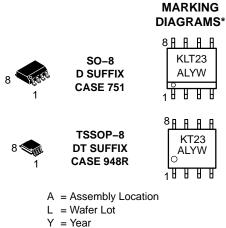

5V Dual Differential PECL to TTL Translator

The MC100ELT23 is a dual differential PECL to TTL translator. Because PECL (Positive ECL) levels are used, only +5 V and ground are required. The small outline 8-lead package and the dual gate design of the ELT23 makes it ideal for applications which require the translation of a clock and a data signal.

The PECL inputs are differential; therefore, the MC100ELT23 can accept any standard differential PECL input referenced from a V_{CC} of 5.0 V.

- 3.5 ns Typical Propagation Delay
- 24 mA TTL Outputs
- Flow Through Pinouts
- The 100 Series Contains Temperature Compensation
- Operating Range $V_{CC} = 4.75$ V to 5.25 V with GND = 0 V
- Internal Input 50 KΩ Pulldown Resistors
- Q Output Will Default LOW with Inputs Left Open or < 1.3 V

Figure 1. 8–Lead Pinout and Logic Diagram (Top View)


PIN DESCRIPTION

PIN	FUNCTION
Qn	TTL Outputs
Dn, <u>Dn</u>	PECL Differential Inputs
V _{CC}	Positive Supply
GND	Ground

ON Semiconductor®

http://onsemi.com

W = Work Week

*For additional marking information, see Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping†
MC100ELT23D	SO-8	98 Units / Rail
MC100ELT23DR2	SO-8	2500 / Reel
MC100ELT23DT	TSSOP-8	98 Units / Rail
MC100ELT23DTR2	TSSOP-8	2500 / Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ATTRIBUTES

Characterist	Characteristics					
Internal Input Pulldown Resistor	50 kΩ					
Internal Input Pullup Resistor	N/A					
ESD Protection	Human Body Model Machine Model	> 2 KV > 400 V				
Moisture Sensitivity, Indefinite Time C	Out of Drypack (Note 1)	Level 1				
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in				
Transistor Count		91				
Meets or exceeds JEDEC Spec EIA/J	IESD78 IC Latchup Test					

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Power Supply	GND = 0 V		7	V
VI	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 6	V
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	8 SOIC	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	8 TSSOP	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder	< 2 to 3 sec @ 248°C		265	°C

2. Maximum Ratings are those values beyond which device damage may occur.

PECL INPUT DC CHARACTERISTICS V_{CC} = 5.0 V; GND = 0.0 V (Note 3)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit
VIH	Input HIGH Voltage (Single–Ended) (Note 5)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single–Ended)	3190		3525	3190		3525	3190		3525	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

3. Input parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.25 V. 4. V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}. 5. TTL output R_L = 500 Ω to GND.

TTL OUTPUT DC CHARACTERISTICS V_{CC} = 4.75V to 5.25V; T_A = -40° C to 85°C

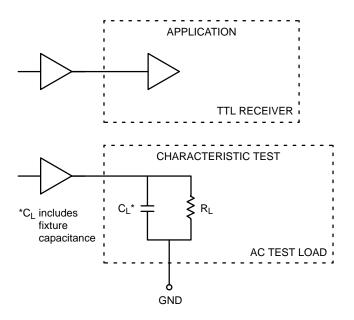
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -3.0 mA	2.4		(Note 6)	V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current			23	33	mA
I _{CCL}	Power Supply Current			26	36	mA
I _{OS}	Output Short Circuit Current		-150		-60	mA

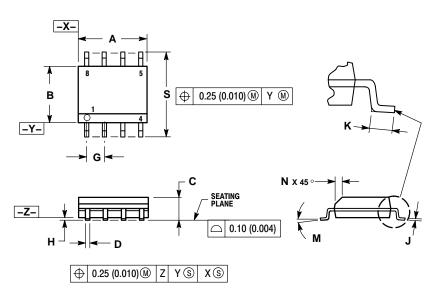
6. Max level is V_{CC} – 0.7 V by design.

AC CHARACTERISTICS V_{CC} = 5.0 V; GND= 0.0 V (Note 7 and Note 8)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					100					MHz
t _{JITTER}	Random Clock Jitter (RMS)					35					ps
t _{PLH}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
t _{PHL}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
V _{PP}	Input Swing (Note 9)	200		1000	200		1000	200		1000	mV
t _r /t _f	Output Rise Time (10–90%) Output Fall Time (10–90%)					1.6 1.1					ns ns

7. V_{CC} can vary ± 0.25 V. 8. TTL output $R_L = 500 \Omega$ to GND, and $C_L = 20$ pF to GND. Refer to Figure 2. 9. $V_{PP}(min)$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 .




Figure 2. TTL Output Loading Used for Device Evaluation

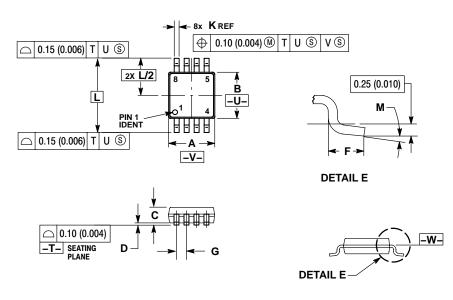
Resource Reference of Application Notes

AN1404	_	ECLinPS Circuit Performance at Non–Standard V _{IH} Levels
AN1405	-	ECL Clock Distribution Techniques
AN1406	-	Designing with PECL (ECL at +5.0 V)
AN1503	-	ECLinPS I/O SPICE Modeling Kit
AN1504	-	Metastability and the ECLinPS Family
AN1560	-	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	-	Interfacing Between LVDS and ECL
AN1596	-	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	-	Using Wire–OR Ties in ECLinPS Designs
AN1672	-	The ECL Translator Guide
AND8001	-	Odd Number Counters Design
AND8002	-	Marking and Date Codes
AND8020	-	Termination of ECL Logic Devices
AND8090	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SO-8 **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751-07 **ISSUE AA**

NOTES:


- VOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE

- A. MAXIMUM MOLD PROTRUSION 0.15 (0.000) FEM SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D UMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
Μ	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR
- 6. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193	BSC	
М	0°	6 °	0 °	6 °	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal states CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.