
Design document for Grid Services Performance Measurement Point

P.D.Mealor

May 13, 2003

1 Version history

2 May 2003 Updated to match test implementa-
tion

4 March 2003 Initial version

2 Introduction

3 Overview of requirements

In “Design document for performance measurement
point” a list of tasks that a PMP must perform was
presented:

1. Accept a list of commands in a crontab (style)
format;

2. Execute those commands at the requested times;

3. Store the results of those commands in a
database (locally or remotely).

However, for an OGSA PMP with a possibly wider
use than E2EpiPES we must modify these require-
ments. A general PMP must be able to:

1. Advertise its capabilities;

2. Accept a schedule of measurements to make;

3. Perform those measurements at the requested
times;

4. Store the results of those commands in a
database (locally or remotely).

grid service frontend

implementation

cron

ping iperf ...

DB handler

NM config

database

external database

crontab

ScheduleWriter

Figure 1: The control interface and workings

1



4 Design overview

Figure 1 shows the structure of a possibly implemen-
tation of an OGSA PMP. This is the structure that
we will use as a first attempt.

The Grid Service front end presents functions and
service data to the outside world. Behind it sits the
specific implementation.

The PMP configuration is located in a file, prob-
ably in XML (as we likely have the tools for XML
parsing readily at hand); at present the a Java “prop-
erties” files is used. This configuration contains the
names of the tools available for the PMP, the char-
acteristics those tools can measure, the mappings be-
tween measurement parameters and command-line
options passed to the tools, and whether the tool
needs a server and the name and versioning infor-
mation required to match to a server tool.

The grid service uses implementations of the
ScheduleWriter interface to write out the schedules.
Different ScheduleWriters can be used for different
tools. The default ScheduleWriter creates crontab
files, the cron program is used to instantiate mea-
surements.

Tools are run via a wrapper script, which allows for
considerable simplification of the PMP frontend im-
plementation configuration. The wrapper scripts also
collect up the output of the tools to pass to pass to
the database handler. The database handler is sepa-
rately configured, and can store measurement results
in a local database for retrieval later or in some re-
motely located database.

5 Accessing a PMP service

5.1 Finding a PMP

This is not implemented yet. A OGSA client would
perform a search on an OGSA registry to find the
PMP it requires.

5.1.1 Tools which require a server

A tool that requires a server on the target host
is identified by having at least one serverRequire-
ments element in its availableCharacteristics service

<availableCharacteristic>
<name>bandwidth.availableBandwidth</name>
<parameter>
<name>client.sendBufferSize</name>
<minValue>24</minValue>

</parameter>
<serverRequirements>
<toolName>bandmeter</toolName>
<version>1.5.5</version>

</serverRequirements>
</characteristicSchedule>
<availableServer>
<toolName>bandmeter</toolName>
<parameter>
<name>server.receiveBufferSize</name>

</parameter>
<version>1.8.0</version>
<minClientVersion>1</minClientVersion>
<maxClientVersion>1</maxClientVersion>

</availableServier>
<availableServer>
<toolName>bandmeter</toolName>
<parameter>
<name>server.receiveBufferSize</name>

</parameter>
<version>2.0.1</version>
<minClientVersion>2</minClientVersion>

</availableServer>

Figure 2: An example of the service data required to
publish that the PMP can measure available band-
width using the fictional bandmeter tool. The PMP
has a client version 1.5.5, and two server versions:
1.8.0, which can handle any version 1.x.x client; 2.0.1
which can handle any version 2 or greater client.

2



<schedule>
<characteristicSchedule>
<name>bandwidth.availableBandwidth</name>
<source>192.168.0.5</source>
<target>192.168.0.7</source>
<parameter>

<name>client.sendBufferSize</name>
<value>1024</value>

</parameter>
<when>

<minute>12</minute>
<hour>1-23/2</hour>
<dayOfMonth>*</dayOfMonth>
<month>*</month>
<dayOfWeek>mon,tue,wed,thu,fri</dayOfWeek>

</when>
<tool>

<toolName>bandmeter</toolName>
<version>1.5.5</version>

</tool>
</characteristicSchedule>

</schedule>

Figure 3: An example of a schedule. The character-
isticSchedule indicates that a measurement of avail-
able throughput should be made from 192.168.0.5 to
192.168.0.7, with a client buffer size of 1024. Al-
though unnecessary in this case, the PMP is also
instructed to use bandmeter version 1.5.5. Measure-
ments are made on weekdays at 12 minutes past odd-
numbered hours.

<schedule>

<serverSchedule>
<toolName>bandmeter</toolName>
<serverVersion>2.0.1</serverVersion>
<clientVersion>2.2.0</clientVersion>
<source>192.168.0.12</source>
<source>192.168.0.11</source>
<target>192.168.0.5</target>
<when>
<minute>12</minute>
<hour>0-23/2</hour>
<dayOfMonth>*</dayOfMonth>
<month>*</month>
<dayOfWeek>1-5</dayOfWeek>

</when>
<duration>25 minutes</duration>

</serverSchedule>

</schedule>

Figure 4: An example of a schedule. The server-
Schedule indicates that a version 2.0.1 bandmeter
server accepting messages from 192.168.0.11 and 12
should be started on 192.168.0.5 at 12 minutes past
even-numbered hours on weekdays, and that it should
remain available for 25 minutes.

3



data. Each serverRequirements element indicates the
“name” of the server tool required, the version of the
client-side version of the tool and optionally bounds
on the server-side version number.

PMPs running a server tool advertise this with
availableService elements in its service data. This
element indicates the available server tools, their ver-
sions and any bounds on the client-side version num-
bers that the server tool can talk to.

The OGSA client would have to match the server-
Requirements to the availableService, and then talk
to the two PMPs required.

5.2 Submitting a schedule

To submit a schedule, the client calls one of two func-
tions. Reportdfdj

6 Issues

6.1 Negotiation of tool server/client

Do we make the OGSA client work out which PMPs
have compatible tools? Might we, perhaps, make the
PMP search for a PMP with a compatible server tool
and return a failure if it can’t?

6.2 Distributed scheduling

Can we make the PMPs themselves perform schedul-
ing? Perhaps when we receive a schedule, we can ne-
gotiate with other PMPs to ensure that we don’t have
crossing paths and so on, and adjust the schedule
that actually gets used. The schedule would there-
fore just be the OGSA client’s preferred option, while
the PMPs (fairly continuously) negotiate on what to
actually do.

We then have problems of how to guarantee that
once a schedule has been accepted all the measure-
ments will be carried out. Either that or we have to
be able to signal retrospectively that a measurement
has been dropped.

6.3 Identifying schedules and mea-
surements, plus authorisation

With a more intelligent PMP, perhaps we want to be
able to allow OGSA clients to be able to update their
schedules. This means that schedules must be kept in
full (in some form or another), and must contain some
sort of identifying mark. This also raises the question
of authorisation: perhaps we can use some sort of
authentication/authorisation library to ensure that
OGSA clients can only modify their own schedules.

4


