This is a work in progress. Sections in red are yet to be filled out properly.

So far I have:

· a section for concrete requirements for a monitoring service;

· a section of use-cases for network monitoring (although these need to be extended);

· a section brainstorming ideas for the required services;

· a section on possible service components and their interactions, service data, operations and lifetimes.
1 Network Monitoring Service
A vague overview of this service, so that the rest of this doc makes sense.
1.1 Requirements

This section describes the requirements that a Grid Network Monitoring service should fulfil.
In this section, clients are taken to mean Grid middleware, user software and administrators.

A service is taken to be a collection of one or more Grid Services that provide for the requirements.
Client/service interactions include discovery of further services, interaction with monitoring points to make new measurements, extraction of results.

Inter-service interactions include discovery of further services, interaction between monitoring points to make new measurements.

1.1.1 General requirements

1. It is recognised that Grid services can be rather heavyweight, and that high-throughput measurements can be strongly perturbed by changes in processor and network interface usage. Attempts should be made to mitigate these effects, by separating measurement hosts from those that host the Grid services, or any other means.
2. The services may reserve the right to deny any request for whatever reason. I think, however, that this is effectively part of the Grid services spec (in that no guarantees can be made about the availability of services).
1.1.2 Client/service scheduling

1. It should be possible to specify that new measurements are to be made, either by specifying particular times for measurements to be made, by specifying a repeating schedule of measurements, a combination of the two, or some other mechanism.
2. It should be understood that measurements may not be made exactly when requested (see 1.1.4). Rules governing acceptable deviation from a schedule of measurements may be required.
3. It should be possible to update or remove a particular schedule of measurements, given the proper authorisation.
4. It should be possible to track the progress of measurements in a schedule. That is, it should be clear when a measurement:

a. has not yet been made;

b. has been delayed for some (any) reason;
c. has been cancelled;
d. has been made;
e. or is in some other state.

Clearly, in a schedule, especially a repeating schedule, this reporting could be quite complicated.
5. It should be possible to receive notification of the results whenever measurements in a schedule have been completed.
create new schedules of measurements

securely edit and delete individual schedules

Track the progress of a schedule

1.1.3 Client monitoring system querying

1. It should be possible to find out if any measurements are to be made at any particular time; or if any measurements were made at any particular time.
2. It should be possible to examine an overall (or as close as possible) view of all measurements made or to be made.
3. It should be possible to narrow queries to particular services, hosts, routes or some other criterion.
Ability to ask if anything is happening at a particular time.

1.1.4 Client extraction of results
This is related to both the extraction of historical measurements and new measurements. Probably the title should be changed, or this needs to be mixed with another section; something here to make it clear what’s going on would also help.
1. It should be possible to extract any characteristic as long as it is available. The service should not be constrained to those characteristics defined now.
2. Results should be available encoding in the NM-WG NetworkMeasurement schema (or some other, later, standardised form).
3. It should be possible to specify that results are transferred in any form supported by both the service and the client. It is recognised that XML may not be the perfect medium for transferring extremely large volumes of data, and so other, more compact formats at least should be supported.
4. It should be possible to request measurements which were made with particular parameters, including ranges of parameters or choices of parameters.
5. It should be possible to request statistical summaries of data; which summaries are supported is more a matter for implementations, however.
6. It should be possible to request any number of measurements within a particular time-range.
See NMWG examples

Ooh. Also have a looksy at DAIS stuff, and OGSA-DAI. The ability to specify any delivery target looks pretty nifty. Possibly DAIS should be used as much as possible here.
1.1.5 Predictions

Some monitoring architectures are able to make predictions of the future state of networks.
1. Requests for predictions must be distinct from requests for new measurements and current values.
1.1.6 Inter-service scheduling and other negotiation
1. Services must be able to negotiate the timing and parameters of a measurement such that it does not interfere with other measurements.
2. Schedule negotiation need only happen on a last-minute basis. That is, the negotiation need only start at the time when the measurement is to be made.
3. Services must be able to negotiate the capabilities of other services in order in order to choose the best tools and parameters for measurements; services must be able to evaluate when a measurement cannot be made.

4. It should also be possible for two services to negotiate a schedule in advance of the actual measurement, if both services support this. This is, however, a difficult problem.
Last-minute only: advance resource scheduling is complicated and possibly unnecessary. Requires lots of stateful stuff... but that isn't a problem with grid service instances.

1.1.7 AAA control

1. It must be possible to restrict access to any service, or any part of any service, based on the client’s identification.
2. Services must be able to authorise and authenticate between different administrative domains.
It must be possible to control which users are able to do: this includes setting the maximum lifetime for test schedules, disabling intrusive/damaging tests for certain groups

Obviously need ordinary AAA stuff.

1.1.8 Delegation

1. It must be possible for the negotiation of and taking of measurements to be delegated to other components within the system.
For example: in piPES, the MDI fields requests for new measurements, but other components, PMCs, themselves negotiate a free space. (In the real piPES system, the negotiation is done with other protocols). In this case, the PMC receives a measurement request much like the MDI does.
2. It must be possible, in general, for services to handle requests for measurements that do not directly involve the hosts in which those services run.
3. It should be possible for services to refer clients onto another service. The client could then contact the further service directly without tying up resources at the initial service.
1.1.9 Discovery

1. It must be possible to discover the services responsible for a particular host (given the proper authorisation).
2. It should be possible to discover the types of measurement available (the characteristics available) from a particular service, and the parameters that can be set for those measurements and their acceptable values. This information is likely to be used in a resource discovery context when searching for services.
3. Information might be made available to allow services to evaluate the capabilities of measurement points in order to choose tools and settings for a measurement. See also 1.1.4, point 4.
More: It should be possible to find what information a service has available already. However, this is a bit like just asking for the characteristics a service measures, then asking for historical information for all those characteristics. Hmm?
1.2 Requirement use cases

1.2.1 Administrative: scheduling of regular tests for status monitoring

An administrator wants to set all the monitoring points under his control making regular measurements of a particular type.

Later, due to a configuration change, he wants to add further monitoring points to the regular measurements, and increase the intervals between measurements made by all the original measuring points.

After some time, the administrator decides to delete all the schedules.

1.2.2 Administrative: use of a scheduling protocol such as EDG WP7's Point Coordination Protocol

An administrator wants to use the Point Coordination Protocol to schedule measurements. He assigns each measurement point to one or more cliques. He sets the time taken for each measurement, the time taken for the token to traverse each clique, the time it should spend at each node and the token-loss timeout (some of these may be calculable from the others). Each node may only make measurements when it has the token
1.2.3 Administrative: scheduling of tests for problem-diagnosis

An administrator wants to start some regular measurements for a short period. The nodes involved are not necessarily under his direct control, though he has some permission (however administered) to make measurements.

The diagnosis takes longer than expected, so the administrator makes sure the measurements continue.

After a while, the administrator discovers the fault involved, and stops making measurements.

1.2.4 Administrative: request a history of tests that were made, to see if anything could explain a particular event
Make a request to the database, discard all the results.

1.2.5 Middleware: multiple requests for recent data, and often, for optimisation purposes

This information was collected by examining daily logs from the central network-monitoring archiving server of the European DataGrid.
On the European DataGrid production Grid, there are 30 measurement points, making measurements to 96 hosts, including each other. Over a 3 day, 14 hour period, 47,000 measurements were made, at an average rate of one every 6.6 seconds. The peak rate over an hour stands at about 0.39 per second, one every 2.6 seconds, and the peak over a minute is 7.1 per second, one every, one every 0.14 seconds.
The maximum traffic over a minute for a single measuring host was about 1 per second.
Note: get statistics about the number of requests to R-GMA from Franck
This can probably get split into separate use cases, one for each style of transfer optimisation – choosing a computing node, choosing a replica, choosing a time to do a bulk transfer (see 1.2.7).
1.2.6 Middleware: scheduling of tests for problem diagnosis

1.2.7 Middleware: on the fly request for optimisation of bulk transfers
How about the middleware asks for hourly averages of achievable bandwidth over the last two weeks to decide when (during the day) to perform files transfers to/from Cardiff? If the results are like shown in the graph, the middleware would choose to transfer files over night!

[image: image1.png]Banduidth (Mbits/sec)

Ipers Banduidth Measurements (1048576 bute sooket buffer>
HEacured from rE1ing.dl.a6.uk o cacaeoonso.arid.of. a0, uk

100

%8

0

e

o

o

0

0

20

10

Tooeerconse.arid ot se ik ——

tass

148
time

intervals

155 165 175
in days from Tue May 13 @:16:17 2003





1.2.8 piPEs example?

Could Eric provide an appropriate piPEs example, such as a problem being discovered in an end to end path, and tests being run between nodes in a “divide and conquer” strategy until the offending node/path is discovered. For example,… 


If there was a problem detected between A and E, you’d run tests between A and C. If that path was okay, then (assuming it wasn’t a cumulative problem) you’d suppose the fault was between C and E. So you’d then test between C and D. If the problem didn’t lie there, then you’d suppose it was between D and E.

1.3 Brainstorming
1.3.1 Requesting measurements and data
Certain data structures have already been defined by the NMWG relating to the requesting of tests, and the response to those tests.
· A schema designed to meet many different projects’ needs for requesting new measurements…
· A schema designed to present the results of any measurement in a generalised fashion.
These schemas should be used whenever possible.
1.3.1.1 Schedule service instances
Individual schedule sections are represented by individual service instances. 
Some factory service (not necessarily an OGSI Factory) is used to create new instances, possibly created with a schedule already assigned.
1.3.1.2 On-demand tests
A major use of network monitoring services will be as sources of information for resource brokers distributing jobs and data on a Grid. Resource brokers will expect reasonably recent measurements, and if none are available new measurements should be made.
It is expected that schedule service instances could handle this functionality assuming that simple “schedules” of this sort can be used to retrieve historical measurements, without excessive overheads.
1.3.1.3 Historical tests

It must be possible to request historical tests. Given the need for “on-demand tests”, the interface for requesting old and new measurements should be reasonably homogonous. Ideally the same interface(s) should be used for historical and future tests.
1.3.2 Administrative access

Administrative access to all aspects of the monitoring system is very important. It must be possible to find and access every schedule in the system, given the appropriate permissions.
This requires service types that do the following:

· a registry of all schedule service instances (or a particular subset of them);

· provide some sort of overview of all scheduled tests;
· allow arbitrary subsets of those scheduled tests to be modified.
1.3.3 Measurement negotiation
Different monitoring systems in different administrative domains must communicate with each other to negotiate a number of things:
· tools and versions to use

· when to make new measurements
· general authentication and authorisation

1.3.4 WS-Agreement

Measurement negotiation could be carried out using WS-Agreement services. 
1.4 Possible components
The components presented here may not be entirely self-consistent. Some may preclude the use of others; some may require others to work.
1.4.1 Client interaction

1.4.1.1 Schedule

A Schedule object manages a particular schedule submitted by a client. The Schedule would have operations to query, modify and delete the schedule, and query the state of measurements made for the schedule. The Schedule object would also support soft-state lifetime management so that intrusive measurements are not performed indefinitely in the case of a client fault.
1.4.1.2 Scheduler

The schedule service(s) act as a factory for creating Schedules.

An overall schedule may be offered to allow administrative control, but this, of course, depends upon individual implementations.
1.4.1.3 Scheduler Group

This Service Group should allow discovery of the services associated with other services and hosts.
1.4.1.4 Schedule Group

This Service Group should allow administrative-level discovery of currently defined Schedule instances.
1.4.2 Monitoring system interaction
1.4.2.1 Measurement Endpoint

Instances of this type would represent one of the endpoints of a single measurement while it’s running. This port type would include operations for negotiating the measurement, and would contain a (a list?) of other endpoints involved with the measurement.
The measurement endpoints should be able to negotiate over the making of a measurement; it seems difficult and not very useful to have exactly the same port type at both ends of a measurement (i.e. the initiator and acceptor ends). It seems better to have particular tasks assigned to each end of the measurement based on some (perhaps arbitrary) decision about who owns or wants to make the measurement.
1.4.2.2 Measurer
This is effectively a factory for generating measurement endpoints.

It’s conceivable that the same measurer type could be used for both the source and sink ends of a measurement, but perhaps this isn’t wise: the list of operations performed by the initiator of a measurement on the acceptor of one does not, in all likelihood, overlap with the (null?) list of operations performed by the acceptor on the initiator.
A





B





C





D





E








_1136279934.bin

