Applications

The conductors used with Raychem wires are concentric in construction and are specifically designed for use with thin-wall insulations. The table below gives nominal values for tin-plated copper, silver-plated copper, and silver-plated high-strength copper alloy (SPHSCA) constructions. Typically, tin-plated copper is suitable for use in applications up to 150°C and silver-plated copper in applications up to 200°C (SPEC 55 wire only).

The current-carrying capacities assume a maximum 60° C increase in temperature of a single wire in free air at 40° C. For details of performance in conditions other than 40° C, refer to Raychem Technical Services.

Conductor Sizes, Strandings, and Resistance Values

Nominal Values of American Wire Gauge (AWG) and Metric Conductors

Size		Stranding		Outside diameter (minmax)		Resista	Curront					
	Approx.metric equivalent (mm ²)	Metric conductor No./mm	AWG conductor <i>(No./AWG)</i>	Metric conductor mm	AWG r conductor <i>(in)</i>	Tin-copper		Silver-copper		SPHSCA		carrving
AWG						Metric cond.	(AWG cond.)	Metric cond.	(AWG cond.)	Metric cond.	(AWG cond.)	capacity (amps)
32	0.04	_	(7/40)	0.22-0.25	_	608.0	(157)	561.0	(N/A)	638.0	(N/A)	1.0
30	0.06	7/0.08	(7/38)	0.22-0.33	(0.011–0.013)	384.0	(95)	359.0	(100.6)	408.0	(117.4)	3.0
28	0.09	7/0.10	(7/36)	0.36–0.41	(0.013–0.016)	259.0	(68.6)	243.0	(63.8)	276.0	(74.4)	4.0
26	0.15	19/0.12	(19/34)	0.46–0.51	(0.018–0.021)	141.0	(41.2)	152.0	(38.4)	153.0	(44.8)	5.5
24	0.25	19/0.10	(19/36)	0.55-0.62	(0.022–0.033)	94.7	(26.2)	89.0	(24.3)	109.0	(28.4)	7.5
22	0.40	19/0.12	(19/34)	0.70–0.80	(0.029–0.033)	60.0	(16.2)	58.1	(15.1)	N/A	(N/A)	10.0
20	0.60	19/0.15	(19/32)	0.95–1.00	(0.037–0.041)	33.2	(9.8)	32.2	(9.2)	N/A	(N/A)	13.0
18	1.00	19/0.20	(19/30)	1.20–1.26	(0.046–0.051)	21.1	(6.2)	20.5	(5.8)	N/A	(N/A)	17.5
16	1.20	19/0.25	(19/29)	1.45–1.51	(0.051–0.058)	14.5	(4.8)	14.1	(4.5)	N/A	(N/A)	20.0
14	2.00	19/0.30	(37/27)	1.68–1.78	(0.064–0.073)	10.9	(3.01)	10.5	(2.89)	N/A	(N/A)	28.0
12	3.00	37/0.32	(37/28)	2.12–2.24	(0.083–0.090)	6.8	(2.01)	6.6	(1.89)	N/A	(N/A)	37.5
10	5.00	37/0.40	(37/26)	2.70–2.90	(0.106–0.114)	4.2	(1.25)	4.1	(1.28)	N/A	(N/A)	53.0
8	9.0	133/0.29	_	_	(0.157–0.172)	N/A	(0.70)	N/A	(0.67)	N/A	(N/A)	78.0
6	13.55	133/0.36	—	—	(0.198–0.216)	N/A	(0.45)	N/A	(0.42)	N/A	(N/A)	105.0
4	21.30	133/0.45	—	_	(0.250–0.274)	N/A	(0.27)	N/A	(0.27)	N/A	(N/A)	142.0
2	33.55	665/0.25	_	_	(0.320–0.340)	N/A	(0.18)	N/A	(0.18)	N/A	(N/A)	196.0
0	53.60	1045/0.25	_	_	(0.394–0.425)	N/A	(0.12)	N/A	(0.12)	N/A	(N/A)	266.0

Note:

Abbreviations:

Cond. = Conductor

SPHSCA = Silver-plated high-strength copper

Tin-copper = Tin-plated copper

Silver-copper = Silver-plated copper

N/A = Not available

· For product details, please refer to relevant specification control drawing.

Current Derating Factors for Wire Bundles in Free Air

No. of wires	2	3	4	7	9	12	15	18	21	24	27	30	37
Derating factor	.825	.73	.66	.54	.49	.43	.39	.36	.33	.31	.29	.28	.26