1 4, HAESN-BNIY .ttt sttt b e bbbt b e s b se bt s b s e ekt s b e st e bt e b e st ek e sbeneebesbeneebenbe e 20
O A = 0o [OSSOSO PRSRTRPTSURPIN 21
11.1. I ES o) I =SSP 21
11.2. I E o Yo 1= OSSR PSPPSR 21

1* Release page 3
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

4. | ntroduction

4.1. Purpose of this document

For the TDR we must be able to present a clear view of a possible implementation (plus options) of the Roblin
component, satisfying the performance requirements. As the final implementation of the ROS is not defined yet
as well, the Robln required now has to support a variety of options, in particular bus- and switch-based ones.
Therefore the protoype-Robln — with extended functionality — will be used as an intermediate step, prior to the
final pre-production Robln.

This document provides the high-level design of the protoype-Robin. The design is developed as a joint effort of
the three institutes RHUL , NIKHEF and UniMA. The final aim of the design-team is to present a single detailed
design of a prototype Rabln that will allow to study bus and switched based ROS implementations.

4.2. Glossary, acronyms and abbreviations
See [9]

43. References

[1] ROBIN Summary Document:
http://atlasinfo.cern.ch/Atlass GROUPS/DA QTRI G/ROS/documents/ROBINsummary. pdf

[2] ROS-URD: unreleased, see ROS web site at
http://atlas.web.cern.ch/Atlasy GROUPS/DA QTRIG/ROS/ros.htm

[3] ATLAS Readout Link recommendation, http://edms.cern.ch/file/332389/1/rod_rol.pdf

[4] HOLA S-Link documentation: http://hsi.web.cern.ch/HS|/s-link/devices/hola

[5] protoype-Robln URD: http://akugel.home.cern.ch/akugel/robl n/docs/urd. pdf

[6] protoype-Robln SWID: http://akugel.home.cern.ch/akugel/robl n/docs/swid.pdf

[7] Robln Measurements Document (preliminary):
http://atlasinfo.cern.ch/Atlasy GROUPS/DA QTRIG/ROS/documents/ROSSystemT estReport. pdf

[8] Robln Measurements Presentation July 2002:
http://doc.cern.ch/archive/el ectronic/other/agenda/a02164/a02164s5t2/transparencies/M atthias V ers5.pdf

[9] MFCC Robin: DAQ-2000-53: Read-Out Buffer in DAQ/EF prototype -1

[10] MicroEnable Robln: ROB meeting, Amsterdam 1999: http://www:-li5.ti.uni-mannheim.de/fpga/atlas/rob-in-
new. pdf

[11] 1960/UK-Robln (M easurements): DAQ-2000-053: Read-Out Buffer in DAQ/EF prototype -1

[12] 1960/UK-Robln (Details): DAQ-2000-013: The UK ROB-in a prototype ATLAS readout buffer input
module

[13] 1960/UK-Robl n documentation (processor): http://www.hep.ucl.ac.uk/atlas/rob-in/processor.html

[14] Sharc-Robln: DAQ-2000-021: A SHARC based ROB Complex : design and measurement results

[15] The Active Rob Complex: An SMP-PC and FPGA based solution for the Atlas Readout System. R. Bock, J.
A. Bogaerts, P. Werner , A. Kugel, R. Manner, M. Miller,
http://ific.uv.es/rt2001/proceedings/proceedings.pdf , page 199ff

[16] DAQ-2000-10: The Use of Low-cost SMPsin the Atlas Level-2 Trigger

[17] DAQ-2000-051: DAQ-Unit intraand inter-lOM communications summary document

[18] ROS Workshop Feb 2002 Presentation Bus-Based Robln:
http://doc.cern.ch/archive/el ectronic/other/agenda/a0281/a0281s1t21/transparencies/BusBased. pdf

[19] The Message Format used by DataCollection inthe ATLAS TDAQ Integrated prototype: DC note, CERN
2002, http://atlas.web.cern.ch/Atlasy GROUPS/DA QTRIG/DataFl ow/DataColl ection/docs/DC-022. pdf

1°' Release page 4
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

5. Requirements and Constraints
User Requirements and Constraints are detailed in [5].

6. Guidelines from previous work

In the previous phases a number of Robln prototypes have beend developed and used by the ROS community:
MFCC-Robln [9], 1960-Robin [12][11], FPGA-Robln [10] and SHARC-Robln [14]. They &l provide basically
the same functionality. Many measurements have been carried out in the past, however a standardized setup has
only been used recently [8] which still needs to be integrated with [7]. In general the performance of the
prototypes depends on the properties of the involved hardware, namely the Robln itself, the host bus and the bus
interface, but also on the software, again locally (if any) and on the host.

This sections summarises the experience gained with the previous Robln prototypes and sets guidelines for the
new protoype-Robln.

6.1. Hardware

All 4 prototypes exhibit a similar architecture: a single S-Link is attached to a programmable logic device
(CPLD or FPGA), data from the S-Link is temporarily stored in alocal buffer, requested data are transferred via
a PCI bridge device to the host. All but the FPGA-Robln use alocal processor to manage the buffer. The general
approach to use reconfigurable logic (FPGA) for the high-speed/high-rate part of the design and a (local or
remote) processor for the lesstime critical parts seemsto be al right.

In the following a block diagram of each of the prototypes is presented together with the major conclusions from

[1].

6.1.1. MFCC
FE
FE-FPGA PPC603
adaptor
PPCbus
PClbus
SDRAM flash PCI
EPROM bridge
Figure 1: MFCC block diagram
| ssues
FPGA at limits
Multiple ROL s not possible (mechanics, performance)
CPU performance too low
Message passing over PCI slow
Conclusions

OS convenient (application start, memory allocation/management, debugging, remote
access)

CPU + FPGA good for flexibility, complementary functionaity, DAQ-1 ROB
monitoring code could be reused on Robln CPU (not done yet)

Recommendations

Better FPGA (Xilinx) and PCI (64 bit) on next generation

1* Release page 5
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

6.1.2. FPGA/MicroEnable

RAM

32

Clock &
Support

N
<> FPGA = Z
32 | O
)
Local bus,

40 Mhz, 32 Bit

PCI - Interface

PCI, 33 Mhz, 32 Bit

Figure 2: MicroEnable block diagram

| ssues
Slow memory interface
APl implementation: initialy large DMA overhead (improved version used in [8])
Input bandwidth not fully reached due to memory interface (dual-port emulation with
async. SRAM)
Small buffer, simple management => buffering of few events only

Conclusions

Most requirements achieved with simple architecture

Recommendations

Larger + faster buffer and faster FPGA on next generation

1°' Release page 6

ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

6.1.3. 1960
FIFOs Program SRAM
Chip Enable |
MACH 5 1960 local bus 1960 RD | PCl bus
PLD
Chip Enable 0
Fragment SRAM Boot ROM

Figure 3: 1960 block diagram

| ssues
CPLD too small, code changes problematic
Processor at limits
SRAM cost + size will limit buffer size
Conclusions

CPU + FPGA convenient + flexible

Initial requirements (100MB/s input) achieved

Recommendations

Faster processor

FPGA replacing CPLD

Faster buffer

Integrated S-Slink

GE interface for output

1°' Release

ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

page 7

ATLAS

6.1.4. SHARC
_ G40 MByte/'s)
s-link DA SHARC links
request /
rant
FIFC Summary Paged i SHARI
1k*36 info FIFD data 210601
e extraction e i address
*ﬁll{'l'-ﬁl | 0k100A FPGA
40MHz | p
Address Control, 80 MHz Clock
Eeeneration status, iR t
interrupts
— Buffer memory
% address]IEMTE{I,:M
data -

Figure 4: Sharc block diagram

| ssues
FPGA design (no bursts) limits buffer read-out speed to 40MB/s
PCI speed limited to 80MB/s
Reduced performance without asynchronous |/O

Conclusions

Reguirements achieved

Testing facilities useful

Recommendations

None indicated

6.1.5. Summary

The most important recommendations are;
- Userecent FPGA technology with sufficient capacity and speed
Use recent processor with sufficient speed
Larger and faster buffer
Faster PCI (64 bit)
Don't put the buffer on the processor bus
If using dual-port emulation, watch the memory bandwidth
Provide local DMA capability (e.g. via host interface), avoid data moved by either processor
Use distributed (HW/SW, word-level, page-level) paged buffer manager alal960

page 8

1* Release
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

6.2.

6.2.1.

Software

Local Software

Despite their similarity in hardware design the previous prototypes have used rather different approaches with
respect to local software. The range spans from using a local OS (MFCC) to using a stand-alone application
(1960, SHARC) to using no local software at all (MicroEnable). While the first two don’t make a big difference
for the hardware design the last one can well do and in fact there are till potential implementation options which
might try to avoid the processor. As a consequence the hardware design of the protoype-Robln shall provide full
support for a processor with OS as well as the possibility to run a Robln-application without processor.

6.2.2.

Host Software

Although the host software is clearly not an issue of Robln design the Robln hardware has to take into account
some particular facts.

The “official” ROS software used up to summer 2002 implemented a synchronous interface to the
Robln modules which lead to a significant loss of performance. This can be seen easily when
comparing the results from the improved software version (with asynchronous reguests, Figure 5, from
[8]). There are aso clear indications for the benefits of asynchronous fragment processing in [15] and
[16]. The protoype-Robln shall not force the software to use synchronous fragment processing.

Max. LVL1 rate (kHz)

Sharc Robln, # of outstanding requests variation,
fragment size: 1024 byte

250,0

200,0
-1
-2
150,0 3
% ——A4
100,0 *=5
\ \ \ °

0,0 T T T T T
0,0 5,0 10,0 15,0 20,0 25,0 30,0

Request rate (kHz)

Figure5: Effect of asynchronous fragment processing

Another important factor is the communication mechanism between the Robln and the host. In [17] the
message passing used in the MFCC-Robln is described and the clear conclusion is that this kind of
message passing should be avoided. A simpler and more efficient approach is described in [15] and is
already recommended in [18]. This technique uses the integrated DMA controller of the PCl-bridge
together with a specialized host library to enhance the communication throughput. The following
paragraph explains the idea as presented in the reference:

The principleis to set up an DMA with a large memory buffer of 500 kB or more before the first event
fragment is reguested. Using the DMA-on-demand feature the transmission is postponed by the
PLX9080 and the FPGA design as long as no data transfer isin progress. To request an event fragment

1* Release page 9

ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

6.3.

from the microEnable Robln, the ARobC library writes the event information into an FPGA register
using a single cycle 1/0. The FPGA localizes the data inside the microEnable memory and reactivates
the delayed DMA-on-demand using the dedicated flow control signal of the PLX9080. To perceive the
arrival of the requested data the host polls the DMA buffer position which has been set to zero before.
After the transmission has started this position contains the length of the requested data fragment.
According to this length the end position of the dataset and the start of the next is computed. To indicate
that the data has completely arrived, a magic word is transmitted as last word and can be polled from
the DMA buffer.

Using this scheme only the data request is a host-initiated single-cycle while the acknowledgments are
performed by the PCl hardware and polling is done in the system memory. This leads to a big
improvement in PCI utilization and performance. protoype-Robln shall support the required PCI bus
master capability.

In case the host-software wishes to rely on asynchronously reported “conditions’, the Robln shall
provide a mechanism to asynchronously generate signals to the host software. In a bus-based
environment the Robln shall provide a hardware interrupt for this purpose.

Finally one should take care of not copying data too frequently [8]. One transaction from the Robln into
host memory and one from host memory to the destination NIC — as used during the recent tests — is
acceptable. Additional copies, e.g. to collect event fragments or from kernel to user memory should be
avoided. No extra copy operations shall be forced by the protoype-Robln hardware.

Performance

Figure 6 (derived from [8]) shows the performance which has been achieved with some of the previous Roblin®
prototypes in a stand-alone ROS setup.

Max. LVL1 Rate [kHz

1-4 Roblns per bus, 1024 fragment size, ROl 10%, L2A 2%, Standalone ROS

200 L\
180 \
160
140 -
—&— FPGA Robin
120 —@— Sharc Robin
—&— UK Robln
100 -
\. 100kHz
80 ~ — 75kHz
—— 40kHz
60 \
40
20 A
0 . . .
1 2 3 4 5

Number of Roblns

Figure 6: Basic Robln performance

! The UK-RobIn (1960) suffers most from the missing asynchronous processing in the ROS-software. The
hardware has demonstrated better performance in a different setup. Additionally the two others don’'t have real
input in this setup.

1* Release page 10
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

At least for alimited number of boards the performance goal is probably in reach for a PCl based ROS, provided
the indicated optimisations are implemented. Therefore, the design of the protoype-Robln will in general build
upon the common features of the previous prototypes while avoiding the observed bottlenecks.

7. Design

The Robln requires a very high real-time performance, in particular short response times at high rates, and is
therefore a demanding task. On the input side (from the detector) hardware assistance by a fifo and
programmable hardware is essential. Hardware assistance is also required for the management of the fragment
buffer, if a CPU is used.

Although the prototype will support two flavours of TDAQ-interfaces a major aim of the project is to present a
design which can be turned into the final Robln version with little modifications, in particular only by removing
(and not by adding) functionality. This approach will be taken down to an as detailed level as possible.

The protoype-Robln can be used in either a completely bus-based or a completely switch-based environment
simply by changing the local firmware. Additionally it will also support a “hybrid” style, by activating both
TDAQ:-interface at the same time, e.g. one for control messages and the other one for data messages (e.g. NET-
based Robln housed in a PCI system).

The designs starts at the high-level with a simple block-diagram and a subsequent functional decomposition into
fairly independent “boxes’. This approach will help to define later-on clean interfaces for a modular detailed
design both at the hardware and software level. The final design of the Robln software and the implementation
itself will be a separate task.

7.1. Block Diagram

The design principle presented here builds upon the experience with the previous Robln prototypes (see section
6.1). The primary functions receive — buffer — deliver — release [5] are mapped onto a small number of
specialised building blocks: ROL-IF — CORE — MEM — TDAQ-IF (Figure 7). This corresponds to the structure
described in [1]. In fact TDAQ-IF represents TWO interfaces, for bus(PCl)- and network(MAC)- oriented
communication. The core has two major aspects, one dealing with high-bandwidth/high-rate requirements of the
internal data-flow (DF-CORE), the other dealing with lower priority requirements (AUX-CORE).

Each of the building blocks comprises a certain functionality (Table 2) which together build up the Robin
functionality. Functionality is ultimately implemented by physical devices (like CPU, MAC, etc.).

Based upon experience it is straightforward to use an FPGA to implement the DF-CORE functionality. Also the
use of a processor for the AUX-CORE is appropriate (see section 6). However it is not excluded that the FPGA
may alternatively implement the AUX-CORE functionality (for special scenarios).

For the purpose of testing various ROS implementations the interfaces to NET and BUS will both comprise the
full set of required functionality in away that either of the interfaces can be completely disabled.

1* Release page 11
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

CORE
AUX-
CORE TDAQ-IF
P NET
v MAC | H
ROL DF-CORE Y
ROL-IF —
—] o~
N BUS
1..N \‘ (PCI
MEM

Figure 7: Basic Block Diagram

7.2. Functional Building Blocks

The basic interactions of the main functional elements are displayed® in Figure 8. The thick red lines indicate the
main data-path which runs on the path: ROL-IF -> BufMgr-IN -> BUFFER -> DMA -> TDAQ-IF.

The input from the ROL is realised in the usual way via an ATLAS S-Link [2]. The functions related to input
and buffering are already well known from previous Robln work. Messaging functions are also known, e.g. from
aRobln in the context of the DAQ-1 EventManager and DC message passing.

AUX-CORE
Control
\
Msg- | Msg- |
Handler IN
Monitor-
NET-
Mgr TDAQ-
P MGR IF
MGMT- Response-| | Resp.- |,
MEM Handler out
BufMgr- /
ouT
DF-CORE
ROL-IF ROL- Input- BufMgr- DMA
Handler Handler IN

! t

BUFFER-ARBITER

=

BUFFER

Figure 8: Basic Functional Diagram

2 Boundaries for DF-CORE and AUX-CORE are only for illustration of atypical mapping.

1* Release page 12
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

A summary of these — plus some more — functional blocksis presented in Table 2.

Certainly the functionality needs to be further detailed, however it is assumed that the presented list is sufficient
to complete the design of the new Robln hardware, in particular taking into account the flexibility of the
components which will be used.

1* Release page 13
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

Item # |Function Prio. |Location(s) Description
1 |ROL handler 1 |DF-CORE + ROL-IF |Attach to ROL-IF and drive protocol. Provide
framed input-data stream
2 |Input handler 1 |DF-CORE Take fragments from ROL handler, check
header, length, etc
3 |Buffer 1 [MEM Provide storage for fragment data
4 |BufMgrIN 1 |DF-CORE Put data put into buffer, update lists (fifos) for
paged buffer
5 |BufMgrOut 1 |CORE Maintain fragment index list, etc. Provide
fragment address upon request
6 |MsgIN 1 |AUX-CORE Receive messages from DAQ interface (depends
on BUSvs. NIC)
7 |Msghandler 1 |AUX-CORE Decode and dispatch DAQ messages, e.g.
fragment requests
8 |Response handler 1 |AUX-CORE Format/assemble responses incl data for DAQ
interface
9 |Response OUT 1 |AUX-CORE Send response to DAQ interface (depends on
BUSvs. NIC)
10 |Control 1 |AUX-CORE Control Robln state of operation
11 |DMA 1 |CORE, TDAQ-IF Transfer data between buffer and NIC, or buffer
and BUS
12 |NET interface (is part 1 [MAC (+PHY) TDAQ interface via network
of TDAQ-IF)
13 |BUSInterface (is part 1 |PCI TDAQ interface via PCI bus
of TDAQ-IF)
14 |MgmtMem 1 |NN (addition to|Store monitoring + statusinformation
AUX-CORE)
15 |BufferArbiter 1 |DF-CORE Provide access to fragment buffer for al clients
(BUFMGR, DMA,MEMMAP....)
16 |NetMgr 1 |CORE Handle higher-level of network protocol, e.g.
sequence checking, ICMP, etc.
17 |Configurationinterface| 1 |AUX-CORE Provide for software wupgrade, power-on
configuration, etc.
18 |Loca MemMap 2 |DF-CORE Let on-board CPU access buffer and peripherals
19 |BusMemMap 2 |DF-CORE + PCI Provide local address space for buffer enabling
PCl-bridge to map buffer into BUS address
space. Eventually also map management area(s)
20 [Monitor Mgr 2 |CORE Support event and operational monitoring,
maintain status information
21 |SelfTest 2 |CORE Perform basic testing
22 |Error handler 2 |CORE Perform error specific actions (e.g. send NACK
packet on missing seg#. Drop invaid
packets/fragments)
23 |Emulation data 3 |NN (CORE) Means to fill buffer and manager with emulated
generator fragments
24 |Fragment processing 3 |CORE Placeholder for potential operations like
reformatting, pre-processing, etc.
Table 2 : Functions
1* Release page 14

ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

7.3. Complex Functions

7.3.1. Buffer Management

Buffer management is THE central function of the Robln and a large amount of experience has been gained in
this areain the previous prototype work. The design presented is based on the paged buffer management scheme
developed by the UK group [12], with some optimisations applied. It involves mainly a buffer manager, a paged®
buffer memory and a set of fifos. The buffer management is performed at two levels, one operating at word-level
(BufMgr IN) and the other operating at page-level (BufMgr OUT). BufMgrIN will aways run in the FPGA.
BufMgrOUT will run on the CPU but can be put on the FPGA —in asimplified version —if no CPU is available.

To provide fast access for the BufMgrIN the fifo's will be implemented in hardware, internally in the FPGA. As
this approach would limit the maximum number of pages available to approximately 1k (= IMB buffer at 1kB
fragments) the hardware fifo’ s are extended by the BufMgrOUT via additional lists of used and free pages.

Upon initiaisation all available pages are entered into the free-page fifo (FPF). For each incoming fragment the
BufMgrIN retrieves a page from the FPF and moves it to the used-page fifo (UPF). Fragments longer than a page
will subsequently use additional items from the FPF. Event ID and header information are copied on-the-fly to
the BufMgrOUT viathe UPF, as well as status and error information (e.g. last page, truncation, link-error, etc.).
Once the FPF reaches a low watermark the BufMgrIN directs the input handler to stop the ROL-IF.
Transmission resumes after more free pages have become available.

The BufMgrOUT reads entries from the UPF and adds it to it’ s list of available events. List management will use
a hashing algorithm derived from the 1960 prototype, adapted® to the new memory layout. As all relevant data
are available in the UPF the BufMgrOUT never needs to access the buffer memory directly.

Upon a data request from the message handler the BufMgrOUT retrieves the pages of the particular fragment
from the event list and provides the address parameters to the DMA engine, which performs the transfer to the
TDAQ-IF. Similarly for release requests the relevant pages are removed from the fragment list entered into the
FPF, which effectively deletes the fragment from the memory.

Both BufMgrIN and BufMgrOUT will perform error detection and handling, where appropriate. BufMgrIN will
detect and flag low level error like transmission errors and incorrect L1ID sequence. BufMgrOUT will detect
errors like duplicate L1ID and will handle the errors indicated by BufMgriIN.

The BufMgrOUT provides various status and error information (e.g. most recent L11D, fragment error flags) via
a set of registers to the MonitorMgr. The MonitorMgr will in turn update error counters, pending request queue
and local status information.

More information on management data structuresis given in section 10.1.

7.3.2. Download/Configuration

The Robln needs to be in-situ upgradeable and needs permanent store for boot-code [5]. In al cases where a
dedicated bus interface is available the implementation is simple (e.g. flash-eeprom on local bus). For other cases
the AUX-CORE must provide functionality to update the permanent memory:

1. Receive new code via TDAQ-IF and buffer into on-board memory

2. Verify codeviaTDAQ-IF

3. Reprogram on-board permanent memory

4. Reboot from on-board permanent memory

For factory testing and initialisation a JTAG (or equivaent) interface shall support to download boot code into
the on-board permanent memory.

3 A page here is a synonym for a fixed size fraction of the buffer memory. Its size is determined by the logical
management scheme, not by a physical constraint of the memory. An individual fragment might use multiple
pages.

* The original 1960 hashing uses the lower 10 bits of the event I1D. This number is likely to be increased with
larger buffer and management memory.

1* Release page 15
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

7.4. Hardware Building Blocks

The distribution of the functions across hardware components is a bit more complicated than mapping the block-
diagram, not because of the complexity of individual tasks but because of the number of implementation options.
From a traditiona point of view the following major components will be needed for an implementation of the
basic block diagram:
- SLink

FPGA

Memory

Processor

Network interface

PCI bridge

Some “glue”

For this set of components a preliminary ad-hoc selection has been made to verify the pure existence of devices.
This selection is used as a starting point in section 8.

To achieve a higher degree of integration (and less components) some of these components could be merged into
asingle hardware object. Obvious options to achieve a higher degree of integration are:

Merge processor and network interface into network processor

Merge processor and BUS interface

Use FPGA with IP-cores for any combination of Processor, PCl, Network interface

7.4.1. PCI Bridge

In a bus-based ROS environment the PCI-bridge implements the TDAQ-IF. In a switch-based ROS environment
the PCI-bridge can be used for configuration, control and operational monitoring, i.e. it provides a control path
independent of the data path. In the scenarios studied so far the required bandwidth per Robln can be handled by
a 32bit/33MHz implementation. However for multiple ROLs per Robln or multiple Robin’s per PCI bus a 64Bit
PCI architecture should be considered. PCl-master and DMA capabilities are required, supporting the transfer
mechanism® used by the microEnable prototype (see page 9).

7.4.2. Ethernet MAC/PHY

In a SWITCH-based ROS environment the ethernet MAC implements the TDAQ-IF, together with the physical
interface device (PHY). In a bus-based ROS it will probably not be used. Although modelling shows that the
required bandwidth is just at the limit for 100Mbit/s a GE interface will be used (more headroom, more recent
technology, more flexibility). For flexibility reasons the MAC should use a GMII interface to attach to the PHY
interface. Functionality corresponding to the listed UR’ s needs to be available.

7.4.3. ROL-Interface

The ATLAS ROL is realised with an implementation of the ATLAS S-Link, the latest specification supports
160MB/s over a single optical fibre (HOLA, [4]). No return-signals apart from X OFF to stop transmission will
be used (also see UR section). The implementation might either be done using an S-Link mezzanine LDC or by
using an embedded version, integrated into the Robln PCB.

7.4.4. Core

FPGA

The FPGA is the primary candidate to implement all high-rate, high bandwidth DF-CORE functionality. In
addition to an estimated minimum capacity of 100k Gates support for multiple clock-domains, embedded
memory and asynchronous FIFOs is required. The final resource requirements will depend upon implemented
functionality, e.g. additional IP-Cores. An SRAM-based technology (=> infinite number of reconfigurations)
will be used. FPGA code will be stored in an on-board flash-memory (see configuration section).

Processor

When a dedicated processor is used, which is recommended according to section 6.1, then it is the primary
candidate to implement the functions of the AUX-CORE. Depending on the ROS implementation it will provide
the higher level messaging functions. In particular for switch-based architectures it will be involved in the book-

®> Demand-Mode DMA: the DMA-engine of the PLX chip operates under control of the FPGA.

1* Release page 16
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

keeping of the events in the buffer memory and handle the different requests from the network and/or PCI bus
and perform monitor and self-test tasks. A processing power of 60 MIPS [13] is required per ROL. The
processor will require memory for code/data at an adequate speed, which is separate from the buffer memory.

7.4.5. Buffer Memory

The buffer memory closely interacts with the buffer management functions to continuously store the event
fragments arriving from the ROD-IF and to provide data requested from the TDAQ-IF. Performance
requirements are given in [2][5], however the required buffer size is not well defined. Previous prototypes have
provided in the order of 0.5to 2 MB. In [2] avalue of 2.5MB isindicated. Recent discussions however suggest
that at least for this prototype alarger buffer would be of benefit (in particular for a switch-based ROS).
Dual-ported static memory is most suitable for this application, but these memories are expensive and not
compact. Normal synchronous static memories (SSRAM) used as pseudo dual-ported memories, are more
compact and cheaper. For easy buffer management and access for monitoring purposes, non-bursting memories
seem more appropriate although the memories will probably be pipe-lined for performance reasons. Because the
memory may aternately be read and written, memories without an additional wait state between consecutive
write and read cycles (e.g. ZBT-SRAM) are preferable. SD-RAM would provide the highest capacity at the
lowest price, however access and arbitration is more complicated. Device densities vary from 18Mbit for ZBT to
256Mbit for SD-RAM.

7.4.6. Management Memory

Management memory will be used by the AUX-CORE to store any kind of book-keeping, e.g. for lists of buffer
pages, monitoring information, message buffers etc. To optimise overall performance the management memory
should be completely separated from the buffer memory. Capacity depends mainly on the number of supported
fragments and buffer pages and is estimated to be in the order of IMB (per ROL). This memory could eventualy
be included in the processor’s main data memory.

7.4.7. Processor Memory

The processor will require separate memory for code/data at an adequate speed. Required capacity varies
depending on functionality, processor type and software implementation (e.g. use of an OS).

75. Firmware

The protoype-Robln will involve two flavours of firmware, one being the software running on the local
processor, the other one being the FPGA design. Programming languages will be C/C++ and VHDL for CPU
and FPGA respectively, with appropriate development tools. Both languages provide (reasonably) good support
for modular designs. Component selection shall consider that adequate development tools are available.

8. Cost M od€

For an initial cost estimation a set of components has been used, assuming that the following items have the
major contribution: CPU, FPGA, Buffer Memory, S-Link, PCI-Bridge, GE-NIC, PCB. There will be some more
components for power, control, configuration support etc. summarised as “Misc”. Current prices are for
prototype quantities (approx. 10pcs), not for production quantities.

1* Release page 17
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

Item Type Estimated Unit Price (€) Comment
CPU Intel 10P321 75
FPGA Xilinx XC2V1000 300 Alt. XC2S300E: 70€
Buffer ZBT RAM 1M* 36 140 Might be less
S-Link 2.5Ghit/s optica 200 Opto TX/RX + SerDes
PCI-Bridge PL X9656 60
GE-NIC LTX1000+IXF1002 120 MAC 75%, PHY 25%
PCB 64 Bit PCI, short 150 Volume price much lower
Assembly 200 Volume price much lower
Misc Cap's, R's, PLD, Prom 150 Guess only
Total 1395

Table 3: Cost Estimate

There are additional costs not listed above for the development of the prototype, e.g. for PCB layout (if not done
at an institute), initial PCB and production charges, small-quantity surcharges, and for development tools (CPU,
FPGA).

For volume production one can expect a cost reduction in the order of 10 to 40% for electronic components,
even more for PCB and assembly. According to this estimation the cost of the prototype will be twice the one
aimed at, however with some optimisations and considering the simpler TDAQ-IF and volume prices the cost
goal iswithin reach for the final version.

8.1. MultipleROLs

From the use of multiple ROLs on a single Robln one can expect some cost savings, as not all parts will get the
same multiplicity. There will always be only one PCB and assembly, but at volume production these two don’t
contribute so much. We assume a maximum of 4 ROLs for a PCI board, because it will become very difficult to
get more than 5 links (4 ROLs + 1 GE) through the back panel. An initial calculation (Table 1) shows that the
cost per ROL drops most when going from 1 to 2 ROLs. Considering the increasing complexity of the design
and the more demanding manufacturing process the optimum number of ROLs per Robln appears to be 2.

Type 1ROL 2ROLs 3ROLs 4ROLs
CPU 1 1 2 2
FPGA 1 15 2 3
RAM 1 2 3 4
SLINK 1 2 3 4
PCI 1 1 1 1
NIC 1 1 1 1
PCB 1 1,2 15 2
Assembly 1 1,2 15 18
Misc 1 15 2 2,5
100% 76% 70% 70%

Table4: MultipleROLS®

® Numbers indicate cost equivalent, not necessarily component count

1°' Release

ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

page 18

ATLAS

9. Appendix A

A number of issues related to the design of the Robln — but not at the level of hardware — will be discussed
elsewhere.

9.1. Messageloss

Without a reliable network protocol a strategy to prevent overflow of the buffer, or at least to recover from this
situation, will be needed. The strategy is described in [6].

9.2. Response shaping

In a switch-based scenario care has to be taken that not all Robln send data to the same destination SFI
simultaneously. The strategy is described in [6].

9.3. Network addressing

For certain DC messages a “third-party” addressing scheme has to be used. To date two different approaches are
proposed, which will be pursued concurrently for alimited time. Refer to the proposal presented in [6].

1* Release page 19
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

10. Appendix B

10.1. Management memory data structures

The main purpose of the management memory is to keep the extended lists of free and used pages and the
fragment lists. Additionaly it will keep a number of error counters, configuration and status information,
however the total size of the latter is negligible compared to the former lists.

10.1.1. FIFO extension lists

The number of buffer pages supported by the prototype-Robin is much larger than that of the previous
prototypes. As a consequence, the FPGA-embedded hardware fifo's are not large enough to keep al pages.
Therefore two lists of page-id's are maintained in the management memory, which extend the size of the
hardware fifo's. The size of these lists depends on the total number of buffer pages.

10.1.2. Fragment information entry

For each buffer page allocated to the incoming data stream a fragment information entry (FIE) is created by the
BufMgrln an entered into the UPF. The (preliminary) content of this structure is as follows:

Offset Byte 3 Byte 2 | Byte 1 | Byte 0
0:1D ECR L1ID

1: Hdr Info 1 Placeholder for additional header information, e.g. RUN number

2: Hdr Info 2 Placehol der for more additional header information

3: Page Info Page number | Length within page

4: Status Last page indicator | Error + status bits

Table5: FIE format

The total size of an FIE is 20 bytes, which already accounts for the proposed RUN number and the additional
header field.

10.1.3. Hashing

BufMgrOut uses a hashing algorithm to store event fragment information. Previous prototypes have used the
lower 10 bit of the L1ID as a hash-key, which lead to low memory requirements. For the new prototype-Robin a
good approach — in particular for an FPGA-based BUfMgrOut — is to match’ the hash-key size with the number
of buffer pages, because this enables a simple and compact® memory layout. Alternatively — and with a large
amount of management memory available — the key-size can be increased as much as possible in order to
achieve quick search access.

10.1.4. Hash-entry

Each entry in the fragment lists is composed of a pointer field (previous, next) and the FIE. Entries belonging to
the same fragment® are always added or removed sequentially.

" Example: 16k pages correspond to a 14 bit hash-key.
8 Thefirst level of indirection is removed, because the first list element is stored directly at the “hash” position.
® Of afragment with multiple pages.

1* Release page 20
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

ATLAS

11. Appendix C

11.1. List of Tables

Table 1: Document Change RECOITcooiiiiiieerieree ettt bbbttt nene 2
LI o= oo ST 14
LI o LS T O =] 7= (= PSP 18
TADIE 4 I MUILIPIE ROLS ...ttt bbbt b et b bbbt b et et b ettt 18
LI oL 1 o = PSP 20

11.2. Listof Figures

Figure 1: MFCC DIOCK QIagramc..ceiirieiiieieierees sttt 5
Figure 2: MicroEnable bBlOCK diagram............coue ettt st et e e s aaesreesreeneennas 6
(Lo (UL g= e K [GT0 0 o] Kot 1 [T="e 1= [7
(R To (USR5S = ol o) [o T 1qo [>T | !y o 8
Figure 5: Effect of asynchronous fragment ProCESSINGcceoerererrierieriesie ettt sre e s sse e se e e sne s 9
Figure 6: BasiC RODIN PEITOIMENCEoiuiiiieieeeee ettt bbbt se e b e 10
Figure 7: BasiC BIOCK DIBOIAIM........ooiiiiieirierieie sttt sttt sttt bbb st b e b e bt se b nbe e 12
Figure 8: BasiC FUNCLIONE DIAIaMooveuiiiiieieriereeiesie sttt sttt sttt sttt sttt st st b e b sbeseebesbeneebesbe e 12

1* Release page 21
ATLAS TDAQ/DCS ROS Protoype-RoblIn High-Level-Design

