

Introduction

Train builder and clock and control meeting

C.Youngman for WP76 UCL, 11-May-2010

XFEL Status of contracts

- Status of contracts
- Actions from last meeting
- Update on single crate "small" DAQ system development

XFEL Status of contracts

- Clock and Control (pre UK pullout from EuXFEL)
 - Contract signed in Dec 2010
- Train Builder (post UK pullout from XFEL)
 - Memorandum of Understanding (MoU)
 - → umbrella for post pullout work with STFC,
 - → STFC and EuXFEL have agreed on the text (significance to TB?)
 - → status: complete, needs signing
 - TB contract updated for terms of MoU
 - EuXFEL versions sent to STFC
 - receive STFC checked version today?
 - → status: present for signing a.s.a.p.

It is important to sign quickly, as many contracts will appear soon.

XFEL Actions from last meeting

- 1. Check correctness of mailing lists
 - Done send any additional updates to me
- 2. Nicola Coppola LCLS non lazing pulse rate
 - Done low (\leq mean 3 δ) intensity pulse rate ~few %
 - May be different at XFEL, but not encouraging for VETO
- 3. Planning of VETO meeting
 - Input from 2
 - Use of single APD detectors for VETO cf. 1 crate DAQ.
 - Not done still needed, reason to rush?

XFEL Actions from last meeting

- 4. UCL's requirements for timing system
 - Status from K.Rehlich
 - Prototype tests complete components to give required stability now fixed.
 - Production series boards being finalized
 - K.Rehlich promises description by 1.6.2010
 - Includes backplane bus and p2p lines usage
 - Pressure needed engineers asking questions.
 - → UCL CC folk need to come to HH apply pressure
 - Pressure also coming from 1 crate DAQ development
 - → Need a meeting in HH soon when?

6

XFEL Actions from last meeting

- 5. Uncertainties in TR and MPS interface definitions
 - For TR see point 4.
 - For MPS: A meeting in June discussed by LINAC group
 - → On mail notification list no date fixed.

6 + 7. Software development between WP76 and FEEs

- Boundary definition not done
- Discussion of development note done
- Suggest 1 week meeting in HH fix date now?:
 - June 7th, June 14th (what are Sergey's holiday plans)

EuropeanXFELActions from last meeting

- 8. Design decision concerning CC physical interface
 - See Martin's talk
- 9. CC fast signal specification note
 - Done available on website, new since March:
 > LPD & DSSC = fixed latency VETO implementation
 - → AGIPD & DSSC = variable latency
- 10. MoU see status of contracts above.

European **XFEL**

- Planning since Jan. single crate DAQ system to:
 - DAQ for APD pulse probe experiment:
 - \rightarrow Phase 1 = 130 kHz, 12 bit, \sim 4 channels
 - Run at PETRA 3 (1 bunch mode) at end of 2010
 - \rightarrow Phase 2 = 5.2 MHz, 16 bit, \sim 4 channels
 - Run at PETRA 3 (40 bunch mode)

Details on

- http://www.xfel.eu/project/organization/work_packages/wp_76/daq/single_crate_daq/
- Also see appended spare slides

European

KFEL Update on single crate "small" DAQ system development

- Two implementation solutions worked through:
 - Common features:
 - \rightarrow one xTCA crate,
 - one timing synchronization board, Synch Board
 - Different features:
 - I. DESY DAMC2 front board + custom integrating ADC RTM
 - 2. STRUCK 125 MHz 10 channel ADC front board + custom shaper.
- Decision on which solution to implemented end of this week
 - Which crate to order: Elma or other 17.5 decision of Rehlich
 - Have already requested 2 DAMC2 (not affected by decision)

Overlap with 2D systems: Non XFEL timing board, VETO generation... discussion is needed.

→ ...

XFEL Website - reminder

- WP76 website on:
 - <u>http://xfel.eu</u> where it is difficult to find
 - Home directory is:
 - http://www.xfel.eu/project/organization/work_packages/wp_76/
- Use the right hand side navigation menu !
- 2D pixel related in:
 - \$HOME/daq/2d_pixel_detectors/
 - Internal is pwd protected
- Your names are visible as mailing list members

12

XFEL Why develop small DAQ systems?

- Whether at EuXFEL or elsewhere: custom or commercial solutions need (some) interfacing
- Potentially there are many "small", non 2D, pixel DAQ users:
 - Experiments: e.g. Ch. Bressler's APD, strip detectors...
 - Diagnostics: e.g. PES...
 - DAQ: veto management...
- A single implementation standard is advantageous.
 - Once available other uses will appear.
- Need to develop in house expertise.

Starting point (Jan 2010) = prepare designs for APD and veto management

- Expt. setup: Time-Resolved XAFS at SLS
- Detectors used: small number of APDs and 2D camera
 - result derived from APD data
 - CCD used for setup diagnostics, not to derive the result

European

XFEL APD – DAQ requirements & time lines

#	Property	Value
1	To operate where	PETRA3 and XFEL
2	Pulse frequency (see #10)	$\sim 100 \text{ kHz} - 5 \text{ MHz}$
3	Bunch synchronization accuracy	~100 psec
4	Readout channels per APD	1
5	Number of APDs in experiment	≤ 16
6	Signal input width	5-20ns
7	Signal input height	10 – 100 mV
8	Resolution above noise	16 bit (initially ≥12bit)
9	Readout size per APD per pulse	16 bits
10	Calibration doubles frequency	Alternate empty / full bunches for pedestal, common mode
11	Data bandwidth B/s/channel	XFEL: 2700 x 10 x 2 x 2 = $108 \times 10^{+3}$ B/s, PETRA (1 bunch/rev): 130 x 10^{+3} x 2 x 2 = $520 \times 10^{+3}$ B/s PETRA (40 b/rev): $5200 \times 10^{+3}$ x 2 x 2 = $20800 \times 10^{+3}$ B/s

Table 1 APD readout requirements

- Readout parameters shown above.
- Time lines:
 - Prototype 130 kHz, 12 bit for use at PETRA3 by end of 2010
 - 5.2 MHz, 14-16 bit for use at PETRA3 (40 bunch) 2011/2012
 - 4.5 MHz, 14-16 bit for use at EuXFEL 2014

16

XFEL Possible ADC implementation for APD

- APD pulse is relatively fast = few ns, 10 100 mV...
- Two candidate ADC implementations:
 - gated integrator:
 - → single digitization after ~20-40 ns collection gate
 - requires moderate ADC performance (~10 MHz)
 - e.g. ZEUS luminosity monitor gated integrator
 - fast sampling:
 - multiple digitization: before, at, and after peak
 - → requires faster ADC ≥100MHz and input shaper
 - → e.g. Struck SIS8300 10 channel 125 MHz ADC

XFEL Aimed for DAQ setup

- Use standard xTCA crate with CPU (control) and HUB (arbitration)
 - Both ADC solutions can be used, see schematic below
 - Integrator: DAMC2 + RTM (= integrator ADC)
 - Fast sampling: STRUCK (GmbH) + RTM (= shaper)
 - xTCA and DAMC2 developed by DESY-MCS and -FEA

XFEL ADC boards

STRUCK (shown) or DAMC2

- xTCA backplane:
 - top half open = RTM front board connection (~54 pairs)
 - bottom half = inter front board (CPU, timing...) connection

DAMC2 = digital only, analogue on RTM = reduce noise, increase reusability

XFEL ADC and FPGA developments

- ADC hardware development needed:
 - Rear Transition Modules (RTM)
 - integrator: shaper and integrator ADC
 - → fast sampler: shaper (?)
- FPGA programming required (not exhaustive):
 - DAMC2
 - Digitized data capture, data processing (histogramming), and formatting
 - STRUCK
 - → data processing and formatting
 - Reuse available DAMC2 or STRUCK FPGA software modules for non specific programming tasks (data transfer to backend)

XFEL Timing development

- Timing interfaces using backplane CLK lines
 - PETRA3 PBU:
 - need to condition input signals & clocks
 - need to fine tune delays
 - need to interface to backplane CLK lines
 - > PBU design not fully fixed
 - EuXFEL TR:
 - should be compatible with TR timing board
 - TR design not fully fixed

need to develop interface board

wait and see

European

MIN

MIN

MIN

EL PETRA3 timing interface – PBU front (20.4.2010)

500 MHz reference (derived from internal 20 MHz) clean? 125 MHz reference (derived form internal 20 MHz) continuous

Beam lost (level)

PBU = Petra Bunch Uhr

- Free **} ??Stable conditions for DAQ, is this a network message??** Injection (2 ms level, 1.5 ms before injection)
- BC = bunch clock (for pattern defined below) not always continuous BT = bunch trigger (= revolution frequency 130 kHz) continuous N x 1 ns offset selector (delays BT and BC) Timing is relative – must Bunch pattern (selects 1 or 7 pre installed patterns) offset and fine tune
- BC = bunch clock (for pattern defined below)
 - BT = bunch trigger (= revolution frequency 130 kHz)
 - N x 1 ns offset selector (delays BT and BC)

second set – why duplication?

Bunch pattern (selects 1 or 7 pre installed patterns)

22

XFEL VETO management – only one slide

- VETO = signal saying reject this frame
- What is VETO management
 - receive all VETO signals (APDs could generate VETOs)
 - hopefully all digital, but probably 2 encoding standards
 - process VETO signals
 - user Clause evaluation
 - distribute to users
- Idea: perform VETO management in a DAQ crate
 - Significant overlap with APD have two groups working
 - EuXFEL = Dana mostly VETO FPGA and control
 - Collaborator = APD FPGA and RTM

XFEL Conclusions

- Have defined two projects:
 - APD DAQ
 - VETO manager
- Both are built around the same hardware, allows:
 - WP76 to increase hardware expertise
 - Reuse and profit from machine control group's standard
 - Reuse solutions for other PBS expt. and diag. detectors
 - Hardware is new = engineer/collaborator interest
- Projects have
 - Large overlap with each other
 - Some overlap with 2D pixel projects

XFEL Conclusions

- Suggest following both ADC variants:
 - As investment cost is low, see table
 - Needs ~1 FTE from WP76 and ~2 from collaborator

Item	VETO units	APD units	Deliverable	Unit cost (k€)
xTCA crate + cpu + hub	1	1	~4.2010	5.0
DAMC2	1	1	≥ 6.2010	4.0
STRUCK SIS300 + RTM	(1)	1	\geq 6.2010	5.7
Custom RTM	0	1	\geq 9.2010	5.0
Timing Simple Front Board	(1)	1	?	5.0

Table 2 Hardware cost and date of earliest delivery

- This may need funding
 - MB should read note and endorse/reject
 - We visit our target collaborator next week

European

MIN

MIN

MIN

EL PETRA3 timing interface – PBU front (20.4.2010)

- 500 MHz reference (derived from internal 20 MHz) clean?
 125 MHz reference (derived form internal 20 MHz) continuous
 - Beam lost (level)

PBU = Petra Bunch Uhr

- Free **}** ??Stable conditions for DAQ, is this a network message?? Injection (2 ms level, 1.5 ms before injection)
- See scope view BC = bunch clock (for pattern defined below) } not always continuous
 BT = bunch trigger (= revolution frequency 130 kHz) } continuous
 N x 1 ns offset selector (delays BT and BC) Timing is relative must
 Bunch pattern (selects 1 or 7 pre installed patterns)
- BC = bunch clock (for pattern defined below)
 - BT = bunch trigger (= revolution frequency 130 kHz)
 - N x 1 ns offset selector (delays BT and BC)

second set – why duplication?

Bunch pattern (selects 1 or 7 pre installed patterns)

WP76 – TB and CC meeting at UCL

European 551

PETRA3 timing interface - PBU back (20.4.2010)

- out timing signal daisy chain
- in timing signal daisy chain

- BC = bunch clock
- BC = bunch clock
 BT = bunch trigger (= 130 kHz) remotely writeable
- V.24 serial port (write pattern used by BC and BT above, read pattern set on front panel and bunch count(?))

XFEL Petra3 PBU – scope view 1

Screenshot of 1GHz BW TEK scope.

Ch1: beam pic-up signal of PETRAIII 70 bunch filling yellow = BC output & not continuous Ch2: NIM output of revolution signal blue Ch3: 125MHz output magenta

EuropeanXFELPetra3 PBU – scope view 2

Horizontal zoom of same signals as above

WP76 – TB and CC meeting at UCL

XFEL Petra3 PBU – scope view 3

Same as above but Ch3 is connected to the 500MHz output