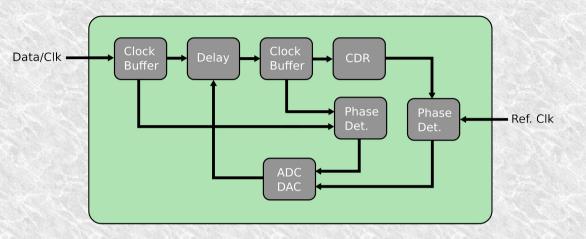
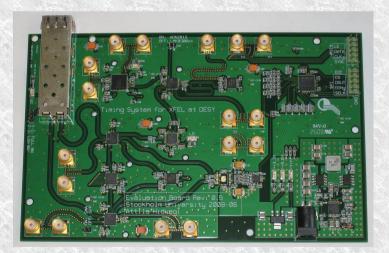
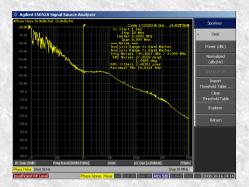
Experiments timing receiver board description

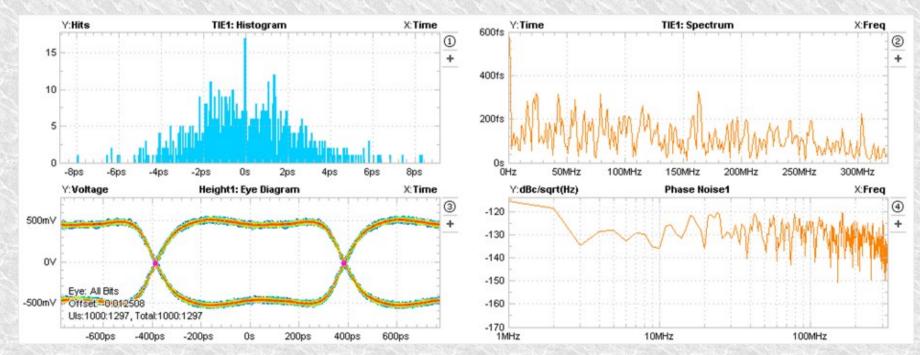

Attila Hidvégi Stockholm University Physics Dept. 2008-11-12


Overview

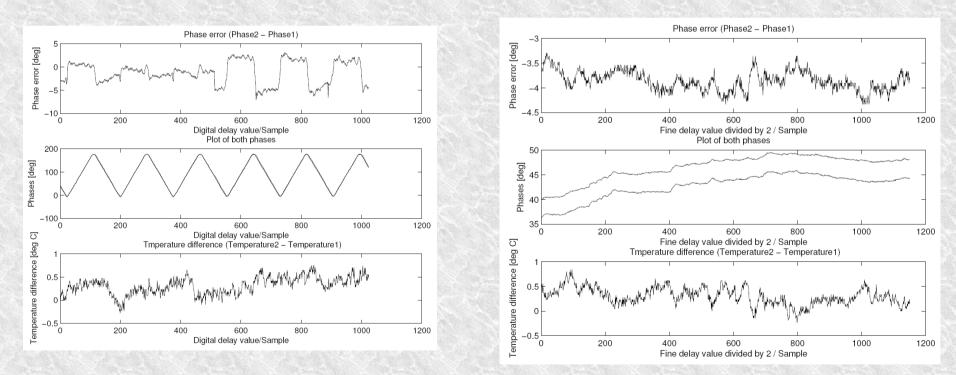
- Test Board
 - Features
 - Measurements and results
- Next prototype
 - Features
 - Who is providing what
 - Status and time line


Test Board - Features

- Contains:
 - clock distribution buffers
 - Delay chip
 - CDR
 - Phase detectors
 - SFP interface
 - ADCs and DACs
 - Monitoring and communication
 - 4-layer FR4 PCB
- Enables:
 - Testing of key functionality and concept
 - Characterization of key components
 - Performance
 - Temperature sensitivity



Test Board – Measurements



- Jitter measurements made at both DESY and Stockholm
- 2.5 ps RMS jitter, after CDR
- Signal Integrity look good
- Both signal integrity and jitter performance can improve even further with better PCB material

Test Board - Measurements

- Extensive measurements have been made to characterize basic components
- Temperature dependency have been studied
- More measurements will be made in the future

Next prototype - Features

• Outputs:

- Individually adjustable phase and frequency divider on all clock outputs
 - FPGA solution:
 - Unlimited divider
 - Phase resolution: <100 ps
 - Random jitter: <100 ps RMS (probably significantly exaggerated)
 - Benefits: many FPGA I/Os are available and simple solution
 - Suitable for less demanding receivers
 - Discrete component solution:
 - Divider: up to 510
 - Phase resolution: <1 ps
 - Random jitter: <5 ps RMS
 - Suitable for demanding receivers
 - Both FPGA and Discrete solution will be tested on first prototype

Next prototype - Features

- Outputs:
 - Number of outputs
 - 4 clock and 4 trigger outputs in the front on the first prototype. Probably more on future prototypes.
 - Distribution through the backplane will be available...
 - DC coupled
 - LVPCEL and LVDS

Next prototype - Features

- Formfactor:
 - AMC for μTCA and ATCA
 - Other formfactors may be provided in future if there will be enough interest
- Virtex-V FPGA for control, but may be upgraded in future
- Separate microcontroller for MMC
- Radiation tolerance
 - Soft errors in firmware will be detected and corrected (from later firmware versions)

Clock, Trigger and Telegram distribution

- On first prototype signals on the frontpanel
 - 4 clocks and 4 trigger
- Clock and trigger distribution through backplane in future
 - In ATCA a custom backplane in Zone-3 would allow almost anything, but may require custom backplanes for different crates.
 - Who would provide that?
 - In some µTCA shelves there are direct connections between AMC cards for custom communications, which could be used for clock and trigger data.
 - Not available in all systems
 - Their number may be too few

Who is providing what

- Hardware: Stockholm University
 - AMC boards
- Firmware: DESY/Stockholm University
 - PCIe interface exist at DESY
 - Rest will be developed by Stockholm
- Software: DESY/Stockholm University
 - Linux and Solaris driver exist at DESY, but customizations will have to be made
 - DOOCS server and client application will be provided by DESY

Next Prototype – Status and Timeline

Status

- Under development
- Some features still need to be determined
- TimeLine
 - Design ready 2008
 - PCB
 - Firmware and Software development may take longer
 - Only a few boards will be manufactured first for testing
 - Testing from January 2009
 - Timing performance
 - µTCA compatibility
 - May be available for users if needed in 2009 Q1-Q2