LogiCORE™
Tri-Mode Ethernet
MAC v3.4

User Guide
UG138 August 8, 2007

SXILINX

$7 XILINX®

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-
PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fithess for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2004-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Tri-Mode Ethernet MAC v3.4 Revision History

The following table shows the revision history for this document.

Date Version Revision
9/30/04 1.1 Initial Xilinx release.
4/28/05 2.0 Updated to version 2.1 of the core, Xilinx tools 7.1i, support for Spartan-3E.
1/18/06 2.1 Updated to version 2.2 of the core, release date, and Xilinx tools 8.1i.
7/13/06 3.1 Updated to version 3.1 of the core; Xilinx tools 8.2i.
9/21/06 3.2 Updated to version 3.2 of the core, added support for Spartan-3A.
2/15/07 3.3 Updated to version 3.3 of the core; Xilinx tools 9.1i.
8/8/07 3/4 Updated to version 3.4 of the core; Xilinx tools 9.2i.

www.xilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

Table of Contents

Schedule of Tables 9

Scheduleof Figures............ 11

Preface: About This Guide

Guide Contents 15
Additional ReSOUICeS oot e 16
CONVENtIONSottt 17
Typographical. 17
Online DocUmMentot 18

Chapter 1: Introduction

Aboutthe Core. 19
Recommended Design Experience... 19
Additional Core ReSources ...ttt 19
Related Xilinx Ethernet Products and Services 20
Specifications 20
Technical Support. 20
Feedback. 20

Tri-Mode Ethernet MAC COre oottt et et 20

Document e 20

Chapter 2: Core Architecture

System OVerview 21
Core Componentsoiiiiiiiiii i 21
CorelInterfaces.......... 23
Optional Interfaces. i i 23
Client Side Interface Signals............ oL 27
Management Interface Signals.....................l 29
Configuration Vector Signals 29
Address Filter Signals 30
Clock, Speed Indication, and Reset Signals 30
Physical Interface Signals 31
Optional MDIO Signals. o 32

Chapter 3: Generating the Core

GUIINterface.ov e e e e e e e e 33
Component Name.ooui i 33
Management Interface i 33
Clock Enablesot e e e e e e 34
Address FIterottt e e e 34
Number of Address Table Entries.ottt e e e e eieenan 34
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Physical Interface i 34
Parameter Valuesinthe XCOFile.......... o i it 34
Output Generation................ .. 35

Chapter 4: Designing with the Core

General Design Guidelines. 37
Design Steps . ..ot 37

Using the HDL Example Design as User Top-level 37

Using the HDL Example Designina UserDesign 37
Understand Signal Pipelining L 38
Register AILI/Os 38
Recognize Timing Critical Signals.......... o i L. 38
Use Supported Design Flows o i i i i 38
Make Only Allowed Modifications................, 38

Chapter 5: Using the Client Side Data Path

Receiving Inbound Frames 39
Normal Frame Reception i 39
Without Clock Enableso i i ettt e e e e e 39
Using Clock Enables. i 41
emacclientrxgoodframe and emacclientrxbadframe Timing 42
Frame Receptionwith Errors o o o i 42
Client-Supplied FCS Passing 42
VLANTagged Frames.o i i i i i i i 43
Maximum Permitted Frame Length L 43
Length/Type Field Error Checks. o o i it 44
Enabled. e 44
Disabled e 44
Address Filter o e 44
Receiver Statistics Vectoro 45
Transmitting Outbound Frames 47
Normal Frame TransmiSSionttt ittt e ettt et e 47
Without Clock Enableso ottt e et et e e e e 47
UsingClock Enables. o i 48
Padding ... 49
Client-Supplied FCSPassing o i i i 50
Client Underruno e e e e e e e e 50
Back-to-Back Transfers i 51
VLAN T Tagged Frames............... i 52
Maximum Permitted Frame Length 53
Frame Collisions: Half-Duplex OperationOnly 53
Interframe Gap Adjustment: Full-Duplex Mode Only.......................... 54
Transmitter Statistics Vector. i 55

Chapter 6: Using Flow Control

Overview of Flow Control. i 57

Flow Control Requirement.............. o i i i 57

Flow Control BasiCs oot e e 58

Pause Control Framest e e 58

Flow Control Operation of the TEMAC......... 59

Transmitting a Pause Control Frame 59
www.xilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX®

Core-initiated Pause Request i 59
Client-initiated Pause Request i 60
Receiving a Pause Control Frame 60
Core-initiated Response to aPause Request. 60
Client-initiated Response to a Pause Request................ 61

Flow Control Implementation Example...................................... 61

Chapter 7: Using the Physical Side Interface

Implementing External GMIL. 63
GMII/MII Transmit Interface. e 63
Virtex-II Pro, Virtex-II, Spartan-3, Spartan-3E, and Spartan-3A Devices 63

Virtex-4 and Virtex-5 Devices o oottt e e 65
GMII/MII Receive Interface oot e 66
Virtex-Il and Virtex-IIPro Devices oo oo ittt e e e et e e 66

Spartan-3, Spartan-3E, and Spartan-3A Devices. 66

ViIrteX-4 DEVICES .« v v v vttt ettt et et e e 68

VirteX-5 DBVICES .« .« v v vttt ettt et e et e 69
Implementing External RGMII............ 70
RGMII Transmit Interface. ...ttt e 70
Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices 70

ViArteX-4 DEVICES .« . v oottt ettt et e e e e e 71

VArteX-5 DEVICES .« v v oot ettt et et e e e e e 73

RGMII Receiver Interfacecooiiini et 74
Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices 74

ViArteX-4 DEVICES .« v v oottt ettt e e e e e e e 74

ViArteX-5 DEVICES . . v oottt ettt et et e e 75

RGMII Inband Status Decoding Logic 77
Using the MDIO Interface........... 77
Connecting the MDIO to an Internally Integrated PHY 77
Connecting the MDIO toan External PHY o i i 78
Connecting the MDIO to an External and Internal PHY. 78

Chapter 8: Configuration and Status

Using the Optional Management Interface................................... 81
hostclk ..o 81
Configuration Registers 81
RegisterMaps................. . 82
Using the Management Interface.................... 88

Accessing Configuration. i i 88
MDIO Interface. ... 91
Introduction to MDIO.ot 91
Write Transactionot e 92
Read Transactionuiiniiniii i 92
AccessingMDIO viathe TEMAC oot 92

Accessing Configuration without the Management Interface................. 94

Configuration Vector Description i 95

Chapter 9: Constraining the Core

Required Constraints. 101
Device, Package, and Speedgrade Selection 101
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

I/O Location CONStraintscovut ittt e 101
Placement Constraints.............. i il 101
Timing Constraints 101
PERIOD(S) for Clock nets . . .« v vv ettt et e e 101
Timespecs for Reset Logic withintheCore. 104
Constraints when Implementing an External GMIL 104
Understanding Timing Reports for GMII Setup/Hold timing 107
Spartan-3Devicest 107
Virtex-II or Virtex-IIProDevices i, 108
Virtex-4 or Virtex-5 Devices with Delayed Data/Control. 108
Virtex-4 or Virtex-5 Devices with Delayed Clock 109
Constraints when Implementing an External RGMIL 110
RGMII DDR Constraints.ottt 113
Understanding Timing Reports for RGMII Setup/Hold timing 113
None Virtex-4 or Virtex-5Devices i 113
Virtex-4 or Virtex-5 Devices with Delayed Data/Control. 114
Virtex-4 or Virtex-5 Devices with Delayed Clock 115

Chapter 10: Clocking and Reset

Clocking 117
GMII/MII Transmit Clock Generationottt e 117
GMII/MII Receive Clock Generation 119
RGMII Transmit Clock Generationt 120
RGMII Receive Clock Generationt 122

Multiple Cores. 123
Clock Sharing 123

BUFGMUX Usage. 124

Reset Conditions. i 126

Chapter 11: Interfacing to Other Cores

Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core. 127
Integration to Provide SGMIL.l 127
Virtex-IL Pro Devices.ottt 127

Virtex-4 DEVICES oo ittt et e 129

Virtex-5 DEVICESot i it 130
Integrating with the Ethernet StatisticsCore................................ 130

Chapter 12: Implementing Your Design

Pre-implementation Simulation oL 133
Using the Simulation Model.o o o i i 133
Synthesis 133
XST - VHDL ..o 133
XST-Verilog. ... 134
Implementation......... 134
Generating the Xilinx Netlist o oo il 134
Mapping the Design 134
Placing and Routing the Design o L 134
Static Timing Analysis.......... 135
Generating a Bitstream 135
www.Xxilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX®

Post-Implementation Simulation 135
Generating a Simulation Model....................o 135
UsingtheModel........ 135

Other Implementation Information.............. 136

Appendix A: Using the Client Side FIFO

Overview of LocalLink Interface 137
Receive FIFO Operation............. 138

LocalLink Interfacei i 138
Transmit FIFO Operation 139

LocalLink Interface i 139
Clock Requirements. i 140
User Interface Data Width Conversion. i ... 140

Appendix B: Core Verification, Compliance, and Interoperability

Verification by Simulation 141
Hardware Verification i 141

Appendix C: Core Latency

General 143
Transmit Path Latency 143
Receive Path Latency.......... 143

Appendix D: Calculating the DCM Phase Shift

DCM Phase Shifting Requirements .. 145
Finding the Ideal Phase Shift Value 145
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Schedule

of Tables

Chapter 2: Core Architecture
Table 2-1: Client Interface Signal Pins............ 27
Table 2-2: Optional Management Interface Signal Pinout.......................... 29
Table 2-3: Alternative to the Optional Management Interface: Configuration
Vector Signal Pinout. 29
Table 2-4: Address Filter Unicast Address., 30
Table 2-5: Clock, Speed Indication and Reset Signals 30
Table 2-6: GMII/MII Interface Signal Pinout 31
Table 2-7: MDIO Interface Signal Pinout .. 32
Chapter 3: Generating the Core
Table 3-1: XCO File Values and Default Values. 34
Chapter 5: Using the Client Side Data Path
Table 5-1: Abbreviations Used in Timing Diagrams. 39
Table 5-2: Bit Definition for the Receiver Statistics Vector 45
Table 5-3: Bit Definition for the Transmitter Statistics Vector 55
Chapter 8: Configuration and Status
Table 8-1: Management Interface Transaction Types 81
Table 8-2: Configuration Registers 82
Table 8-3: Receiver Configuration Word 0................., 82
Table 8-4: Receiver Configuration Word 1......... 83
Table 8-5: Transmitter Configuration Word 84
Table 8-6: Flow Control Configuration Word 84
Table 8-7: Management Configuration Word 85
Table 8-8: MAC Speed Configuration Word.............. 85
Table 8-9: Unicast Address (Word 0)............. ..., 86
Table 8-10: Unicast Address (Word1)........ i, 86
Table 8-11: Address Table Configuration Word 0)................................ 86
Table 8-12: Address Table Configuration Word1)................................ 87
Table 8-13: Address Filter Mode 87
Table 8-14: Configuration Vector Bit Definition 95
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

Chapter 9: Constraining the Core

Table 9-1: Input GMIITiming e 105
Table 9-2: Input RGMII Timing 111

Appendix A: Using the Client Side FIFO

Table A-1: Receive FIFO LocalLink Interfaceo ... 138
Table A-2: Transmit FIFO LocalLink Interface........... 139
Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com

UG138 August 8, 2007

http://www.xilinx.com

Schedule of Figures

Chapter 2: Core Architecture

Figure 2-1:
Figure 2-2:

Tri-Mode Ethernet MAC Block Diagram...............................
Component Pinout for MAC with Optional Management

Interface (clock_enables =false).t

Figure 2-3:

Component Pinout for MAC without Optional Management

Interface (clock_enables =false). i

Figure 2-4:

Component Pinout for MAC with Optional Management

Interface (clock_enables = true)

Figure 2-5:

Component Pinout for MAC without Optional Management

Interface (clock_enables = true) ot

Chapter 3: Generating the Core

Figure 3-1:

Core Customization Screen

Chapter 5: Using the Client Side Data Path

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:

Normal Frame Reception
Normal Frame Reception at 1 Gbps with Optional Clock Enables
Normal Frame Reception at 10/100 Mbps with Optional Clock Enables . ..
Frame Reception with Error..........
Frame Reception with In-Band FCS Field.
Reception of a VLAN Tagged Frame
Receiver Statistics Vector Timing.
Normal Frame Transmission Across Client Interface....................
Normal Frame Transmission at 1000 Mbps with Optional Clock Enables .
Normal Frame Transmission at 10/100 Mbps with

Optional Clock Enables i

Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:

Frame Transmission with Client-supplied FCS........................
Frame Transmission with Underrun
Back-to-Back Frame Transmission...................................
Transmission of a VLAN Tagged Frame..............................
Collision Handling: Frame Retransmission Required
Collision Handling: No Frame Retransmission Required...............
Interframe Gap Adjustment.o
Transmitter Statistics Vector Timing...........................

Chapter 6: Using Flow Control
Figure 6-1: The Requirement for Flow Control

Figure 6-2:
Figure 6-3:

MAC Control Frame Format
Pause Request Timing.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

http://www.xilinx.com

Figure 6-4: Pause Request Timing with Clock Enables 59
Figure 6-5: Flow Control Implementation Triggered from FIFO Occupancy.......... 62

Chapter 7: Using the Physical Side Interface

Figure 7-1: External GMII/MII Transmit Interface 64
Figure 7-2: External GMII/MII Transmit Interface in a Virtex-4/Virtex-5 Device. 65
Figure 7-3: External GMII/MII Receive Interface 66
Figure 7-4: GMII/MII Receive Logic for Spartan-3, Spartan-3E,

and Spartan-3A Devices 67
Figure 7-5: GMII/MII Receive Logic for Virtex-4 Devices.......................... 68
Figure 7-6: GMII/MII Receive Logic for Virtex-5 Devices.......................... 69
Figure 7-7: External RGMII Transmit Interface................................ ... 70
Figure 7-8: External RGMII Transmit Interface in a Virtex-4 Device 71
Figure 7-9: External RGMII Transmit Interface in a Virtex-5 Device 73
Figure 7-10: External RGMII Receive Interface 74
Figure 7-11: External RGMII Receive Interface in Virtex-4 Devices 75
Figure 7-12: External RGMII Receive Interface in Virtex-5 Devices 76
Figure 7-13: RGMII Inband Status Logic.............. 77
Figure 7-14: External MDIO Interface i 78
Figure 7-15: Internal and External MDIO Interfaces............................... 79

Chapter 8: Configuration and Status

Figure 8-1: Configuration Register Write Timing 88
Figure 8-2: Configuration Register Read Timing......................... 89
Figure 8-3: Address Table Write Timing 90
Figure 8-4: Address Table Read Timing 91
Figure 8-5: MDIO Write Transaction 92
Figure 8-6: MDIO Read Transaction. i, 92
Figure 8-7: MDIO Access Through Management Interface......................... 93

Chapter 9: Constraining the Core

Figure 9-1: Input GMII Timing 105
Figure 9-2: Timing Report Setup/Hold 110
Figure 9-3: Input RGMIITiming. i, 111
Figure 9-4: Timing Report Setup/Hold 116

Chapter 10: Clocking and Reset

Figure 10-1: GMII/MII Transmit Clock Generator 117

Figure 10-2: 10/100 Mbps MII Transmit Clock Generator 118

Figure 10-3: GMII/MII Transmit Clock Generator (clock_enables =true)........... 118

Figure 10-4: GMII/MII Receive Clock Generator. 119

Figure 10-5: 10/100 Mbps MII Receive Clock Generator 119

Figure 10-6: GMII/MII Receive Clock Generator (clock_enables =true) 120
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

Figure 10-7: RGMII Transmit Clock Generator (clock_enables = false)............. 120

Figure 10-8: RGMII Transmit Clock Generator (clock_enables =true).............. 121
Figure 10-9: RGMII Transmit Clock Generator (clock_enables = false) for Virtex-5.. 121
Figure 10-10: RGMII Receive Clock Generator (clock_enables = false) 122
Figure 10-11: RGMII Receive Clock Generator (clock_enables =true).............. 122
Figure 10-12: RGMII Receive Clock Generator (clock_enables = false) for

Virtex-4 and Virtex-5 Devices i 123
Figure 10-13: Clock Sharing across Two MAC Cores 124
Figure 10-14: Suggested BUFGMUX Scheme 125
Figure 10-15: Alternative BUFGMUX Scheme 125
Figure 10-16: Reset Circuit for One Clock/reset Domain.......................... 126

Chapter 11: Interfacing to Other Cores
Figure 11-1: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-II Pro) 128

Figure 11-2: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-4) 129
Figure 11-3: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-5) 130
Figure 11-4: Tri-Mode Ethernet MAC with Statistics 131

Appendix A: Using the Client Side FIFO

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation................. 137

Figure A-2: Frame Transfer across LocalLink Interface 138

Figure A-3: Frame Transfer with Flow Control 138
Tri-Mode Ethernet MAC v3.4 www.xilinx.com

UG138 August 8, 2007

http://www.xilinx.com

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

& XILINX®
Preface

About This Guide

The Tri-Mode Ethernet MAC v3.4 User Guide describes the function and operation of the
LogiCORE™ Tri-Mode Ethernet MAC (TEMAC) core, as well as information about
designing, customizing, and implementing the core.

Guide Contents

This guide contains the following chapters:

e “Preface, About this Guide” introduces the organization and purpose of the user
guide and provides a list of additional resources and conventions used in this
document.

e Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

e Chapter 2, “Core Architecture” provides an overview of the core and discusses the
signal interface.

e Chapter 3, “Generating the Core” describes how to generate the core and defines
customization options.

e Chapter 4, “Designing with the Core” provides general guidelines for creating
designs using the core.

e Chapter 5, “Using the Client Side Data Path” provides information about using the
client-side interface of the core.

e Chapter 6, “Using Flow Control” details the flow control capabilities of the core.

e Chapter 7, “Using the Physical Side Interface” describes how to use the core to
provide GMII/MII, RGMII and MDIO functionality.

e Chapter 8, “Configuration and Status” describes how to operate the Management
Interface.

e Chapter 9, “Constraining the Core” describes constraints in the design.

e Chapter 10, “Clocking and Reset” discusses suggested clocking schemes and reset
circuitry.

e Chapter 11, “Interfacing to Other Cores,” describes how to interface the core to the
Ethernet 1000BASE-X PCS/PMA or SGMII core in order to provide SGMII
functionality. In addition, the integration of the core with the Ethernet Statistics Core
is discussed.

e Chapter 12, “Implementing Your Design” provides instructions for setting up the
synthesis, simulation, and implementation environment, and how to generate a
bitstream.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 15
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Preface: About This Guide

e Appendix A, “Using the Client Side FIFO” describes the operation of the FIFO
included in the core example design.

e Appendix B, “Core Verification, Compliance, and Interoperability” describes how the
core was verified and certified for compliance, as well as its interoperability with

other devices.

e Appendix C, “Core Latency” describes the core latency.

e Appendix D, “Calculating the DCM Phase Shift” provides instructions for calculating
a DCM phase shift value to meet input setup and hold timing.

Additional Resources

For additional information, go to www.xilinx.com/support. The following table lists some
of the resources you can access from this website or by using the provided URLSs.

Resource

Description/URL

Tutorials

Tutorials covering Xilinx design flows, from design entry to
verification and debugging

www.xilinx.com /support/techsup/tutorials/index.htm

Answer Browser

Database of Xilinx solution records

www.xilinx.com /xInx/xil_ans_browser.jsp

Application Notes | Descriptions of device-specific design techniques and approaches
www.xilinx.com/support/apps/appsweb.htm
Data Sheets Device-specific information on Xilinx device characteristics,

including readback, boundary scan, configuration, length count,
and debugging

www.xilinx.com /xInx/xweb /xil_publications_index.jsp

Problem Solvers

Interactive tools that allow you to troubleshoot your design issues

www.xilinx.com /support/troubleshoot/psolvers.htm

Tech Tips

Latest news, design tips, and patch information for the Xilinx
design environment

www.xilinx.com /xInx/xil_tt_home.jsp

16

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes

Conventions

FIXILINX®

Conventions

Typographical

This document uses the following conventions. An example illustrates each convention.

The following typographical conventions are used in this document:

Convention

Meaning or Use

Example

Courier font

Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold

Literal commands you enter in
a syntactical statement

ngdbuild design_name

References to other manuals

See the User Guide for details.

Italic font If a wire is drawn so that it
Emphasis in text overlaps the pin of a symbol,
the two nets are not connected.
Dark Shading ftems that are not supported This feature is not supported

or reserved

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Brackets <>

User-defined variable, for
example, a directory or project
name.

<project directory>

Braces { }

A list of items from which you
must choose one or more

lowpwr ={on]off}

Vertical bar |

Separates items in a list of
choices

lowpwr ={on]off}

Vertical ellipsis

Repetitive material that has
been omitted

IOB #1:
IOB #2:

Name = QOUT’
Name CLKIN'

Horizontal ellipsis ...

Omitted repetitive material

allow block block_ name

Notations

locl loc2 locn;
The prefix ‘0x’ or the suffix ‘h’ A read of address
indicate hexadecimal notation 0x00112975 returned

45524943h.

An‘_n’ means the signal is
active low

usr_teof_nis active low.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

17

http://www.xilinx.com

FIXILINX

Preface: About This Guide

Online Document

The following linking conventions are used in this document:

Convention Meaning or Use Example
) See the section “Additional
Cros§-ref-erence linktoa Resources” for details.
Blue text location in the current i]
document See “Title Formats” in Chapter
1 for details.
Cross-reference link to a See Figure 2-5 in the Virtex-II
Red text location in another
Handbook.
document
. Hyperlink to a website Go to www.xilinx.com for the
Blue, underlined text (URL) latest speed files.

18

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 1

Introduction

The Tri-Mode Ethernet MAC (TEMAC) core is a fully verified solution design that
supports Verilog-HDL and VHDL. In addition, the example design provided with the core
is in both Verilog and VHDL.

This chapter introduces the TEMAC core and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

About the Core

The TEMAC core is a Xilinx CORE Generator™ IP core, included in the latest IP Update on
the Xilinx IP Center. For detailed information about the core, see
www.xilinx.com/systemio/temac/index.htm. For information about system
requirements and licensing the core, see Chapter 2, “Licensing the Core,” in the Getting
Started Guide.

Recommended Design Experience

Although the TEMAC core is a fully verified solution, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and User Constraint Files
(UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Core Resources

For more details and updates on the TEMAC core, see the following documents, located on
the Xilinx Tri-Mode Ethernet MAC product page, accessible from the
www.xilinx.com /systemio/temac/index.htm

e Tri-Mode Ethernet MAC Data Sheet
o Tri-Mode Ethernet MAC Release Notes
e Tri-Mode Ethernet MAC Getting Started Guide

For updates to this document, see the Tri-Mode Ethernet MAC User Guide located on the Tri-
Mode Ethernet MAC product page.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 19
UG138 August 8, 2007

http://www.xilinx.com
http://www.xilinx.com/systemio/temac/index.htm
http://www.xilinx.com/systemio/temac/index.htm

2:)(||_|NX® Chapter 1: Introduction

Related Xilinx Ethernet Products and Services

See the Ethernet Products and Services page at:

www.xilinx.com /products/design_resources/conn_central/grouping /ethernet.htm

Specifications

e IEEE 802.3-2002
e Reduced Gigabit Media Independent Interface (RGMII) version 2.0

Technical Support

For technical support, see support.xilinx.com/. Questions are routed to a team of engineers
with expertise using the TEMAC core.

Xilinx will provide technical support for use of this product as described in the Tri-Mode
Ethernet MAC User Guide and the Tri-Mode Ethernet MAC Getting Started Guide. Xilinx
cannot guarantee timing, functionality, or support of this product for designs that do not
follow these guidelines.

Feedback

Xilinx welcomes comments and suggestions about the TEMAC core and the
documentation supplied with the core.

Tri-Mode Ethernet MAC Core

For comments or suggestions about the core, please submit a WebCase from
www.xilinx.com /support/clearexpress/websupport.htm. Be sure to include the
following information:

e Product name
e Core version number

e Explanation of your comments

Document

For comments or suggestions about the core, please submit a WebCase from
www.xilinx.com /support/clearexpress/websupport.htm. Be sure to include the
following information:

e Document title
e Document number
e Page number(s) to which your comments refer

e Explanation of your comments

20 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com/products/design_resources/conn_central/grouping/ethernet.htm
http://www.xilinx.com/support/clearexpress/websupport.htm
http://support.xilinx.com/
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com

S XILINX®
Chapter 2

Core Architecture

This chapter describes the TEMAC core architecture including all interfaces and the major
functional blocks.

System Overview
Figure 2-1 illustrates a block diagram of the TEMAC core.

Tri-Mode Ethernet MAC Core
Client
Transmitter - - Transmit Engine L -
Interface
A %
3 \ S
£ @
£ =
£ Flow Control =
3 1 s To Physical
O o Sublayers
Y
Client
Receiver - -t Receive Engine -t d
Interface
Optional
Address
Filter
Optional Management
Client
Management - - . . <7 -
Interface Configuration MDIO

Figure 2-1: Tri-Mode Ethernet MAC Block Diagram.

Core Components
The major functional blocks of the MAC are:

e (lient interface

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 21
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 2: Core Architecture

Transmit engine

Flow control block

Receive engine

Optional Management Interface and MDIO
GMII/MII interface

Optional Address Filter

The client interface has fully independent 8-bit interfaces for both transmit and receive to
support full-duplex operation.

Configuration of the core and access to the MDIO port are accessed through the optional
Management Interface, a 32 bit processor-neutral data pathway that is independent of the
Ethernet data pathway. When the Management Interface is omitted, configuration of the
core can still be made via an alternative configuration vector.

22

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Core Interfaces X XILINX®

Core Interfaces

Optional Interfaces

Figure 2-2 shows the pinouts with the optional Management Interface when the core is
built with the clock_enables option set to false

txcoreclk Domain txgmiimiiclk Domain

clientemactxd[7:0] ——®»
clientemactxdvid ——»
clientemactxifgdelay[7:0] ——»

—® emacphytxd[7:0]
L » emacphytxen

) — emacphytxer
emacclienttxack — <———

clientemctxunderrun ——

emacclienttxcollision <——— rxgmiimiiclk Domain

emacclienttxretransmit ~ <+———

clientemacpausereq —— -—— phyemacrxd[7:0]

clientemacpauseval ~—— «<—— phyemacrxdv

«—— phyemacrxer
emacclienttxstats[31:0] <] Py

emacclienttxstatsvid ~ <+——

rxcoreclk Domain

emacclientrxd[7:0] ~-—— — emacphymclkout

) <—— phyemacmdin
emacclientrxdvld R —

) [— ™ emacphymdout
emacclientrxgoodframe ~ -———

— ™ emacphymditri
emacclientrxbadframe = <+—— phymdtr
emacclientrxstats[27:0] — ~-——

emacclientrxstatsvid I —

~<— phyemaccrs
l«—— phyemaccol

hostclk Domain
hostclk ~ ——

hostopcode[1:0] ——®»

hostaddr[9:0] ——»
hostwrdata[31:0] ——#»
hostrddata[31:0] — ~es—

hostmiimsel —

< txcoreclk
<— rxcoreclk
[<— txgmiimiiclk
< rxgmiimiiclk
hostreq — L » speedis100

hostmiimrd R —
imray —— speedis10100

[<— tieemacunicastaddr[47:0]
(if address_filter = true)

Figure 2-2: Component Pinout for MAC with Optional Management Interface (clock_enables = false)

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 23
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Core Architecture

Figure 2-3 shows the pinouts without the optional Management Interface when the core is
built with the c1lock_enables option set to false.

txcoreclk Domain txgmiimiiclk Domain

clientemactxd[7:0] ——®»
clientemactxdvld ——»
clientemactxifgdelay[7:0] ——»

—® emacphytxd[7:0]
L= emacphytxen

. — emacphytxer
emacclienttxack <———

clientemctxunderrun ~ ———

emacclienttxcollision ~<—— Ir __________ r;gaifnii_clk_D_onTam
emacclienttxretransmit ~ <+—— |
) |
clientemacpausereq —— | -—— phyemacrxd[7:0]
clientemacpauseval ——» : l«—— phyemacrxdv
) «—— phyemacrxer
emacclienttxstats[31:0] <@ : phy
emacclienttxstatsvild ~— <——— |
|
‘xcoreclk Domain | T __________________
emacclientrxd[7:0] ~-—— |
|
emacclientrxdvld ~ =——— |
emacclientrxgoodframe ~ <— :
emacclientrxbadframe =~ <——— I
|
emacclientrxstats[27:0] — —-— | phyemacers
emacclientrxstatsvid =] : phyemaccol
________________________ |
< txcoreclk

|
|
|
|

tieemacconfigvec[66:0] ——®» : <— rxcoreclk
: < txgmiimiiclk
: <— rxgmiimiiclk
| L » speedis100
|
|

— ™ speedis10100

[<— tieemacunicastaddr[47:0]
(if address_filter = true)

Figure 2-3: Component Pinout for MAC without Optional Management Interface (clock_enables = false)

24 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Core Interfaces

FIXILINX®

Figure 2-4 shows the pinouts with the optional Management Interface when the core is
built with the clock_enables option set to true.

txgmiimiiclk Domain

clientemactxd[7:0]
clientemactxdvid
clientemactxifgdelay[7:0]

emacclienttxack
clientemctxunderrun
emacclienttxcollision
emacclienttxretransmit
clientemacpausereq

clientemacpauseval

clientemactxenable

emacclienttxstats[31:0]

emacclienttxstatsvid

rxgmiimiiclk Domain
emacclientrxd[7:0]
emacclientrxdvld
emacclientrxgoodframe
emacclientrxbadframe
emacclientrxstats[27:0]
emacclientrxstatsvld

clientemacrxenable

hostclk Domain hostclk

hostopcode[1:0]
hostaddr[9:0]
hostwrdata[31:0]
hostrddata[31:0]
hostmiimsel
hostreq
hostmiimrdy

— emacphytxd[7:0]
= emacphytxen

— emacphytxer

phyemacrxd[7:0]
phyemacrxdv

phyemacrxer

emacphymclkout
phyemacmdin
emacphymdout

emacphymdtri

phyemaccrs
phyemaccol

txgmiimiiclk
rxgmiimiiclk
speedis100
speedis10100

tieemacunicastaddr[47:0]

(if address_filter = true)

Figure 2-4: Component Pinout for MAC with Optional Management Interface (clock_enables = true)

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

25

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Core Architecture

Figure 2-5 shows the pinouts without the optional Management Interface when the core is
built with the clock_enables option set to true.

txgmiimiiclk Domain

clientemactxd[7:0] ——®»
clientemactxdvild —— —® emacphytxd[7:0]
clientemactxifgdelay[7:0] ~——®»] L » emacphytxen

) — emacphytxer
emacclienttxack ~—<——

clientemctxunderrun ———
emacclienttxcollision «———
emacclienttxretransmit ~ <+——
clientemacpausereq ——
clientemacpauseval ——#»

clientemactxenable ——»]

emacclienttxstats[31:0]

emacclienttxstatsvid ~ <+———

xgmiimiiclk Domain | |
emacclientrxd[7:0] — -—
~—— phyemacrxd[7:0]

emacclientrxdvld R E—
<—— phyemacrxdv

emacclientrxgoodframe = <—
+—— phyemacrxer

emacclientrxbadframe = <———
emacclientrxstats[27:0] -
emacclientrxstatsvid I

clientemacrxenable ——™

<—— phyemaccrs
l«—— phyemaccol

tieemacconfigvec[66:0] | txgmiimiiclk
< rxgmiimiiclk
L » speedis100

[— ™ speedis10100

reset —— [<— tieemacunicastaddr[47:0]
(if address_filter = true)

Figure 2-5: Component Pinout for MAC without Optional Management Interface (clock_enables = true)

26 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Core Interfaces X XILINX®

Client Side Interface Signals

Table 2-1 describes the client-side transmit signals of the TEMAC core. These signals are
used to transmit data from the client to the TEMAC core.

Table 2-1: Client Interface Signal Pins

Signal Direction Description
clientemactxd[7:0] Input Frame data to be transmitted is supplied on
this port.
clientemactxdvld Input Control signal for clientemactxd port.
clientemactxifgdelay[7:0] Input Control signal for configurable interframe

gap adjustment. See “Interframe Gap
Adjustment: Full-Duplex Mode Only,” on
page 54 for timing diagrams.

emacclienttxack Output | Handshaking signal. Asserted when the
current data on clientemactxd has been
accepted. See “Transmitting Outbound
Frames,” on page 47 for timing diagrams.

clientemactxenable Input If the core is built using the optional clock
enable logic the number of clock resources
is reduced by clocking the transmit client
interface on the txgmiimiiclk input. At
speeds below 1 Gbps this signal must toggle
between ‘1" and ‘0’ on alternate
txgmiimiiclk cycles for correct operation of
the core. At 1 Gbps it must be held high. See
“Transmitting Outbound Frames,” on page
47 for timing diagrams.

clientemactxunderrun Input Asserted by client to force MAC core to
corrupt the current frame.

emacclienttxcollision Output | Asserted by the MAC core to signal a
collision on the medium and that any
transmission in progress should be aborted.
Always ‘0" when the MAC core is in full-
duplex mode.

emacclienttxretransmit Output | When asserted at the same time as the
emacclienttxcollision signal, this signals to
the client that the aborted frame should be
resupplied to the MAC core for
retransmission. Always ‘0" when the MAC
core is in full-duplex mode.

emacclienttxstats[31:0] Output This gives information on the last frame
transmitted. See “Transmitter Statistics
Vector,” on page 55 for vector contents.

emacclienttxstatsvld Output | Asserted at end of frame transmission,
indicating that the emacclienttxstats is
valid.
Tri-Mode Ethernet MAC v3.4 www.xilinx.com 27

UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Core Architecture

Table 2-1: Client Interface Signal Pins (Continued)

Signal Direction Description
emacclientrxd[7:0] Output | Frame data received is supplied on this
port.
emacclientrxdvld Output | Control signal for the emacclientrxd port.
emacclientrxgoodframe Output | Asserted at end of frame reception to

indicate that the frame should be processed
by the MAC client. See “Normal Frame
Reception,” on page 39.

emacclientrxbadframe Output | Asserted at end of frame reception to
indicate that the frame should be discarded
by the MAC client. See “Frame Reception
with Errors,” on page 42.

clientemacrxenable Input If the core is built using the optional clock
enable logic the number of clock resources
is reduced by clocking the receive client
interface on the rxgmiimiiclk input. At
speeds below 1 Gbps, this signal must
toggle between ‘1" and ‘0’ on alternate
rxgmiimiiclk cycles for correct operation of
the core. At 1 Gbps, it must be held high. See
“Receiving Inbound Frames,” on page 39
for timing diagrams.

emacclientrxstats[27:0] Output Provides information about the last frame
received. See “Receiver Statistics Vector,”
on page 45 for the vector contents.

emacclientrxstatsvld Output | Asserted at end of frame reception,
indicating that the emacclientrxstats is
valid.

clientemacpausereq Input Pause request: sends a pause frame down

the link. See “Transmitting a Pause Control
Frame,” on page 59.

clientemacpauseval[15:0] Input Pause value: inserted into the parameter
field of the transmitted pause frame.

28 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Core Interfaces

FIXILINX®

Management Interface Signals

Configuration Vector Signals

Table 2-2 describes the Management Interface and support signals. These signals are used
by the client to configure the MAC core and to read the status of configuration bits. See
“Using the Optional Management Interface,” on page 81.

Table 2-2: Optional Management Interface Signal Pinout

Signal Direction Description

hostclk Input Clock for Management Interface.

hostopcode[1:0] Input Defines operation to be performed over
MDIO interface. Bit 1 is also used in
configuration register access. See “Using
the Management Interface,” on page 88.

hostaddr[9:0] Input Address of register to be accessed.

hostwrdata[31:0] Input Data to write to register.

hostrddata[31:0] Output Data read from register.

hostmiimsel Input When asserted, the MDIO interface is
accessed. When disasserted, the MAC
internal configuration is accessed.

hostreq Input Used to signal a transaction on the MDIO
interface. See “Using the Management
Interface,” on page 88.

hostmiimrdy Output | When high, the MDIO interface has

completed any pending transaction and is
ready for a new transaction.

If the Management Interface is not present, the configuration of the core is carried out by a
configuration vector. (Table 2-3.)

Table 2-3: Alternative to the Optional Management Interface: Configuration Vector

Signal Pinout
Signal Direction Description
tieemacconfigvec[66:0] Input The Configuration Vector is used to

replace the functionality of the MAC
Configuration Registers when the
Management Interface is not used. See
“Accessing Configuration without the
Management Interface,” on page 94.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

29

http://www.xilinx.com

2:)(||_|NX® Chapter 2: Core Architecture

Address Filter Signals

If the optional address filter is included in the core, the user may specify a unicast address
for the MAC by setting the tieemacunicastaddr signal. If the Management Interface is
present, this can be overwritten by writing to the unicast address register. See “Using the
Management Interface,” on page 88.

Table 2-4: Address Filter Unicast Address

Signal Direction Description
tieemacunicastaddr[47:0] Input This vector is used to set the default
address for the MAC. See “Address
Filter,” on page 44.

Clock, Speed Indication, and Reset Signals

Table 2-5 describes the clock signals that are input to the core and the outputs that can be
used to select between the three operating speeds. The clock signals are generated in the
top-level example design provided with the core. See “Clocking,” on page 117.

Table 2-5: Clock, Speed Indication and Reset Signals

Signal Direction Description

txcoreclk Input Only present when clock_enables=false.
The clock for data transmission on the
client side of the core. This is 125 MHz at
1 Gbps, 12.5 MHz at 100 Mbps and 1.25
MHz at 10 Mbps. This clock should be
used to clock the client transmit
circuitry. For more information see
“Clocking,” on page 117.

rxcoreclk Input Only present when clock_enables=false.
The clock for the reception of data on
the client side of the core. This is 125
MHz at 1 Gbps, 12.5 MHz at 100 Mbps
and 1.25 MHz at 10 Mbps. This clock
should be used to clock the client
receiver circuitry. For more
information, see “Clocking,” on page
117.

txgmiimiiclk Input The clock for the transmission of data
on the physical interface. This is 125
MHz at 1 Gbps, 25 MHz at 100 Mbps
and 2.5 MHz at 10 Mbps. This clock
should be used to clock the physical
interface transmit circuitry. For more
information, see “Clocking,” on page
117. When clock_enables=true, this
clock is used to clock the entire transmit
side of the core.

30 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Core Interfaces

FIXILINX®

Table 2-5: Clock, Speed Indication and Reset Signals

Signal

Direction

Description

rxgmiimiiclk

Input

The clock for the reception of data on
the physical interface. This is 125 MHz
at 1 Gbps, 25 MHz at 100 Mbps and 2.5
MHz at 10 Mbps. This clock should be
used to clock the physical interface
receive circuitry. For more information,
see “Clocking,” on page 117. When
clock_enables=true, this clock is used to
clock the entire receive side of the core.

speedis100

Output

This output is asserted when the core is
operating at 100 Mbps. It is derived
from either bits 30 and 31 of the MAC
Speed Configuration register (See
“Configuration Registers,” on page 81)
if the optional Management Interface is
present. If the Management Interface is
not present, this is derived from
configuration vector bits 65 and 66.

speedis10100

Output

This output is asserted when the core is
operating at either 10 Mbps or 100
Mbps. It is derived from either bits 30
and 31 of the MAC Speed Configuration
register (see “Configuration Registers,”
on page 81) if the optional Management
Interface is present. If the Management
Interface is not present, this is derived
from configuration vector bits 65 and
66.

reset

Input

Asynchronous reset for entire core. See
“Reset Conditions,” on page 126 for
more information on the reset circuit.

Physical Interface Signals

Table 2-6 describes the GMII/MII signals of the MAC core. These are typically attached to
a PHY module, either off-chip or internally integrated. The GMII is defined in IEEE 802.3
clause 35. The GMII/MII physical interface, together with logic to convert these signals to
RGMII format, is described in “Using the Physical Side Interface,” on page 63

Table 2-6: GMII/MII Interface Signal Pinout

Signal Direction Description
emacphytxd[7:0] Output Transmit data to PHY.
emacphytxen Output Data Enable control signal to PHY.
emacphytxer Output Error control signal to PHY.
phyemaccrs Input Control signal from PHY.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

31

http://www.xilinx.com

FIXILINX

Chapter 2: Core Architecture

Table 2-6: GMII/MII Interface Signal Pinout (Continued)

Signal Direction Description
phyemaccol Input Control signal from PHY.
phyemacrxd[7:0] Input Received data from PHY.
phyemacrxdv Input Data Valid control signal from PHY.
phyemacrxer Input Error control signal from PHY.
corehassgmii Input Tie this input high if the core is

interfaced to the Ethernet 1000BASE-X
PCS/PMA or SGMII core in SGMII
mode. See “Integrating with the
Ethernet 1000BASE-X PCS/PMA or
SGMII Core,” on page 127 for more
information.

Optional MDIO Signals

Table 2-7 describes the MDIO (MII Management) interface signals of the MAC core (see
“Using the MDIO Interface,” on page 77. These signals are typically connected to the
MDIO port of a PHY device, either off-chip or an SoC-integrated core. The MDIO format is

defined in IEEE 802.3 clause 22.

Table 2-7: MDIO Interface Signal Pinout

Signal

Direction

Description

emacphymclkout

Output

MDIO Management Clock: derived
from hostclk on the basis of supplied
configuration data when the optional
Management Interface is used. See
“Accessing MDIO via the TEMAC,”
on page 92.

emacphymdin

Input

Input data signal for communication
with PHY configuration and status.
Tie high if unused.

emacphymdout

Output

Output data signal for communication
with PHY configuration and status.

emacphymdtri

Output

Tristate control for MDIO signals; ‘0’
signals that the value on
emacphymdout should be asserted
onto the MDIO bus.

32

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

$7 XILINX®
Chapter 3

Generating the Core

This chapter provides information about configuring and generating the core using the
CORE Generator™ tool.

GUI Interface

Figure 3-1 displays the TEMAC core customization screen.

Mode Ethernet MAC

logiCFE Tri Mode Ethernet MAC vas
A~
—| Component Name |tri_m0de_eth_mac:
Options
reset [T:0jemacphybod
emacphytuen Management Interface Clock Enables
piente ol Emacghyber Physical Interface
lientemactedvid
i ! P @ GMII © RGMI
emacclientboachk phyemaccol =
ntemacbonderrun [7:0)phy=emacrd Example Design will implement an GMIL/MI| Interface
jacclientbecollision phyemacnody
bofientboretransmit phy=macneer Address Fitter Options
nactxifgdelay{7:0] hostolk Address Fitter
: FE T Mumber of Address Table Entries Range: 0.4

fentemacpsuserag hostreq
pacpauseval[15:0] hostmiimss|
clientbestats[31:0] [2:0jhostaddr
lacclienttestatsyid [31:0}hostwrdata
< | >

1P Symbol |

View Data Sheet Page 1of 1 < Back Mext = Finish | ’ Cancel

<

Figure 3-1: Core Customization Screen

Component Name

The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_".

Management Interface

Select this option if you wish to include the optional Management Interface (see “Using the
Optional Management Interface,” on page 81). If this option is not selected, the core will be
generated with a configuration vector. The default is to have the Management Interface.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 33
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 3: Generating the Core

Clock Enables

Select this option to run the transmit and receive sections of the core on the clocks from the
physical interface. This reduces the number of BUFGMUXes that are used by the core by 2.

Address Filter

It is possible to generate the core with an address filter. This will prevent the reception of
frames that are not addressed to this MAC. See “Address Filter,” on page 44.

Number of Address Table Entries

The Address Filter can be instantiated with an address table that holds up to 4 additional
valid addresses. The user may select an integer between 0 and 4 to define the number of
addresses that are present in the table.

Physical Interface

It is possible to select from two different physical interface choices for the core:
e GMII/MII - see “Implementing External GMII,” on page 63.
e RGMII - see “Implementing External RGMIL" on page 70.

The choice of physical interface will determine the content of the example design delivered
with the core: the external GMII or RGMII will be added in the HDL top-level design file.
There is no change in the core’s netlist for this option.

The default is the GMII physical interface.

Parameter Values in the XCO File

XCO file parameter names and their values are identical to the names and values shown in
the GUI, except that underscore characters (_) are used instead of spaces. The text in an
XCO file is case insensitive.

Table 3-1 shows the XCO file parameters and values, and summarizes the GUI defaults.
The following is an example of the CSET parameters in an XCO file:

CSET component_name = abcl23

CSET address_filter = true

CSET management_interface = true

CSET clock_enables = false

CSET physical_interface = gmii

CSET number_of_address_table_entries = 4

Table 3-1: XCO File Values and Default Values
Parameter XCO File Values Default GUI Setting

component_name ASCII text starting with a
letter and based upon the blank
following characterset: a..z,
0.9 and _

address_filter One of the following

keywords: true, false true

34

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX®

Table 3-1: XCO File Values and Default Values
Parameter XCO File Values Default GUI Setting
number_of_address_table_ | Integer in the range 0 - 4 4
entries
clock_enables One of the following
true
keywords: true, false
management_interface One of the following
true
keywords: true, false
physical_interface One of the following .
gmii

keywords: gmii, rgmii

Output Generation

The output files generated from the CORE Generator tool are placed in the CORE

Generator project directory. The list of output files includes

the netlist file

supporting CORE Generator files

release notes and other documentation

subdirectories containing example design files

scripts to run the core through the back-end tools and to simulate the core using the
Mentor Graphics® ModelSim® and the Cadence® IUS simulators

See “CORE Generator Directory Structure,” on page 121 for definitions of all output files.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

35

http://www.xilinx.com

2:)(||_|NX® Chapter 3: Generating the Core

36 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 4

Designing with the Core

This chapter provides general guidelines for creating designs using the TEMAC core,
including a detailed description of each interface to the core. For information about special
design considerations, for example, clocking schemes, see “Clocking and Reset,” on page
117. To work with the FIFO provided in the example design included with the TEMAC
core, see Appendix A, “Using the Client Side FIFO.” For more information about the
example design see the Tri-Mode Ethernet MAC Getting Started Guide.

General Design Guidelines

This section describes the steps required to turn a TEMAC core into a fully-functioning
design integrated with user application logic. Its important to recognize that not all
designs will require all the design steps listed in this chapter. The following discusses the
design steps required for various implementations. Follow the logic design guidelines in
this manual carefully.

Design Steps

Generate the core from the CORE Generator (see Chapter 3, “Generating the Core”).

Using the HDL Example Design as User Top-level

See the Tri-Mode Ethernet MAC Getting Started Guide.

o Edit the HDL example design file produced by the CORE Generator to add user logic
and any other I/Os required. Add/change clocking scheme.

¢ Synthesize the entire design. For a VHDL design, the Xilinx Synthesis Tool (XST)
script and project file in the Zimplement directory may be adapted to include the
user’s HDL files. For a verilog design, the XST script file and the implement script in
the /implement directory may be adapted.

e Run the implement script in the Zimplement directory to create a top-level netlist,
which includes the TEMAC core netlist. The script may also run the Xilinx tools map,
par, and bitgen, creating a bitstream that can be downloaded to a Xilinx device.

e Simulate the entire design using the demonstration test bench provided in the
/simulation directory.

e Download the bitstream to a Virtex-5™, Virtex-4, Virtex-II, Virtex-II Pro,
Spartan™-3, Spartan-3E or Spartan-3A device.

Using the HDL Example Design in a User Design

Generate the core from the CORE Generator (see Chapter 3, “Generating the Core”).

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 37
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 4: Designing with the Core

e Edit the HDL example design file produced by the CORE Generator to remove
unnecessary IOBs, pipeline registers, Digital Clock Managers (DCMs), and anything
else not required by the user. These may need to be replicated within the user top-
level design.

e Add an interface to the HDL example design so that it may be instanced in the user
design.

e Synthesize the entire design, including the same files used for default
implementation.

e Run the Xilinx tools map, par, and bitgen to creates a bitstream that can be
downloaded to a Xilinx device. Care must be taken to constrain the design correctly,

and the UCF produced by CORE Generator should be used as the basis for the user’s
UCE. See Chapter 9, “Constraining the Core” for more information.

e Simulate the entire design using the demonstration test bench provided in the /test
directory.

e Download the bitstream to a Virtex-5™, Virtex-4, Virtex-II, Virtex-II Pro,
Spartan™-3, Spartan-3E or Spartan-3A device.

Understand Signal Pipelining

Pipeline registers are used in the HDL example design provided with the core only to allow
the core interfaces to be interfaced cleanly to the IOBs on the selected device; these registers
create artificial latency on some inputs and outputs in the example design file. Because a
user design will most likely connect to the core interfaces on the same FPGA fabric, the
pipeline registers will probably not be required in a user design and can be safely removed
if the user plans to add interface registers to their own logic.

Register All I/Os

To simplify timing and increase system performance in an FPGA design, register all 1/Os.
All inputs and outputs from the user application should come from, or connect to, a flip-
flop inside the user application. It may not be possible to register the signal on all paths;
however, doing so simplifies timing analysis and makes it easier for the Xilinx tools to
place and route the design.

Recognize Timing Critical Signals

The UCF provided with the core identifies the timing critical signals and the timing
constraints that should be applied.

Use Supported Design Flows

The XST/ISE 9.1i/Mentor ModelSim or Cadence IUS design flow is supported for the
TEMAC core.

Make Only Allowed Modifications

The TEMAC core should not be modified by the user, as they may cause adverse effects on
system timing and protocol compliance. Supported user configurations of the TEMAC
core can only be made by the selecting options from the CORE Generator screen when the
core is generated. For more information, see Chapter 3, “Generating the Core.”

38

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®

Chapter 5

Using the Client Side Data Path

This chapter provides a detailed description of the client-side data-flow interface. The
definitions and abbreviations used in this chapter are described in Table 5-1.

Table 5-1: Abbreviations Used in Timing Diagrams

Abbreviation Definition
DA Destination address; 6 bytes
SA Source address; 6 bytes
L/T Length/type field; 2 bytes
FCS Frame check sequence; 4 bytes

Receiving Inbound Frames

The client interface is designed for maximum flexibility in matching to a client switching
fabric or network processor interface.

The data pathway is 8 bits wide in both the transmit and receive directions. If the core is
generated with the clock_enable option set to false, each pathway is synchronous to
txcoreclk and rxcoreclk respectively. If the core is generated with the clock_enable
option set to true, each pathway is synchronous to txgmiimiiclk and rxgmiimiiclk.
This gives completely independent full-duplex operation.

Normal Frame Reception

Without Clock Enables

Figure 5-1 shows the timing of a normal inbound frame transfer when the core is generated
without the optional clock enables. The client must be prepared to accept data at any time;
there is no buffering within the MAC to allow for latency in the receive client. Once frame
reception begins, data is transferred on consecutive clock cycles to the receive client until
the frame is complete. The MAC asserts the emacclientrxgoodframe signal to indicate
that the frame was successfully received and that the frame should be analyzed by the
client.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 39

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 5: Using the Client Side Data Path

rxcoreclk

!
. T7
emacclientrxdvld ’ \
emacclientrxgoodframe /__
i 1/

emacclientrxbadframe

Figure 5-1: Normal Frame Reception

Frame parameters (destination address, source address, length/type and optionally FCS)
are supplied on the data bus according to the timing diagram. The abbreviations are
described in Table 5-1.

If the length /type field in the frame has the length interpretation, and this indicates that
the inbound frame has been padded to meet the Ethernet minimum frame size
specification, then this padding will not be passed to the client in the data payload. The
exception to this is in the case where FCS passing is enabled. See "Client-Supplied FCS
Passing" on page 42.

Therefore, when client-supplied FCS passing is disabled, emacclientrxdvld =0’
between frames for the duration of the padding field (if present), the FCS field, carrier
extension (if present), the interframe gap following the frame, and the preamble field of the
next frame. When client-supplied FCS passing is enabled, emacclientrxdvld = ‘0’
between frames for the duration of carrier extension (if present), the interframe gap, and
the preamble field of the following frame.

40

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Receiving Inbound Frames i:)("JNX®

Using Clock Enables

Figure 5-2 and Figure 5-3 show the timing of the reception of frames when the core is
generated with the optional clock enable circuitry. Here the signals are synchronous to the
rxgmiimiiclkinput. At 1 Gbps, the client should hold the clientemacrxenable line
high (Figure 5-2). At slower speeds, the clientemacrxenable line should be toggled on
the rising edge of rxgmiimiiclk. This signal should be used to enable the client receiver
logic. As 4 bits of data are transferred across the MII interface on each rising edge of
rxgmiimiick at 10/100 Mbps, this gives 8 bits of valid data every second
rxgmiimiiclk period.

rxgmiimiiclk

! DA ! SA ! LT Lf DATA —»‘

clientemacrxenable

emacclientrxdvid [\

emacclientrxgoodframe

emacclientrxbadframe

Figure 5-2: Normal Frame Reception at 1 Gbps with Optional Clock Enables

rxgmiimiiclk

‘RDA—»‘RSA —»‘ LT ‘<— DATA —»‘

clientemacrxenable
emacclientrxdvid [\

emacclientrxgoodframe ' ~

emacclientrxbadframe

Figure 5-3: Normal Frame Reception at 10/100 Mbps with Optional Clock Enables

In the remainder of this section, the timing diagrams are shown for the non-clock enabled
version of the core. The timing of the clock enabled core is identical to the given diagrams
at 1 Gbps with rxgmiimiiclk replacing rxcoreclk and clientemacrxenable held
high. At 10/100 Mbps, the frequency of rxgmiimiiclk is double that of the illustrated
rxcoreclk and the clientemacrxenable signal is toggled on every rising edge of
rxgmiimiiclk to provide the necessary data rate.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 41
UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

emacclientrxgoodframe and emacclientrxbadframe Timing

Although Figure 5-1 illustrates the emacclientrxgoodframe signal asserted shortly
after the last valid data on emacclientrxd, this is not always the case. The
emacclientrxgoodframe or emacclientrxbadframe signals are asserted only after
all frame checks are completed. This is after the FCS field has been received (and after
reception of carrier extension, if present).

Therefore, either emacclientrxgoodframe or emacclientrxbadframe is asserted
following frame reception at the beginning of the interframe gap.

Frame Reception with Errors

Figure 5-4 illustrates an unsuccessful frame reception (for example, a fragment frame or a
frame with an incorrect FCS). In this case, the emacclientrxbadframe signal is asserted
to the client at the end of the frame. It is then the responsibility of the client to drop the data
already transferred for this frame.

rxcoreclk”I”|I|I|I|||I|I|I|I””””|||||||||||I””””””l

emacclientrxd[7:0]

e DA—wle—sa— T l—DATA —

emacclientrxdvid ’ \

emacclientrxgoodframe

emacclientrxbadframe /—_

xip2144

Figure 5-4: Frame Reception with Error

Client-Supplied FCS Passing

If the MAC core is configured to pass the FCS field to the client (see “Configuration
Registers,” on page 81), it is handled as displayed in Figure 5-5.

In this case, any padding inserted into the frame to meet Ethernet minimum frame length
specifications will be left intact and passed to the client.

42 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Receiving Inbound Frames i:)("JNX®

Even though the FCS is passed up to the client, it is also verified by the MAC core, and
emacclientrxbadframe asserted if the FCS check fails.

rxcoreclk ||||||||||I|||||||I|I|||||||I|I|||||I””””””””””l”

emacclientrxd[7:0]
‘ DA—+] SA | LT l—DATA — FCS |

emacclientrxdvld ’ \

emacclientrxgoodframe

emacclientrxbadframe

Xip2145

Figure 5-5: Frame Reception with In-Band FCS Field

VLAN Tagged Frames

The reception of a VLAN tagged frame (if enabled, see “Configuration Registers,” on page
81) can be seen in Figure 5-6. The VLAN frame is passed to the client so that the frame may
be identified as VLAN tagged; this is followed by the Tag Control Information bytes, V1

and V2. More information on the interpretation of these bytes may be found in IEEE 802.3-

2002 standard.

rxcoreclk ”I””””””””|||||||||I|I|I|||||I”””””””””””l

emacclientrxd[7:0]

‘ DA— SA | viaN | LT le—DATA —]

tag

emacclientrxdvld ’ \

emacclientrxgoodframe

emacclientrxbadframe

xip2146

Figure 5-6: Reception of a VLAN Tagged Frame

Maximum Permitted Frame Length

The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the core receives a frame which exceeds the maximum
legal length, emacclientrxbadframe will be asserted. When jumbo frame handling is
enabled, frames which are longer than the legal maximum are received in the same way as
shorter frames.

For more information on enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 81.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 43
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 5: Using the Client Side Data Path

Length/Type Field Error Checks

Enabled

Default operation is with the length/type error checking enabled. In this mode, the
following checks are made on all frames received. If either of these checks fail, the frame is
marked as BAD.

A value in the length /type field that is greater than or equal to decimal 46 but less than
decimal 1536 (a Length interpretation) is checked against the actual data length received.

A value in the length /type field that is less than decimal 46 is checked to see that the data
field is padded to exactly 46 bytes (so that the resultant frame is minimum frame size: 64
bytes total in length).

Furthermore, if padding is indicated (the length/type field is less than decimal 46) and
“Client-Supplied FCS Passing” is disabled, then the length value in the length/type field
will be used to deassert emacclientrxdvld after the indicated number of data bytes so
that the padding bytes are removed from the frame.

Disabled

When the length /type error checking is disabled (see "Register Maps" on page 82) and the
length/type field has a length interpretation, the MAC does not check the length value
against the actual data length received. A frame containing only this error is marked as
good. However, if the length /type field is less than decimal 46, the MAC will mark a frame
as bad if it is not the minimum frame size of 64 bytes.

Furthermore, if padding is indicated and “Client-Supplied FCS Passing” is disabled, then
a length value in the length/type field will not be used to deassert emacclientrxdvld.
Instead emacclientrxdvld will be deasserted before the start of the FCS field; in this
way any padding will not be removed from the frame.

Address Filter

If the optional address filter is included in the core, the MAC is able to reject frames that do
not contain a known address in their destination address field. If a frame is rejected, the
emacclientrxdvld signal is not asserted for the duration of the frame. In addition
neither emacclientrxgoodframe or emacclientrxbadframe are asserted at the end
of the frame. The statistics vectors are still output with a valid pulse at the end of the
rejected frame.

If the address filter is not in promiscuous mode, it will reject frames in which the
destination address does not meet any of the following criteria:

e Itisequal to the broadcast address defined in the IEEE 802.3-2002 specification.
e Itis equal to the pause multicast address defined in the IEEE 802.3-2002 specification.

e The destination address field contains the Pause frame MAC source address specified
in Receiver Configuration Word 0 and Word 1.

e Itis equal to the MAC Unicast Address. When the optional Management Interface is
present this is contained in the unicast address configuration registers (Table 8-9 and
Table 8-10). If the Management Interface is not present the unicast address is input on
the tieemacunicastaddr input.

¢ It matches any of the addresses stored in the MAC address table. The address table is
only present when the MAC contains the optional Management Interface.

44

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Receiving Inbound Frames XX"JNX@

Receiver Statistics Vector

The statistics for the frame received are contained within the emacclientrxstats
output. The vector is driven synchronously by the receiver clock, rxcoreclk
(rxgmiimiiclk if clock_enables = true) following frame reception. Table 5-2 defines the
bit field for the vector.

All bit fields, with the exception of BYTE_VALID are valid only when the
emacclientrxstatsvldis asserted, as illustrated in Figure 5-7. BYTE_VALID is
significant on every receiver clock cycle.

rxcoreclk

emacclientrxstatsvid \
emacclientrxstats[26:0] _(:_

Xip2147

Figure 5-7: Receiver Statistics Vector Timing

Table 5-2: Bit Definition for the Receiver Statistics Vector

emacclientrx
stats Name Description

If the optional address filter is included in
the core, this bit is asserted if the address
of the incoming frame matches one of the
27 ADDRESS_MATCH stored or pre-set addresses in the address
filter. If the address filter is omitted from
the core, or is configured in promiscuous
mode, this line is held high.

Asserted at speeds below 1 Gbps if the
26 ALIGNMENT_ERROR frame contains an odd number of nibbles
and the FCS for the frame is invalid.

If the length /type field contained a
length value that did not match the
number of MAC client data bytes
received and the length/type field checks
LENGTH/TYPE Out of are enabled, then this bit is asserted.

Range This bitis also asserted if the length /type
field is less than 46, and the frame is not
padded to exactly 64 bytes. This is
independent of whether or not the
length/type field checks are enabled.

25

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 45
UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

Table 5-2: Bit Definition for the Receiver Statistics Vector (Continued)

emacclientrx
stats Name Description

Asserted if the previous frame was error-
free and contained the special control
frame identifier in the length/type field,
but contained an opcode that is
unsupported by the MAC (any opcode
other than PAUSE).

24 BAD_OPCODE

Asserted if the previous frame was error-
free, contained the special control frame
identifier in the length /type field,
contained a destination address that

23 FLOW_CONTROL_FRAME | matched either the MAC Control
multicast address or the configured
source address of the MAC, contained the
supported PAUSE opcode, and was acted
upon by the MAC.

Asserted if a MAC frame byte
(destination address to FCS inclusive) is
in the process of being received. This is
22 BYTE_VALID valid on every clock cycle.

Do not use this as an enable signal to
indicate that data is present on
emacclientrxd[7:0].

Asserted if the previous frame contained
a VLAN identifier in the length/type
field when receiver VLAN operation is
enabled.

21 VLAN_FRAME

Asserted if the previous frame exceeded
the specified IEEE 802.3-2002 maximum
20 OUT_OF_BOUNDS legal length (see "Maximum Permitted
Frame Length" on page 43). This is only
valid if jumbo frames are disabled.

Asserted if the previous frame contained
19 CONTROL_FRAME the special control frame identifier in the
length/type field.

The length of the previous frame in
number of bytes. The count will stick at
16368 for any jumbo frames larger than
this value.

18 down to5 | FRAME_LENGTH_COUNT

Asserted if the previous frame contained

4 MULTICAST_FRAME a multicast address in the destination
address field.
Asserted if the previous frame contained
3 BROADCAST_FRAME the broadcast address in the destination
address field.
46 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

Transmitting Outbound Frames i:)("JNX®

Table 5-2: Bit Definition for the Receiver Statistics Vector (Continued)

emacclientrx
stats Name Description

Asserted if the previous frame received
was correctly aligned but had an

2 FCS_ERROR .
- incorrect FCS value or the MAC detected
error codes during frame reception.
1 BAD FRAME! Asserted if the previous frame received
- contained errors.
0 GOOD FRAME! Asserted if the previous frame received

was error-free.

1. If the length/ tyﬁe field error checks are disabled, a frame which has an actual data length that does not
match the length/type field value will be marked as a GOOD_FRAME providing no additional errors
were detected. See "Length/Type Field Error Checks" on page 44 for more information.

Transmitting Outbound Frames

Normal Frame Transmission

Without Clock Enables

The timing of a normal outbound frame transfer can be seen in Figure 5-8. When the client
wants to transmit a frame, it places the first column of data onto the clientemactxd port
and asserts a ‘1" onto clientemactxdvld.

When the MAC core has read this first byte of data, it will assert the emacclienttxack
signal; on the next and subsequent rising clock edges, the client must provide the
remainder of the data for the frame.

The end of frame is signalled to the MAC core by taking clientemactxdvld low.

For maximum flexibility in switching applications, the Ethernet frame parameters
(destination address, source address, length/type and optionally FCS) are encoded within
the same data stream that the frame payload is transferred upon, rather than on separate
ports.

The transmitter cannot guarantee that the minimum interframe gap will be output in half-
duplex mode when clock enables are not selected. The gap may be larger than the specified

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 47
UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

minimum of 12 bytes. If the 12-byte minimum is required, the clock enable option should
be selected. This only applies to half-duplex mode.

txcoreclk

! DA ! SA ! LT L— DATA 44

clientemactxdvld ’ \

emacclienttxack /_

clientemactxunderrun

emacclienttxcollision

emacclienttxretransmit

Figure 5-8: Normal Frame Transmission Across Client Interface

Using Clock Enables

If the core is generated with the optional clock enable circuitry, the client drives the
clientemactxenable line high at 1000 Mbps and toggles it on every rising edge of
txgmiimiiclk at slower speeds. Figure 5-9 and Figure 5-10 show normal frame
transmission in this mode. The clientemactxenable line should be used to enable the
client transmission circuitry.

txgmiimiiclk

1 DA 1 SA 1 LT 1 DATA 1

clientemactxenable

L
7 7
clientemactxdvld ' ~

emacclienttxack //_

clientemactxunderrun / /

emacclienttxcollision / /

emacclienttxretransmit / /

Figure 5-9: Normal Frame Transmission at 1000 Mbps with Optional Clock Enables

48 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Transmitting Outbound Frames i:)("JNX®

txgmiimiiclk

Li, DA 4>L7 SA —J LT L— DATA —>‘

clientemactxenable
L/ 1/
77 71
clientemactxdvld ’ \

emacclienttxack J /_\ //

clientemactxunderrun J /

emacclienttxcollision J /

emacclienttxretransmit J /

Figure 5-10: Normal Frame Transmission at 10/100 Mbps with
Optional Clock Enables

In the remainder of this section, the timing diagrams are shown for the non-clock enabled
version of the core. The timing of the clock enabled core is identical to the given diagrams
at 1000 Mbps with txgmiimiiclk replacing txcoreclk and clientemactxenable
held high. At 10/100 Mbps, the frequency of txgmiimiiclk is double that of the
illustrated txcoreclk and the clientemactxenable signalis toggled on every rising
edge of txgmiimiiclk to provide the necessary data rate.

Padding

When fewer than 46 bytes of data are supplied by the client to the MAC core, the
transmitter module will add padding up to the minimum frame length. The exception to
this is when the MAC core is configured for client-passed FCS; in this case the client must
also supply the padding to maintain the minimum frame length.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 49
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 5: Using the Client Side Data Path

Client-Supplied FCS Passing

If the MAC core is configured to have the FCS field passed in by the client, the transmission
timing is as depicted in Figure 5-11. In this case, it is the responsibility of the client to
ensure that the frame meets the Ethernet minimum frame length requirements; the MAC
core will not perform any padding of the payload.

txcoreclk ”I””l” |||||I|I|||||||I|I|||||||I|I|I”””””””””l””
clientemactxd[7:0] .

! DA | SA | LT ~—DATA leFCs

clientemactxdvld ’ ' / _

emacclienttxack r \

clientemactxunderrun

emacclienttxcollision , ,

emacclienttxretransmit

Xip2134

Figure 5-11: Frame Transmission with Client-supplied FCS

Client Underrun

Figure 5-12 shows the timing of an aborted transfer. This can occur, for example, if a FIFO
connected to the client interface empties before a frame is completed. When the client
asserts clientemactxunderrun during a frame transmission, the MAC core inserts an
error code to corrupt the current frame and then falls back to idle transmission. It is the
responsibility of the client to re-queue the aborted frame for transmission. To error the
frame, the clientemactxunderrun signal may be asserted during the data transmission
or up to 1 valid clock cycle after clientemactxdvld goes low.

When an underrun occurs, clientemactxdvld may be asserted on the clock cycle after
the clientemactxunderrun assertion to request a new transmission.

50

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Transmitting Outbound Frames i:)("JNX®

txcoreclk ||||||||||

clientemactxd[7:0]

SA — | L/T ~—DATA —|

clientemactxdvld ,

emacclienttxack F \

clientemactxunderrun , ,

emacclienttxcollision

emacclienttxretransmit

xip2135

Figure 5-12: Frame Transmission with Underrun

Back-to-Back Transfers

Figure 5-13 shows the MAC client immediately ready to transmit a second frame of data
following completion of its first frame. In this figure, the end of the first frame is shown on
the left. On the clock cycle immediately following the final byte of the first frame,
clientemactxdvld is taken low by the client, and is taken high one clock cycle later to
indicate that the first byte of the destination address of the second frame is on
clientemactxd awaiting transmission.

When the MAC core is ready to accept data, emacclienttxack is asserted and the
transmission continues in the same manner as in the case of the single frame. The MAC
core will defer the assertion of emacclienttxack appropriately to comply with inter-
packet gap requirements and flow control requests.

If the MAC core is operating at 1 Gbps in half-duplex mode, the timing shown in

Figure 5-13 is required to take advantage of frame bursting; the MAC core is only
guaranteed to retain control of the medium if the clientemactxdvld signalis low for a
single clock cycle. For more information on frame bursting, see IEEE 802.3-2002.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 51

UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

txcoreclk ”IlI|||Il””””””””””” |||||||||||||||||||||||

clientemactxdvld _/

emacclienttxack I /—\

clientemactxunderrun

emacclienttxcollision /
T

emacclienttxretransmit

xip2136

Figure 5-13: Back-to-Back Frame Transmission

VLAN Tagged Frames

Transmission of a VLAN tagged frame (if enabled) can be seen in Figure 5-14. The
handshaking signals across the interface do not change; however, the VLAN type tag 81-00
must be supplied by the client to signify that the frame is VLAN tagged. The client also
supplies the two bytes of Tag Control Information, V1 and V2, at the appropriate times in
the data stream. More information on the contents of these two bytes can be found in IEEE

802.3-2002.
txcoreclk ”I””l” |||||I|I|||||||I|I|||||||I|I|Il”””””””””””
clientemactxd[7:0] .

l— DA

e sA—— VLAN [UT |l pATA —

tag

clientemactxdvld _I ~

emacclienttxack /—\

clientemactxunderrun ; I

emacclienttxcollision

emacclienttxretransmit

Xip2137

Figure 5-14: Transmission of a VLAN Tagged Frame

52 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Transmitting Outbound Frames i:)("JNX®

Maximum Permitted Frame Length

The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the client attempts to transmit a frame which exceeds the
maximum legal length, the MAC core will insert an error code to corrupt the current frame
and the frame will be truncated to the maximum legal length. When jumbo frame handling
is enabled, frames which are longer than the legal maximum are transmitted error-free.

For more information on enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 81.

Frame Collisions: Half-Duplex Operation Only

In half-duplex Ethernet operation, collisions occur on the medium as a matter of course;
this is how the arbitration algorithm is fulfilled. In the case of a collision, the MAC core
signals to the client that data may need to be resupplied as follows.

If there is a collision, the emacclienttxcollision signal will be set to ‘1" by the MAC
core. If a frame is in progress, the client must abort the transfer and take
clientemactxdvldto ‘0.

If the emacclienttxretransmit signalis ‘1" in the same clock cycle that the
emacclienttxcollision signalis‘l,’ the client must resubmit the previous frame to
the MAC core for retransmission; clientemactxdv1ld must be asserted to the MAC core
within 8 clock cycles of the emacclienttxretransmit signal in order to meet Ethernet
timing requirements. See Figure 5-15.

If the emacclienttxretransmit signalis ‘0" in the same clock cycle that the
emacclienttxcollisionsignalis‘l,” the number of retries for this frame has exceeded
the Ethernet specification or the collision has been classed as late, and the frame should be
dropped by the client. The client can then make any new frame available to the MAC for
transmission without timing restriction. See Figure 5-16.

txcoreclk ”I|||||||||||||||||||||I|||||||I””””””l”””

clientemactxdvld \ ! \ ! ! ’

. -+ 8 clocks max. J
emacclienttxack

clientemactxunderrun

emacclienttxcollision l \

emacclienttxretransmit l \

¥p2138

Figure 5-15: Collision Handling: Frame Retransmission Required

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 53

UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

txcoreclk ”I|Il”””””””””I|||||||||||||||||||||||||||||

clientemactxdvid \ ! \ ! ! ’

emacclienttxack /—\

clientemactxunderrun

emacclienttxcollision l \

emacclienttxretransmit

xip2139

Figure 5-16: Collision Handling: No Frame Retransmission Required

Interframe Gap Adjustment: Full-Duplex Mode Only

A configuration bit in the transmitter control register (see “Configuration Registers,” on
page 81) allows the user to control the length of the interframe gap transmitted by the
MAC on the physical interface. If this function is selected, the MAC exerts back pressure on
the client interface to delay the transmission of the next frame until the requested number
of idle cycles has elapsed. The number of idle cycles is controlled by the value on the
clientemactxifgdelay port seen at the start of frame transmission on the client
interface. Figure 5-17 shows the MAC operating in this mode.

The transmitter will never separate frames by less than the minimum interframe gap
specified in the IEEE 802.3-2002. This corresponds to 12 transmit clock cycles on the
GMMI/MII interface. The value on the clientemactxifgdelay port must be larger
than 12 to have an effect.

txcoreclk | I_l I_l I_l I_l I_l
clientemactxd[7:0] .
DA e SA—] l— DA
clientemactxdvid ’ u
emacclienttxack /—\
o
IFG ADJUST VALUE M Next IFG ADJUST VALUE
ack response from MAC delayed

to allow requested number of Idles
to be inserted in-between frames

Figure 5-17: Interframe Gap Adjustment

54 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Transmitting Outbound Frames

FIXILINX®

Transmitter Statistics Vector

The statistics for the frame transmitted are contained within the emacclienttxstats
output. The vector is driven synchronously by the transmitter clock following frame
transmission. The bit field definition for the Vector is defined in Table 5-3.

All bit fields, with the exception of BYTE_VALID are valid only when the
emacclienttxstatsvldis asserted, as illustrated in Figure 5-18. BYTE_VALID is
significant on every transmitter clock cycle.

emacclienttxstats bits 28 down to 20 inclusive are for half-duplex only and will be set
to logic 0 when operating in full-duplex mode.

emacclienttxstatsvld

txcoreclk

\

emacclienttxstats[31:0] _(:_

xip2141

Figure 5-18: Transmitter Statistics Vector Timing

Table 5-3: Bit Definition for the Transmitter Statistics Vector

emacclienttxst
ats

Name

Description

31

PAUSE_FRAME_TRANSMITTED

Asserted if the previous frame
was a pause frame that the
MAC itself initiated in response
to a clientemacpausereq
assertion.

30

BYTE_VALID

Asserted if a MAC frame byte
(DA to FCS inclusive) is in the
process of being transmitted.
This is valid on every clock
cycle.

Do not use this as an enable
signal to indicate that data is
present on emacphytxd[7:0].

29

Reserved

Returns logic 0.

28 down to 25

TX_ATTEMPTSI[3:0]

The number of attempts that
have been made to transmit the
previous frame. This is a 4-bit
number: 0 should be
interpreted as 1 attempt; 1 as 2
attempts, up until 15 as 16
attempts.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

55

http://www.xilinx.com

i:)("JNX® Chapter 5: Using the Client Side Data Path

Table 5-3: Bit Definition for the Transmitter Statistics Vector (Continued)

emacclienttxst

ats Name Description
24 Reserved Returns logic 0.
23 EXCESSIVE_COLLISION Asserted if a collision has been

detected on each of the last 16
attempts to transmit the
previous frame.

22 LATE_COLLISION Asserted if a late collision
occurred during frame
transmission.

21 EXCESSIVE_DEFERRAL Asserted if the previous frame

was deferred for an excessive
amount of time as defined by
the constant “maxDeferTime”
in IEEE 802.3-2002.

20 TX_DEFERRED Asserted if transmission of the
frame was deferred.

19 VLAN_FRAME Asserted if the previous frame
contained a VLAN identifier in
the length/type field when
transmitter VLAN operation is
enabled.

18 down to 5 FRAME_LENGTH_COUNT The length of the previous
frame in number of bytes. The
count will stick at 16368 for any
jumbo frames larger than this
value.

4 CONTROL_FRAME Asserted if the previous frame
had the special MAC Control
Type code 88-08 in the
length/type field.

3 UNDERRUN_FRAME Asserted if the previous frame
contained an underrun error.

2 MULTICAST_FRAME Asserted if the previous frame
contained a multicast address in
the destination address field.

1 BROADCAST FRAME Asserted if the previous frame
contained a broadcast address
in the destination address field.

0 SUCCESSFUL_FRAME Asserted if the previous frame
was transmitted without error.

56 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 6

Using Flow Control

This chapter describes the operation of the flow control logic of the TEMAC core. The flow
control block is designed to clause 31 of the IEEE 802.3-2002 standard. The MAC may be
configured to transmit pause requests and to act on their reception; these modes of
operation can be independently enabled or disabled. (See "Configuration Registers" on

page 81.)
Overview of Flow Control

Flow Control Requirement

Client Logic MAC MAC
125MHz -100ppm
Tx
- . Rx
c
9
®
O
s
Q.
<
Rx
| FIFO | » Tx
125MHz +100ppm
Figure 6-1: The Requirement for Flow Control
Tri-Mode Ethernet MAC v3.4 www.xilinx.com 57

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 6: Using Flow Control

Figure 6-1 illustrates the requirement for Flow Control at 1 Gbps. The MAC on the right
side of the figure has a reference clock slightly faster than the nominal 125 MHz. The MAC
on the left side of the figure has a reference clock slightly slower than the nominal 125
MHz. This results in the MAC on the left side of the figure not being able to match the full
line rate of the MAC on the right side (due to clock tolerances). The MAC at the left is
illustrated as performing a loopback implementation, which results in the FIFO filling up
over time. Without Flow Control, this FIFO will eventually fill and overflow, resulting in
the corruption or loss of ethernet frames. Flow Control is one solution to this problem.

Flow Control Basics

A MAC may transmit a Pause Control frame to request that its link partner cease
transmission for a specific period of time. For example, the left MAC in Figure 6-1 may
initiate a pause request when its client FIFO (illustrated) reaches a nearly full state.

A MAC should respond to received Pause Control frames by ceasing transmission of
frames for the period of time defined in the received pause control frame. For example, the
right MAC of Figure 6-1 may cease transmission after receiving the Pause Control frame
transmitted by the left MAC. In a well designed system, the right MAC ceases
transmission before the client FIFO of the left MAC overflows to provide time to empty the
FIFO to a safe level before resuming normal operation. This practice safeguards the system
against FIFO overflow conditions and frame loss.

Pause Control Frames

Control frames are a special type of ethernet frame defined in clause 31 of the IEEE 802.3
standard. Control frames are identified from other frame types by a defined value placed
into the length/type field (the MAC Control Type code). Figure 6-2 illustrates control
frame format.

6 OCTETS DESTINATION
ADDRESS

6 OCTETS SOURCE
ADDRESS

2 OCTETS LENGTH/TYPE

OCTETS WITIHIN
2 OCTETS MAC CONTROL FRAME TRANSMITTED

OPCODE TOP-TO-BOTTOM

|
: MAC CONTROL |
(minFrameSize - 160) /8 L__f@i“flE_RS____:
OCTETS : RESERVED |

| (transmitted as zeroes) 1

BITS WITHIN
FRAME TRANSMITTED

LEFT-TO-RIGHT —%

Figure 6-2: MAC Control Frame Format

58

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Flow Control Operation of the TEMAC i:)("JNX®

A Pause Control frame is a special type of Control frame, identified by a defined value
placed into the MAC Control opcode field.

Note: MAC Control OPCODES other than for Pause (Flow Control) frames have recently been
defined for Ethernet Passive Optical Networks.

The MAC Control Parameter field of the Pause Control frame contains a 16-bit field which
contains a binary value directly relating to the duration of the pause. This defines the
number of pause_quantum (512 bit times of the particular implementation). At 1 Gbps, a
single pause_quantum corresponds to 512 ns. At 100 Mbps, a single pause_quantum
corresponds to 5120 ns, and at 10 Mbps, a single pause_quantum corresponds to 51200 ns.

Flow Control Operation of the TEMAC

Transmitting a Pause Control Frame

Core-initiated Pause Request

If the TEMAC core is configured to support transmit flow control, the client may initiate a
flow control frame by asserting clientemacpausereq while the pause value is on the
clientemacpauseval bus. If the core is generated with the clock_enable option set to
false, these signals are synchronous to txcoreclk. Figure 6-3 illustrates this timing.

txcoreclk

clientemacpausereq \

Figure 6-3: Pause Request Timing

If the MAC core is generated with the clock_enable option set to true, the signals are
synchronous to txgmiimiiclk. Figure 6-4 illustrates this timing.

txgmiimiiclk —|_—|_—|_—|_—|_—|_—|__|__|_

clientemactxenable

clientemacpausereq

Figure 6-4: Pause Request Timing with Clock Enables

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 59
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 6: Using Flow Control

This action causes the core to construct and transmit a Pause Control frame on the link
with the following MAC Control frame parameters (see Figure 6-2):

e The destination address used is an IEEE 802.3 globally assigned multicast address
(which any Flow Control capable MAC will respond to).

e The source address used is the configurable Pause Frame MAC Address (see
"Configuration Registers" on page 81).

e The value sampled from the clientemacpauseval[15:0] port at the time of the
clientemacpausereq assertion will be encoded into the MAC Control Parameter
field to select the duration of the pause (in units of pause_quantum).

If the transmitter is currently inactive at the time of the pause request, this Pause Control
frame is transmitted immediately. If the transmitter is currently busy, the current frame
being transmitted is allowed to complete; the Pause Control frame will then follow in
preference to any pending client supplied frame.

A Pause Control frame initiated by this method will be transmitted even if the transmitter
itself has ceased transmission in response to receiving an inbound pause request.

Note: Only a single pause control frame request is stored by the transmitter. If the
clientemacpausereq signal is asserted numerous times in a short time period (before the
control pause frame transmission has had a chance to begin), only a single pause control frame will
be transmitted. The clientemacpauseval[15:0] value used will be the most recent value
sampled.

Client-initiated Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core. Any type of Control frame can be
transmitted through the core via the client interface using the same transmission
procedure as a standard ethernet frame (see "Transmitting Outbound Frames" on page 47).

Receiving a Pause Control Frame

Core-initiated Response to a Pause Request

An error free Control frame is a received frame matching the format of Figure 6-2. It must
pass all standard receiver frame checks (e.g. FCS field checking); in addition, the control
frame received must be exactly 64-bytes in length (from destination address through to the
FCS field inclusive). This is minimum legal ethernet MAC frame size and the defined size
for control frames.

Any Control frame received that does not conform to these checks contains an error, and it
is passed to the receiver client with the emacclientrxbadframe signal asserted.

Pause Frame Reception Disabled

When pause control reception is disabled, an error free control frame is received through
the client interface with the emacclientrxgoodframe signal asserted. In this way, the
frame is passed to the client logic for interpretation (see "Client-initiated Response to a
Pause Request" on page 61).

Pause Frame Reception Enabled

When pause control reception is enabled and an error-free frame is received by the MAC
core, the following frame decoding functions are performed:

60

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Flow Control Implementation Example i:)("JNX®

1. The destination address field is matched against the IEEE 802.3 globally assigned
multicast address or the configurable Pause Frame MAC Address (see "Configuration
Registers" on page 81).

2. The length/type field is matched against the MAC Control Type code.
3. The opcode field contents are matched against the PAUSE opcode.

If any of the previously listed checks are false, the frame is ignored by the Flow Control
logic and passed up to the client logic for interpretation by marking it with
emacclientrxgoodframe asserted. It is then the responsibility of the MAC client logic
to decode, act on (if required) and drop this control frame.

If all the previously listed checks are true, the 16-bit binary value in the MAC control
parameters field of the control frame is then used to inhibit transmitter operation for the
required number of pause_quantum. This inhibit is implemented by delaying the assertion
of clientemactxack atthe transmitter client interface until the requested pause
duration has expired. Because the received pause frame has been acted upon, it is passed to
the client with emacclientrxbadframe asserted to indicate to the client that can now be

dropped.

Note: Any frame in which the length/type field contains the MAC Control Type in the length/type
field should be dropped by the receiver client logic. All Control frames are indicated by
emacclientrxstats bit 19 (see "Receiver Statistics Vector" on page 45).

Client-initiated Response to a Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core. Any type of error free Control frame
will then be passed through the core with the emacclientrxgoodframe signal asserted.
In this way, the frame is passed to the client for interpretation. It is then the responsibility
of the client to drop this control frame and to act on it by ceasing transmission through the
core, if applicable.

Flow Control Implementation Example

This explanation is intended to describe a simple (but crude) example of a Flow Control
implementation to introduce the concept.

Consider the system illustrated in Figure 6-1. To summarize the example, the MAC on the
left hand side of the figure cannot match the full line rate of the right hand MAC due to
clock tolerances. Over time, the FIFO illustrated will fill and overflow. The aim is to
implement a Flow Control method which will, over a long time period, reduce the full line
rate of the right hand MAC to average that of the lesser full line rate capability of the left
hand MAC.

Method

1. Choose a FIFO nearly full to occupancy threshold (7/8 occupancy is used in this
description). When the occupancy of the FIFO exceeds this occupancy, initiate a single
pause control frame with OXFFFF used as the pause_quantum duration (OXFFFF is
placed on clientemacpauseval [15:0]). This is the maximum pause duration.
This will cause the right hand MAC to cease transmission and the FIFO of the left hand
MAC will start to empty.

2. Choose a second FIFO occupancy threshold (3/4 is used in this description). When the
occupancy of the FIFO falls below this occupancy, initiate a second pause control
frame with 0x0000 used as the pause_quantum duration (0x0000 is placed on

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 61

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 6: Using Flow Control

FIFO occupancy

clientemacpauseval [15:01]). This indicates a zero pause duration, and upon
receiving this pause control frame, the right hand MAC will immediately resume
transmission (it does not wait for the original requested pause duration to expire). This
pause control frame can therefore be considered a “pause cancel” command.

Operation

Figure 6-5 illustrates the FIFO occupancy over time.

Full

7/8

3/4

5/8

1/2

time _____
Figure 6-5: Flow Control Implementation Triggered from FIFO Occupancy

The average FIFO occupancy of the left hand MAC gradually increases over time due
to the clock tolerances. At point A, the occupancy has reached the threshold of 7/8
occupancy. This triggers the maximum duration pause control frame request.

Upon receiving the pause control frame, the right hand MAC ceases transmission.

After the right hand MAC ceases transmission, the occupancy of the FIFO attached to
the left hand MAC rapidly empties. The occupancy falls to the second threshold of 3/4
occupancy at point B. This triggers the zero duration pause control frame request (the

pause cancel command).

Upon receiving this second pause control frame, the right hand MAC resumes
transmission.

Normal operation resumes and the FIFO occupancy again gradually increases over
time. At point C, this cycle of Flow Control repeats.

62

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®

Chapter 7

Using the Physical Side Interface

The HDL example design supplied with the core implements an external GMII/MII or
RGMII interface. These are typically attached to an external PHY device. For more
information about the example design files, see the Tri-Mode Ethernet MAC Getting Started
Guide.

Implementing External GMII

GMII/MII Transmit Interface

Virtex-1l Pro, Virtex-Il, Spartan-3, Spartan-3E, and Spartan-3A Devices

Figure 7-1 shows a block diagram of the GMIL/MII transmit interface. The signal names in
the figure match those in the HDL example design. There are two transmit clock inputs to
the chip:

e gtx_clkis a user-supplied 125 MHz clock. This is used to derive the core and
gmii/mii clocks when running at 1 Gbps.

e mii_tx clkis provided by the PHY and runs at 25 MHz when the device is running
at 100 Mbps and at 2.5 MHz when it is operating at 10 Mbps.

The clock generator module takes the clock inputs and generates
tx_gmii_mii_clk_int. This runs at 125 MHz, 25 MHz, or 2.5 MHz depending on the
MAC operating speed. This is used to drive the GMII/MII logic in the example design and
the core. See "Clocking" on page 117 for more information on the clock generator circuit.

Figure 7-1 shows that the output transmitter signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the transmitter clock is also
shown: this uses an IOB output double-data-rate (DDR) register so that the clock signal
produced incurs exactly the same delay as the data and control signals. This clock signal,
gmii_tx_clk, is inverted with respect to tx_gmii_mii_clk_int so that the rising
edge of gmii_tx_clk will occur in the center of the data valid window, therefore
maximizing setup and hold times across the interface.

The half-duplex signals gmii_col and gmii_crs are asynchronous to the transmit clock.
These are routed through PADs and IOBs and then input to the core.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 63

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 7: Using the Physical Side Interface

Clock Generation

MII_TX_CLK

TX_GMII_MII_CLK|

I0B LOGIC
________ |
IBUFG I
mii_tx_clk |mii r
— mii_tx_clk_ibuf
L~ |
|
IBUFG |
gtx_clk
l\ gtx_clk_ibufg -
IPAD > l/ t LK
|
|
_______ —

tx_gmii_mii_clk_int

I0B LOGIC
_——— = 2P o -
| |
FDDRRSE
| |
| |
! — [
| OBUF |
T i & ok obuf gmii_tx_clk |
gmii_tx_clk_obu
| |
! — |
| |
T 9 I
| |

Tri-Mode Ethernet MAC LogiCORE

txgmiimiiclk

phyemaccrs

emacphytxd[0]|

phyemaccol

gmii_txd_int[0]

UF i 0] |
mii_tx
ol gmii_txd_reg[0] = |
D Q OPAD
J |
|
|

b int | it F gmii_tx_en :
mii_tx_en_in ol mii_tx_en_re:
emacphytxen 9T e | t D Q gmil_x_en_reg OPAD !
! J :
| |
L oo
F—— — — - — = — — — — — — — — — —
emacphytxer gmii_tx_er_int

gmii_crs_int

Figure 7-1:

gmii_col_int gmii_col
IPAD
IBUF
gmii_crs
IPAD
IBUF

External GMII/MII Transmit Interface

64

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External GMII

FIXILINX®

Virtex-4 and Virtex-5 Devices

Figure 7-2 illustrates how to implement a GMII/MII transmit interface when either a
Virtex-4 or Virtex-5 device is selected. An ODDR component is used instead of an
FDDRRSE component to generate a transmitter clock. This is designed so that the rising
edge of gmii_tx_clk will occur in the center of the data valid window, therefore
maximizing setup and hold times across the interface.

IOB LOGIC

mil_tx_clk Imii_tx_clk_ibufg
IPAD

MII_TX_CLK

CLK

IBUFG
gtx_clk
PAD gtx_clk_ibufg

|
l\ :
a
|

Tri-Mode Ethernet MAC LogiCORE

txgmiimiiclk

phyemaccrs

phyemaccol

emacphytxd[0]

emacphytxer

emacphytxer

OBU

|

|

|

|

" |

gmii_tx_clk

} oran | !
|

|

|

|

|

.

I10B LOGIC

————————————————— 1
Clock Generation | ODDR

|

|
TX_GMII_MII_CLK| 4 D1

o | D2

| gmii_tx_clk_obuf

|

|

|

T

|
tx_gmii_mii_clk_int 1

P — - - - - - - - =

gmii_txd_int[0] _lD Q gmii_txd_reg[0]

gmii_tx_en_int

gmii_tx_er_int

F , |
gmii_txd[0]

OPAD I

|

|

|

gmii_col_int

gmii_crs_int

Figure 7-2: External GMII/MII Transmit Interface in a Virtex-4/Virtex-5 Device

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

65

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

GMII/MII Receive Interface

Virtex-1l and Virtex-ll Pro Devices

Figure 7-3 shows how to implement an external GMII/MII receiver interface.

Clock Generation

I0B LOGIC
—1 RX_GMIL_MII_CLK |

| gmii_rx_clk_ibufg gmil_n ek |
RX_CLK] IPAD |

Tri-Mode Ethernet MAC LogiCORE | |

rx_gmii_mii_clk_int

rxgmiimiiclk{f— @

IBUF

|

i_rxd_ibuf{0] gmii_rxd[0] |
gmii_rxd_ibui

IPAD |

|

|

gmii_rxd_reg[0]

phyemacrxd[0]

?5]

phyemacrxdv gmii_rx_dv_reg

o
o
o)
3
[
2
o
2
12
I3
<
m
Q
E
T|Z
25
E Ix
o
2

' |
mii_rx_er
phyemacrxer gmii_rx_er_reg | gmii_rx_er_ibuf gL ! |
| @ D P] |
s |
; |

Figure 7-3: External GMII/MII Receive Interface

The clock generator module derives rx_gmii_mii_clk from the gmii_rx_clk input
from the PHY. This runs at 125 MHz, 25 MHz or 2.5 MHz, depending on the speed, and is
used to clock the GMII/MII logic in the HDL example design and the core. For more
information on the clock generator module, see "Clocking" on page 117.

Figure 7-3 shows that the input receiver signals are registered in device IOBs before
driving them to the device pads.

Spartan-3, Spartan-3E, and Spartan-3A Devices

The logic described in the previous section does not meet the input setup and hold
requirements for GMII with Spartan-3, Spartan-3E, and Spartan-3A devices. In these
devices, a DCM must be used on the gmii_rx_clk clock path as illustrated in Figure 7-4.
This is performed by the example design delivered with the core (all signal names and
logic match).

Phase shifting may then be applied to the DCM to fine-tune the setup and hold times at the
GMIIIOB input flip-flops; fixed-phase shift is applied to the DCM via the example UCF for
the example design. For more information, see “Calculating the DCM Phase Shift” in
Appendix D.

66 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External GMII

FIXILINX®

Clock Generation

Tri-Mode Ethernet MAC LogiCORE

e

Ispeedis10100

rxgmiimiiclk

gmii_rxd[0]

gmii_rxd_reg[0]

BUFGMUX

DCM
CLKO CLKIN

FB

I0B LOGIC

| 1BUFG

gmii_rx_clk |

gmii_rx_dv

gmii_rx_dv_reg

gmii_rx_er

gmii_rx_er_reg

-]

gmii_rx_er_ibuf

gmii_rx_dv |
PAD | |

|

|

gmii_rx_er |
PAD | |

|

|

Figure 7-4: GMII/MII Receive Logic for Spartan-3, Spartan-3E,
and Spartan-3A Devices

As there are only 8 BUFGMUXes on the Spartan-3 device, the clock multiplexing for the
txgmiimiiclkis performed in the FPGA fabric (see Figure 10-15). The Spartan-3 device
should always be reset after a speed change in order to avoid the core entering an
undefined state due to a glitch on the txgmiimiiclk signal.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

Virtex-4 Devices

The logic described in "GMII/MII Receive Interface" on page 66 does not meet the input
setup and hold requirements for GMII with Virtex-4 devices. An IDELAY component may
be used on the clock, data and control paths, as illustrated in Figure 7-5. These can be used
to either shift the input clock gmii_rx_clk or shift the data and control signals to meet
the setup and hold requirements and to allow for any bus skew across the data and control
inputs. The IDELAY components are used in fixed delay mode, where the attribute
IOBDELAY_VALUE determines the tap delay value. An IDELAYCTRL primitive must be
instantiated for this mode of operation. See the Virtex-4 User Guide for more information
about using the IDELAYCTRL and IDELAY components.

I0B LOGIC
Clock Generation
[reke, oo T T T |
\
} BUFG \ } BUFG |
| } I | IbELay gmiLDeek |
L
} ‘ ‘ IPAD }
| . .
Tri-Mode Ethernet MAC LogiCORE | | | gmii_rx_clk_ibufg \
| |
\ | | \
[J |

rgmiimiiclk F—————@

IBUF

\ [
|) ‘

. gmii_rxd_reg[0] I 1 IDELAY gmiL o I
gmii_rxd[0] f QD IPAD | |
} 1 gmii_rxd_ibuf[0] |

[[

[[

f |

IBUF

‘ \
| ii |
. gmii_rx_dv

. gmii_rx_dv_reg | |_| IDELAY |
gmii_rx_dv : QD PAD |
} gmii_rx_dv_ibuf }

‘ 1 \

‘ \

J |

[
| IBUF i ‘
\ [IDELAY gmireer }
T Q D IPAD | |
} gmii_rx_er_ibuf }
I j I
! I
\ \

D

gmii_rx_er gmii_rx_er_reg

Figure 7-5: GMII/MII Receive Logic for Virtex-4 Devices

68 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External GMII i:)("JNX®

Virtex-5 Devices

The logic described in "GMII/MII Receive Interface" on page 66 does not meet the input
setup and hold requirements for GMII with Virtex-5 devices. An IODELAY component
may be used on the data and control signals, as illustrated in Figure 7-6. These can be used
to either shift the input clock gmii_rx_clk or the data and control signals to meet the
setup and hold requirements and to allow for any bus skew across the data and control
inputs . The IODELAY components are used in fixed delay mode, where the attribute
IDELAY_VALUE determines the tap delay value. An IDELAYCTRL primitive must be
instantiated for this mode of operation. See the Virtex-5 User Guide for more information
about using the IDELAYCTRL and IODELAY components.

) I0B LOGIC
Clock Generation
‘r - = ﬁ‘ |\ " """"">">”">”"">"”"”"”"~‘"“"“~“‘"“~/”"” 1
| BUFG | ‘ BUFG }
	} ooELA gmii_neck
*<} ‘ ; PAD_	
I	i i
Tri-Mode Ethernet MAC LogiCORE	
\ \	
\ \	
[J e ____	
rxgmiimiiclk (———————————@	
[T T T T T e e [
‘ IBUF) [
s } gmii_rxd[0] }	
" gmii_rxd_reg[0] IODELAY]	
gmii_rxd[0] t Q D IPAD	
} 1 gmii_rxd_ibuf{o]	
* t |
[T T T T T e e [
‘ IBUF) [
i o } gmii_rx_dv }
) mii_rx_dv._re
gmii_rx_dy [9TIIx.CVTeg ‘ QD IODELAY PAD | |
} gmi_rx_dv_ibuf }
| |
| |
® f |
e |
| IBUF i ‘
" | |_| gmii_rx_er }
. gmii_rx_er_reg IODELAY]|
gmii_rx_er ' QD w0 | |
} gmii_rx_er_ibuf }
‘ j \
‘ \
T |

e

Figure 7-6: GMII/MII Receive Logic for Virtex-5 Devices

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 69
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 7: Using the Physical Side Interface

Implementing External RGMII

RGMII Transmit Interface

Virtex-ll Pro, Virtex-1l, Spartan-3, and Spartan-3A Devices

The RGMII interface is designed to the RGMII V2.0 specification. Figure 7-7 shows a block
diagram of the RGMII transmit interface in a Virtex-II device. The signal names in the
figure match those in the HDL example design. There is one transmit clock input to the
chip, gtx_c1k. This is a 125 MHz clock that is used to generate the RGMII transmit clock
output at all speeds. For more information on the clock generator module, see "Clocking"
on page 117.

10B LOGIC

0B LOGIC Clock Generation
r—— = - - - — tx_rgmii_clk90_int
| TX_GMII_MIl_CLK90

OBUF

| |
| |
| |
| ' D Q |
| gtx_clk I » rgmii_txc :
| oK | rgmii_txc_obuf } |
| [' o] [
| : [
| |
| |
| |

| tx_rgmii_clk_int o
TX_GMIL_MIL_CLK

L - — o ______ |
I0B LOGIC
Tri-Mode Ethernet MAC LogiCORE | FDDRRSE
|
txgmiimiiclk emacphytxd[0] gmil_xd_int(0] D Q t
|

ji_txd_int[4]
emacphytxd[4] gmil_xd_int4] D Q ? D Q
>

|

|

|

D Q |

SPEED_IS_10_10f regl rgmii_txd[0] I
|_ I [|
|

' |

|

|

|

)
Di‘

FDDRRSE

gmii_tx_en_int W

|
|
|
emacphytxen t
| OBUF N
rgmii_tx_ctl
| |— } OPAD
!
T
|
|
I

emacphytxer gmii_tx_er_int D Q
[D P

Figure 7-7: External RGMII Transmit Interface

The output transmitter signals are registered on tx_rgmii_clk_int, in the FPGA fabric,
including the encoded rgmii_tx_ctl_int signal, derived from the logical xor of
gmii_tx_en_ int and gmii_tx_er_int. The signals to be transmitted on the rgmii
falling clock edge are then registered on the falling edge clock. This ensures that the data is
presented to the double data rate registers at the correct time. Finally the transmitter
signals are registered by an IOB output double-data-rate (DDR) register before being
driven to output pads.

70

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External RGMII

FIXILINX®

The logic required to forward the transmitter clock is also shown: this uses an IOB output
double-data-rate (DDR) register so that the clock signal produced incur exactly the same
delay as the data and control signals. At 1 Gbps this clock signal, tx_rgmii_cl1k90_int,
is phase shifted by 90 degrees in the clock generator module with respect to
tx_rgmii_clk_int, so that therising edge of rgmii_txc will occur in the center of the
data valid window. This maximizes setup and hold times across the interface, as specified
in the Reduced Gigabit Media Independent interface (RGMII) Version 2.0 specification.

Virtex-4 Devices

Figure 7-8 illustrates how to use the physical transmitter interface of the core to create an
external RGMII in a Virtex-4 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is chosen.

0B LOGIC Clock Generation BUFG

|
r-——=—=—=-=- = . |
| TX_GMII_MII_CLKS0 > tx_rgmii_clk90_int |
IBUFG | "
I TX_GMII_MI_CLK tx_rgmii_clk_int
- —

o

10B LOGIC

- Ip1 OBUF

Tri-Mode Ethernet MAC LogiCORE

mii_txd_int[0]
emacphytxd[0]

|
|
|
|
" rgmii_txc
rgmii_txc_obuf |
D2 Q OPAD
|
|
|
|
|

lgmii_txd_int[4]
emacphytxd[4] 10

txgmiimiiclk

D1 0BU

speed_is_10_100_int

gmii_tx_en_int

D1 OBUF

emacphytxen

gmii_tx_er_int
emacphytxer

Figure 7-8: External RGMII Transmit Interface in a Virtex-4 Device

Figure 7-8 shows that the output transmitter signals are registered in the IOBs in ODDR
components. These components convert the input signals into one double data rate signal.
These signals are then output through OBUFs before being driven to output pads.

The logic required to forward the transmitter clock is also shown. This uses an ODDR
register so that the clock signal produced incur exactly the same delay as the data and
control signals. At 1 Gbps this clock signal, tx_rgmii_clk90_int, is phase shifted by
90 degrees in the clock generator module with respect to tx_rgmii_clk_int, so that
the rising edge of rgmii_txc will occur in the center of the data valid window. This

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com

UG138 August 8, 2007

7

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

maximizes setup and hold times across the interface, as specified in the Reduced Gigabit
Media Independent interface (RGMII) Version 2.0 specification.

72 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External RGMII XX"JNX@

Virtex-5 Devices

The example design provided for a Virtex-5 device is significantly different from the other
families, as it has been designed to use new architecture features in order to reduce the
number of global clocking resources required. Figure 7-9 shows how an external RGMII
physical interface has been created for a Virtex-5 device.

speedis10100 10B LOGIC

|
|
|
| . |
| Q rgmii_txc_odelay ODELAY rgmii_txc |
gtx_clk | TX_GMII_MII_CLK D2 > -OPAD
! | o I
| gtx_clklibufg BUFG | |
| tx_rgmii_clk_in |
| | | c |
| I
: |
: |

' g | ODDR
0B LOGIC Clock Generation 1 1 |
| o D1
I OBUF
o |
"

Tri-Mode Ethernet MAC LogiCORE

0]

|

|

|

F .

| lomii_txd_int[4] rgmii_txd_odelay[0]| ODELAY rgmi_tre0] |
4] ™ | D2 a > |
|

|

|

|

|

|
|
mii_ted_int[0] |
|
|

speedis10100

gmii_tx_en_int

|

: |
! |
: |
gmii_tx_er_int Iﬂﬁ ' D2 rgmii_tx_ctl_odelay | ODELAY rgmii_tx_ctil
' a |
! |
! |
! |
: |
: |

Figure 7-9: External RGMII Transmit Interface in a Virtex-5 Device

At 1 Gbps the clock signal, rgmii_tx_odelay, is phase shifted by 90 degrees with
respect to tx_clk_int by the IODELAY component, so that the rising edge of
rgmii_txc will occur in the center of the data valid window. This will maximize the
setup and hold times across the interface, as specified in the Reduced Gigabit Media
Independent interface (RGMII) Version 2.0 specification. The IODELAY component is
used in fixed delay mode, where the attribute ODELAY_VALUE determines the tap delay
value. An IDELAYCTRL primitive must be instantiated for this mode of operation. Refer to
the Virtex-5 User Guide for more information on the use of IDELAYCTRL and IODELAY
components.

For 100 Mbps and 10 Mbps, the clock signal rgmii_tx_odelay isinverted with respect to
tx_clk_int so that the rising edge of the clock is approximately in the middle of the data
window.

The RGMII data/control signals are routed through IODELAY components with an
ODELAY_VALUE of zero to provide similar path delays to that of the clock signal.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 73
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 7: Using the Physical Side Interface

RGMII Receiver Interface

Virtex-1l Pro, Virtex-Il, Spartan-3, and Spartan-3A Devices

Figure 7-10 shows a block diagram of the RGMII receiver interface in a Virtex-II device.
The input receiver signals are registered in device IOBs on rising and falling edges of
gmii_rx_clk_bufg. The signals are then registered inside the FPGA fabric before a final
register stage to synchronize signals to the rising edge clock. In order to achieve the
required setup and hold times across the interface, the clock generator uses a DCM with a
phase shift to adjust the clock relative to the data. See "Clocking" on page 117 and
“Calculating the DCM Phase Shift,” on page 145.

Tri-Mode Ethernet MAC LogiCORE

rxgmiimiiclk

phyemacrxd[0]

phyemacrxd[4]

phyemacrxdv

phyemacrxer

rx_rgmii_clk_int

10B LOGIC

RX_GMII_MIl_CLK

| IBUFG

|
. ibufg] rgmii_rxc |
rgmii_rxc_ibufg
RX_CLK 4 PAD | |
|
|

10B LOGIC
" |
rgmii_rxd_reg[0] rgmii_rxd_ddr{0] IBUF rgmii_na0] |
gmii_rxd_reg[0] rgmii_rxd_ibuf[0] —
a oo o fa opemraen LG
|
|
_—| ! |
I
rgmiindJeg[A‘ti rgmii_rxd_ddr[4] |
Q D Q D |
|
gmii_rxd_reg[4]
|
|

gmii_rx_dv_reg

i

rgmii_rx_dv_red

) a p—!

rgmii_rx_dv_ddr IBUF

gmii_rx_er_reg

N 4 ibut rgmii_rx_ctl
rgmii_rx_cti_iou
Q D o = IPAD

Ll

rgm iiirxictlirﬁg rgmii_rx_ctl_ddr

|

E:T 5

Figure 7-10: External RGMII Receive Interface

Virtex-4 Devices

Figure 7-11 illustrates how to use the physical receiver interface of the core to create an
external RGMII in a Virtex-4 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is selected.

Figure 7-11 shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_regsignalis derived in the FPGA fabric from the
outputs of the control IDDR component.

IDELAY components can be used to phase-shift the input RGMII clock, data and control
signals to meet the setup and hold margins. The IDELAY components are used in fixed
delay mode, where the attribute IOBDELAY_VALUE determines the tap delay value. An

74

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Implementing External RGMII

FIXILINX®

IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-4
User Guide for more information about using the IDELAYCTRL and IDELAY components.

Tri-Mode Ethernet MAC LogiCORE

rxgmiimiiclk

rx_rgmii_clk_int

I0B LOGIC

Clock Generation

IBUFG

rgmii_rxc
IPAD
rgmii_rxc_ibufg

IDELAY

RX_CLK
RX_GMII_MII_CLK

gmii_rxd_int[0]

phyemacrxd[0]
phyemacrxd[4]

phyemacrxdv

phyemacrxer

gmii_rxd_int[4]

Q1 pELay | BYF

gmii_rx_dv_int

o
N
o
%LS
2|2
11
2
g
S

Q1 IBUF

gmii_rx_er_int

IDELAY

Figure 7-11:

Virtex-5 Devices

Figure 7-12 illustrates how to use the physical receiver interface of the core to create an

Q

N

o

Né

2|2

1 [
2
li

External RGMII Receive Interface in Virtex-4 Devices

external RGMII in a Virtex-5 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is selected.

Figure 7-12 shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_ regsignalis derived in the FPGA fabric from the

outputs of the control IDDR component.

IODELAY components can be used to phase-shift the input RGMII clock, data and control
signals to meet the setup and hold margins. The IODELAY components are used in fixed

delay mode, where the attribute IDELAY_VALUE determines the tap delay value. An

IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-5
User Guide for more information about using the IDELAYCTRL and IODELAY component.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

75

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

10B LOGIC

Clock Generation

|
|
I IBUFG
| IODELAY rgmii_rxc |
wan— — |
———| RX_GMII_MII_CLK rgmii_rxc_ibufg |
|
Tri-Mode Ethernet MAC LogiCORE | |
rx_rgmii_clk_int | I
rxgmiimiiclk | |
o __.__wsloGic_ _ _ _ _ _ _
! |
| IDDR |
: |
. gmii_rxd_int[0] IBUF
p:yemamg[: gmii_rxd_int[4] | o IODELAY rgmiiirxd[o]:
phyemacrxd[4] | Q2 b — 4
|
: |
c
' I
: [
' |
L - e e e e e e e e e — — — —
______ loBLocic_ . _ _ _
' [
| IDDR |
' [
phyemacrxdv gmii_rx_dv_int I Q1 |ODELAY IBUF - |
phyemacrxer gmii_rx_er_int /_((J | rgmnirxictll
— e o 4
|
' [
t c |
' [
' [
L - e e e e e e e e e — — — —
Figure 7-12: External RGMII Receive Interface in Virtex-5 Devices
76 www.xilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

Using the MDIO Interface XX"JNX@

RGMII Inband Status Decoding Logic

o
=)
c
m

nband_link_status
OPAD

Tri-Mode Ethernet MAC LogiCORE

f
H

o
o
(=
T

inband_clock_speed[0]
OPAD

f
I

o

BU

S

inband_clock_speed[1]
OPAD

f
I

o
o
(=
S

nband_duplex_status

OPAD

miakit (111 - === - - - - - — — =
rxgmiimiicik (=9 CH]

gmii_rxd_reg[0] RGMII RECEIVER LOGIC
phyemacrxd|[0]| - @
gmii_rxd_reg[1

%
:

phyemacrxd[1]

|

] |

mii_rxd_reg[2] I

phyemacrxd|[2; 9mil_xq_reg @ |
i_rxd, 3

phyemacrxd[3 gmii_nxd_ reg[3] @ |

|

|

|

|

phyemacrxd gmii_rx_dv_reg ®

phyemacrxer gmil_rx_er_reg @

Figure 7-13: RGMII Inband Status Logic

The Inband Status decoding logic is common to all device families. Figure 7-13 illustrates
how to decode the RGMII inband status information, that is received through the RGMII
interface between frames, in a Virtex-II family device. The signal names and logic shown in
the figure exactly match those delivered with the example design when the RGMII is
chosen. If other families are chosen, equivalent primitives and logic specific to that family
will automatically be used in the example design.

Using the MDIO Interface

This interface is accessed through the optional Management Interface (see “Accessing
MDIO via the TEMAC,” on page 92) and is typically connected to the MDIO port of a
physical layer device (PHY) to access its configuration and status registers. The MDIO
format is defined in IEEE 802.3 clause 22.

Connecting the MDIO to an Internally Integrated PHY

The MDIO ports of the TEMAC core can be connected to the MDIO ports of an internally
integrated physical layer device. For example, the MDIO port of the Ethernet 1000BASE-X
PCS/PMA or SGMII from Xilinx (see “Integrating with the Ethernet 1000BASE-X
PCS/PMA or SGMII Core,” on page 127).

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 77
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

Connecting the MDIO to an External PHY

The MDIO ports of the TEMAC core can be connected to the MDIO of an external PHY. In
this situation, phyemacmdin, emacphymdout and emacphymdtri must be connected to
a Tri-State buffer to create a bidirectional wire, mdio. This Tri-State buffer can be either
external to the FPGA, or internally integrated by using an IOB IOBUF component with an
appropriate SelectlO™ standard for the external PHY. (This is illustrated in Figure 7-14.)

Tri-Mode Ethernet MAC

LogiCORE IOB LOGIC
| |
I OBUF |
emacphymclkout | l\ OPAD | MDC |
| | I/O |
I -1

IOB LOGIC
I IOBUF)
emacphymdtri t I
I T |
: |

emacphymdout | IOPAD

- >4 oo |
! |
phyemacmdin | |
I o) |
I -1

Figure 7-14: External MDIO Interface

Connecting the MDIO to an External and Internal PHY

The MDIO can connect to more than one device. If an internal PHY is present but the
device is also connected to external devices via the MDIO, an arbitration circuit is required.
An example circuit is shown in Figure 7-15. Both PHY devices must be assigned an unique
physical address.

78 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Using the MDIO Interface XX"JNX@

Tri-Mode Ethernet MAC LogiCore - - - - - — =

emacphymclkout ® |

phyemacmdin

emacphymdout

emacphymdtri Al :D

J— Ju— pu— |
IOB Logic

Internal PHY Device

mdc

mdio_in

mdio_out

mdio_tri D_

Figure 7-15: Internal and External MDIO Interfaces

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 79
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 7: Using the Physical Side Interface

80 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®

Chapter 8

Configuration and Status

Using the Optional Management Interface

hostclk

The Management Interface is a processor-independent interface with standard address,
data, and control signals. It may be used as is, or a wrapper (not supplied) may be applied
to interface to common bus architectures.

This interface is used for:

e Configuration of the MAC core

e Access through the MDIO interface to the management registers located in the PHY
attached to the MAC core

The Management Interface is accessed differently depending on the type of transaction; a
truth table showing which access method is required for each transaction type is shown in
Table 8-1. These access methods are described in the following sections.

Table 8-1: Management Interface Transaction Types

Transaction HOST_MIIM_SEL HOST_ADDRI[9]
Configuration 0 1
MIIM access 1 X

The Management Interface clock, hostc1lk, is used to derive the MDIO clock,
emacphymclkout. To save on clock resources, it may be tied to the user supplied 125
MHz input clock.

Configuring the MAC core to derive the MDC signal from this clock is detailed in
“Accessing MDIO via the TEMAC,” on page 92.

Configuration Registers

After power up or reset, the client may reconfigure the core parameters from their defaults,
such as flow control support. Configuration changes can be written at any time. Both the
receiver and transmitter logic will only respond to configuration changes during inter-
frame gaps. The exceptions to this are the configurable resets which take effect
immediately.

Configuration of the MAC core is performed through a register bank accessed through the
Management Interface. The configuration registers available in the core are detailed in
Table 8-2. As can be seen, the address has some implicit don’t care bits; any access to an

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 81

UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 8: Configuration and Status

address in the ranges shown will perform a 32-bit read or write from the same
configuration word.

Table 8-2: Configuration Registers

Address

Description

0x200-0x23F

Receiver Configuration (Word 0)

0x240-0x27F

Receiver Configuration (Word 1)

0x280-0x2BF

Transmitter Configuration

0x2C0-0x2FF

Flow Control Configuration

0x300-0x31F

MAC Speed Configuration

0x320-0x33F

Reserved

0x340-0x37F

Management Configuration

0x380-0x383

Unicast Address (Word 0) (if address filter is present)

0x384-0x387 Unicast Address (Word 1) (if address filter is present)

0x388-0x38B Address Table Configuration (Word 0) (if address filter is
present)

0x38C-0x38F Address Table Configuration (Word 1) (if address filter is
present)

0x390-0x3BF Address Filter Mode (if address filter is present)

Register Maps

The register contents for the two receiver configuration words can be seen in Table 8-3 and
Table 8-4.

Table 8-3: Receiver Configuration Word 0

Default
Value Description

Bit

Pause frame MAC Source Address[31:0] This address is
used by the MAC to match against the destination
address of any incoming flow control frames. It is also
used by the flow control block as the source address (SA)

for any outbound flow control frames.
31-0 All0’s
The address is ordered so the first byte

transmitted /received is the lowest positioned byte in the
register; for example, a MAC address of AA-BB-CC-DD-
EE-FF would be stored in Address[47:0] as
O0xFFEEDDCCBBAA.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

82 www.Xxilinx.com

http://www.xilinx.com

Using the Optional Management Interface

FIXILINX®

Table 8-4: Receiver Configuration Word 1

Bit

Default Value

Description

15-0

All 0’s

Pause frame MAC Source Address[47:32] See
description in Table 8-3.

24-16

N/A

Reserved

25

Length/Type Error Check Disable When this bit is
set to 1,” the core will not perform the length/type
field error checks as described in “Length/Type Field
Error Checks,” on page 44. When this bit is set to ‘0,
the length/type field checks will be performed: this is
normal operation.

26

Half Duplex If “1,” the receiver will operate in half-
duplex mode. If ‘0,” the receiver will operate in full-
duplex mode.

27

VLAN Enable When thisbitissetto “1,” VLAN tagged
frames will be accepted by the receiver.

28

Receiver Enable If set to ‘1, the receiver block will be
operational. If set to ‘0,” the block will ignore activity
on the physical interface RX port.

29

In-band FCS Enable When this bit is “1,” the MAC
receiver will pass the FCS field up to the client as
described in “Client-Supplied FCS Passing,” on page
50. When itis ‘0,” the client will not be passed the FCS.
In both cases, the FCS will be verified on the frame.

30

Jumbo Frame Enable When this bit is set to ‘1,” the
MAC receiver will accept frames over the specified
IEEE 802.3-2002 maximum legal length. When this bit
is ‘0,” the MAC will only accept frames up to the
specified maximum.

31

Reset When this bit is set to “1,” the receiver will be
reset. The bit will then automatically revert to ‘0.” This
reset will also set all of the receiver configuration
registers to their default values.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

83

http://www.xilinx.com

FIXILINX

Chapter 8: Configuration and Status

The register contents for the Transmitter Configuration Word are described in Table 8-5.

Table 8-5: Transmitter Configuration Word

Bit

Default
Value

Description

24-0

N/A

Reserved

25

Interframe Gap Adjust Enable If ‘1, the transmitter will
read the value on the port clientemactxifgdelay at the start
of frame transmission and adjust the interframe gap
following the frame accordingly (see “Interframe Gap
Adjustment: Full-Duplex Mode Only,” on page 54). If ‘0,
the transmitter will output a minimum interframe gap of at
least twelve clock cycles, as specified in IEEE 802.3-2002.

26

Half Duplex If ‘1, the transmitter will operate in half-
duplex mode.

27

VLAN Enable When this bitis setto ‘1,” the transmitter will
recognize the transmission of VLAN tagged frames.

28

Transmit Enable When this bit is “1,” the transmitter is
operational. When it is ‘0,” the transmitter is disabled.

29

In-band FCS Enable When this bit is ‘1, the MAC
transmitter will expect the FCS field to be passed in by the
client as described in “Client-Supplied FCS Passing,” on
page 50. When this bit is ‘0,” the MAC transmitter will
append padding as required, compute the FCS and
append it to the frame.

30

Jumbo Frame Enable When this bit is set to “1,” the MAC
transmitter will send frames that are greater than the
specified IEEE 802.3-2002 maximum legal length. When
this bit is ‘0,” the MAC will only send frames up to the
specified maximum.

31

Reset When this bitis set to ‘1,” the transmitter will be reset.
The bit will then automatically revert to ‘0.” This reset will
also set all of the transmitter configuration registers to their
default values.

The register contents for the Flow Control Configuration Word are described in Table 8-6.

Table 8-6: Flow Control Configuration Word

Default
Bit Value Description
28-0 N/A Reserved
Flow Control Enable (RX) When this bit is “1,” received
flow control frames will inhibit the transmitter operation
29 1 as described in “Receiving a Pause Control Frame,” on

page 60. When this bit is ‘0,” received flow control frames
will always be passed up to the client.

84

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Using the Optional Management Interface

FIXILINX®

Table 8-6: Flow Control Configuration Word

Bit

Default
Value

Description

30

Flow Control Enable (TX) When this bit is '1,” asserting
the clientemacpausereq signal sends a flow control
frame out from the transmitter as described in
“Transmitting a Pause Control Frame,” on page 59. When
this bitis ‘0,” asserting the clientemacpausereqsignal
has no effect.

31

N/A

Reserved

The register contents for the Management Configuration Word are described in Table 8-7.

Table 8-7: Management Configuration Word
Default

Bits Value Description

5.0 AllO's Clock Dlylde[S:O] See “Accessing MDIO via the
TEMAC,” on page 92.
MDIO Enable When this bit is “1,” the MDIO interface
can be used to access attached PHY devices. When this

6 0 bit is ‘0,” the MDIO interface is disabled and the MDIO

signals remain inactive. A write to this bit will only take
effect if Clock Divide is set to a non-zero value.

31-7 N/A Reserved

The register contents for the MAC Speed Configuration Word are described in Table 8-8.

Table 8-8: MAC Speed Configuration Word

Default

Bits Value Description
29-0 N/A Reserved

MAC Speed Configuration

“00” - 10 Mbps
31-30 “10”

“01” - 100 Mbps

“10” - 1 Gbps

Note: The setting of the MAC Speed Configuration register is not affected by a reset.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

85

http://www.xilinx.com

i:)("JNX® Chapter 8: Configuration and Status

The register contents for the two unicast address registers are described in Table 8-9 and
Table 8-10.

Table 8-9: Unicast Address (Word 0)

Bits Default Value Description

Address filter unicast
address[31:0]. This address is used
by the MAC to match against the
destination address of any
incoming frames. The address is
ordered so the first byte
transmitted /received is the lowest
positioned byte in the register; for
example, a MAC address of AA-
BB-CC-DD-EE-FF would be stored
in Address[47:0] as

31-0 tieemacunicastaddr[31 downto 0]

OxFFEEDDCCBBAA.
Table 8-10: Unicast Address (Word 1)
Bits Default Value Description
Address filter unicast
15-0 tieemacunicastaddr[47 downto 32] | address[47:32]. See description in
Table 8-9.
31-16 N/A Reserved

In addition to the unicast address, broadcast address and pause addresses, the address
filter can be programmed to respond to 4 separate addresses. These are stored in an
address table in the address filter. See “Address Filter,” on page 44. Table 8-11 and
Table 8-12 show how the contents of the table are set.

Table 8-11: Address Table Configuration (Word 0)
Bits Default Value Description

MAC Address[31:0]. The address that is to be written
to the address table. The address is ordered so the first
byte transmitted /received is the lowest positioned

31-0 All 0s byte in the register; for example, a MAC address of
AA-BB-CC-DD-EE-FF would be stored in
Address[47:0] as OxXFFEEDDCCBBAA.
86 www.xilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

Using the Optional Management Interface

FIXILINX®

Table 8-12: Address Table Configuration (Word 1)
Bits Default Value Description
15-0 All Os MAC Address[47:32] See description in Table 8-11.
The location in the address table that the MAC
17-16 All Os address is to be written to or read from. There are up
to 4 entries in the table (Location 0 to 3).
22-18 N/A Reserved
Read not write This bit is set to ‘1’ to read from the
address table. If it is set to “1,” the contents of the table
entry that is being accessed by bits 17-16 will be
23 0 output on the hostrddata bus in consecutive cycles
(Least Significant Word first). If it is set to ‘0,” the data
on bits 15-0 is written into the table at the address
specified by bits 17-16.
31-24 N/A Reserved

The contents of the address filter mode register are described in Table 8-13.

Table 8-13: Address Filter Mode

Bits Default Value Description
Promiscuous Mode If this bit is set to “1,” the address
31 1 filter is set to operate in promiscuous mode. All
frames will be passed to the receiver client regardless
of the destination address.
30-0 N/A Reserved

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

87

http://www.xilinx.com

i:)("JNX® Chapter 8: Configuration and Status

Using the Management Interface

Accessing Configuration

Writing to the configuration registers through the Management Interface is depicted in
Figure 8-1. When accessing the configuration registers (for example, when hostaddr[9] =
‘1" and hostmiimsel =‘0’), the upper bit of hostopcode functions as an Active Low
write enable signal. The lower hostopcode bit is a don’t care bit.

hostclk

—\

hostopcode[1]

hostaddr[8:0]

hostaddr[9]

hostwrdata[31:0]

xip2149

Figure 8-1: Configuration Register Write Timing

88 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Using the Optional Management Interface i:)("JNX®

Reading from the configuration register words is similar, but the upper hostopcode bit
should be “1,” as shown in Figure 8-2. In this case, the contents of the register appear on
hostrddata the hostclk edge after the register address is asserted onto hostaddr.

hostclk

hostopcode[1]

hostaddr[8:0]

hostaddr[9]

hostrddata[31:0] >.

xip2150

Figure 8-2: Configuration Register Read Timing

Accessing the Address Table

Writing and reading to the to the address table configuration words is less straightforward.
To write to a specific entry in the table, the user must first write the least significant 32-bits
of the address into the address table configuration (Word 0) register. The user then writes
the most significant 16-bits together with the location in the table (bits 17-16) to the address
table configuration (Word 1) register with bit 23 (read not write) set to ‘0.” This is shown in

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 89

UG138 August 8, 2007

http://www.xilinx.com

i:)("JNX® Chapter 8: Configuration and Status

Figure 8-3. Although it is shown in the figure, there is no requirement for the two writes to
be on adjacent cycles.

hostclk

hostmiimsel -\

hostopcode[1] \

hostaddr[8:0] 0x188 | X Ox18C
hostaddr[9]
hostwrdata[31:0] ADDR[31:
BIT31 Ao
T 4 BITS15..0 = ADDR[47:32]
BITS17..16 = LOCATION
BIT23=0

Figure 8-3: Address Table Write Timing

To read from the address table the user writes to the address table configuration register
(Word 1) with the location set to the desired table entry and bit 23 set to ‘1.” On the next
cycle the least significant word appears on the hostrddata bus. One cycle afterwards the

90 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Using the Optional Management Interface

FIXILINX®

most significant 16-bits are output on the lower 16 bits of the bus. This is shown in
Figure 8-4.

hostclk

hostmiimsel -_

hostopcode[1]

hostaddr[8:0]

hostaddr[9]

hostwrdata[23]

hostwrdata[17:16]

hostrddata[31:0]

LOCATION

Figure 8-4: Address Table Read Timing

MDIO Interface

Introduction to MDIO

The MDIO interface for 1 Gbps operation and slower speeds is defined in IEEE 802.3 clause
22. This is a two wire interface consisting of a clock, mdc, and a shared serial data line,
mdio. This interface is typically connected to the MDIO ports of a physical layer device
(PHY) to access its configuration and status registers.

There are two different transaction types of MDIO for write and read; they are described in
the next sections. The following abbreviations apply for the remainder of this chapter:

PRE - preamble

ST - start of frame

OP - operation code
PHYAD - PHY address
REGAD - Register address

TA - turnaround.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

91

http://www.xilinx.com

2:)(||_|NX® Chapter 8: Configuration and Status

Write Transaction

GEMAC drives MDIO

[I [[
|l | A I Y A |

mdio =1~ 1| |I II |I |I [t
| [| [R Y | |

11
L1
| [
| T | I
Z'Zy1'11,0 1,0 1 P4P3P2P1POR4R3IR2RTRO) 1 ob15
| | | D

| 1a |

L

I_1_1
| | | | 1 12 D10 D8 D6 D4 D2 DO
IDLE: 32 bits : ST : oP : PHYAD : REGAD TA 16-bit WRITE DATA :IDLE
PRE

Figure 8-5: MDIO Write Transaction

Figure 8-5 shows a Write transaction across the MDIO,; this is defined by OP="01". The
addressed PHY (PHYAD) device takes the 16-bit word in the data field and writes it to the
register at REGAD.

Read Transaction

MAC drives MDIO PHY drives MDIO

e e e e ey B
I A O
N (N O
1 : 10 :P4IP3|P2|P1IPO:R4IR3|R2|R1IRO: Z I 0
I
| op |
I

|
oP PRTAD | RecaD | TA
| |

PRE
Figure 8-6: NMDIO Read Transaction

Figure 8-6 shows a Read transaction; this is defined by OP="10". The addressed PHY
(PHYAD) device returns the 16-bit word from the register at REGAD.

For details of the register map of PHY layer devices and a fuller description of the
operation of the MDIO Interface itself, see IEEE 802.3-2002.

Accessing MDIO via the TEMAC

The Management Interface is also used to access the MDIO interface of the MAC core. The
MDIO interface supplies a clock to the connected PHY, mdc. This clock is derived from the
hostclk signal using the value in the Clock Divide[4:0] configuration register. The
frequency of mdc is given by the following equation:

; _ JHosT cLk
MDC ™ (1 + Clock Divide[4:0]) x 2

The frequency of mdc given by this equation should not exceed 2.5 MHz in order to comply
with the IEEE 802.3-2002 specification for this interface. To prevent mdc from being out of
specification, the Clock Divide[4:0] value powers up at 00000, and while this value is
in the register, it is impossible to enable the MDIO interface.

92 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Using the Optional Management Interface i:)("JNX®

For details of the register map of PHY layer devices and a fuller description of the
operation of the MDIO interface itself, see IEEE 802.3-2002.

Access to the MDIO interface through the Management Interface is depicted in the timing
diagram in Figure 8-7.

hostclk —ummmmmmmmmr

hostmiimsel

hostreq \

hostopcode[1:0]

hostaddr[9:0]

hostwrdata[15:0] *

hostrdy \

hostrddata[15:0] *

Xip2152
* If a read transaction is initiated, the hostrddata bus is valid

at the point indicated. If a write transaction is initiated, the

hostwrdata bus must be valid at the indicated point.

Simultaneous read and write is not permitted.

Figure 8-7: NDIO Access Through Management Interface

For MDIO transactions, the following points apply:
e hostmiimselis’l’
e hostopcode[1:0] maps to the OP (opcode) field of the MDIO frame

¢ hostaddr maps to the two address fields of the MDIO frame; PHYAD is
hostaddr[9:5],and REGAD ishost_addr[4:0]

e hostwrdata[15:0] maps into the data field of the MDIO frame when performing a
write operation

The data field of the MDIO frame maps into hostrddata[15: 0] when performing a
read operation

The MAC core signals to the host that it is ready for an MDIO transaction by asserting
hostmiimrdy. A read or write transaction on the MDIO is initiated by a pulse on the
hostregsignal. This pulse is ignored if the MDIO interface already has a transaction in
progress.

The MAC core then deasserts the hostmiimrdy signal while the transaction across the
MDIO is in progress. When the transaction across the MDIO interface has been completed,
the hostmiimrdy signal will be asserted by the MAC core; if the transaction is a read, the
data will also be available on the hostrddata[15:0] bus at this time.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 93
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 8: Configuration and Status

For the TEMAC port definition of the MDIO, see “Optional MDIO Signals,” on page 32. In
addition, see the following sections:

¢ "Connecting the MDIO to an Internally Integrated PHY" on page 77
e "Connecting the MDIO to an External PHY" on page 78
e "Connecting the MDIO to an External and Internal PHY" on page 78

Accessing Configuration without the Management Interface

If the optional Management Interface is omitted from the core, all of relevant configuration
signals are brought out of the core. These signals are bundled into the
tieemacconfigvec signal. The bit mapping of the configuration vector signal is defined
in Table 8-14. See the corresponding entry in the configuration register tables for the full
description of each signal.

These configuration vector signals can be changed by the user at any time; however, with
the exception of the reset and the flow control configuration signals, they will not take
effect until the current frame has completed transmission or reception.

The Clock heading denotes which clock domain the configuration signal is registered into
before use by the core. It is not necessary to drive the signal from this clock domain.

94

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Accessing Configuration without the Management Interface

FIXILINX®

Configuration Vector Description

Table 8-14: Configuration Vector Bit Definition

Configuration
Register cross
Bit(s) reference Clock Description
“Receiver Configuration | rxcoreclk Pause frame MAC Source
Word 0” bits 31-0 and (rxgmiimiiclk if | Address[47:0] This address
“Receiver Configuration | clock_enables = | is used by the MAC core to
Word 17 bits 15-0 true) match against the
destination address of any
incoming flow control
frames, and as the source
address for any outbound
flow control frames.
47 .0
The addressis ordered such
that the first byte
transmitted or received is
the least significant byte in
the register; for example, a
MAC address of AA-BB-
CC-DD-EE-FF will be
stored in bite [47:0] as
0xFFEEDDCCBBAA.
“Receiver Configuration | rxcoreclk Receiver Half DuplexIf‘1,’
Word 17 bit 26 (rxgmiimiiclk if | the receiver operates in
48 clock_enables = | half-duplex mode. If ‘0, the
true) receiver operates in full-
duplex mode.
“Receiver Configuration | rxcoreclk Receiver VLAN Enable
49 Word 17 bit 27 (rxgmiimiiclk if | When this bit is set to '1,'
clock_enables = | VLAN tagged frames are
true) accepted by the receiver.
“Receiver Configuration | rxcoreclk Receiver Enable If set to '1,'
Word 1”7 bit 28 (rxgmiimiiclk if | the receiver block is
50 clock_enables = | operational. If set to '0,' the
true) block ignores activity on
the physical interface RX
port.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

95

http://www.xilinx.com

FIXILINX

Chapter 8: Configuration and Status

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross
reference

Clock

Description

51

“Receiver Configuration
Word 17 bit 29

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver In-band FCS
Enable When this bit is ‘1,
the MAC receiver will pass
the FCS field up to the client
as described in “Client-
Supplied FCS Passing,” on
page 42. When it is ‘0,” the
MAC receiver will not pass
the FCS field. In both cases,
the FCS field will be
verified on the frame.

52

“Receiver Configuration
Word 17 bit 30

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver Jumbo Frame
Enable When this bit is ‘0,
the receiver will not pass
frames longer than the
maximum legal frame size
specified in IEEE 802.3-2002
(“Maximum Permitted
Frame Length,” on page
53). When it is ‘1,” the
receiver will not have an
upper limit on frame size.

53

“Receiver Configuration
Word 1”7 bit 31

N/A

Receiver Reset When this
bitis ‘1, the receiver is held
in reset.

This signal is an input to the
reset circuit for the receiver
block.

54

“Transmitter
Configuration Word”
bit 25

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Interframe
Gap Adjust Enable If 1,/
and the MAC is set to
operate in full-duplex
mode, then the transmitter
will read the value of the
clientemactxifgdelay port
and set the Interframe Gap
accordingly. If ‘0,” the
transmitter will always
insert at least the legal
minimum interframe gap.

55

“Transmitter
Configuration Word”
bit 26

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Half Duplex If
‘1, the transmitter operates
in half-duplex mode. If ‘0,
the transmitter operates in
full-duplex mode.

96

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Accessing Configuration without the Management Interface

FIXILINX®

Table 8-14: Configuration Vector Bit Definition (Continued)

Configuration
Register cross

Bit(s) reference Clock Description

56 “Transmitter txcoreclk Transmitter VLAN Enable
Configuration Word” (txgmiimiiclk if | When this bit is set to ‘1,
bit 27 clock_enables = | the transmitter allows the

true) transmission of VLAN
tagged frames.

57 “Transmitter txcoreclk Transmitter Enable When
Configuration Word” (txgmiimiiclk if | thisbitis‘1,” the transmitter
bit 28 clock_enables = | will be operational. When it

true) is ‘0, the transmitter is
disabled.

58 “Transmitter txcoreclk Transmitter In-Band FCS
Configuration Word” (txgmiimiiclk if | Enable When this bit is ‘1,
bit 29 clock_enables = | the MAC transmitter will

true) expect the FCS field to be
pass in by the client as
described in “Client-
Supplied FCS Passing,” on
page 50. When it is ‘0,” the
MAC transmitter will
append padding as
required, compute the FCS
and append it to the frame.

59 “Transmitter txcoreclk Transmitter Jumbo Frame
Configuration Word” (txgmiimiiclk if | Enable When this bit is ‘1,
bit 30 clock_enables = | the MAC transmitter will

true) allow frames larger than the
maximum legal frame
length specified in IEEE
802.3-2002 to be sent. When
set to ‘0,” the MAC
transmitter will only allow
frames up to the legal
maximum to be sent.

60 “Transmitter N/A Transmitter Reset When

Configuration Word”
bit 31

this bit is “1,” the MAC
transmitter is held in reset.
This signal is an input to the
reset circuit for the
transmitter block.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

97

http://www.xilinx.com

FIXILINX

Chapter 8: Configuration and Status

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross
reference

Clock

Description

61

“Flow Control
Configuration Word”
bit 29

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmit Flow Control
Enable When this bit is ‘1,
asserting the
clientemacpausereq
signal causes the MAC core
to send a flow control frame
out from the transmitter as
described in “Transmitting
a Pause Control Frame,” on
page 59. When this bit is ‘0,
asserting the
clientemacpausereq
signal will have no effect.

62

“Flow Control
Configuration Word”
bit 30

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receive Flow Control
Enable When this bit is “1,”
received flow control
frames will inhibit the
transmitter operation as
described in “Receiving a
Pause Control Frame,” on
page 60. When it is ‘0,
received flow frames are
passed up to the client.

63

“Receiver Configuration
Word 1”7 bit 25

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Length/Type Error Check
Disable When this bitis ‘1,
the core will not perform
the length/type field error
checks as described in
“Length/Type Field Error
Checks,” on page 44. When
itis set to ‘0,” the
length/type field checks
will be performed; this is
normal operation.

98

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Accessing Configuration without the Management Interface

FIXILINX®

Table 8-14: Configuration Vector Bit Definition (Continued)

Configuration
Register cross

rxgmiimiiclk if
clock_enables =
true)

reference Clock Description
“Address Filter Mode” | rxcoreclk Address Filter Enable
bit 31 (rxgmiimiiclk if | When this bit is ‘0,” the
clock_enables = | address filter is enabled. If
true) it is set to ‘1,” the address
filter will operate in
promiscuous mode.
66 downto | “MAC Speed txcoreclk and MAC Speed
Configuration Word” rxcoreclk
bits 31 downto 30 (txgmiimiiclk
and

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

99

http://www.xilinx.com

i:)("JNX® Chapter 8: Configuration and Status

100 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 9

Constraining the Core

This chapter defines the constraint requirements of the TEMAC core. An example UCF is
provided with the HDL example design to provide samples of constraint requirements for
the design. See the Tri-Mode Ethernet MAC Getting Started Guide for more information.

Required Constraints

Device, Package, and Speedgrade Selection

The TEMAC can be implemented in Virtex-1I, Virtex-II Pro, Spartan-3, Spartan-3E,
Spartan-3A, Virtex-4, and Virtex-5 devices with the following attributes:

e Large enough to accommodate the core
o Contains a sufficient number of IOBs

e -4 speed grade for Virtex-1I, -5 speed grade for Virtex-II Pro, Spartan-3, Spartan-3E
and Spartan-3A, -10 speed grade for Virtex-4, and -1 speed grade for Virtex-5

I/O Location Constraints

No specific I/O location constraints are required.

Placement Constraints

With the exception of Virtex-4 and Virtex-5, the constraints file contains placement
information for the global clock buffers. These are provided as an example only and may
be removed. However, in RGMI], it is recommended that all the transmitter clock buffers
are confined to the same bank of BUFGs.

Timing Constraints

Example(s) are in the UCF delivered with the HDL example design for the core.

PERIOD(s) for Clock nets

GMII Clock Constraints

If an external GMII interface is implemented then the following constraints should be
applied.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 101
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

gmii_rx_clk

The gmii_rx_clk signal is connected to the rxgmiimiiclk input of the TEMAC in the
example design that is provided with the core. In order for the core to operate correctly at
1 Gbps, this must be constrained to run at 125 MHz.

NET "gmii_rx_clk*" TNM_NET

TIMEGRP "rx_clock"
TIMESPEC "TS_rx_clk"

"clk_rx";
"clk_rx";
PERIOD "rx_clock" 8000 ps HIGH 50 %;

rx_clk_int

If the clock_enables option is set to false, the rx_clk_int signal must be constrained to
run at 125 MHz for 1 Gbps operation. This is connected to the rxcoreclk input of the
TEMAUC, in addition to driving the user receive logic. If the clock_enables option is set to
true, the constraint should not be present.

NET "rx_clk_int" TNM_NET

TIMEGRP "rx_clock_core"
TIMESPEC "TS_rx_clk_core"

"clk_rx_core";
"clk_rx_core";
PERIOD "rx_clock_core" 8000 ps HIGH 50 %;

tx_gmii_mii_clk

The tx_gmii_mii_clk signal is connected to the txgmiimiiclk input of the TEMAC.
This signal must be constrained for a frequency of 125 MHz for 1 Gbps operation.
NET "tx_gmii_mii_clk*" TNM_NET

TIMEGRP "tx_clock_gmii™"
TIMESPEC "TS_tx_clk_gmii"

"clk_tx_gmii";
"clk_tx_gmii";
PERIOD "tx_clock_gmii" 8000 ps HIGH 50 %;

tx_clk_int

If the clock_enables option is set to false, the tx_clk_int signal drives the txcoreclk
input of the core and the users transmit logic. This signal must be constrained to run at 125
MHz for 1 Gbps operation. If the clock_enables option is set to true, the constraint should
not be present.

NET "tx_clk_int" TNM_NET

TIMEGRP "tx_clock_core"
TIMESPEC "TS_tx_clk_core"

RGMII Clock Constraints

If an external RGMII interface is implemented, the following constraints should be
applied.

"clk_tx_core";
"clk_tx_core";
PERIOD "tx_clock_core" 8000 ps HIGH 50 %;

rx_rgmii_clk_int

The rx_rgmii_clk_int signalis connected to the rxgmiimiiclk input of the TEMAC
in the example design that is provided with the core. In order for the core to operate
correctly at 1 Gbps, this must be constrained to run at 125 MHz.

NET "rx_rgmii_clk_int" TNM_NET = "clk_rx";

TIMEGRP "rx_clock" = "clk_rx";

TIMESPEC "TS_rx_clk" = PERIOD "rx_clock" 8000 ps HIGH 50 %;
rx_clk_int

If the clock_enables option is set to false, the rx_clk_int signal must be constrained to
run at 125 MHz for 1 Gbps operation. This is connected to the rxcoreclk input of the
TEMAC, in addition to driving the user receive logic. If the clock_enables option is set to
true, the constraint should not be present.

NET "rx_clk_int" TNM_NET

TIMEGRP "rx_clock_core"
TIMESPEC "TS_rx_clk_core"

"clk_rx_core";
"clk_rx_core";
PERIOD "rx_clock_core" 8000 ps HIGH 50 %;

102

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Required Constraints

FIXILINX®

tx_clk180

The tx_c1k180 signalis used to generate the transmit clocks at 10 Mbps and 100 Mbps for
the RGMII interface. This should be constrained to run at 125 MHz.

Note: This period constraint does not exist for Virtex-5 devices, as this clock is not generated.

NET "*tx_clk180" TNM_NET
TIMEGRP "tx_clock"
TIMESPEC "TS_tx_clk"

"clk_tx";
"clk_tx";
PERIOD "tx_clock" 8000 ps HIGH 50 %;

tx_rgmii_clk

The tx_rgmii_clk signalis connected to the txgmiimiiclk input of the TEMAC. This
signal must be constrained for a frequency of 125 MHz for 1 Gbps operation.
NET "tx_rgmii_clk*" TNM_NET = "clk_tx_gmii";

TIMEGRP "tx_clock_gmii™" "clk_tx_gmii";
TIMESPEC "TS_tx_clk_gmii" PERIOD "tx_clock_gmii" 8000 ps HIGH 50 %;

tx_clk_int

If the clock_enables option is set to false, the tx_clk_int signal drives the txcoreclk
input of the core and the users transmit logic. This signal must be constrained to run at 125
MHz for 1 Gbps operation. If the clock_enables option is set to true, the constraint should
not be present.

NET "tx_clk_int" TNM_NET

TIMEGRP "tx_clock_core"
TIMESPEC "TS_tx_clk_core"

"clk_tx_core";
"clk_tx_core";
PERIOD "tx_clock_core" 8000 ps HIGH 50 %;

refclk_bufg

For Virtex-4 and Virtex-5 devices, an additional constraint is provided in the UCF for the
IDELAYCTRL reference clock. This clock is constrained to run at 200 MHz, but may be
relaxed for Virtex-5 devices within the guidelines described in the Virtex-5 User Guide for
IDELAYCTRL components.

NET "*refclk _bufg" TNM_NET = "clk_ref_ clk";
TIMEGRP "ref_ clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5000 ps HIGH 50 %;

Management Clock Constraints

host_clk

The host_clk signal must be constrained to run at the desired frequency.

NET "host_clk" TNM_NET
TIMEGRP "host"
TIMESPEC "TS_host_clk"

MDIO Logic

The MDIO logic is driven from the MDC clock. This is output from the core as
emacphymclkout. The following constraints must be applied for the MDIO logic to
operate correctly.

"host_clk";
"host_clk" EXCEPT "mdio_logic";
PERIOD "host" 10000 ps HIGH 50 %;

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?ENABLE_REG" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?READY_INT" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?STATE_COUNT*" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?MDIO_TRISTATE" TNM = "mdc_falling";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?MDIO_OUT" TNM = "mdc_falling";
TIMEGRP "mdio_logic" = "mdc_rising" "mdc_falling";

TIMESPEC "TS_mdiol"
TIMESPEC "TS_mdio2"

PERIOD "mdio_logic" 400 ns;
FROM "mdc_rising" TO "mdc_falling" 200 ns;

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 103

UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

Timespecs for Critical Logic

Signals must cross clock domains at certain points in the core. These are described in the
following section.

Configuration Logic

When the optional Management Interface is used with the core (see “Using the Optional
Management Interface,” on page 81), configuration information is written synchronously
to hostclk. Receiver configuration data must be transferred onto the rxcoreclk clock
domain for use with the receiver; transmitter configuration data must be transferred onto
the txcoreclk domain for use with the transmitter. The following UCF syntax targets
this logic and a timing ignore attribute (TIG) is applied It does not matter when
configuration changes take place; the current configurations are sampled between frames
by both the receiver and transmitter.

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?RX0_OUT*" TNM="config_ to_rx";

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?RX1_OUT*" TNM="config to_rx";

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?FC_OUT_29" TNM="config_to_rx";
TIMESPEC "TS_config_to_rx" = FROM "config_to_rx" TO "rx_clock" TIG;

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?TX_OUT*" TNM="config_to_tx";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?FC_OUT_30" TNM="config_to_tx";
TIMESPEC "TS_config to_tx" = FROM "config to_tx" TO "tx_clock_gmii" TIG;

Timespecs for Reset Logic within the Core

Internally, the core is divided up into clock/reset domains, which group together elements
with common clock and reset signals. The reset circuit provides controllable skews on the
reset nets within the design. More information on the operation and rationale behind this
circuit can be found in Ken Chapman'’s Xilinx TechXclusive, “Get Smart About Reset” at:

www.xilinx.com /support/techxclusives/global-techX19.htm

The following UCF syntax identifies the relevant reset logic and ensures that the reset
signals do not cause set-up or hold violations in the circuit:

NET "trimac_core?BU2?U0?TRIMAC_INST?RXRSTGENNOEN?SYNC_RX RESET_I?RESET_OUT*" MAXDELAY=6100
ps;

NET "trimac_core?BU2?U0?TRIMAC_INST?TXRSTGENNOEN?SYNC_TX_RESET_I?RESET_OUT*" MAXDELAY=6100
ps;

NET "trimac_core?BU2?U0?TRIMAC_INST?INT_GMII_MII_RX_RESET" MAXDELAY=6100 ps;

NET "trimac_core?BU2?U0?TRIMAC_INST?RXGMIIRSTGENEN?SYNC_GMII_MII_RX RESET I?RESET_OUT*"
MAXDELAY=6100 ps;

NET "trimac_core?BU2?U0?TRIMAC_INST?SYNC_GMII_MII_TX_RESET I?RESET_OUT*" MAXDELAY=6100 ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?G_SYNC_MGMT_RESET?SYNC_MGMT_RESET_HOST_I?RESET_OUT*"
MAXDELAY=6100 ps;

Note: The lastline is only required when the optional Management Interface is used.
Note: The first three lines are only required when the clock enables option is not selected.

Constraints when Implementing an External GMII

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the following descriptions
to act as an example. These should be studied in conjunction with the HDL source code for
the example design and with the description given in “Implementing External GMIL"” on
page 63.

GMIl I0B Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL file for
the example design; constraints are set to ensure that these are placed in IOBs.

INST "*gmii_txd_reg*" IOB = true;

104

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/global-techX19.htm

Required Constraints XX"JNX@

INST "*gmii_tx_en_reg" I0B
INST "*gmii_tx_er_reg" IOB

INST "*rxd_to_mac*" I0B
INST "*rx_dv_to_mac" I0B
INST "*rx_er_to_mac" IOB

[T
o
o]
c
0

The GMII is a 3.3 volt signal level interface. The 3.3 volt LVTTL SelectIO standard is the
default for Virtex-II devices; the following constraints may be added without harm. The 3.3
volt LVTTL SelectIO standard is not the default for Virtex-5, Virtex-4, Virtex-II Pro,
Spartan-3, Spartan-3E and Spartan-3A devices. Use the following constraints with the
device IO Banking rules:

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;
INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;
INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII for several families.
This is a provided as a guideline only; there are no specific I/ O location constraints for this
core.

GMII Input Setup/Hold Timing

Figure 9-1 and Table 9-1 illustrate the setup and hold time window for the input GMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

GMII_RXD[7:0],
GMII_RX_DV,
GMII_RX_ER

tseTur g -—
— et— tHoLD

Figure 9-1: Input GMII Timing

Observe that there is a 2 ns data valid window which is presented across the GMII input
bus. This must be correctly sampled by the FPGA devices.

Table 9-1: Input GMII Timing

Symbol Min Max Units
tSETUP 2.00 - ns
tHOLD 0.00 - ns

Virtex-Il, and Virtex-Il Pro Devices

These families have input delay elements (which are always of a fixed delay) that are
automatically inserted by the Xilinx tools and are set to provide a zero-hold time. These

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 105
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

input delays will automatically meet input setup and hold timing on the GMII without any
specific constraints.

Spartan-3, Spartan-3E, and Spartan-3A Devices

The GMII design uses a DCM on the receiver clock domain for Spartan-3, Spartan-3E and
Spartan-3A devices. Phase-shifting is then applied to the DCM to align the resultant clock
so that it will correctly sample the 2 ns GMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST *gmii_rxc_dcm CLKOUT_ _PHASE_SHIFT = FIXED;
INST *gmii_rxc_dcm PHASE_SHIFT = -30;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). A further explanation of these numbers is
detailed in “Understanding Timing Reports for GMII Setup/Hold timing”.

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix D,
“Calculating the DCM Phase Shift” describes a more accurate method for fixing the phase
shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

The GMII design uses IDELAY components on the receiver clock, data and control signals
for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and control
signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup /hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for GMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay gmii_rx_dv IOBDELAY_ VALUE = 53;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example GMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY /IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCE. See the Virtex-4 User Guide and code comments for more information.

106

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Required Constraints i:)("JNX®

Virtex-5 devices

The GMII design uses IODELAY components on the receiver clock, data and control
signals for Virtex-5 devices. A fixed tap delay can be applied to either delay the data and
control signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup /hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for GMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IODELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay gmii_rx_dv IDELAY_VALUE = 33;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example GMII pinout in the particular device. The setup /hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY /IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCE. See the Virtex-5 User Guide and code comments for more information.

Understanding Timing Reports for GMII Setup/Hold timing

Spartan-3 Devices

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report.

The Clock Generation logic includes a BUFGMUX which provides a path for the pre-DCM
clock, see Figure 7-4. When this BUFGMUX is present the timing engine will use the non-
DCM clock path resulting in false setup and hold numbers. It is therefore necessary to edit
the example design HDL to remove this non-DCM path if the setup/hold numbers are to
be used for DCM phase adjustment.

Once this is done the results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Spartan-3A device. The
implementation requires 1.965 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.007 ns of hold: this is less than the 0 ns required and
so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 107
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

Setup/Hold to clock gmii_rx_clk

———————————— e

| Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
———————————— e
gmii_rx_ dv | 1.958(R) | -0.014(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rx_er | 1.940(R) | -0.007(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<0> | 1.957(R) | -0.012(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<l> | 1.958(R) | -0.014(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<2> | 1.965(R) | -0.022(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<3> | 1.940(R) | -0.007(R) |rx_gmii_mii_clk_int| -2.812|
gmii_rxd<4> | 1.958(R) | -0.014(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<5> | 1.961(R) | -0.017(R) |rx_gmii_mii clk_int| -2.812|
gmii_rxd<6> | 1.965(R) | -0.022(R) |rx_gmii_mii_clk_int| -2.812]|
gmii_rxd<7> | 1.956(R) | -0.011(R) |rx_gmii_mii_clk_int| -2.812]|
———————————— e

Virtex-Il or Virtex-1l Pro Devices

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-1I device. The
implementation requires 1.835 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.226 ns of hold: this is less than the 0 ns required and
so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk

———————————— e 1

| Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
———————————— T T T T T T TP
gmii_rx dv | 1.820(R) | -0.281(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rx_er | 1.770(R) | -0.226(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<0> | 1.821(R) | -0.283(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<l> | 1.833(R) | -0.295(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<2> | 1.790(R) | -0.253(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<3> | 1.789(R) | -0.252(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<4> | 1.834(R) | -0.296(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<5> | 1.829(R) | -0.291(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<6> | 1.793 (R) | -0.255(R) |rx_gmii_mii_clk_int| 0.000|
gmii_rxd<7> | 1.835(R) | -0.296(R) |rx_gmii_mii_clk_int| 0.000|
———————————— T T T T T T TP

Virtex-4 or Virtex-5 Devices with Delayed Data/Control

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-5 device. The
implementation requires 1.962 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.008 ns of hold: this is less than the 0 ns required and
so there is slack.

108

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

http://www.xilinx.com

Required Constraints

FIXILINX®

Data Sheet report:

All values displayed in nanoseconds

Setup/Hold to clock gmii_rx_clk

gmii_rx_dv

gmii_rx_er

gmii_rxd<0>
gmii_rxd<l>
gmii_rxd<2>
gmii_rxd<3>
gmii_rxd<4>
gmii_rxd<5>
gmii_rxd<6>
gmii_rxd<7>

____________ e
Setup to | Hold to
clk (edge) | clk (edge)
____________ e
1.955(R)| -0.017(R)
1.962(R) | -0.031(R)
l.949(R)| -0.013 (R)
1.944(R) | -0.009 (R)
1.947(R)| -0.012(R)
1.942(R)| -0.008(R)
1.950(R)| -0.015(R)
l.962(R)| -0.026(R)
l.957(R)| -0.022(R)
1.952(R)| -0.020(R)

(ns)

———————————————————— R ——

| Clock |
Internal Clock(s) | Phase |
———————————————————— R ——
rx_gmii_mii_clk_int]| 0.000]
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int]| 0.000]|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
———————————————————— R ——

Virtex-4 or Virtex-5 Devices with Delayed Clock

Data Sheet report:

All values displayed in nanoseconds
Setup/Hold to clock gmii_rx_clk
———————————— o
| Setup to | Hold to
Source | clk (edge) | clk (edge)
____________ o
gmii_rx dv | -6.198(R) | 7.526(R)
gmii_rx er | -6.225(R) | 7.554 (R)
gmii_rxd<0> | -6.149(R) | 7.484 (R)
gmii_rxd<l> | -6.152(R) | 7.486 (R)
gmii_rxd<2> | -6.206(R) | 7.532(R)
gmii_rxd<3> | -6.207(R) | 7.533(R)
gmii_rxd<4> | -6.134(R) | 7.476(R)
gmii_rxd<5> | -6.134(R) | 7.476 (R)
gmii_rxd<6> | -6.170(R) | 7.506 (R)
gmii_rxd<7> | _6.170(R)| 7.506(R)
+

(ns)

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. However, depending on how the setup /hold requirements have been met
the results can initially look strange and it is not immediately obvious how they relate to

Figure 9-1. Here follows an example for the GMII report from a Virtex-4 device where the
clock has been delayed to meet the setup/hold requirements.

fomm o +
| Clock |

| Internal Clock(s) | Phase |
———————————————————— fomm o4
rx_gmii_mii_clk_int]| 0.000]|
rx_gmii_mii_clk_int]| 0.000]|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int]| 0.000]|
rx_gmii_mii_clk_int]| 0.000]
rx_gmii_mii_clk_int| 0.000|
rx_gmii_mii_clk_int| 0.000|
———————————————————— S

The implementation requires -6.134 ns of setup. Figure 9-2 illustrates that this represents a
figure of 1.866 ns relative to the following rising edge of the clock (since the IDELAY has

acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 2 ns required and so there is slack.

The implementation requires 7.554 ns of hold. Figure 9-2 illustrates that this represents a
figure of -0.446 ns relative to the following rising edge of the clock (since the IDELAY has

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

109

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

GMII_RX_CLK
GMII_RXDI[7:0],
GMII_RX_DV
GMII_RX_ER

acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 0 ns required and so there is slack.

/Y Y
-

el |
8ns
e ———————
-6.134 ns

[tSETUP =8-6.134
=1.866 ns

—»> ~#— {00 =7.554 - 8
7.554 ns > =-0.446 ns
-

A

A

8ns

Figure 9-2: Timing Report Setup/Hold

Constraints when Implementing an External RGMII

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the descriptions below to
act as an example. These should be studied in conjunction with the HDL source code for
the example design and with the description given in “Implementing External RGMIL,” on
page 70.

RGMII 10B Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design; constraints are set to ensure that these are placed in IOBs. The DDR
register constraints are not present for a Virtex-4 or Virtex-5 device where DDR
components are instantiated rather than inferred.

INST “rgmii_rxd_ddr*” IOB = true;

INST “rgmii_rx_dv_ddr” IOB = true;
INST “rgmii_rx_ctl_ddr” IOB = true;

INST “inband_link_status” I0B
INST “inband_clock_speed*” 1IOB
INST “inband_duplex_status” IOB

true;
true;
true;

The RGMII v2.0 is a 1.5 volt signal-level interface. The 1.5 volt HSTL Class I SelectlO
standard is used for RGMII interface pins. Use the following constraints with the device IO
Banking rules. The IO slew rate is set to fast to ensure that the interface can meet setup and
hold times.

INST "rgmii_txd<?>" IOSTANDARD = HSTL_I;

110

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Required Constraints

FIXILINX®

INST "rgmii_tx_ctl" IOSTANDARD = HSTL_TI;
INST "rgmii_rxd<?>" IOSTANDARD = HSTL_TI;
INST "rgmii_rx_ctl" TIOSTANDARD = HSTL_TI;
INST "rgmii_txc" IOSTANDARD = HSTL_TI;
INST "rgmii_rxc" TIOSTANDARD = HSTL_TI;
INST “rgmii_txd<?> SLEW = FAST;
INST “rgmii_tx_ctl” SLEW = FAST;
INST “rgmii_txc” SLEW = FAST;

In addition, the example design provides pad locking on the RGMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this

core.

RGMII Input Setup/Hold Timing

Figure 9-3 and Table 9-2 illustrate the setup and hold time window for the input RGMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

RGMII_RXC

RGMII_RXDI[3:0],
RGMII_RX_CTL <

—

—~

tseTur g

tHOLD ’

Figure 9-3:

>_

—

g

—

Input RGMII Timing

tsetup

lat— tHoLD

Observe that there is a 2 ns data valid window which is presented across the RGMII input
bus. This must be correctly sampled on both clock edges by the FPGA devices.

Table 9-2: Input RGMII Timing
Symbol Min Typical Units
tseTuP 1.0 2.0 ns
tHorD 1.0 2.0 ns

For RGMI], the lower data bits, rgmii_rxd[3:0], should be sampled internally on the
rising edge of rgmii_rxc, and the upper data bits, rgmii_rxd[7:4], should be
sampled internally on the falling edge of rgmii_rxc.

Virtex-1l, Virtex-ll Pro, Spartan-3, Spartan-3E, and Spartan-3A Devices

The RGMII design uses a DCM on the receiver clock domain for all devices except Virtex-4
and Virtex-5. Phase-shifting is then applied to the DCM to align the resultant clock so that
it will correctly sample the 2 ns RGMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST *gmii_rxc_dcm CLKOUT_PHASE_SHIFT =
INST *gmii_rxc_dcm PHASE_SHIFT = 10;

FIXED;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com 111

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix D,
“Calculating the DCM Phase Shift” describes a more accurate method for fixing the phase
shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

The RGMII design uses IDELAY components on the receiver clock, data and control
signals for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and
control signals or delay the clock so that the data/control are correctly sampled by the
rgmii_rxc clock at the IOB IDDR registers, meeting RGMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup /hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for RGMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_rgmii_rx_ctl IOBDELAY_VALUE = 40;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY /IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCE. See the Virtex-4 User Guide and code comments for more information.

Virtex-5 Devices

The RGMII design uses IODELAY components on both the receiver and transmitter clock
domains for Virtex-5 devices. A fixed tap delay is applied to the rgmii_txc output clock
to move the rising edge of this clock to the centre of the output data window. For the
receiver clock, data and control signals, a fixed tap delay can be applied to either delay the
data and control signals or delay the clock so that the data/control are correctly sampled
by thergmii_rxc clock at the IOB IDDR registers, meeting RGMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup /hold window. The interface timing report in the two cases is also quite

112

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Required Constraints i:)("JNX®

different and for this reason this is discussed in “Understanding Timing Reports for RGMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for two of these
IODELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *delay_rgmii_tx_clk ODELAY_VALUE = 26;

INST *gmii_interface/delay rgmii_rx_ctl IDELAY_VALUE = 20;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY /IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCEF. See the Virtex-5 User Guide and code comments for more information.

RGMII DDR Constraints

If the core is implemented on a device other than Virtex-4 or Virtex-5, the following
constraints are required to constrain the RGMII input registers for 1 Gbps operation. The
RGMII design requires these clock crossing constraints to ensure timing is met when
crossing from rising to falling clock edges and vice versa. A stringent time constraint
ensures that timing is met with the worst-case timing allowed in the RGMII specification.

INST “rgmii_rxd_reg_4” TNM="rgmii_falling”;
INST “rgmii_rxd_reg_5" TNM="rgmii_falling”;
INST “rgmii_rxd_reg_6" TNM="rgmii_falling”;
INST “rgmii_rxd_reg_7" TNM="rgmii_falling”;
INST “rgmii_rx_ctl_reg” TNM="rgmii_falling”;
INST “gmii_rxd_reg_4" TNM="rgmii_rising”;
INST “gmii_rxd_reg_5" TNM="rgmii_rising”;
INST “gmii_rxd_reg_ 6" TNM="rgmii_rising”;
INST “gmii_rxd_reg_ 7" TNM="rgmii_rising”;
INST “gmii_rx_er_reg” TNM="rgmii_rising”;
TIMESPEC “TS_rgmii_falling_to_rising” = FROM “rgmii_falling” TO “rgmii_rising” 3200 ps;

Understanding Timing Reports for RGMII Setup/Hold timing

None Virtex-4 or Virtex-5 Devices

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report.

The Clock Generation logic includes a BUFGMUX which provides a path for the pre-DCM
clock, see Figure 7-4. When this BUFGMUX is present the timing engine will use the non-
DCM clock path resulting in false setup and hold numbers. It is therefore necessary to edit
the example design HDL to remove this non-DCM path if the setup /hold numbers are to
be used for DCM phase adjustment.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 113
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

After this is completed, the results are self-explanatory and it is easy to see how they relate
to Figure 9-3. Here follows an example for the RGMII report from a Virtex-II device. Each
Input lists two sets of values - one corresponding to the -ve edge of the clock and one to the
+ve edge. The first set listed corresponds to -ve edge which occurs at time 4ns. The
implementation requires 0.648ns of setup to the -ve edge and 0.661ns to the +ve edge: this
is less than the 1ns required and so there is slack. The implementation requires 0.300 ns of
hold to the -ve edge and 0.316ns to the +ve edge: this is less than the 1ns required and so
there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

———————————— B T e Tt e S
| Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
———————————— B e e e
rgmii_rx_ctl] -3.352(R) | 4.300(R) |not_rgmii_rx_ clk_bufg| 4.938]
| 0.661(R) | 0.284(R) |rgmii_rx_clk_bufg | 0.938]
rgmii_rxd<0>| -3.384(R) | 4.332(R) |not_rgmii_rx clk_bufg| 4.938]
| 0.629(R) | 0.316(R) |rgmii_rx_clk_bufg | 0.938]
rgmii_rxd<l>| -3.348(R) | 4.296(R) |not_rgmii_rx_clk_bufg]| 4.938]
| 0.665(R) | 0.280 (R) |rgmii_rx_clk_bufg | 0.938]
rgmii_rxd<2>| -3.360(R) | 4.308(R) |not_rgmii_rx_ clk_bufg| 4.938]
| 0.653(R) | 0.292(R) |rgmii_rx_clk_bufg | 0.938]
rgmii_rxd<3>| -3.428(R) | 4.382(R) |not_rgmii_rx clk_bufg| 4.938]
| 0.585(R) | 0.366(R) |rgmii_rx_clk_bufg | 0.938]
———————————— B e e e

Virtex-4 or Virtex-5 Devices with Delayed Data/Control

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-3. Here follows an example for the RGMII report from a Virtex-5 device. Each
Input lists two sets of values - one corresponding to the -ve edge of the clock and one to the
+ve edge. The first set listed corresponds to +ve edge which occurs at time Ons. The
implementation requires 0.818ns of setupto the +ve edge and 0.794ns to the -ve edge: this
is less than the 1ns required and so there is slack. The implementation requires 0.946 ns of
hold to the +ve edge and 0.972ns to the +ve edge: this is less than the 1ns required and so
there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

———————————— Bttt it At L PP S
| Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
———————————— B et e e S
rgmii_rx_ctl| 0.810(R) | 0.933(R)| rgmii_rx_clk_bufg] 0.000|
| -3.214(F) | 4.959(F)| rgmii_rx_clk_bufg| 4.000]
rgmii_rxd<0>| 0.811(R) | 0.940(R) | rgmii_rx clk_bufg]| 0.000]
| -3.213(F) | 4.966(F)| rgmii_rx clk bufg]| 4.000|
rgmii_rxd<l>| 0.801(R) | 0.946 (R) | rgmii_rx_clk_bufg] 0.000|
| -3.223(F) | 4.972(F)| rgmii_rx_clk_bufg| 4.000]

114

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Required Constraints i:)("JNX®

rgmii_rxd<2>| 0.818(R) | 0.929(R) | rgmii_rx_clk_bufg] 0.000|
| -3.206(F) | 4.955(F) | rgmii_rx_clk_bufg| 4.000]
rgmii_rxd<3>| 0.809(R) | 0.936(R) | rgmii_rx clk_bufg]| 0.000]|
| -3.215(F) | 4.962(F) | rgmii_rx_clk_bufg| 4.000]
———————————— B e et T

Virtex-4 or Virtex-5 Devices with Delayed Clock

Setup and Hold results for the RGMII input bus can be found in the data sheet section of

the Timing Report. However, depending on how the setup/hold requirements have been
met the results can initially look strange and it is not immediately obvious how they relate
to Figure 9-3. Here follows an example for the RGMII report from a Virtex-4 device where
the clock has been delayed to meet the setup /hold requirements.

Data Sheet report:

All values displayed in nanoseconds (ns)

———————————— B et e e T A e
| Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
———————————— B e et T
rgmii_rx_ctl| -7.178(R) | 8.880(R)| rgmii_rx_clk_bufg] 0.000|
| -11.178(F) | 12.880(F) | rgmii_rx clk_bufg]| 4.000]
rgmii_rxd<0>| -7.192(R) | 8.893(R)| rgmii_rx_clk_bufg] 0.000]|
| -11.192(F)| 12.893(F)| rgmii_rx_clk_bufg| 4.000]|
rgmii_rxd<l>| -7.182(R) | 8.884(R)| rgmii_rx clk_bufg]| 0.000]|
| -11.182(F)| 12.884(F) | rgmii_rx_clk_bufg] 4.000]|
rgmii_rxd<2>| -7.180(R) | 8.882(R)| rgmii_rx_clk_bufg] 0.000|
| -11.180(F)| 12.882(F)| rgmii_rx_clk_bufg| 4.000]
rgmii_rxd<3>| -7.179(R) | 8.881(R)| rgmii_rx_clk_bufg] 0.000]|
| -11.179(F)| 12.881(F)| rgmii_rx_clk_bufg| 4.000]|
———————————— e}

Each Input lists two sets of values - one corresponding to the +ve edge of the clock and one
to the -ve edge. The first set listed corresponds to +ve edge which occurs at time 8ns as we
have delayed the clock to use the following +ve edge.

The implementation requires -7.179 ns of setup to the +ve edge. Figure 9-4 illustrates that
this represents a figure of 0.821ns relative to the following rising edge of the clock (since
the IDELAY has acted to delay the clock by an entire period when measured from the input
flip-flop). This is less than the 1ns required and so there is slack. Equally for the -ve edge,
we have -11.179ns of setup - this edge is at time 12ns and therefore this equates to a setup
figure of 0.821ns.

The implementation requires 8.893ns of hold to the +ve edge. Figure 9-4 illustrates that this
represents a figure of 0.893 ns relative to the following rising edge of the clock (since the
IDELAY has acted to delay the clock by an entire period when measured from the input
flip-flop). This is less than the 1ns required and so there is slack. Equally for the -ve edge,

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 115
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 9: Constraining the Core

we have 12.893ns of hold - this edge is at time 12ns and therefore this equates to a hold
figure of 0.893ns.

RGMII_RXC / __/__/ \
RGMII_RXD[3:0],
RGMII_RX_CTL
i 8ns >
- B134ns ™
— <_tSETUF = 8 - 7179
=0.821 ns
—» & {0p=8.893-8
8.893 ns - =0.893 ns
- 8ns ™
- 12 ns >
e 12 ns ” -11.179 ns >
1
12.893 ns —>r<—tHOLD =12.893-12 i B
= 0.893 ns tSETUP = 12 - 11.179
=0.821 ns
Figure 9-4: Timing Report Setup/Hold
116 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 10

Clocking and Reset

This chapter describes design considerations associated with implementing the TEMAC
core.

Clocking

The example design files included with the TEMAC core include clocking circuitry to drive
the core at all three speeds.

GMII/MII Transmit Clock Generation

Figure 10-1 illustrates the GMIIL/MII transmit clocking circuit for all device families.

o]

MII_TX_CLK PEED_IS_10_100

" TX_CORE_CLK
CLK =
)
BUFGMUX
" | TX_GMII_MII_CLK
0
BUFGMUX

Figure 10-1: GMII/MII Transmit Clock Generator

CLK must be provided to the MAC clock circuitry. This is a high quality 125 MHz clock
which satisfies the IEEE 802.3-2002 requirements. It is expected that this clock will be
derived from an external oscillator and connected into the device through an IBUFG.
MII_TX_CLK is provided by the PHY chip at speeds of 100 Mbps and below.

If the clock_enables option is set to false, the core requires two transmit clocks.
TX_CORE_CLK drives the 8-bit data path in the core, and the client logic.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 117
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 10: Clocking and Reset

TX_GMII_MII_CLK drives the GMII/MII logic in the core and the example design. This
clock is twice the frequency of the core clock when the device is operating at speeds below
1 Gbps. This is due to the fact that the MII interface implements a 4-bit data path. At these
speeds, the 4-bit data is carried on GMII_TXD[3 downto 0].The upper bits are set to
zero. TX_CORE_CLK is connected to the txcoreclk input of the core. TX_GMII_MII_CLK
is connected to the txgmiimiiclk input. The clock selection is dependent on the state of
the SPEED_IS_10_100 input to the circuit. This is connected to the speedis10100
output of the core. For more information on the GMII/MII transmit interface, see
“GMII/MII Transmit Interface,” on page 63.

If the core is not required to operate at above 100 Mbps, the clocking scheme can be
simplified to remove the 125 MHz CLK input. Figure 10-2 shows the transmit clocking
scheme for a 10/100 Mbps implementation.

o]

MII_TX_CLK
—e

TX_CORE_CLK

BUFG

| TX_GMII_MII_CLK

BUFG

Figure 10-2: 10/100 Mbps MIl Transmit Clock Generator

If the core is generated with the clock_enables option set to true, the TX_CORE_CLK
generation in Figure 10-1 and Figure 10-2 is omitted. The core clock is the
TX_GMII_MII_CLK signal with the user supplying a clock enable to the core and to the
remainder of the transmit client circuitry. The transmit clock generation for cores operating
at 10/100/1 Gbps in this case is illustrated in Figure 10-3.

SPEED_IS_10_100

MII_TX_CLK

TX_GMII_MIl_CLK

CLK

\5_:

B

C

FGMUX

Figure 10-3: GMII/MII Transmit Clock Generator (clock_enables = true)

118

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Clocking S;XHJNX®

GMII/MII Receive Clock Generation

Figure 10-4 shows the GMII/MII receiver clock generation circuit for all families apart
from Spartan-3, Spartan-3E and Spartan-3A.

RX_CLK ISPEED_IS_10_100

RX_CORE_CLK

BUFGMUX
RX_GMII_MII_CLK

BUFG

Figure 10-4: GMII/MII Receive Clock Generator

RX_CLK is provided by the PHY chip via an IBUFG. This clock is output to the
RX_GMII_MII_CLK port via a BUFG where it is used to clock the GMII/MII receiver.

If SPEED_IS_10_100 (speedis10100 output from the core) is ‘0, RX_CORE_CLK is
generated from a frequency divided by 2 version of RX_CLK via a BUFGMUX. If
SPEED_IS_10_100is ‘1, RX_CLXK is routed through the BUFGMUX. The resulting global
clock is used by the core receiver and client side logic. For more information on the
GMII/MII receive interface, see “GMII/MII Receive Interface,” on page 66.

If the core is not required to operate at speeds over 100 Mbps, the clocking scheme can be
simplified to remove the BUFGMUX as RX_CORE_CLXK will always be half the frequency of
RX_GMII_MII_CLK. shows the receiver clock generator for a 10/100 Mbps

implementation.

RX_CLK

RX_CORE_CLK

BUFG

RX_GMII_MII_CLK

BUFG

Figure 10-5: 10/100 Mbps MIl Receive Clock Generator

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 119
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Chapter 10: Clocking and Reset

If the core is generated with the clock_enables option set to true, the RX_CORE_CLK
generation from Figure 10-4 and Figure 10-5 is omitted. The core clock is the
RX_GMII_MII_CLK signal with the user supplying a clock enable to the core and to the
remainder of the receiver client circuitry. This is illustrated in Figure 10-6.

RX_CLK I\ RX_GMII_MIl_CLK

L~

BUFG

Figure 10-6: GMII/MII Receive Clock Generator (clock_enables = true)

RGMII Transmit Clock Generation

Figure 10-7 shows the RGMII transmit clock generator circuit for all device families except
Virtex-5.

SPEED_IS_100 SPEED_IS_10_100

-

Johnson Counter
Johnson Counter BUFGMUX

D Q 1
TX_CORE_CLK
'1\ ——,—
AN 10
ﬁu)

DCM CLK/10 [|CE_LR CLK/10 b a ‘ p
1L rCE-F 1 TX_GMII_MIl_CLK
CLko cLkss | | 1| CLK/S e
|
CLK90 —I —| 0
CLK1go| g 1 BUFGMUX
—— CLKFB 0

CLK LN 1" TX_GMII_MII_CLK90

L 1o

BUFGMUX

Figure 10-7: RGMII Transmit Clock Generator (clock_enables = false)

A high quality 125 MHz clock (CLK) is supplied to the clock circuit. This is then input to a
DCM. The CLKO output from the DCM is used to generate the TX_CORE_CLX (if the core is
generated with the clock_enables option set to false) and TX_GMII_MII_CLK outputs.

A Johnson counter is used to divide the CLK input down by 5 and 10 to provide clocks of
25 MHz and 12.5 MHz. The 12.5 MHz clock is then used to generate clock enable inputs to
a second Johnson counter to provide clocks of 2.5 MHz and 1.25 MHz. These are then
routed to the TX_CORE_CLK and TX_GMII_MII_CLX outputs depending on the state of
the SPEED_IS_10_100 and SPEED_IS_100 outputs from the core.

When the core is running at 1 Gbps, the rgmii_txc clock output must toggle at the center
of the valid data. To do this, the CLK90 output from the DCM is routed to the
TX_GMII_MII_CLK90 output where it is used to generate rgmii_txc. See “RGMII
Transmit Interface,” on page 70 for more details. Atlower speeds, the clock for rgmii_txc
is generated from the CLXK180 output of the DCM via two Johnson counters.

If the core is generated with the optional clock enable circuitry, TX_CORE_CLK is
unnecessary. In this case, the TX_GMII_MII_CLK output is used to clock the entire

120

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

http://www.xilinx.com

FIXILINX®

transmitter circuit with the user supplying a clock enable to the core and the remainder of
the client circuitry, as illustrated in Figure 10-8.

SPEED_IS_100 SPEED_IS_10_100

Johnson Counter Johnson Counter
BUFGMUX

DCM cLk/10 | [CER cCLk/i0
ICE_F

TX_GMII_MII_CLK

clko g ckss |
cLkoo ||

CKiso gy
LKFB
CLK

ICLKIN

e
B

Figure 10-8: RGMII Transmit Clock Generator (clock_enables = true)

CLK/5

TX_GMII_MII_CLK90

For Virtex-5 devices, the RGMII transmit clock generation is simplified, as a 90 degree
phase-shifted clock can be generated using an IODELAY component described in “RGMII
Transmit Interface” in Chapter 7. Figure 10-9 shows the RGMII transmit clocking circuit
for Virtex-5 devices.

TX_SPEED_IS_100 SPEED_IS_10_100

o

TX_CORE_CLK

Johnson Counter Johnson Counter

BU

CLK/10 ’5 CLK/10

ICE_|
—CE_]

TX_GMII_MII_CLK

*—| CLK/S CLK/S

CLK

Figure 10-9: RGMII Transmit Clock Generator (clock_enables = false) for Virtex-5

A high quality 125 MHz clock (CLK) is supplied to the clock circuit. For 1 Gbps operation,
this clock is routed through separate BUFGMUXs to create the TX_GMII_MII_CLK output
and the TX_CORE_CLK output (if the core is generated with the clock_enables option set to
false).

A Johnson counter is used to divide the CLK input down by 5 and 10 to provide clocks of
25 MHz and 12.5 MHz. The 12.5 MHz clock is then used to generate clock enable inputs to
a second Johnson counter to provide clocks of 2.5 MHz and 1.25 MHz. These are then
routed to the TX_CORE_CLK and TX_GMII_MII_CLXK outputs depending on the state of
the SPEED_IS_10_100 and SPEED_IS_100 outputs from the core.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 121

UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 10: Clocking and Reset

RGMII Receive Clock Generation

Figure 10-10 shows the clock generation circuitry for the RGMII receiver for all device
families except Virtex-4 and Virtex-5. At 1 Gbps, the clock is generated from the 125 MHz
rgmii_rxc input via a DCM. The DCM is set-up in fixed-phase shift mode. The phase
shift value can be varied to provide the correct set-up and hold times at the receiver input.
See “Calculating the DCM Phase Shift,” on page 145.

At slower speeds the DCM is bypassed (and held in reset). This is due to the fact that the
minimum CLKIN input of the DCM is 24 MHz. This is too low for the 10 Mbps
rgmii_rxc clock, which runs at a frequency of 2.5 MHz.

At 10/100 Mbps the clock is simply the rgmii_rxc input routed through a BUFGMUX.

DCM

CLK

SPEED_IS_10_100
ESET

D &
— ICLKFB

RX_CLK PEED_IS_10_100
LKIN

RX_CORE_CLK

RX_GMII_MIl_CLK

BUFGMUX

Figure 10-10: RGMII Receive Clock Generator (clock_enables = false)

If the core is generated with the clock_enables option set to true, the RX_CORE_CLK
generation is omitted. The core clock is the RX_GMII_MII_CLK signal with the user
supplying a clock enable to the core and to the remainder of the receive client circuitry.
This is shown in Figure 10-11.

DCM

CLKO|

SPEED_IS_10_100
RESET

PEED_IS_10_100

— [CLKFB

RX_CLK
— LKIN

RX_GMII_MII_CLK

Figure 10-11: RGMII Receive Clock Generator (clock_enables = true)

For Virtex-4 and Virtex-5 devices the receive clock generation is simplified, as illustrated in
Figure 10-12. In Virtex-4 and Virtex-5 devices it is possible to meet the RGMII setup and
hold requirements by skewing the data and control signals using input delay elements. See

122 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Multiple Cores

FIXILINX®

“RGMII Receiver Interface” in Chapter 7 for details on how this is achieved for these

families.

RX_CLK

— <

Figure 10-12: RGMII Receive Clock Generator (clock_enables = false) for
Virtex-4 and Virtex-5 Devices

Multiple Cores

Clock Sharing

“G—e
SPEED_IS_10_100
" RX_CORE_CLK
D
BUFGMUX

| RX_GMII_MIl_CLK

BUFG

Figure 10-13 illustrates how it is possible to share clock resources across multiple
instantiations of the core when using the GMIIL/MII interface.

A common receiver clock domain is not possible; each core will receive an independent

receiver clock from its GMII as illustrated.

At speeds below 1 Gbps, the transmit clock is also an input to the MAC. It is possible to
share the clock if the PHY outputs an identical clock for each MAC. If these clocks are
different, it is not possible to share the clock circuitry. The shared clock MACs must be
operating at the same speed.

Although not illustrated, if the optional Management Interface is used, hostc1lk can also
be shared between cores.

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

www.Xxilinx.com

http://www.xilinx.com

2:)(||_|NX® Chapter 10: Clocking and Reset

If the RGMII interface is used, the rgmii_txc clock output can be shared between
multiple cores as long as they are all running at the same speed.

GTX_CLK
IBUFG TX Clock Generator
| DIV 2 ! I MII_TX_CLK
| | IBUF
! BUFGMUX BUFGI\%UX
L — [— — — — — — — f— — |
lﬁ_ — 1. ? —
txcoreclk txgmiimiiclk | FDDRRSE

OBUF
—[>—> GMII_TX_CLK_1

/I /I GMII_RX_CLK_1

L _ _meoreck _
MAC Core EUF_G IBUFG
|

DIV 2 I RX Clock Generator
|

e — — e— — oe— e — e— — —

rxgmiimiiclk

BUFGMUX

txcoreclk | FDDRRSE

OBUF
—[>—> GMII_TX_CLK_2

|
|
| |
| txgmiimiiclk:
| |
| |
| | | |
| xgriimiiclk : | | GMII_RX_CLK 2
| rxcoreclk N
___________ BUFG IBUFG
F—fF - - - — — = _ =
| |
BUFGMUX |
| DIV 2 H RX Clock Generator

Figure 10-13: Clock Sharing across Two MAC Cores

BUFGMUX Usage

The BUFGMUX components in Virtex-II, Virtex-II Pro, Spartan-3, Spartan-3E and
Spartan-3A devices are arranged in pairs. Both the inputs to each pair must be the same.
For the BUFGMUXes in the TEMAC this is not the case and so the partner of each

124 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

BUFGMUX Usage SUXILINX®

BUFGMUX in the clock circuit cannot be used by another clock. This is illustrated in
Figure 10-14 for the generation of txgmiimiiclk.

Switch Fabric

MII_TX_CLK

GTX_CLK

SEL_A(SPEED_IS_10_100)
SEL_B

BUFGMUX BUFGMUX

txgmiimiiclk

Figure 10-14: Suggested BUFGMUX Scheme

If there are multiple cores on the chip, or if the user logic requires many independent
clocks, it is possible to multiplex the two clocks in the FPGA fabric and route the resultant
signal through a BUFG component (essentially a BUFGMUX with a constant select line).
This will free up the partner BUFGMUX for use by a different clock. This is illustrated in
Figure 10-15.

Switch Fabric

ANOTHER CLOCK

MUX(in fpga fabric)
MIl_TX _CLK

™ T ami_mi_cLk INT .,

exak | e, e
SPEED IS 10 100 A4 .

\

SEL_B

BUFGMUX BUFGMUX

txgmiimiiclk
Figure 10-15: Alternative BUFGMUX Scheme
No glitches or short pulses appear on the output of the BUFGMUX components when the

select line is toggled. Performing the multiplexing in the FPGA fabric removes this
safeguard, and if the user has not implemented a glitch free clock multiplexer circuit, a

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 125
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 10: Clocking and Reset

reset should be performed after a speed change. The reset has no effect on the speed
setting, which is preserved in the configuration registers.

Reset Conditions

Internally, the core is divided up into clock/reset domains, which group together elements
with the common clock and reset signals. The reset circuitry for one of these domains is
illustrated in Figure 10-16. This circuit provides controllable skews on the reset nets within
the design.

More information on the operation and rationale behind this circuit can be found in Ken
Chapman’s Xilinx TechXclusive, “Get Smart About Reset” at:
www.xilinx.com /support/techxclusives/global-techX19.htm

RESET
Management Reset I I I ‘

Core Registers

| |

PRE PRE| ——- | PRE

Clock

Figure 10-16: Reset Circuit for One Clock/reset Domain

126 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/global-techX19.htm

S XILINX®
Chapter 11

Interfacing to Other Cores

Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core

The TEMAC core can be integrated in a single device with the Ethernet 1000BASE-X
PCS/PMA or SGMII core (Virtex II Pro, Virtex-4, and Virtex-5 only) to provide a SGMII
interface to an external PHY chip.

A description of the latest available IP Update containing the Ethernet 1000BASE-X
PCS/PMA or SGMII core and instructions on obtaining the IP update can be found in the
Ethernet 1000BASE-X PCS/PMA or SGMII Product web site at:

www.xilinx.com/systemio/1gbsx_phy/index.htm

A description of the Ethernet 1000BASE-X PCS/PMA or SGMII core is outside the scope of
this document.

The Tri-Mode Ethernet MAC should always be configured for full-duplex operation when
used with an SGMIL. This constraint is due to the increased latency introduced by the
SGMII logic; frame collisions and the MACs response will not be detected or made in time.

Integration to Provide SGMII

Virtex-1l Pro Devices

Figure 11-1 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-II pro
devices. This shows that:

e The TEMAC core is generated with optional clock enables.

e The cores are connected together via a SGMII adaptation module. This generates the
clock enable needed to run the TEMAC at speeds below 1 Gbps. The clock enable
should also be used to enable the client transmit and receive circuitry. These ensure
that data is only sampled every 10 clock cycles at 100 Mbps and every 100 clock cycles
at 10 Mbps.

e If the TEMAC has been built with the optional management logic (see “Using the
Optional Management Interface,” page 81), the MDIO port can be connected up to
that of the Ethernet 1000BASE-X PCS/PMA or SGMII core to access its embedded
configuration and status registers.

Some simplification to the UCF required for use with the TEMAC is possible. The
constraints which cover the clocks (with the exception of the hostclk) can be removed as
these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA or SGMII core

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 127
UG138 August 8, 2007

http://www.xilinx.com/systemio/1gbsx_phy/index.htm
http://www.xilinx.com

FIXILINX

Chapter 11: Interfacing to Other Cores

UCF. The GMII Transmitter and Receiver Constraints can also be removed as these signals

are no longer routed to IOBs.

10B LOGIC
|—— === 1
| brefclkp |BUFGDS }
|
| |IPAD > | brefclk (62.5MHz)
} IPAD I
| brefclkn !
L B
DCM BUFG
GLKIN CLKO userclk (62.5MHz)
L rB BUFG

userclk2 (125MHz)

CLK2X180

Ethernet
1000BASE-X
PCS/PMA or
SGMII Core

userclk

userclk2

gmii_txd[7:0]
gmii_tx_en

gmii_tx_er

gmii_rxd([7:0]
gmii_rx_dv

gmii_rx_er

mdc
mdio_in
mdio_out

mdio_tri

Virtex-Il Pro
RocketlO
(GT_CUSTOM)

L1 brefclk

txusrelk

txusrclk2

RocketlO I/F

pcs_pma/sgmii_component_name_block
(Block Level from Core Example Design)
Tri-Mode Ethernet
MAC Core
txgmiimiiclk< ﬁ
rxgmiimiiclk<
SGMII Adaptation
clientemacrxenable 1 module
clier 1able —@r sgmii_clk_en —
NC f—— sgmii_clk_r
speedis10100 speed_is_10_100
userclk2 { —
speedis100 speed_is_100
emacphytxd7:0] gmii_txd_in[7:0] gmii_txd_out[7:0]
emacphytxen gmii_tx_en_in gmii_tx_en_out
emacphytxer gmii_tx_er_in gmii_tx_er_out
pt 7:0] gmii_rxd_out[7:0] gmii_rxd_in[7:0]
phyemacrxdv gmii_rx_dv_out gmii_rx_dv_in
phyemacrxer gmii_rx_er_out gmii_rx_er_in
emacpt
phyemacmdin \><
emacphymdout F——|
phy i no
connection
vce
corehassgmii

Figure 11-1: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-Il Pro)

128

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core

FIXILINX®

Virtex-4 Devices

Figure 11-2 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-4 devices.
As in the Virtex-1I Pro architecture, the TEMAC core is generated with optional clock
enables and the interface between the two cores is provided by an SGMII Adaptation

module.
Virtex-4
brefclkp GT11CLK_MGT
(125MHz)
IPAD MGTCLKP
IPAD MGTCLKN
brefclkn
(125MHz) synclk1
(125MHz)
SYNCLK10OUT
BUFG
Tri-Mode userclk2
Ethernet MAC (125 MHz)
Core
pcs_pma/sgmii_component_name_block @—
(Block Level from Core Example Design)
txgmiimiiclk Ethernet Virtex-4
1000BASE-X GT11
rxgmiimiiclk< PCS/PMA or RocketlO
SGMII Core (used)
SGMII Adaptation
clientemacrxenable Module TXOUTCLK1
clientemactxenable 1 sgmii_clk_en userclk2
_ REFCLK1
NC ——| sgmii_clk_r userclk
speedis10100 speed_is_10_100 0’ TXUSRCLK
userclk2
speedis100 speed_is_100 TXUSRCLK2
emacphytxd7:0] gmii_txd_in[7:0] gmii_txd_out[7:0] gmii_txd[7:0]
emacphytxen gmii_tx_en_in gmii_tx_en_out gmii_tx_en
emacphytxer gmii_tx_er_in gmii_tx_er_out gmii_tx_er
phyemacrxd[7:0] gmii_rxd_out[7:0] ~ gmii_rxd_in[7:0] gmii_rxd([7:0] K RocketlO I/F
phyemacrxdv gmii_rx_dv_out gmii_rx_dv_in gmii_rx_dv
phyemacrxer gmii_rx_er_out gmii_rx_er_in gmii_rx_er
emacphymclkout mdc
phyemacmdin \>< mdio_in
emacphymdout ———_| mdio_out
no mdio_tri

emacphymdtri

connection

vcC

T

corehassgmii

Figure 11-2: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-4)

As in the Virtex-II Pro, some simplification to the UCF required for use with the TEMAC is
possible. The constraints which cover the clocks (with the exception of the hostclk) can
be removed as these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA
or SGMII core UCFE. The GMII Transmitter and Receiver Constraints can also be removed

as these signals are no longer routed to IOBs.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

129

http://www.xilinx.com

2:)(||_|NX® Chapter 11: Interfacing to Other Cores

Virtex-5 Devices

Figure 11-3 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-5 devices.
As with the Virtex-II Pro architecture, the TEMAC core is generated with optional clock
enables and the interface between the two cores is provided by an SGMII Adaptation
module.

brefclkp IBUFGDS

clkin
brefclkn (125MHz)
BUEG
\ 4
Tri-Mode userclk2
Ethernet MAC (125 MHz)
Core
pcs_pma/sgmii_component_name_block @————————
(Block Level from Core Example Design)
txgmiimiiclk Ethernet Virtex-5
1000BASE-X RocketlO
rxgmiimiiclk PCS/PMA or GTP
K SGMII Core
SGMII Adaptation Module
clientemacrxenable TXOUTCLKO
clientemactxenable j sgmii_clk_en userclk2
B CLKIN
NC ——{ sgmii_clk_r > userclk
speedis10100 speed_is_10_100 TXUSRCLKO
userclk2
speedis100 speed_is_100 TXUSRCLK20
emacphytxd7:0] gmii_txd_in[7:0] gmii_txd_out[7:0] gmii_txd[7:0]
emacphytxen gmii_tx_en_in gmii_tx_en_out gmii_tx_en
emacphytxer gmii_tx_er_in gmii_tx_er_out gmii_tx_er
phyemacrxd[7:0] gmii_rxd_out[7:0] gmii_rxd_in[7:0] gmii_rxd[7:0] < RocketlO I/F >
phyemacrxdv gmii_rx_dv_out gmii_rx_dv_in gmii_rx_dv
phyemacrxer gmii_rx_er_out gmii_rx_er_in gmii_rx_er
emacphymclkout mdc
phyemacmdin \>< mdio_in
emacphymdout | mdio_out
emacphymditri No — !'mdio_tri
Connection
vce
corehassgmii

Figure 11-3: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-5)

As in the Virtex-II Pro, some simplification to the UCF required for use with the TEMAC is
possible. The constraints which cover the clocks (with the exception of the hostc1lk) can
be removed as these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA
or SGMII core UCFE. The GMII Transmitter and Receiver Constraints can also be removed
as these signals are no longer routed to IOBs.

Integrating with the Ethernet Statistics Core

The TEMAC can be integrated with the Ethernet Statistics core to provide statistical
information on the frames that are processed by the MAC. Figure 11-4 illustrates the
connections required to interface the two cores when the TEMAC is generated with
optional clock enables. If the TEMAC is generated without clock enables, txcoreclk and
txcoreclk are connected to the tx_clk and rx_clk inputs of the Ethernet Statistics
core. The tx_enable and rx_enable inputs of the Ethernet Statistics core are tied high.

130 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Integrating with the Ethernet Statistics Core

FIXILINX®

The Ethernet Statistics core contains two parts:

The vector decode module decodes the information contained in the statistics vector

bit 9

Managment Interface

>ost,c|k

>f7clk

Statistics 32/64
Bit Module

tx_byte
rx_byte
rx_small

rx_frag

increment_vector

tx_clk

rx_clk

host_opcode
host_req
host_miim_sel
host_addr
host_rd_data

outputs from the TEMAC core. This block can be modified to allow the user to gather
information on the types of frame that are of interest.
The Statistics 32/64-bit module contains the statistic counters. If the 32-bit module is
selected, each counter can count up to 232_1 frames. If the 64-bit module is selected,
the counters can count 264-1 frames. The information from the counters is read back
via the Management Interface.
From Clock and Clock Enable
Generation Circuitry
Ethernet Statistics Core
Tri-Mode
Ethernet MAC Core Vector Decode Module
emacclienttxstats tx_statistics_vector tx_byte —
emacclienttxstatsvid tx_statistics_valid rx_byte —
clientemactxenable tx_enable rx_small f—
emacclientrxstats rx_statistics_vector rx_frag
emacclientrxstatsvid rx_statistics_valid
clientemacrxenable rx_enable
txgmiimiiclk tx_clk increment_vector [
rxgmiimiiclk rx_clk
hostmiimrdy —
hostwrdata jem
hostopcode
hostreq
hostmiimsel
hostaddr
hostrddata
hostclk
ref_clk N
l/
BUFG i 0

Figure 11-4: Tri-Mode Ethernet MAC with Statistics

For more information on the Ethernet Statistics core, see the LogiCORE Ethernet Statistics

User Guide.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com

131

http://www.xilinx.com

2:)(||_|NX® Chapter 11: Interfacing to Other Cores

132 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Chapter 12

Implementing Your Design

This chapter describes how to simulate and implement your design containing the TEMAC
core.

Pre-implementation Simulation

The CORE Generator generates a functional model of the TEMAC core netlist to allow
simulation of the block in the design phase of the project.

Using the Simulation Model

For information on setting up your simulator to use the functional model, see the Xilinx
Synthesis and Verification Design Guide, included in your Xilinx software installation.

The model is provided in the CORE Generator project directory.
VHDL

<component_name>.vhd
Verilog

<component_name>.v

This model can be compiled along with the users code to simulate the overall system.
Synthesis

XST - VHDL

In the CORE Generator project directory, there is a <component_name>.vho file thatis a
component and instantiation template for the core. Use this to help instance the TEMAC
core into your VHDL source.

After your entire design is complete, create the following:

e An XST project file top_level module_name.prj listing all the user source code
files

e an XST script file top_level module name.scr containing your required
synthesis options

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 133
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 12: Implementing Your Design

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

XST - Verilog

In the CORE Generator project directory, locate the module declaration for the TEMAC
core at:

<component_name>/implement/<component_name>_mod.v
Use this module to help instance the TEMAC core into your Verilog source.
After your entire design is complete, create

e An XST project file top_level module_name.pr] listing all the user source code
files. Be sure to include

$XILINX%/verilog/src/iSE/unisim_comp.v
and
<component_name>/implement/component_name mod.v

as the first two files in the project list.

e An XST script file top_Ilevel module name.scr containing your required
synthesis options

To synthesize the design, run
$ xst -ifn top_level_module_name.scr

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

Implementation

Generating the Xilinx Netlist

To generate the Xilinx netlist, the ngdbuild tools is used to translate and merge the
individual design netlists into a single design database, the NGD file. Also merged at this
stage is the UCF for the design. An example of the ngdbuild command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \
-uc top_level_module_name.ucf top_level _module_name

Mapping the Design

To map the logic gates of the user design netlist into the CLBs and IOBs of the FPGA, run
the map command. The map command writes out a physical design to an NCD file. An
example of the map command is:

$ map top_level_module_name -o top_level_module_name_map.ncd

Placing and Routing the Design

To place and route the user design’s logic components (mapped physical logic cells)
contained within an NCD file in accordance with the layout and timing requirements
specified within the PCF file, the par command must be executed. The par command

134 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Post-Implementation Simulation i:)("JNX®

outputs the placed and routed physical design to an NCD file. An example of the par
command is:

$ par top_level_module_name_map.ncd top_level_module_name.ncd \
top_level_module_name.pcf

Static Timing Analysis

To evaluate timing closure on a design and create a Timing Report file (TWR) derived from
static timing analysis of the Physical Design file (NCD), the trce command must be
executed. The analysis is typically based on constraints included in the optional PCF file.
An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \
top_level_module_name.pcf

Generating a Bitstream

To create the configuration bitstream (BIT) file based on the contents of a physical
implementation file (NCD), the bitgen command must be executed. The BIT file defines
the behavior of the programmed FPGA. An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation

The purpose of post-implementation simulation is to verify that the design as
implemented in the FPGA works as expected.

Generating a Simulation Model
To generate a chip-level simulation netlist for your design, run the netgen command.
VHDL

$ netgen -sim -ofmt vhdl -ngm top_level _module_name_map.ngm \
-tm netlist top_level_module_name.ncd \
top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \
-tm netlist top_level_module_name.ncd \
top_level_module_name_postimp.v

Using the Model

For information on setting up your simulator to use the pre-implemented model, consult
the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 135
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Chapter 12: Implementing Your Design

Other Implementation Information

For more information about using the Xilinx implementation tool flow, including
command line switches and options, see the Xilinx ISE software manuals.

136 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®

Appendix A

Using the Client Side FIFO

The example design provided with the TEMAC core contains a LocalLink FIFO used to
interface to the client side of the TEMAC core. The source code for the FIFO is provided,
and can be used and edited for user applications.

The 10 Mbps /100 Mbps/1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into
a typical implementation. Each FIFO is built around two Dual Port Block RAMs giving a
memory capacity of 4096 bytes in each FIFO. This chapter describes the operation of the
FIFO.

Local Link Interface Client Interface

GMII/MII or RGMII

/ 10M/100M/1G / Tri-Mode Ethernet
Ethernet MAC FIFO MAC Core /

PHY Chip
Transmit FIFO

l

User Logic

GMII/MII

Core
Interface|

)
-

Receive FIFO

A

—qm—————y -

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation

Overview of LocalLink Interface

Data is transferred on the LocalLink interface from source to destination, with the flow
governed by the four active low control signals sof_n, eof_n, src_rdy nand
dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n
signals. For more information on the LocalLink interface, see Xilinx Application Note
XAPP691, “Parameterizable LocalLink FIFO.” Figure A-2 shows the transfer of an 8-byte
frame.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 137

UG138 August 8, 2007

http://www.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

FIXILINX

Appendix A: Using the Client Side FIFO

clock

data[7:0]

sof_n

eof_n

src_rdy_n~ |

dst_rdy_n

Figure A-2: Frame Transfer across LocalLink Interface

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

clock

data[7:0]

sof n~ |

eof n

src_rdy_n" |

dst_rdy_n

Receive FIFO Operation

Figure A-3: Frame Transfer with Flow Control

The receive FIFO takes data from the client interface of the TEMAC core and converts it
into LocalLink format. See “Receiving Inbound Frames,” on page 39 for a description of the
TEMAC receive client interface. If the frame is marked as good by the TEMAC, that frame
will then be presented on the LocalLink interface for reading by the user. If the frame is

marked as bad, that frame will be dropped by the FIFO.

LocalLink Interface

Table A-1 describes the receive FIFO LocalLink interface.

Table A-1: Receive FIFO LocalLink Interface

Signal Direction CIOCI.(Description
Domain
rx_11_clock Input N/A Read clock for LocalLink
interface
rx_ll_reset Input rx_ll_clock | Synchronous reset
rx_l1_data_out[7:0] Output rx_11_clock Data read from FIFO
rx_ll_sof out_ n Output rx_11_clock Start of frame indicator

138

www.Xxilinx.com

Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Transmit FIFO Operation XX"JNX@

Table A-1: Receive FIFO LocallLink Interface (Continued)

Signal Direction D?)I:::i(n Description
rx_ll_eof_out_n Output rx_ll_clock | End of frame indicator
rx_ll_src_rdy_out_n Output rx_ll_clock | Source ready indicator
rx_ll_dst_rdy_in_n Input rx_ll_clock | Destination ready indicator
rx_fifo_status[3:0] Output rx_11_clock FIFO memory status

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be
asserted. Frames will continue to be dropped until space is made available in the FIFO by
reading data out. The FIFO status signal indicates the occupancy of the FIFO.

Transmit FIFO Operation

The transmit FIFO accepts frames in LocalLink format and stores them in block RAM for

transmission via the TEMAC. When a full frame is written into the transmit FIFO, the FIFO
will present the data to the TEMAC transmitter client interface. On receiving the tx_ack
signal from the TEMAC core, the rest of the frame is transmitted. For a description of the

TEMAC transmit client interface, see “Transmitting Outbound Frames,” on page 47.

LocalLink Interface

Table A-2 shows the transmit FIFO LocalLink interface signals.

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction D%I:gi(n Description
tx_ll_clock Input N/A Write clock for LocalLink interface
tx_l1l_reset Input tx_ll_clock | Synchronous reset
tx_l1_data_in[7:0] Input tx_lI_clock | Write data to be sent to transmitter
tx_1l_sof in_n Input tx_11_clock | Start of frame indicator
tx_1l_eof in_n Input tx_1l_clock | End of frame indicator
tx_ll_src_rdy_in_n Input tx_Il_clock | Source ready indicator
tx_1l_dst_rdy_out_n Output | tx_Il_clock | Destination ready indicator
tx_fifo_status[3:0] Output | tx_ll_clock | FIFO memory status

In half-duplex operation, if the client interface emacclienttxcol lision signal is
asserted by the TEMAC, the current frame transmission will be terminated. If the
emacclienttxretransmit signal is also asserted, the FIFO re-queues the frame for
transmission.

If the FIFO memory fills up, the dst_rdy_out_n signal will be used to halt the LocalLink
interface writing in data, until space becomes available in the FIFO. If the FIFO memory
fills up but no frames are available for transmission, i.e. if a frame larger than 4000 bytes is

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 139
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Appendix A: Using the Client Side FIFO

written into the FIFO, the FIFO will assert the tx_overflow signal and continue to accept
the rest of the frame from the user. The overflow frame will be dropped by the FIFO. This
ensures that the LocalLink interface does not lock up.

Clock Requirements

The FIFO has been designed to work with rxcoreclk and txcoreclk running at speeds
in the range of 125 MHz to 1.25 MHz or, with the optional clock enables, rxgmiimiiclk
and txgmiimiiclkintherangeof 125 MHzto2.5MHz. The rx_11_clockshould beno
slower than the clock on the receiver client interface. The tx_11_clock should be no
slower than the clock on the transmitter client interface divided by 2. It is therefore
suggested that the rx_11_clock and tx_11_clock are always 125 MHz or faster.

User Interface Data Width Conversion

Conversion of the user interface 8 bit data path to a 16, 32, 64 or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO (XAPP691).

140 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

S XILINX®

Appendix B

Core Verification, Compliance, and
Interoperability

The TEMAC has been verified with extensive simulation and hardware verification.

Verification by Simulation

A highly parameterizable transaction-based test bench (not part of the primary core
deliverables) was used to test the core. Tests include:

Register access

MDIO access

Frame transmission and error handling
Frame reception and error handling
Speed switching

Address filter operation

Hardware Verification

The core has been tested in a variety of hardware test platforms at Xilinx to cover a variety
of parameterizations, including the following:

Testing with the Ethernet 1000BASE-X PCS/PMA or SGMII cores from Xilinx. A test
platform was built around these cores, including a back-end FIFO capable of
performing a simple ping function and a test pattern generator. Software running on
the embedded PowerPC™ was used to provide access to all configuration, status and
statistical counter registers.

Testing with an external PHY device. The MAC was connected to the external PHY
device via the GMII interface.

Tri-Mode Ethernet MAC v3.4

UG138 August 8, 2007

www.Xxilinx.com 141

http://www.xilinx.com

2:X||_|NX® Appendix B: Core Verification, Compliance, and Interoperability

142 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

& XILINX®
Appendix C

Core Latency

General

The latency figures given in the following sections may vary by three clock ticks in either
direction, due to the crossing of clock domains within the core.

Transmit Path Latency

The transmit path latency is measured by counting the number of clock cycles between a
data byte being placed on the client interface (clientemactxd), and it appearing at the
GMII/MII output (emacphytxd). At 1 Gbps, this has been measured as 12 clock cycles, at
10/100 Mbps this has been measured as 10 clock cycles.

Receive Path Latency

The receive path latency is measured as the number of clock cycles between a byte being
driven onto the GMII/MII receive interface (phyemacrxd), and it appearing at the client
(emacclientrxd). This has been measured as 18 clock cycles at all speeds.

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 143
UG138 August 8, 2007

http://www.xilinx.com

2:)(||_|NX® Appendix C: Core Latency

144 www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

S XILINX®
Appendix D

Calculating the DCM Phase Shift

DCM Phase Shifting Requirements

A DCM is used in the receiver clock path to meet the input setup and hold requirements
when implementing GMII/MII using the core in Spartan-3, Spartan-3E, and Spartan-3A
devices (see “Implementing External GMIIL,” on page 63). In RGMII, a DCM is used to
maintain the setup and hold times in all devices, except Virtex-5 and Virtex-4 (see “RGMII
Receive Clock Generation,” on page 122).

In these cases, a fixed-phase shift offset is applied to the receiver clock DCM to skew the
clock; this performs static alignment by using the receiver clock DCM to shift the internal
version of the receiver clock such that the data is sampled at the optimum time. The ability
to shift the internal clock in small increments is critical for sampling high-speed source
synchronous signals. For statically aligned systems, the DCM output clock phase offset (as
set by the phase shift value) is a critical part of the system, as is the requirement that the
PCB is designed with precise delay and impedance-matching for all the GMII receiver data
bus and control signals.

You must determine the best DCM setting (phase shift) to ensure that the target system has
the maximum system margin to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best DCM phase shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time). System margin is defined as the following:

System Margin (ps) = Ul(ps) * (working phase shift range/128)

Finding the Ideal Phase Shift Value

Xilinx cannot recommend a singular phase shift value that is effective across all hardware
platforms. Xilinx does not recommend attempting to determine the phase shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock to data relationship at the sample point (in the IOB) and are difficult to
characterize.

Xilinx recommends extensive investigation of the phase shift setting during hardware
integration and debugging. The phase shift settings provided in the example design
constraint file are placeholders, and work successfully in back-annotated simulation of the
example design.

Perform a complete sweep of phase shift settings during your initial system test. Use only
positive (0 to 255) phase shift settings, and use a test range that covers a range of no less
than 128, corresponding to a total 180 degrees of clock offset. This does not imply that 128
phase shift values must be tested; increments of 4 (52, 56, 60, and so forth) correspond to

Tri-Mode Ethernet MAC v3.4 www.Xxilinx.com 145
UG138 August 8, 2007

http://www.xilinx.com

FIXILINX

Appendix D: Calculating the DCM Phase Shift

roughly one DCM tap, and consequently provide an appropriate step size. Additionally, it
is not necessary to characterize areas outside the working phase shift range.

At the edge of the operating phase shift range, system behavior changes dramatically. In
eight phase shift settings or less, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase shift range. Once the range is determined, choose the average
of the high and low working phase shift values as the default. During the production test,
Xilinx recommends that you re-examine the working range at corner case operating
conditions to determine whether any final adjustments to the final phase shift setting are
needed.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in phase shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

146

www.Xxilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

	LogiCORE™ Tri-Mode Ethernet MAC v3.4
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Additional Core Resources
	Related Xilinx Ethernet Products and Services
	Specifications
	Technical Support
	Feedback
	Tri-Mode Ethernet MAC Core
	Document

	Core Architecture
	System Overview
	Core Components

	Core Interfaces
	Optional Interfaces
	Client Side Interface Signals
	Management Interface Signals
	Configuration Vector Signals
	Address Filter Signals
	Clock, Speed Indication, and Reset Signals
	Physical Interface Signals
	Optional MDIO Signals

	Generating the Core
	GUI Interface
	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	General Design Guidelines
	Design Steps
	Understand Signal Pipelining
	Register All I/Os
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Using the Client Side Data Path
	Receiving Inbound Frames
	Normal Frame Reception
	emacclientrxgoodframe and emacclientrxbadframe Timing
	Frame Reception with Errors
	Client-Supplied FCS Passing
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Length/Type Field Error Checks
	Address Filter
	Receiver Statistics Vector

	Transmitting Outbound Frames
	Normal Frame Transmission
	Padding
	Client-Supplied FCS Passing
	Client Underrun
	Back-to-Back Transfers
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Frame Collisions: Half-Duplex Operation Only
	Interframe Gap Adjustment: Full-Duplex Mode Only
	Transmitter Statistics Vector

	Using Flow Control
	Overview of Flow Control
	Flow Control Requirement
	Flow Control Basics
	Pause Control Frames

	Flow Control Operation of the TEMAC
	Transmitting a Pause Control Frame
	Receiving a Pause Control Frame

	Flow Control Implementation Example

	Using the Physical Side Interface
	Implementing External GMII
	GMII/MII Transmit Interface
	GMII/MII Receive Interface

	Implementing External RGMII
	RGMII Transmit Interface
	RGMII Receiver Interface
	RGMII Inband Status Decoding Logic

	Using the MDIO Interface

	Configuration and Status
	Using the Optional Management Interface
	hostclk
	Configuration Registers
	Register Maps
	Using the Management Interface
	MDIO Interface

	Accessing Configuration without the Management Interface
	Configuration Vector Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Placement Constraints
	Timing Constraints
	Understanding Timing Reports for GMII Setup/Hold timing
	Understanding Timing Reports for RGMII Setup/Hold timing

	Clocking and Reset
	Clocking
	GMII/MII Transmit Clock Generation
	GMII/MII Receive Clock Generation
	RGMII Transmit Clock Generation
	RGMII Receive Clock Generation

	Multiple Cores
	Clock Sharing

	BUFGMUX Usage
	Reset Conditions

	Interfacing to Other Cores
	Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core
	Integration to Provide SGMII

	Integrating with the Ethernet Statistics Core

	Implementing Your Design
	Pre-implementation Simulation
	Using the Simulation Model

	Synthesis
	XST - VHDL
	XST - Verilog

	Implementation
	Generating the Xilinx Netlist
	Mapping the Design
	Placing and Routing the Design
	Static Timing Analysis
	Generating a Bitstream

	Post-Implementation Simulation
	Generating a Simulation Model
	Using the Model

	Other Implementation Information

	Using the Client Side FIFO
	Overview of LocalLink Interface
	Receive FIFO Operation
	LocalLink Interface

	Transmit FIFO Operation
	LocalLink Interface

	Clock Requirements
	User Interface Data Width Conversion

	Core Verification, Compliance, and Interoperability
	Verification by Simulation
	Hardware Verification

	Core Latency
	General
	Transmit Path Latency
	Receive Path Latency

	Calculating the DCM Phase Shift
	DCM Phase Shifting Requirements
	Finding the Ideal Phase Shift Value

