
Design document for performance measurement point

P.D.Mealor

May 7, 2003

1 Version history

11 Feb 2003 Initial version

6 May 2003 Updated to match actual implementa-
tion

2 Introduction

This document describes a design for a performance
peasurement point (PMP) for stage one of the e2e
piPES project. The PMP will consist of a daemon
that accepts measurement schedules from some ex-
ternal source and controls a cron daemon. The cron
daemon will call wrapper programs to perform mea-
surements, extract results from the tools used and
store them in a performance database.

Areas for further work include the interaction with
the performance database, including how a local per-
formance database could be queried by another host.

3 Overview of requirements

The performance measurement point (PMP) must
perform the following tasks:

1. Accept a list of commands in a crontab (style)
format

2. Execute those commands at the requested times

3. Store the results of those commands in a
database (locally or remotely)

In the case of results stored in a local database,
the PMP has to be able to respond to requests

from a virtual, centralised performance measure-
ments database.

3.1 Accept a list of commands

The architecture calls for the scheduler to generate
a list of crontab-style times and commands which
should be passed to the PMP for execution. The
PMP must check that it is receiving commands from
an authorised host and that the commands it is to ex-
ecute are valid (real commands which it is authorised
to execute).

3.2 Execute the list of commands

As commands arrive in a crontab (style) format, they
can be easily transformed to a real crontab file and
executed with minimal fuss by a cron daemon. The
commands will equate to the name of a tool and the
parameters to pass to it. These commands can be
translated to the full pathname of a wrapper script
which can extract the output of the tool and store
it in a performance measurement database (which
might be local or remote).

The commands to execute could include the server-
side parts of tools which require a client-server setup.
This could be used to reduce processor use and the
number of open ports available on the PMP.

3.3 Store the result

Whether the performance database is local or remote
is not specified. The piPES architecture calls for an
central virtual performance database, which appears
as a single database, but could perhaps just forward
requests on to other databases.

1



4 Protocols and interfaces

The PMP control daemon listens on a well known
(definable) port for connections from authorised
sources.

4.1 Authorisation and authentication

We have no authorisation or authentication yet.
Many security options exist which can be plugged in
place of standard TCP sockets. These include SSL,
GSI, Kerberos (?), ((argh: piPES’ preferred option)).

4.2 Accept a list of commands

The command list consists of a series of lines of ascii
text, each line specifying a tool and the times that
tool should be run, followed by a line containing the
termination sequence.

The format is based on the crontab format, and
looks like this:
minute hour dayofmonth month dayofweek

tool [parameters...]
Each field is separated by by one or more whites-

pace characters (space or tab). The first five fields
describe the time and date at which the tool should
be run, and their format is described in crontab(5).

The tool field should be the name of a tool avail-
able on the PMP. The PMP will translate that name
into a command line to run, performing all necessary
wrapping to extract and store output. The optional
parameters fields will be passed to the iperf program
on the command line.

The termination sequence consists of the simple
string “EOF”.

4.3 Respond to database requests

We are unsure as to how to proceed with responding
to database requests.

There are a number of solutions which could be
implemented with the minimum of fuss:

MySQL [?] Measurements stored in a MySQL
database can be queried remotely. Measure-
ments could be stored centrally, although this

is perhaps not a scalable solution. It would be
harder to form a system whereby a virtual cen-
tral database could be used to forward requests
to separate databases stored on each PMP.

R-GMA [?] R-GMA is a distributed information
system, which presents information from many
sources as if it were a single relational database
(with some caveats). More complicated to ini-
tially set up, R-GMA can be used to provide
an integrated view of all measurements from all
PMPs.

OGSA-DAI [?] This is an OGSA[?] interface to var-
ious databases. An OGSA-DAI approach may
be more suited to a second phase, OGSA PMP.

MySQL seems the obvious choice at present: it is
lightweight and simple to set up, and the implemen-
tation whether the actual database is local or cen-
tralised will be similar if not identical.

R-GMA would be more suited to a more grid-like
structure, where PMPs are spread across more than
one administrative region or the PMPs were more
heterogeneous in their nature.

5 Internals

The PMP daemon is written in Perl. Perl is ideal for
this sort of lightweight development server, as has
excellent text-processing capabilities. Additionally,
Perl’s memory handling will reduce the chance of
compromise via memory allocation/deallocation er-
rors.

The PMP daemon will wait for a new connection to
its port. When a connection is made, input lines will
be parsed until the termination sequence is met or the
connection is closed. If the connection is closed before
the termination sequence is met, all input from this
connection will be discard. When the termination
sequence is met, the daemon will close the connection
and rewrite its control crontab files.

Each line will consist of a crontab time specification
(i.e. five space-separated fields specifying the time or
times to run), followed by a tool name and finally

2



any parameters that will be passed to the wrapper
script.

Each line of the input document will be check to
ensure that it is valid. Any errors will result in
the whole document being discarded. The lines are
checked for the following items:

• The date and time formats must be correct

• The tool must be in a list of acceptable tools

Any shell meta-characters will be escaped if possible
(or required).

Acceptable tools will be ones which have a wrapper
program available in some well-defined place which
the daemon can see. The crontab file will consist of
a standard header which sets the system search path
so so that the wrapper program directory is searched
first. The incoming crontab file can then be appended
to the crontab header once control characters have
been escaped. The complete crontab file will be writ-
ten to a file for the standard cron daemon to pick
up.

5.1 Available tools

5.1.1 Iperf

The Iperf tool system is based on work by Yee-Ting Li
to perform on-demand tests with Iperf[1]. This work
is based on the EU-Datagrid’s IperfER system[2].

The wrapper script accepts the same parameters
as the version of Iperf it runs (version 1.7.0 as of 6
May 2003).

I could use YTL’s tools-server program to launch
the iperf server on the remote machine. This would
have the advantage of not requiring the scheduler to
worry about sceduling the server, however it might
interfere with the normal running of the client.

6 Points for discussion

Explicitly stop overrunning programs? The schedule
written to crontab could start a general wrapper pro-
gram that can stop previously running sub-programs
and generally clear up before starting the current

program. We could have an rc.d-style hierarchy of
start/stop programs for the various tools.

wrappers
+-start.d
| +-iperf
| +-udpmon
| +-ping
+-stop.d

+-iperf
+-udpmon

Or perhaps we could achieve the same result just
having the general wrapper simply killing all other
general wrappers, and hence any children of those
wrappers (i.e. tool-specific wrappers, tools).

References

[1] Mark Gates, Ajay Tirumala, Jim Ferguson, Jon
Dugan, Feng Qin, and Kevin Gibbs. Iperf.

[2] Yee-Ting Li. Iperfer. Based on PingER by Robin
Tasker.

3


