AGIPD for C&C

Peter Göttlicher, DESY

Reminder of detector head

Details:

- Slow monitoring
- Ideas for fast isolators
- Power

Reminder: Detector head

Slow Control

Read requests

Handled from internal RAM

- Time independent from internal structure
- Blocks and not individuals

<u>Set commands:</u>

- How to acknowledge
 As flag in read-table?
 or do you like more:
 As reply, when finished
- Setting in blocks and/or individuals

Only for debug:

- direct access to sensor
- access to internal tables

FPGA:

- Slow control, like sensor
- Fast: bunch/train sync. 3

I2C network

Ideas for fast isolators

LAN: 10/100/1000Mb

Isolator inside RJ45

e.g. WUERTH ELEKTRONIK, 7499111441

Isolation + current balancing

FAST-CLK's

- Example from NIM_to_LVDS, mono-flop proven to be OK.
- For here: feedback with resistors rate independent, but need first edge
- Better to put bottom receiver behind top, but no problem seen
 First to output the result, second to drive feedback

Module electronics: analogue part: Power

Receiver/filter/ADC-driver needs pos. and neg. voltage			
Power budget:	U	<u> </u>	
> ADC:	1.8V	2*32* 50mA = 3.2A	possible to cycle with train
> Receiver	2.5V	2*32*10mA = 0.7A	possible to cycle with train
	-2V	0.7A	
$\mathbb{P} \geq \mathbb{C}$ Common mode for termination of ASIC: 2.5V into 50 Ω , difference voltage to drive: 1V?			
	2.5V	2*32*20mA = 1.3A cyc	ling?, feedback to ASIC?
Is 470 Ω to 0.9V not OK + differential 100 Ω .			
> I2C-SC	2.7V	low	permanent
ADC-clk	2.5V	<300mA	possible to cycle with train
LVDS buffer	3.3V	2*32*11mA= 0.7A	digital quality, from dig. Part

Two supplies: greater ~ +3V, and ~ -3V(?) + 1 for digital part (~12V) + quadrant + ASIC's Total power w/o cycling analog part: ~ 20W/module, to be added some spare Use voltage differences for buffering and cycling the power with avoidance on noise and feedback to power supply.

Peter Göttlicher

Module electronics: analogue part: Power

Trial to use duty-cycle

> Algorithm:

Power supply stabilize U Consumer stabilize I

> Needs

- Capacitor banks
 - (Top + bottom)*(mother+daughter)
 - ~ 40mm
- I-regulator for charger
 - + avoidance of U-saturation
- Following LDO-regulators not in drawing
- Nice and planned: Monitor for minimum/mean/maximum
 - Symmetric negative part missing at the moment

Module electronics: analogue part: Power

Simulation !!!!

Final remarks

- Idea for disentangled fast response to TPC/IP answers
- First view for galvanic isolation of control cables.
- Simulation of power for interface/analogue part

Concept for low EMI-feedback,

2 voltages for analog part

1 digital part

ASIC's?, quadrant not worked out

Take it as rough idea!

