
R

LogiCORE™
1-Gigabit Ethernet
MAC v8.3

User Guide
UG144 August 8, 2007

www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-
PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2004-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date Version Revision

09/30/04 1.0 Initial Xilinx release.

04/28/05 2.0 Updated to 1-Gigabit Ethernet MAC version 6.0, Xilinx tools v7.1i SP1.

01/18/06 3.0 Updated to 1-Gigabit Ethernet MAC version 7.0, Xilinx tools v8.1i.

07/13/06 4.0 Updated to 1-Gigabit Ethernet MAC version 8.0, Xilinx tools v8.2i.

09/21/06 4.1 Updated to 1-Gigabit Ethernet MAC version 8.1, added support for Spartan-3A.

02/15/07 4.2 Updated to 1-Gigabit Ethernet MAC version 8.2, Xilinx tools v9.1i.

08/08/07 5.0 Advanced core version to 8.3, updated various tool versions and trademarsk for the IP1
I Jade Minor release.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 3
UG144 August 8, 2007

Preface: About This Guide
Guide Contents . 13
Additional Resources . 14
Conventions . 14

Typographical . 14
Online Document . 15

Chapter 1: Introduction
About the Core . 17
Recommended Design Experience . 17
Additional Core Resources . 17
Related Xilinx Ethernet Products and Services . 18
Specifications . 18
Technical Support. 18
Feedback. 18

GEMAC Core . 18
Document . 18

Chapter 2: Core Architecture
System Overview . 19

Core Components . 20
Core Interfaces . 21

GMAC Core with Optional Management Interface . 21
GMAC Core Without Management Interface and With Address Filter 22
GEMAC Core Without Management Interface and Without Address Filter 23
Client Side Interface . 24
Physical Side Interface . 27

Chapter 3: Generating the Core
Graphical User Interface . 29

Component Name . 30
Management Interface . 30
Address Filter . 30
Number of Address Table Entries . 30
Physical Interface . 30

Parameter Values in the XCO File . 30
Output Generation . 31

Table of Contents

http://www.xilinx.com

4 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

R

Chapter 4: Designing with the Core
General Design Guidelines . 33

Design Steps . 33
Know the Degree of Difficulty . 35
Keep it Registered . 36
Recognize Timing Critical Signals . 36
Use Supported Design Flows . 36
Make Only Allowed Modifications . 36

Chapter 5: Using the Client Side Data Path
Receiving Inbound Frames . 37

Normal Frame Reception . 37
rx_good_frame, rx_bad_frame timing . 38
Frame Reception with Errors . 38
Client-Supplied FCS Passing . 39
VLAN Tagged Frames. 39
Maximum Permitted Frame Length . 40
Length/Type Field Error Checks. 40
Address Filter . 41
Receiver Statistics Vector . 41

Transmitting Outbound Frames . 43
Normal Frame Transmission . 43
Padding . 44
Client-Supplied FCS Passing . 44
Client Underrun . 45
VLAN Tagged Frames. 45
Maximum Permitted Frame Length . 46
Inter-Frame Gap Adjustment . 46
Transmitter Statistics Vector. 47

Chapter 6: Using Flow Control
Overview of Flow Control . 49

Flow Control Requirement . 49
Flow Control Basics . 50
Pause Control Frames . 50

Flow Control Operation of the GEMAC . 51
Transmitting a PAUSE Control Frame . 51
Receiving a Pause Control Frame . 52

Flow Control Implementation Example . 53

Chapter 7: Using the Physical Side Interface
Implementing External GMII. 55

GMII Transmitter Logic . 55
GMII Receiver Logic . 57

Implementing External RGMII . 60
RGMII Transmitter Logic . 61
RGMII Receiver Logic . 65
RGMII Inband Status Decoding Logic . 68

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 5
UG144 August 8, 2007

R

Using the MDIO interface . 68
Connecting the MDIO to an Internally Integrated PHY . 68
Connecting the MDIO to an External PHY . 69

Chapter 8: Configuration and Status
Using the Optional Management Interface. 71

Host Clock Frequency . 71
Configuration Registers . 71
MDIO Interface . 79

Access without the Management Interface . 83

Chapter 9: Constraining the Core
Required Constraints. 87

Device, Package, and Speedgrade Selection . 87
I/O Location Constraints . 87
Placement Constraints . 87
Timing Constraints . 87
Constraints when Implementing an External GMII . 90
Understanding Timing Reports for GMII Setup/Hold Timing 93
Constraints when Implementing an External RGMII . 95
Understanding Timing Reports for RGMII Setup/Hold timing 99

Chapter 10: Clocking and Resetting
Clocking the Core . 103

With Internal GMII . 103
With External GMII . 103
With RGMII. 104

Multiple Cores . 104
With External GMII . 104
With RGMII. 105

Reset Conditions . 106

Chapter 11: Interfacing to Other Cores
Ethernet 1000Base-X PCS/PMA or SGMII Core . 107

Integration to Provide 1000BASE-X PCS with TBI . 107
Integration to Provide 1000BASE-X PCS and PMA using RocketIO 108
Integration to Provide SGMII Functionality . 113

Ethernet Statistics Core . 113
Connecting the Ethernet Statistics core to Provide Statistics Gathering 113

Chapter 12: Implementing Your Design
Pre-implementation Simulation . 117

Using the Simulation Model . 117
Synthesis . 117

XST—VHDL . 117
XST—Verilog . 118

Implementation . 118
Generating the Xilinx Netlist . 118

http://www.xilinx.com

6 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

R

Mapping the Design . 118
Placing-and-Routing the Design . 119
Static Timing Analysis . 119
Generating a Bitstream . 119

Post-Implementation Simulation . 119
Generating a Simulation Model . 119
Using the Model . 120

Other Implementation Information . 120

Appendix A: Using the Client-Side FIFO
Interfaces . 122

Transmit FIFO. 122
Receive FIFO . 123

Overview of LocalLink Interface . 123
Data Flow . 123

Functional Operation. 124
Clock Requirements . 124
Receive FIFO . 124
Transmit FIFO. 125
Expanding Maximum Frame Size . 126
User Interface Data Width Conversion . 126

Appendix B: Core Verification, Compliance, and Interoperability
Verification by Simulation . 127
Hardware Verification . 127

Appendix C: Calculating DCM Phase-Shifting
DCM Phase-Shifting . 129
Finding the Ideal Phase-Shift. 129

Appendix D: Core Latency
Transmit Path Latency . 131
Receive Path Latency . 131

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 7
UG144 August 8, 2007

Chapter 2: Core Architecture
Figure 2-1: Block Diagram . 19
Figure 2-2: Component Pinout for MAC with Optional Management Interface 21
Figure 2-3: Component Pinout for MAC without Optional Management Interface

and with Optional Address Filter. 22
Figure 2-4: Component Pinout for MAC without Optional Management Interface

or Optional Address Filter . 23

Chapter 3: Generating the Core
Figure 3-1: 1-Gigabit Ethernet MAC Main Screen . 29

Chapter 4: Designing with the Core
Figure 4-1: 1-Gigabit Ethernet MAC Core Example Design . 34

Chapter 5: Using the Client Side Data Path
Figure 5-1: Normal Frame Reception . 38
Figure 5-2: Frame Reception with Error . 39
Figure 5-3: Frame Reception with In-Band FCS Field. 39
Figure 5-4: Reception of a VLAN Tagged Frame . 40
Figure 5-5: Receiver Statistics Vector Timing . 41
Figure 5-6: Normal Frame Transmission . 44
Figure 5-7: Frame Transmission with Client-supplied FCS. 45
Figure 5-8: Frame Transmission with Underrun . 45
Figure 5-9: Transmission of a VLAN Tagged Frame . 46
Figure 5-10: Inter-Frame Gap Adjustment. 47
Figure 5-11: Transmitter Statistic Vector Timing . 47

Chapter 6: Using Flow Control
Figure 6-1: Requirement for Flow Control . 49
Figure 6-2: MAC Control Frame Format . 50
Figure 6-3: Pause Request Timing. 51
Figure 6-4: Flow Control Implementation Triggered from FIFO Occupancy. 54

Chapter 7: Using the Physical Side Interface
Figure 7-1: External GMII Transmitter Logic . 56
Figure 7-2: External GMII Receiver Logic . 57
Figure 7-3: External GMII Receiver Logic for Spartan-3 and Spartan-3E Devices 58
Figure 7-4: External GMII Receiver Logic for Virtex-4 Devices . 59

Schedule of Figures

http://www.xilinx.com

8 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

R

Figure 7-5: External GMII Receiver Logic for Virtex-5 Devices . 60
Figure 7-6: External RGMII Transmitter Logic. 61
Figure 7-7: External RGMII Transmitter Logic in Virtex-4 Devices. 62
Figure 7-8: External RGMII Transmitter Logic in Virtex-5 Devices. 64
Figure 7-9: External RGMII Receiver Logic . 65
Figure 7-10: External RGMII Receiver Logic for Virtex-4 Devices 66
Figure 7-11: External RGMII Receiver Logic for Virtex-5 Devices 67
Figure 7-12: RGMII Inband Status Decoding Logic . 68
Figure 7-13: Creating an External MDIO Interface . 69

Chapter 8: Configuration and Status
Figure 8-1: Configuration Register Write Timing . 77
Figure 8-2: Configuration Register Read Timing. 77
Figure 8-3: Address Table Write Timing . 78
Figure 8-4: Address Table Read Timing . 79
Figure 8-5: Typical MDIO-managed System . 80
Figure 8-6: MDIO Write Transaction . 80
Figure 8-7: MDIO Read Transaction. 81
Figure 8-8: MDIO Access through Management Interface . 82

Chapter 9: Constraining the Core
Figure 9-1: Input GMII Timing . 91
Figure 9-2: Timing Report Setup/Hold Illustration . 95
Figure 9-3: Input RGMII Timing. 96
Figure 9-4: Timing Report Setup/Hold Illustration . 101

Chapter 10: Clocking and Resetting
Figure 10-1: Clock Management Logic with External GMII . 103
Figure 10-2: Clock Management with External RGMII . 104
Figure 10-3: Clock Management Logic with External GMII (Multiple Cores). 105
Figure 10-4: Clock Management Logic with External RGMII (Multiple Cores) 106
Figure 10-5: Reset Circuit for a Single Clock/reset Domain. 106

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 9
UG144 August 8, 2007

R

Chapter 11: Interfacing to Other Cores
Figure 11-1: 1-Gigabit Ethernet MAC Extended to Include

1000BASE-X PCS with TBI . 108
Figure 11-2: 1-Gigabit Ethernet MAC Extended to Include

1000BASE-X PCS and PMA
using a Virtex-II Pro RocketIO Transceiver . 109

Figure 11-3: 1-Gigabit Ethernet MAC Extended to Include
1000BASE-X PCS and PMA
using a Virtex-4 RocketIO Transceiver . 111

Figure 11-4: 1-Gigabit Ethernet MAC Extended to Include
1000BASE-X PCS and PMA
using a Virtex-5 RocketIO Transceiver . 112

Figure 11-5: Interfacing the Ethernet Statistics to the 1-Gigabit Ethernet MAC 114

Appendix A: Using the Client-Side FIFO
Figure A-1: Typical 10 Mbps/100 Mbps/ 1 Gbps Ethernet FIFO Implementation 121
Figure A-2: Frame Transfer across LocalLink Interface . 124
Figure A-3: Frame Transfer with Flow Control . 124

http://www.xilinx.com

10 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 11
UG144 August 8, 2007

Chapter 2: Core Architecture
Table 2-1: Transmitter Client Interface Signal Pins. 24
Table 2-2: Receive Client Interface Signal Pins . 25
Table 2-3: Flow Control Interface Signal Pinout . 25
Table 2-4: Optional Management Interface Signal Pinout . 26
Table 2-5: Optional MAC Unicast Address Signal Pinout . 26
Table 2-6: Optional Configuration Vector Signal Pinout . 27
Table 2-7: Reset Signal . 27
Table 2-8: GMII Interface Signal Pinout . 27
Table 2-9: MDIO Interface Signal Pinout . 28

Chapter 3: Generating the Core
Table 3-1: XCO File Values and Default Values. 31

Chapter 4: Designing with the Core
Table 4-1: Degree of Difficulty for Various Implementations . 35

Chapter 5: Using the Client Side Data Path
Table 5-1: Abbreviations Used in Timing Diagrams . 37
Table 5-2: Bit Definition for the Receiver Statistics Vector . 42
Table 5-3: Bit Definition for the Transmitter Statistics Vector . 48

Chapter 8: Configuration and Status
Table 8-1: Management Interface Transaction Types . 71
Table 8-2: Configuration Registers . 72
Table 8-3: Receiver Configuration Word 0. 72
Table 8-4: Receiver Configuration Word 1. 73
Table 8-5: Transmitter Configuration Word . 73
Table 8-6: Flow Control Configuration Word . 74
Table 8-7: Management Configuration Word . 75
Table 8-8: Unicast Address Word 0 . 75
Table 8-9: Unicast Address Word 1 . 75
Table 8-10: Address Table Configuration Word 0 . 76
Table 8-11: Address Table Configuration Word 1 . 76
Table 8-12: Address Filter Mode . 76
Table 8-13: Configuration Vector Bit Definition . 83

Schedule of Tables

http://www.xilinx.com

12 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

R

Chapter 9: Constraining the Core
Table 9-1: Input GMII Timing . 91
Table 9-2: Input RGMII Timing . 96

Chapter 11: Interfacing to Other Cores
Table 11-1: Management Interface Transaction Types . 115

Appendix A: Using the Client-Side FIFO
Table A-1: Transmit FIFO Client Interface . 122
Table A-2: Transmit FIFO LocalLink Interface . 122
Table A-3: Receive FIFO Client Interface. 123
Table A-4: Receive FIFO LocalLink Interface . 123

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 13
UG144 August 8, 2007

R

Preface

About This Guide

The LogiCORE™ 1-Gigabit Ethernet MAC v8.3 User Guide provides information about
generating the core, customizing and simulating the core utilizing the provided example
design, and running the design files through implementation using the Xilinx tools.

Guide Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of the guide, a
list of additional resources, and the conventions used in this document.

• Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Core Architecture” provides an overview of the core and discusses the
Physical/Client signal interfaces.

• Chapter 3, “Generating the Core” describes the graphical user interface options used
to generate the core.

• Chapter 4, “Designing with the Core” through Chapter 8, “Configuration and Status”
describe design parameters, including how to initialize the core, generate and
consume core packets, and how to operate the Management Interface.

• Chapter 9, “Constraining the Core” describes the constraints associated with the core.

• Chapter 10, “Clocking and Resetting” discusses special design considerations
associated with clock management logic, including the Gigabit Media Independent
Interface (GMII) and Reduced Gigabit Media Independent Interface (RGMII) options.

• Chapter 11, “Interfacing to Other Cores” describes how to interface the 1-Gigabit
Ethernet MAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core and the
Ethernet Statistics core.

• Chapter 12, “Implementing Your Design” provides instructions for how to set up
synthesis, simulation, and implementation environments and how to generate a
bitstream through the design flow.

• Appendix A, “Using the Client-Side FIFO” describes the FIFO provided in the
example design that accompanies the GEMAC Core.

• Appendix B, “Core Verification, Compliance, and Interoperability” describes how the
core was verified and certified for compliance.

• Appendix C, “Calculating DCM Phase-Shifting” provides information about how to
calculate the system timing requirements when using DCMs with the core.

• Appendix D, “Core Latency” describes the latency of the core.

http://www.xilinx.com

14 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Preface: About This Guide
R

Additional Resources
For additional information, go to www.xilinx.com/support. The following table lists some
of the resources you can access from this website or by using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

www.xilinx.com/xlnx/xil_ans_browser.jsp

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

www.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

www.xilinx.com/xlnx/xil_tt_home.jsp

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands you enter in
a syntactical statement ngdbuild design_name

Italic font

Variables in a syntax
statement for which you must
supply values

See the Development System
Reference Guide for more
information.

References to other manuals See the User Guide for details.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Dark Shading Items that are not supported
or reserved This feature is not supported

http://www.xilinx.com/support
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 15
UG144 August 8, 2007

Conventions
R

Online Document
The following linking conventions are used in this document:

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Omitted repetitive material allow block block_name
loc1 loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address
0x00112975 returned
45524943h.

An ‘_n’ means the signal is
active low usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

 See “Title Formats” in
Chapter 1 for details.

Blue, underlined text Hyperlink to a website (URL) Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

16 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Preface: About This Guide
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 17
UG144 August 8, 2007

R

Chapter 1

Introduction

The 1-Gigabit Ethernet MAC (GEMAC) core is a fully verified solution that supports
Verilog-HDL and VHDL. In addition, the example design provided with the core is
provided in both Verilog and VHDL.

This chapter introduces the GEMAC core and provides other related information,
including recommended design experience, additional resources, technical support, and
ways to submit feedback to Xilinx.

About the Core
The GEMAC core is a Xilinx CORE Generator™ IP core, included in the latest IP Update on
the Xilinx IP Center. For detailed information about the core, see
www.xilinx.com/systemio/gmac/index.htm. For information about licensing options, see
Chapter 2, “Licensing the Core,” in the 1-Gigabit Ethernet MAC Getting Started Guide.

Recommended Design Experience
Although the GEMAC core is a fully verified solution, the challenge associated with
implementing a complete design varies, depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and user constraint files
(UCFs) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Core Resources
For detailed information and updates about the GEMAC core, see the following
documents, located on the GEMAC product page
www.xilinx.com/systemio/gmac/index.htm

• 1-Gigabit Ethernet MAC Data Sheet

• 1-Gigabit Ethernet MAC Release Notes

• 1-Gigabit Ethernet MAC Getting Started Guide

For updates to this document, see the 1-Gigabit Ethernet MAC User Guide, also located on
the GEMAC product page.

http://www.xilinx.com
http://www.xilinx.com/systemio/gmac/index.htm
http://www.xilinx.com/systemio/gmac/index.htm

18 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 1: Introduction
R

Related Xilinx Ethernet Products and Services
See the Ethernet Products and Services page at:

www.xilinx.com/products/design_resources/conn_central/grouping/ethernet.htm

Specifications
• IEEE 802.3 2002

• Reduced Gigabit Media Independent Interface (RGMII) version 2.0

Technical Support
For technical support, see support.xilinx.com/. Questions are routed to a team of
engineers with expertise using the GEMAC core.

Xilinx will provide technical support for use of this product as described in the 1-Gigabit
Ethernet MAC User Guide and the 1-Gigabit Ethernet MAC Getting Started Guide. Xilinx
cannot guarantee timing, functionality, or support of this product for designs that do not
follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the GEMAC core and the
documentation supplied with the core.

GEMAC Core
For comments or suggestions about the GEMAC core, please submit a WebCase from
support.xilinx.com/. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
support.xilinx.com/. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/conn_central/grouping/ethernet.htm
http://support.xilinx.com/
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/clearexpress/websupport.htm

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 19
UG144 August 8, 2007

R

Chapter 2

Core Architecture

This chapter describes the GEMAC core architecture, including the major functional blocks
and all interfaces.

System Overview
Figure 2-1 illustrates a block diagram of the GEMAC core with all the major functional
blocks and interfaces. Descriptions of the functional blocks and interfaces are provided in
the sections that follow.

Figure 2-1: Block Diagram

Gigabit Ethernet MAC Core

Flow Control

Transmit Engine

Receive Engine

Configuration MDIO

Optional
Address

Filter

Client
Transmitter
Interface

Client
Management
Interface

Client
Receiver
Interface

To Physical
SublayersC

lie
nt

 In
te

rf
ac

e

G
M

II
B

lo
ck

Optional Management

http://www.xilinx.com

20 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 2: Core Architecture
R

Core Components

Transmit Engine

The Transmit Engine accepts Ethernet frame data from the Client Transmitter Interface,
adds the preamble field to the start of the frame, adds padding bytes (if required) to ensure
that the frame meets the minimum frame length requirements, and adds the frame check
sequence (when configured to do so). The transmitter also ensures that the inter-frame
spacing between successive frames is at least the minimum specified. The frame is then
converted into a format that is compatible with the GMII and sent to the GMII Block.

Receive Engine

The Receive Engine accepts Ethernet frame data from the GMII Block, removes the
preamble field at the start of the frame, removes padding bytes and Frame Check Sequence
(if required, and when configured to do so). The receiver also performs error detection on
the received frame using information such as the frame check sequence field, received
GMII error codes, and legal frame size boundaries.

Flow Control

The Flow Control block is designed to clause 31 of the IEEE 802.3-2002 standard. The MAC
may be configured to send pause frames and to act upon their reception. These two
behaviors can be configured independently.

Address Filter

The Address Filter checks the address of incoming frames into the receiver. If the Address
Filter is enabled, the device will not pass frames that do not contain one of a set of known
addresses to the client.

Management Interface

The optional processor-independent Management Interface has standard address, data,
and control signals. It may be used as is, or you can apply a logical shim to interface to
common bus architectures. For more information, Chapter 8, “Configuration and Status.”

This interface is used to access the following blocks.

• Configuration Register After power up or reset, the client may reconfigure the core
parameters from their defaults. Configuration changes can be written at any time.

• MDIO Interface The Management Interface is also used to access the MDIO interface
of the GEMAC core; this interface is typically connected to the MDIO port of a
physical layer device (PHY) to access its configuration and status registers. The MDIO
format is defined in IEEE802.3 clause 22.

GMII Block

This implements GMII style signaling for the physical interface of the core and is typically
attached to a physical layer device (PHY), either off-chip or internally integrated.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 21
UG144 August 8, 2007

Core Interfaces
R

Core Interfaces

GMAC Core with Optional Management Interface
Figure 2-2 shows the pinout for the GEMAC core using the optional Management
Interface. The interface is unchanged, regardless of whether the optional Address Filter is
included.

Figure 2-2: Component Pinout for MAC with Optional Management Interface

gtx_clk

gmii_rx_clk

mdc

mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

tx_data[7:0]

tx_ack

tx_underrun

pause_req

pause_val[15:0]

host_clk

host_opcode[1:0]

host_addr[9:0]

host_wr_data[31:0]

host_rd_data[31:0]

host_miim_sel

host_req

host_miim_rdy

reset

rx_data[7:0]

rx_good_frame

rx_bad_frame

tx_data_valid

rx_data_valid

gmii_rx_dv

gmii_rx_er

gtx_clk domain

gmii_rx_clk domain

host_clk domain

tx_ifg_delay[7:0]

tx_statistics_vector[21:0]

tx_statistics_valid

rx_statistics_vector[26:0]

rx_statistics_valid

mdio_out

mdio_tri

Client Side Interface Physical Side Interface (GMII)

http://www.xilinx.com

22 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 2: Core Architecture
R

GMAC Core Without Management Interface and With Address Filter
Figure 2-3 shows the pinout for the GEMAC core when the optional Management Interface
is omitted and the optional Address Filter is included in the core.

The configuration_vector[64:0] input provides the method for configuration of
the core, and mac_unicast_address[47:0] input provides the method of setting the
unicast address used by the Address Filter.

Figure 2-3: Component Pinout for MAC without Optional Management Interface
and with Optional Address Filter

gmii_rx_clk

gmii_rxd[7:0]

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

reset

gmii_rx_dv

gmii_rx_er

gtx_clk domain

gmii_rx_clk domain

Client Side Interface Physical Side Interface (GMII)

configuration_vector[64:0]

gtx_clk

tx_data[7:0]

tx_ack

tx_underrun

pause_req

pause_val[15:0]

tx_data_valid

tx_ifg_delay[7:0]

tx_statistics_vector[21:0]

tx_statistics_valid

rx_data[7:0]

rx_good_frame

rx_bad_frame

rx_data_valid

rx_statistics_vector[26:0]

rx_statistics_valid

mac_unicast_address[47:0]

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 23
UG144 August 8, 2007

Core Interfaces
R

GEMAC Core Without Management Interface and Without Address Filter
Figure 2-4 shows the pinout for the GEMAC core when the optional Management Interface
is omitted and the optional Address Filter is omitted.

The configuration_vector[64:0] input provides the method for configuration of
the core.

Figure 2-4: Component Pinout for MAC without Optional Management Interface or Optional Address Filter

gmii_rx_clk

gmii_rxd[7:0]

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

reset

gmii_rx_dv

gmii_rx_er

gtx_clk domain

gmii_rx_clk domain

Client Side Interface Physical Side Interface (GMII)

configuration_vector[64:0]

gtx_clk

tx_data[7:0]

tx_ack

tx_underrun

pause_req

pause_val[15:0]

tx_data_valid

tx_ifg_delay[7:0]

tx_statistics_vector[21:0]

tx_statistics_valid

rx_data[7:0]

rx_good_frame

rx_bad_frame

rx_data_valid

rx_statistics_vector[26:0]

rx_statistics_valid

http://www.xilinx.com

24 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 2: Core Architecture
R

All ports of the core are internal connections in FPGA fabric. An HDL example design is
delivered with the core that will add IBUFs, OBUFs, and IOB flip-flops to the external
signals of the Gigabit Media Independent Interface (GMII) or Reduced Gigabit Media
Independent Interface (RGMII).

All clock management logic is placed in this example design, which allows for more
flexibility in implementation (for example, in designs using multiple cores). This example
design is provided in both VHDL and Verilog. For more information about example
designs, see the 1-Gigabit Ethernet MAC Getting Started Guide.

Client Side Interface

Transmitter Interface

Table 2-1 describes the client-side transmitter signals of the GEMAC core. These signals are
used to transmit data from the client logic into the core. For more information, see
“Transmitting Outbound Frames,” on page 43.

The Transmitter Interface is designed to be connected to internal device logic only.
Attempting to add external ports to this interface will result in a breakdown of the
handshaking protocol used by this interface.

Table 2-1: Transmitter Client Interface Signal Pins

Signal Direction
Clock

Domain
Description

gtx_clk Input n/a Clock signal provided to the core at
125 MHz. Tolerance must be
within IEEE 802.3-2002
specification. This clock signal is
used by all of the transmitter logic.

tx_data[7:0] Input gtx_clk Frame data to be transmitted is
supplied on this port.

tx_data_valid Input gtx_clk Control signal for tx_data port.

tx_ifg_delay[7:0] Input gtx_clk Control signal for configurable
Inter Frame Gap adjustment.

tx_ack Output gtx_clk Handshaking signal asserted when
the current data on tx_data has
been accepted.

tx_underrun Input gtx_clk Asserted by client to force GEMAC
core to corrupt the current frame.

tx_statistics_vector[21:0] Output gtx_clk Provides statistical information
about the last frame transmitted.

tx_statistics_valid Output gtx_clk Asserted at end of frame
transmission, indicating that the
tx_statistics_vector is valid.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 25
UG144 August 8, 2007

Core Interfaces
R

Receiver Interface

Table 2-2 describes the client-side receiver signals of the GEMAC core. These signals are
used by to transfer data to the client. For more information, see “Receiving Inbound
Frames,” on page 37.

Flow Control Interface

Table 2-3 describes the signals used by the client to request a flow control action from the
transmit engine. For more information, see “Using Flow Control,” on page 49.

Table 2-2: Receive Client Interface Signal Pins

Signal Direction Clock Domain Description

rx_data[7:0] Output gmii_rx_clk Frame data received is
supplied on this port.

rx_data_valid Output gmii_rx_clk Control signal for the rx_data
port.

rx_good_frame Output gmii_rx_clk Asserted at end of frame
reception to indicate that the
frame should be processed by
the MAC client.

rx_bad_frame Output gmii_rx_clk Asserted at end of frame
reception to indicate that the
frame should be discarded by
the MAC client.

rx_statistics_vector[26:0] Output gmii_rx_clk Provides statistical
information about the last
frame received.

rx_statistics_valid Output gmii_rx_clk Asserted at end of frame
reception, indicating that the
rx_statistics_vector is valid.

Table 2-3: Flow Control Interface Signal Pinout

Signal Direction Clock Domain Description

pause_req Input gtx_clk Pause request. sends a pause
frame down the link.

pause_val[15:0] Input gtx_clk Pause value; inserted into the
parameter field of the
transmitted pause frame.

http://www.xilinx.com

26 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 2: Core Architecture
R

Management Interface (Optional)

Table 2-4 describes the optional signals used by the client to access the management
features of the GEMAC core. For more information, see “Using the Optional Management
Interface,” on page 71.

MAC Unicast Address (Optional)

Table 2-5 describes the alternative method of access to the unicast address registers when
the optional Management Interface is not present.

Configuration Vector (Optional)

Table 2-6 describes the alternative to the optional Management Interface signals. The
Configuration Vector uses direct inputs to the core to replace the functionality of the MAC

Table 2-4: Optional Management Interface Signal Pinout

Signal Direction
Clock

Domain
Description

host_clk Input n/a Clock for the Management
Interface; must be 10 MHz or
above.

host_opcode[1:0] Input host_clk Defines operation to be performed
over MDIO interface. Bit 1 is also
used as a read/write control
signal for configuration register
access.

host_addr[9:0] Input host_clk Address of register to be accessed.

host_wr_data[31:0] Input host_clk Data to write to register .

host_rd_data[31:0] Output host_clk Data read from register.

host_miim_sel Input host_clk When asserted, the MDIO
interface is accessed. When not
asserted, the configuration
registers are accessed.

host_req Input host_clk Used to signal a transaction on the
MDIO interface.

host_miim_rdy Output host_clk When high, the MDIO interface
has completed any pending
transaction and is ready for a new
transaction.

Table 2-5: Optional MAC Unicast Address Signal Pinout

Signal Direction Description

mac_unicast_address[47:0] Input Used to assess the MAC unicast
address registers when the
Management Interface is not used

Note: All bits are registered on input but may be treated as asynchronous inputs.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 27
UG144 August 8, 2007

Core Interfaces
R

configuration bits. For more information, see “Access without the Management Interface,” on
page 83.

Asynchronous Reset

Table 2-7 describes the asynchronous reset signal for the entire core.

Physical Side Interface

GMII

Table 2-8 describes the GMII-style interface signals of the core. For more information, see
Chapter 7, “Using the Physical Side Interface.”

Table 2-6: Optional Configuration Vector Signal Pinout

Signal Direction Description

configuration_vector[64:0] Input Used to replace the functionality of
the MAC Configuration Registers
when the Management Interface is
not used

Note: All bits are registered on input but may be treated as asynchronous inputs.

Table 2-7: Reset Signal

Signal Direction Clock Domain Description

reset Input n/a Asynchronous reset for entire core

Table 2-8: GMII Interface Signal Pinout

Signal Direction Clock Domain Description

gmii_txd[7:0] Output gtx_clk Transmit data from MAC

gmii_tx_en Output gtx_clk Transmit control signal from MAC

gmii_tx_er Output gtx_clk Transmit control signal from MAC

gmii_rx_clk Input n/a Receive clock from external PHY (125
MHz)

gmii_rxd[7:0] Input gmii_rx_clk Received data to MAC

gmii_rx_dv Input gmii_rx_clk Received control signal to MAC

gmii_rx_er Input gmii_rx_clk Received control signal to MAC

http://www.xilinx.com

28 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 2: Core Architecture
R

MDIO Interface

Table 2-9 describes the MDIO Interface signals. For more information, see “Using the
MDIO interface,” on page 68.

Table 2-9: MDIO Interface Signal Pinout

Signal Direction
Clock

Domain
Description

mdc Output host_clk Management Clock: programmable
frequency derived from host_clk.

mdio_in1

1. mdio_in, mdio_out and mdio_tri can be connected to a Tri-state buffer to create a bi-directional mdio
signal suitable for connection to an external PHY.

Input host_clk Input data signal for communication with
PHY configuration and status. Tie high if
unused.

mdio_out1 Output host_clk Output data signal for communication
with PHY configuration and status.

mdio_tri1 Output host_clk Tristate control for MDIO signals; 0 signals
that the value on mdio_out should be
asserted onto the MDIO bus.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 29
UG144 August 8, 2007

R

Chapter 3

Generating the Core

The GEMAC core is generated through the Xilinx CORE Generator using a graphical user
interface (GUI). This chapter describes the GUI options used to generate and customize the
core.

Graphical User Interface
Figure 3-1 shows the main GEMAC core user GUI screen.

For general help starting and using CORE Generator on your system, see the
documentation supplied with Xilinx ISE, including the CORE Generator Guide at
www.xilinx.com/support/software_manuals.htm.

Figure 3-1: 1-Gigabit Ethernet MAC Main Screen

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

30 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 3: Generating the Core
R

Component Name
The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters:
a through z, 0 through 9 and “_”.

Management Interface
Select this option to include the optional Management Interface (see “Using the Optional
Management Interface,” on page 71). If this option is not selected, the core is generated
with a replacement configuration vector (see “Access without the Management Interface,”
on page 83). The default is to use the Management Interface.

Address Filter
Select this option to include the optional Address Filter. This prevents the reception of
frames that are not addressed to this MAC (see “Address Filter,” on page 41). The default
is to use the Address Filter.

Number of Address Table Entries
The Address Filter can be instantiated with an address table that holds up to 4 additional
valid addresses. You may select an integer between 0 and 4 to define the number of
addresses that are present in the table.

This option is only available when the Management Interface and Address Filter have been
selected. The default is to use 4 address table entries.

Physical Interface
Depending on the target Xilinx FPGA architecture, it may be possible to select from two
different physical interface choices for the core:

• GMII See Chapter 7, “Implementing External GMII”

• RGMII See Chapter 7, “Implementing External RGMII”

The choice of physical interface determines the content of the example design delivered
with the core. The external GMII or RGMII is added in the HDL top-level design file. There
is no change in the core netlist for this option. The default is the GMII physical interface.

Parameter Values in the XCO File
XCO file parameter names and their values are identical to the names and values shown in
the GUI, except that underscore characters (_) are used instead of spaces. The text in an
XCO file is not case-sensitive.

Table 3-1 defines the XCO file parameters and values and summarizes the GUI defaults.
The following is an example of the CSET parameters in an XCO file.

CSET component_name = abc123
CSET physical_interface = gmii
CSET management_interface = true
CSET address_filter = true
CSET no_of_address_table_entries = 4

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 31
UG144 August 8, 2007

Output Generation
R

Output Generation
The output files generated from the CORE Generator tool are placed in the CORE
Generator project directory. The list of output files includes the following items.

• Netlist file for the core

• Supporting CORE Generator files

• Release notes and documentation

• Subdirectories containing an HDL example design

• Scripts to run the core through the back-end tools and to simulate the core using the
Mentor ModelSim® simulator and Cadence IUS

See the 1-Gigabit Ethernet MAC Getting Started Guide for more information about the CORE
Generator output files and for details on the HDL example design.

Table 3-1: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting

component_name ASCII text starting with a letter and
based upon the following character
set: a..z, 0..9 and _

gig_eth_mac_v8_2

physical_interface One of the following keywords: gmii,
rgmii

gmii

management_interface One of the following keywords: true,
false

true

address_filter One of the following keywords: true,
false

true

no_of_address_table_

entries

Integer in the range 0 - 4 4

http://www.xilinx.com

32 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 3: Generating the Core
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 33
UG144 August 8, 2007

R

Chapter 4

Designing with the Core

This chapter provides general guidelines for creating designs using the GEMAC core. To
work with the example design included with the GEMAC core, see the 1-Gigabit Ethernet
MAC Getting Started Guide.

General Design Guidelines
This section describes the steps required to turn a GEMAC core into a fully functioning
design integrated with user-application logic. Not all implementations require all the
design steps described in this chapter. The following sections discuss the design steps
required for various implementations. For best results, carefully follow the logic design
guidelines.

Design Steps
Generate the core from the Xilinx CORE Generator. See Chapter 3, “Generating the Core.”

Using the Example Design as a Starting Point

The GEMAC core is delivered through the CORE Generator with an HDL example design
built around the core, allowing the functionality of the core to be demonstrated using
either a simulation package or in hardware, if placed on a suitable board. Figure 4-1 is a
block diagram of the example design. For more information about the example design, see
the 1-Gigabit Ethernet MAC Getting Started Guide.

The example design illustrates how to:

• Instantiate the core from HDL.

• Source and use the client-side interface ports of the core from application logic.

• Connect the physical-side interface of the core (GMII or RGMII) to device IOBs
creating an external interface. (See Chapter 7, “Using the Physical Side Interface.”)

• Derive the clock management logic, as described in Chapter 10, “Clocking and
Resetting.”

http://www.xilinx.com

34 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 4: Designing with the Core
R

Using the example design as a starting point, you can do the following:

• Edit the HDL top level of the example design file to:

− Change the clocking scheme.

− Add/remove IOBs as required.

− Replace the client loopback logic with the users specific application logic.

− Adapt the 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO to suit the users specific
application (see “Using the Client-Side FIFO”).

• Synthesize the entire design.

The Xilinx Synthesis Tool (XST) script and Project file in the /implement directory
may be adapted to include any HDL files you may want to add.

• Run the implement script in the /implement directory to create a top-level netlist for
the design. The script may also run the Xilinx tools map, par, and bitgen, creating a
bitstream that can be downloaded to a Xilinx device. SimPrim-based simulation
models for the entire design are also produced by the implement scripts.

• Simulate the entire design using the demonstration test bench provided as a template
in the /simulation directory.

• Download the bitstream to a target device.

Implementing the 1-Gigabit Ethernet MAC in Your Application

The example design can be studied as an example of how to do the following:

• Instantiate the core from HDL.

• Source and use the client-side interface ports of the core from application logic.

Figure 4-1: 1-Gigabit Ethernet MAC Core Example Design

<component_name>_block

<component_name>_example_design

GMII/ RGMII
Interface

Logic,
IOBs and

Clock
Management

Client
Interface

<component_name>_locallink

10 Mbps, 100 Mbps
1 Gbps Ethernet FIFO

1-Gigabit Ethernet
MAC Core

Management
Interface

Statistics Vectors
Interface

Tx Client
FIFO

Rx Client
FIFO

Physical
Interface

Address
Swap

Module

Clock/
Reset

Circuitry

Lo
ca

lL
in

k
In

te
rf

ac
e

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 35
UG144 August 8, 2007

General Design Guidelines
R

• Connect the physical-side interface of the core (GMII or RGMII) to device IOBs to
create an external interface.

• Derive the clock management logic.

After working with the example design, you can write your own HDL application, using
single or multiple instances of the GEMAC core. Client-side interfaces and operation of the
core are detailed later in this chapter. For more information, see:

• Clock Management Logic in Chapter 10, “Clocking and Resetting.”

• Using the GEMAC core in conjunction with the Ethernet 1000BASE-X PCS/PMA or
SGMII core in Chapter 11, “Interfacing to Other Cores.”

• Using the GEMAC core in conjunction with the Ethernet Statistics core in Chapter 11,
“Interfacing to Other Cores”

• 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO in Appendix A, “Using the Client-Side
FIFO.”

You can synthesize the entire design using any synthesis tool. The GEMAC core is pre-
synthesized and is delivered as an NGC netlist (which appears as a black box to synthesis
tools).

Run the Xilinx tools map, par, and bitgen to create a bitstream that can be downloaded to
a Xilinx device. Care must be taken to constrain the design correctly, and the UCF
produced by the CORE Generator should be used as the basis for the your own UCF. See
Chapter 9, “Constraining the Core,” for more information.

You can simulate the entire design and download the bitstream to the target device.

Know the Degree of Difficulty
A 1-Gigabit Ethernet MAC implementation is challenging to implement in any technology,
and all applications require careful attention to system performance requirements.
Pipelining, logic mapping, placement constraints, and logic duplication are all methods
that help boost system performance.

See Table 4-1 to determine the relative level of difficulty associated with the Spartan™ and
Virtex™ device families. These designs relate to meeting the core required system clock
frequency of 125 MHz.

See also Appendix C, “Calculating DCM Phase-Shifting” to meet Spartan-3 and Spartan-
3E setup and hold requirements for external GMII.

Table 4-1: Degree of Difficulty for Various Implementations

Device Family Difficulty

Spartan-3A Difficult

Spartan-3E Difficult

Spartan-3 Difficult

Virtex-II Easy

Virtex-II Pro Easy

Virtex-4 Easy

Virtex-5 Easy

http://www.xilinx.com

36 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 4: Designing with the Core
R

Keep it Registered
To simplify timing and increase system performance in an FPGA design, keep all inputs
and outputs registered between the user application and the core. This means that all
inputs and outputs from the user application should come from, or connect to, a flip-flop.
While registering signals may not be possible for all paths, it simplifies timing analysis and
makes it easier for the Xilinx tools to place-and-route the design.

Recognize Timing Critical Signals
The UCF provided with the example design identifies the critical signals and timing
constraints that should be applied. See Chapter 9, “Constraining the Core” for more
information.

Use Supported Design Flows
The core is pre-synthesized and delivered as an NGC netlist. The example implementation
scripts provided use XST 9.2i as the synthesis tool for the HDL example design. Other
synthesis tools may be used for the user application logic. The core is always unknown to
the synthesis tool and should appear as a black box. Note that post synthesis, only ISE 9.2i
tools are supported.

Make Only Allowed Modifications
The GEMAC core should not be modified by the user. Any modifications may have
adverse effects on system timing and protocol compliance. Supported user configurations
of the GEMAC core can only be made by selecting the options in the CORE Generator
when the core is generated. For more information, see Chapter 3, “Generating the Core.”

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 37
UG144 August 8, 2007

R

Chapter 5

Using the Client Side Data Path

This chapter provides general guidelines for creating designs using the GEMAC core,
including a detailed description of each client-side data flow interface of the core.

Definitions of the abbreviations used throughout the remainder of this chapter are defined
in Table 5-1.

Receiving Inbound Frames
Received Ethernet frames are presented to the client logic on the Receiver subset of the
Client-Side Interface. For port definition, see “Receiver Interface,” on page 25.

Normal Frame Reception
Figure 5-1 illustrates the timing of a normal inbound frame transfer. The client must be
prepared to accept data at any time; there is no buffering within the MAC to allow for
latency in the receive client. Once frame reception begins, data is transferred on
consecutive clock cycles to the receive client until the frame is complete. The MAC asserts
the rx_good_frame signal to indicate that the frame was successfully received and that
the frame should be analyzed by the client.

Table 5-1: Abbreviations Used in Timing Diagrams

Abbreviation Definition

DA Destination address; 6 bytes

SA Source address; 6 bytes

L/T Length/type field; 2 bytes

FCS Frame check sequence; 4 bytes

http://www.xilinx.com

38 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Frame parameters (destination address, source address, length/type and optionally FCS)
are supplied on the data bus according to the timing diagram.

If the length/type field in the frame has a length interpretation, indicating that the
inbound frame has been padded to meet the Ethernet minimum frame size, the padding is
not passed to the client in the data payload. The exception to this is where FCS passing is
enabled. See “Client-Supplied FCS Passing.”

When Client-Supplied FCS passing is disabled, rx_data_valid is equal to zero between
frames for the duration of the padding field (if present), the FCS field, carrier extension (if
present), the interframe gap following the frame, and the preamble field of the next frame.
When Client-Supplied FCS passing is enabled, rx_data_valid is equal to zero between
frames for the duration of carrier extension (if present), the interframe gap, and the
preamble field of the following frame.

rx_good_frame, rx_bad_frame timing
Although the timing diagram (Figure 5-1) shows the rx_good_frame signal asserted
shortly after the last valid data on rx_data, this is not always the case. The
rx_good_frame or rx_bad_frame signals are asserted only after all frame checks are
completed. This is after the FCS field has been received (and after reception of carrier
extension, if present).

Therefore, either rx_good_frame or rx_bad_frame is asserted following frame
reception at the beginning of the interframe gap.

Frame Reception with Errors
Figure 5-2 illustrates an unsuccessful frame reception (for example, a fragment frame or a
frame with an incorrect FCS). In this case, the rx_bad_frame signal is asserted to the
client at the end of the frame. It is then the responsibility of the client to drop the data
already transferred for this frame.

Figure 5-1: Normal Frame Reception

gmii_rx_clk

rx_data[7:0]

rx_data_valid

rx_good_frame

rx_bad_frame

DA SA DATAL/T

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 39
UG144 August 8, 2007

Receiving Inbound Frames
R

Client-Supplied FCS Passing
If the GEMAC core is configured to pass the FCS field to the client (see “Configuration
Registers,” on page 71), this is handled as shown in Figure 5-3. In this case, any padding
inserted into the frame to meet Ethernet minimum frame length specifications will be left
intact and passed to the client.

Note that even though the FCS is passed up to the client, it is also verified by the GEMAC
core, and rx_bad_frame asserted if the FCS check fails.

VLAN Tagged Frames
Figure 5-4 illustrates the reception of a VLAN tagged frame (if enabled). The VLAN frame
is passed to the client so that the frame may be identified as VLAN tagged. This is followed
by the Tag Control Information bytes, V1 and V2. More information on the interpretation
of these bytes may be found in IEEE 802.3-2002 standard.

Figure 5-2: Frame Reception with Error

gmii_rx_clk

rx_data[7:0]

rx_data_valid

rx_good_frame

rx_bad_frame

DA SA DATAL/T

Figure 5-3: Frame Reception with In-Band FCS Field

gmii_rx_clk

rx_data[7:0]

rx_data_valid

rx_good_frame

rx_bad_frame

DA SA DATAL/T FCS

http://www.xilinx.com

40 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Maximum Permitted Frame Length
The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the core receives a frame which exceeds the maximum
legal length, rx_bad_frame is asserted. When jumbo frame handling is enabled, frames
which are longer than the legal maximum are received in the same way as shorter frames.
For more information about enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 71.

Length/Type Field Error Checks

Enabled

Default operation is with the length/type error checking enabled (see “Receiver
Configuration,” on page 72). In this mode, the following checks are made on all frames
received. If either of these checks fail, the frame is marked as bad.

A value in the length/type field that is greater than or equal to decimal 46, but less than
decimal 1536 (a length interpretation), is checked against the actual data length received.

A value in the length/type field that is less than decimal 46 is checked to see that the data
field is padded to exactly 46 bytes (so that the resultant frame is a minimum frame size of
64 bytes total in length).

Furthermore, if padding is indicated (the length/type field is less than decimal 46) and
client-supplied FCS passing is disabled, the length value in the length/type field will be
used to deassert rx_data_valid after the indicated number of data bytes so that the
padding bytes are removed from the frame. See “Client-Supplied FCS Passing.”

Disabled

When the length/type error checking is disabled and the length/type field has a length
interpretation, the MAC does not check the length value against the actual data length
received. See “Receiver Configuration” in Chapter 8. A frame containing only this error is
marked as good.

However, if the length/type field is less than decimal 46 then the MAC will mark a frame
as bad if it is not the minimum frame size of 64 bytes.

Figure 5-4: Reception of a VLAN Tagged Frame

gmii_rx_clk

rx_data[7:0]

rx_data_valid

rx_good_frame

rx_bad_frame

DA SA DATAL/T

8100V1V2

VLAN
tag

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 41
UG144 August 8, 2007

Receiving Inbound Frames
R

If padding is indicated and client-supplied FCS passing is disabled, then a length value in
the length/type field will not be used to deassert rx_data_valid. Instead,
rx_data_valid is deasserted before the start of the FCS field, and any padding is not
removed from the frame.

Address Filter
If the optional Address Filter is included in the core, the MAC is able to reject frames that
do not contain a known address in their destination address field. If a frame is rejected, the
rx_data_valid signal is not asserted for the duration of the frame. In addition, neither
rx_good_frame or rx_bad_frame are asserted at the end of the frame. The statistics
vectors are still output with a valid pulse at the end of the rejected frame.

If the Address Filter is not in promiscuous mode, it will reject frames in which the
destination address does not meet any of the following criteria:

• It is equal to the broadcast address defined in the IEEE 802.3-2002 specification.

• It is equal to the pause multicast address defined in the IEEE 802.3-2002 specification.

• The destination address field contains the pause frame MAC source address specified
in the Receiver Configuration Word 0 and Word 1.

• It is equal to the MAC unicast address. When the optional Management Interface is
present, this is found in the unicast address configuration registers (Table 8-8 and
Table 8-9, page 75). If the Management Interface is not present the unicast address is
input on the mac_unicast_address input.

• It matches any of the addresses stored in the MAC address table. The address table is
only present when the MAC contains the optional Management Interface and the core
was built with one or more address table entries.

Receiver Statistics Vector
The statistics for the frame received are contained within the rx_statistics_vector.
The vector is driven synchronously by the receiver clock, gmii_rx_clk, following frame
reception. The bit field definition for the vector is defined in Table 5-2.

All bit fields, with the exception of byte valid, are valid only when the
rx_statistics_valid is asserted. This is illustrated in Figure 5-5. Byte valid is
significant on every gmii_rx_clk cycle.

Figure 5-5: Receiver Statistics Vector Timing

gmii_rx_clk

rx_statistics_vector[25:0]

rx_statistics_valid

http://www.xilinx.com

42 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Table 5-2: Bit Definition for the Receiver Statistics Vector

rx_statistics_vector
bit(s)

Name Description

26 Address Match If the optional Address Filter is included in the
core, this bit is asserted if the address of the
incoming frame matches one of the stored or
pre-set addresses in the Address Filter. If the
Address Filter is omitted from the core, or is
configured in promiscuous mode, this line is
held high.

25 Length/Type
Out of Range

If the length/type field contained a length
value that did not match the number of MAC
client data bytes received and the length/type
field checks are enabled, then this bit is
asserted.

This bit is also asserted if the length/type field
is less than 46 and the frame is not padded to
exactly 64 bytes. This is independent of
whether or not the length/type field checks
are enabled.

24 Bad Opcode Asserted if the previous frame was error-free
and contained the special control frame
identifier in the length/type field, but
contained an opcode that is unsupported by
the MAC (any opcode other than Pause).

23 Flow Control
Frame

Asserted if the previous frame met all the
following conditions:

• error-free
• contained the special control frame

identifier in the length/type field
• contained a destination address that

matched either the MAC Control Multicast
Address or the configured source address
of the MAC

• contained the supported Pause opcode
• was acted upon by the MAC

22 Byte Valid Asserted if a MAC frame byte (DA to FCS
inclusive) is in the process of being received.
This is valid on every clock cycle.

Do not use this as an enable signal to indicate
that data is present on rx_data.

21 VLAN frame Asserted if the previous frame contained a
VLAN identifier in the length/type field when
receiver VLAN operation is enabled.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 43
UG144 August 8, 2007

Transmitting Outbound Frames
R

Transmitting Outbound Frames
Ethernet frames to be transmitted are presented to the client logic on the Transmitter subset
of the Client-Side Interface. For port definition, see “Transmitter Interface,” on page 24.

Normal Frame Transmission
Figure 5-6 illustrates the timing of a normal outbound frame transfer. When the client
wishes to transmit a frame, it places the first column of data onto the tx_data port and
asserts a ‘1’ onto tx_data_valid.

When the GEMAC core has read this first byte of data, and in accordance with flow control
requests and interpacket gap requirements, it will assert the tx_ack signal; on the next
and subsequent rising clock edges, the client must provide the remainder of the data for
the frame.

The end of frame is signalled to the GEMAC core by taking tx_data_valid low.

For maximum flexibility in switching and routing applications, the Ethernet frame
parameters (destination address, source address, length/type and optionally FCS) are
encoded within the same data stream that the frame payload is transferred upon, rather

20 Out of Bounds Asserted if the previous frame exceeded the
specified IEEE802.3-2002 maximum legal
length (see “Maximum Permitted Frame
Length”). This is only valid if jumbo frames
are disabled.

19 Control Frame Asserted if the previous frame contained the
special control frame identifier in the
length/type field.

18:5 Frame Length The length of the previous frame in number of
bytes. The count will stick at 16,383 for any
jumbo frames larger than this value.

4 Multicast Frame Asserted if the previous frame contained a
multicast address in the destination address
field.

3 Broadcast Frame Asserted if the previous frame contained the
broadcast address in the destination address
field.

2 FCS Error Asserted if the previous frame received had an
incorrect FCS value or the MAC detected error
codes during frame reception.

1 Bad Frame Asserted if the previous frame received
contained errors.

0 Good Frame Asserted if the previous frame received was
error-free.

Table 5-2: Bit Definition for the Receiver Statistics Vector

rx_statistics_vector
bit(s)

Name Description

http://www.xilinx.com

44 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

than on separate ports. This is illustrated in the timing diagrams. Definitions of the
abbreviations used in the timing diagrams are defined in Table 5-1.

Padding
When fewer than 46 bytes of data are supplied by the client to the GEMAC core, the
transmitter module will add padding up to the minimum frame length. The exception to
this is when the GEMAC core is configured for client-passed FCS; in this case, the client
must also supply the padding to maintain the minimum frame length. See “Client-
Supplied FCS Passing” for more information.

Client-Supplied FCS Passing
The transmission timing depicted in Figure 5-7 shows the GEMAC core configured to have
the FCS field passed in by the client. In this case, it is the responsibility of the client to
ensure that the frame meets the Ethernet minimum frame length requirements as the
GEMAC core will not perform any padding of the payload. See “Configuration Registers,”
on page 71 for more information.

Figure 5-6: Normal Frame Transmission

gtx_clk

tx_data[7:0]

tx_data_valid

DA SA DATAL/T

tx_ack

tx_underrun

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 45
UG144 August 8, 2007

Transmitting Outbound Frames
R

Client Underrun
Figure 5-8 illustrates the timing of an aborted transfer. An example of this situation is a
FIFO connected to the client interface that empties before a frame transfer is complete.
When the client asserts tx_underrun during a frame transmission, the GEMAC core
inserts an error code to corrupt the current frame, and then falls back to idle transmission.
It is the responsibility of the client to re-queue the aborted frame for transmission.

When an underrun occurs, tx_data_valid may be asserted on the clock cycle after the
tx_underrun assertion to request a new transmission.

VLAN Tagged Frames
Figure 5-9 illustrates transmission of a VLAN tagged frame (if enabled). Note that the
handshaking signals across the interface do not change; however, the VLAN type tag 81-00
must be supplied by the client to signify that the frame is VLAN tagged. The client also
supplies the two bytes of Tag Control Information, V1 and V2, at the appropriate times in
the data stream. More information on the contents of these two bytes can be found in IEEE

Figure 5-7: Frame Transmission with Client-supplied FCS

gtx_clk

tx_data[7:0]

tx_data_valid

tx_ack

tx_underrun

DA SA DATA FCSL/T

Figure 5-8: Frame Transmission with Underrun

gtx_clk

tx_data[7:0]

tx_data_valid

tx_ack

tx_underrun

DA SA DATAL/T

http://www.xilinx.com

46 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

802.3-2002. For more information about enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 71.

Maximum Permitted Frame Length
The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the client attempts to transmit a frame that exceeds the
maximum legal length, the GEMAC core will insert an error code to corrupt the current
frame, and the frame will be truncated to the maximum legal length. When jumbo frame
handling is enabled, frames longer than the legal maximum are transmitted error-free. For
more information on enabling and disabling Jumbo frame handling, see “Configuration
Registers,” on page 71.

Inter-Frame Gap Adjustment
A configuration bit in the transmitter control register (see “Configuration Registers,” on
page 71) allows the user to control the length of the inter-frame gap transmitted by the
MAC on the physical interface. If this function is selected, the MAC exerts back pressure on
the client interface to delay the transmission of the next frame until the requested number
of idle cycles has elapsed. The number of idle cycles is controlled by the value on the
tx_ifg_delay port seen at the start of frame transmission on the client interface.
Figure 5-10 shows the MAC operating in this mode.

Reducing the interframe gap to below the IEEE 802.3-2002 minimum of 12 idles is
supported, but the MAC will transmit an absolute minimum of 4 idles. If the Ethernet
Statistics core is used with the MAC, then accuracy cannot be guaranteed if the interframe
gap adjustment is set to less than 12 idles. However, the tx_statistic_vector and
rx_statistic_vector values will always remain correct.

Figure 5-9: Transmission of a VLAN Tagged Frame

gtx_clk

tx_data[7:0]

tx_data_valid

tx_ack

tx_underrun

DA SA DATAL/TVLAN
tag

81 00V1V2

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 47
UG144 August 8, 2007

Transmitting Outbound Frames
R

Transmitter Statistics Vector
The statistics for the transmitted frame are contained within the tx_statistic_vector.
The vector is driven synchronously by the transmitter clock, gtx_clk, following frame
transmission. The bit field definition for the vector is defined in Table 5-3.

All bit fields, with the exception of byte valid, are valid only when
tx_statistic_valid is asserted (Figure 5-11). Byte valid is significant on every
gtx_clk cycle.

Figure 5-10: Inter-Frame Gap Adjustment

gtx_clk

tx_data[7:0]

tx_data_valid

tx_ack

DA SA

tx_ifg_delay

IFG ADJUST VALUE

0x0D

13 Idles inserted between the
end of frame and the preamble
field of the following frame

DA

Next IFG ADJUST VALUE

Figure 5-11: Transmitter Statistic Vector Timing

gtx_clk

tx_statistic_vector[21:0]

tx_statistic_valid

http://www.xilinx.com

48 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Table 5-3: Bit Definition for the Transmitter Statistics Vector

tx_statistics_vector
bit(s) Name Description

21 Pause Frame Asserted if the previous frame was a pause
frame that the MAC itself initiated in
response to a pause_req assertion.

20 Byte Valid Asserted if a MAC frame byte (DA to FCS
inclusive) is in the process of being
transmitted. This is valid on every clock
cycle.

Do not use this as an enable signal to
indicate that data is present on gmii_txd.

19 VLAN Frame Asserted if the previous frame contained a
VLAN identifier in the length/type field
when transmitter VLAN operation is
enabled.

18:5 Frame Length The length of the previous frame in number
of bytes. The count will stick at 16,383 for
any jumbo frames larger than this value.

4 Control Frame Asserted if the previous frame had the
special MAC Control Type code 88-08 in the
length/type field.

3 Underrun Frame Asserted if the previous frame contained an
underrun error.

2 Multicast Frame Asserted if the previous frame contained a
multicast address in the destination address
field.

1 Broadcast Frame Asserted if the previous frame contained a
broadcast address in the destination address
field.

0 Successful Frame Asserted if the previous frame was
transmitted without error.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 49
UG144 August 8, 2007

R

Chapter 6

Using Flow Control

This chapter describes the operation of the flow-control logic of the GEMAC core. The flow
control block is designed to clause 31 of the IEEE 802.3-2002 standard. The MAC may be
configured to transmit pause requests and to act on their reception; these modes of
operation can be independently enabled or disabled. See “Flow Control Configuration,”
on page 74 for more information.

Overview of Flow Control

Flow Control Requirement
Figure 6-1 illustrates the requirements for Flow Control.

The user MAC on the left side has a reference clock slightly slower than the nominal
125 MHz. The link partner MAC on the right side has a reference clock slightly faster than

Figure 6-1: Requirement for Flow Control

User MAC

FIFO

Client Logic

Tx

Rx

Link Partner MAC

Tx

Rx

125MHz -100ppm

125MHz +100ppm

A
pp

lic
at

io
n

User System

http://www.xilinx.com

50 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 6: Using Flow Control
R

the nominal 125 MHz. As a result, the user MAC receives data at a faster line rate than that
at which it can transmit. The MAC on the left is shown performing a loopback
implementation which results in the FIFO filling up over time. Without Flow Control, this
FIFO will eventually fill and overflow, resulting in the corruption or loss of Ethernet
frames. Enabling Flow Control in the MAC provides a mechanism to solve this data rate
matching problem.

Flow Control Basics
A MAC may transmit a pause control frame to request that its link partner cease
transmission for a defined period of time. For example, the user MAC on the left side of
Figure 6-1 may initiate a pause request when its client FIFO (illustrated) reaches a nearly
full state.

A MAC should respond to received pause control frames by ceasing transmission of
frames for the period of time defined in the received pause control frame. For example, the
link partner MAC in Figure 6-1 may cease transmission after receiving the pause control
frame transmitted by the user MAC. In a well designed system, the link partner MAC
would cease transmission before the client FIFO experienced an overflow condition. This
provides time for the FIFO to be emptied to a safe level before normal operation resumes,
thus safeguarding the system against FIFO overflow conditions and frame loss.

Pause Control Frames
Control frames are a unique type of Ethernet frame, defined in clause 31 of the IEEE 802.3-
2002 standard. Control frames are differentiated from other frame types by a defined value
placed in the length/type field (MAC Control Type code). Figure 6-2 illustrates the control
frame format.

Figure 6-2: MAC Control Frame Format

DESTINATION
ADDRESS

SOURCE
ADDRESS

LENGTH/TYPE

MAC CONTROL
OPCODE

MAC CONTROL
PARAMETERS

RESERVED
(transmitted as zeroes)

6 OCTETS

6 OCTETS

2 OCTETS

2 OCTETS
FRAME

TRANSMITTED
TOP-TO-BOTTOM

44 OCTETS

FRAME CHECK
SEQUENCE

4 OCTETS

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 51
UG144 August 8, 2007

Flow Control Operation of the GEMAC
R

A pause control frame is a unique type of control frame, identified by a defined value
placed in the MAC Control opcode field.

Note: MAC Control opcodes other than for pause (flow control) frames have recently been defined
for Ethernet Passive Optical Networks.

The MAC control parameter field of the pause control frame contains a 16-bit field
containing a binary value directly related to the pause duration. This defines the number of
pause_quantum (512 bit times of the particular implementation). For 1-Gigabit Ethernet,
a single pause_quantum corresponds to 512 ns.

Flow Control Operation of the GEMAC

Transmitting a PAUSE Control Frame

Core-initiated Pause Request

If the GEMAC core is configured to support transmit flow control, the client can initiate a
pause control frame by asserting pause_req (see “Flow Control Configuration,” on page
74). Figure 6-3 illustrates pause request timing.

This action causes the core to construct and transmit a pause control frame on the link with
the following MAC Control frame parameters (Figure 6-2):

• The destination address used is an IEEE802.3 globally assigned multicast address (to
which any flow control-capable MAC will respond).

• The source address used is the configurable pause frame MAC address (see“Receiver
Configuration,” on page 72).

• The value sampled from the pause_val[15:0] port at the time of the pause_req
assertion will be encoded into the MAC control parameter field to select the duration
of the pause (in units of pause_quantum).

If the transmitter is inactive at the time of the pause request, this pause control frame is
transmitted immediately. If the transmitter is currently busy, the current frame being
transmitted is allowed to complete, followed by the pause control frame (in preference to
any pending client-supplied frame).

A pause control frame initiated by this method is transmitted even if the transmitter has
ceased in response to receiving an inbound pause request.

Note: Only a single pause control frame request is stored by the transmitter. if pause_req is
asserted numerous times in a short time period (before the control pause frame transmission has

Figure 6-3: Pause Request Timing

gtx_clk

pause_val[15:0]

pause_req

http://www.xilinx.com

52 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 6: Using Flow Control
R

begun), only a single pause control frame is transmitted. The most recent value sampled will be the
pause_val[15:0] value used.

Client Initiated Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core (see “Flow Control Configuration,”
on page 74). Any type of control frame can be transmitted through the core through the
client interface using the same transmission procedure as a standard Ethernet frame (see
“Transmitting Outbound Frames,” on page 43).

Receiving a Pause Control Frame

Core Initiated Response to a Pause Request

An error free control frame is a received frame matching the format of Figure 6-2. It must
pass all standard receiver frame checks (for example, FCS field checking). In addition, the
control frame received must be exactly 64-bytes in length (from destination address
through to the FCS field inclusive: this is minimum legal Ethernet MAC frame size and the
defined size for control frames).

Any control frame received that does not conform to these checks contains an error and is
passed to the receiver client with the rx_bad_frame signal asserted.

Pause Frame Reception Disabled

When pause control reception is disabled, an error free control frame is received through
the client interface with rx_good_frame asserted (see “Flow Control Configuration,” on
page 74). In this way, the frame is passed to the client logic for interpretation (see “Client
Initiated Response to a Pause Request,” on page 53).

Pause Frame Reception Enabled

When pause control reception is enabled, and an error-free frame is received by the
GEMAC core (see “Flow Control Configuration,” on page 74), the following frame
decoding functions are performed:

• The destination address field is matched against the IEEE 802.3 globally assigned
multicast address or the configurable pause frame MAC address (see “Configuration
Registers,” on page 71).

• The length/type field is matched against the MAC control type code.

• The opcode field contents are matched against the Pause opcode.

If any of the previously described checks are false, the frame is ignored by the Flow Control
logic and passed up to the client logic for interpretation by marking it with
rx_good_frame asserted. It is then the responsibility of the MAC client logic to decode,
act on (if required), and drop this control frame.

If all the previously described checks are true, the 16-bit binary value in the MAC Control
Parameters field of the control frame is then used to inhibit transmitter operation for the
required number of pause_quantum. This inhibit is implemented by delaying the assertion
of tx_ack at the transmitter client interface until the requested pause duration has
expired. The received pause frame is then passed on to the client with rx_bad_frame
asserted to indicate to the client that the pause frame can be dropped.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 53
UG144 August 8, 2007

Flow Control Implementation Example
R

Note: Any frame in which the length/type field contains the MAC control type should be dropped by
the receiver client logic. All control frames are indicated by rx_statistic_vector bit 19 (see
“Receiver Statistics Vector,” on page 41).

Client Initiated Response to a Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core (see “Flow Control Configuration,”
on page 74). Any type of error-free control frame is then passed through the core with
rx_good_frame asserted. The frame is passed to the client for interpretation. It is then the
responsibility of the client to drop this control frame and to act on it by ceasing
transmission through the core, if applicable.

Flow Control Implementation Example
This section provides a basic overview of a Flow Control implementation, using Figure 6-1
as a sample. To summarize the example, the user MAC on the left hand side of the figure
cannot match the full line rate of the link partner MAC on the right hand side due to clock
tolerances. Over time, the FIFO illustrated will fill and overflow. The goal is to implement
a flow control method which will (over a long time period) reduce the average line rate of
the link partner MAC to that of the user MAC.

Method

1. Choose a FIFO nearly full to occupancy threshold (7/8 occupancy is used in this
description—but the choice of threshold is implementation specific). When the
occupancy of the FIFO exceeds this occupancy, initiate a single pause control frame,
from the user MAC, with 0xFFFF used as the pause_quantum duration (0xFFFF is
placed on pause_val[15:0]). This is the maximum pause duration. This causes the
link partner MAC to cease transmission, and the FIFO of the user system will start to
empty.

2. Choose a second FIFO occupancy threshold (3/4 is used in this description—but the
choice of threshold is implementation specific). When the occupancy of the FIFO falls
below this occupancy, initiate a second pause control frame from the user MAC, with
0x0000 used as the pause_quantum duration (0x0000 is placed on pause_val[15:0]).
This indicates a zero pause duration, and upon receiving this pause control frame, the
link partner MAC immediately resumes transmission (it does not wait for the original
requested pause duration to expire). This pause control frame can therefore be
considered a “pause cancel” command.

http://www.xilinx.com

54 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 6: Using Flow Control
R

Operation

Figure 6-4 illustrates the FIFO occupancy over a period of time.

The following describes the sequence of flow control operation.

1. The average FIFO occupancy of the user system gradually increases over time due to
the clock tolerances. At point A, the occupancy has reached the threshold of 7/8
occupancy. This triggers the maximum duration pause control frame request.

2. On receiving the pause control frame, the link partner MAC ceases transmission.

3. After the link partner MAC ceases transmission, the occupancy of the FIFO in the user
system rapidly empties. The occupancy falls to the second threshold of 3/4 occupancy
at point B. This triggers the zero duration pause control frame request (the pause
cancel command).

4. On receiving this second pause control frame, the link partner MAC resumes
transmission.

5. Normal operation resumes and the FIFO occupancy again gradually increases over
time. At point C, this Flow Control cycle repeats.

Figure 6-4: Flow Control Implementation Triggered from FIFO Occupancy

time

FI
FO

 o
cc

u
p

an
cy

3/4

7/8

5/8

1/2

Full

A

B

C

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 55
UG144 August 8, 2007

R

Chapter 7

Using the Physical Side Interface

This chapter provides general guidelines for creating designs using the Physical Side
Interface of the GEMAC core. The physical side interface implements GMII-style signaling
and is typically attached to a physical layer device (PHY), either off-chip or internally
integrated. See “Physical Side Interface” in Chapter 2 for more information. For
information about using an internal interface in conjunction with the Ethernet 1000BASE-
X PCS/PMA or SGMII core, see Chapter 11, “Interfacing to Other Cores.”

The remainder of this chapter describes how to use the core with an external GMII or
RGMII. See also Chapter 9, “Constraining the Core” for a listing of required constraints.

Implementing External GMII
The HDL example design that is delivered with the core will implement an external GMII
when GMII is selected from the CORE Generator GUI (see Chapter 3, “Generating the
Core”). For more information about the example design, see the 1-Gigabit Ethernet MAC
Getting Started Guide.

GMII Transmitter Logic
Figure 7-1 illustrates how to use the physical transmitter interface of the core to create an
external GMII in a Virtex-II device. The signal names and logic shown in this figure exactly
match those delivered with the example design when the GMII is selected. If other families
are chosen, equivalent primitives and logic specific to that family is used in the example
design.

Figure 7-1 shows that the output transmitter signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the transmitter clock is also
shown. This logic uses an IOB output Double-Data-Rate (DDR) register so that the clock
signal produced incurs exactly the same delay as the data and control signals. This clock
signal, gmii_tx_clk, is inverted with respect to gtx_clk so that the rising edge of
gmii_tx_clk will occur in the centre of the data valid window, therefore maximizing
setup and hold times across the interface.

http://www.xilinx.com

56 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Figure 7-1: External GMII Transmitter Logic

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_ibufg

BUFG

gtx_clk_bufg
gmii_tx_clk

OBUF

FDDRRSE

IOB LOGIC

OPAD

D Q

D Q

gmii_tx_clk_obuf

'0'

'1'

D Q

gmii_txd[0]
OBUF

OPAD
gmii_txd_reg[0]

D Q

gmii_tx_en
OBUF

OPAD
gmii_tx_en_reg

D Q

gmii_tx_er
OBUF

OPAD
gmii_tx_er_reg

1-Gigabit Ethernet MAC LogiCORE

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

gtx_clk gmii_txd[0]

gmii_tx_en

gmii_tx_er

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 57
UG144 August 8, 2007

Implementing External GMII
R

GMII Receiver Logic

Virtex-II Pro and Virtex-II Devices

Figure 7-2 illustrates how to use the physical receiver interface of the core to create an
external GMII in a Virtex-II device. The signal names and logic shown on the figure exactly
match those delivered with the example design when the GMII is chosen. If other families
are chosen, equivalent primitives and logic specific to that family will automatically be
used in the example design.

This figure also shows that the input receiver signals are registered in device IOBs before
driving them to the device pads. This logic achieves the required setup and hold times
across the interface in all these device families.

Figure 7-2: External GMII Receiver Logic

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD
gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

1-Gigabit Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

http://www.xilinx.com

58 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Spartan-3, Spartan-3E and Spartan-3A Devices

The logic required to implement the transmitter GMII remains identical to that described
in “GMII Transmitter Logic,” on page 55. However, the logic described in “GMII Receiver
Logic” does not meet the input setup and hold requirements for GMII with Spartan-3,
Spartan-3E and Spartan-3A devices. A DCM must be used on the gmii_rx_clk clock
path, as illustrated in Figure 7-3. This is performed by the example design delivered with
the core for Spartan-3, Spartan-3E and Spartan-3A devices (all signal names and logic
match Figure 7-3). This DCM circuitry may optionally be used in other families.

Phase-shifting may then be applied to the DCM to fine-tune the setup and hold times at the
GMII IOB input flip-flops. Fixed phase-shift is applied to the DCM with the example UCF
for the example design. See Appendix C, “Calculating DCM Phase-Shifting.”

Figure 7-3: External GMII Receiver Logic for Spartan-3 and Spartan-3E Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD
gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

1-Gigabit Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

IOB LOGIC

DCM

CLKINCLK0

FB

gmii_rx_clk0

gmii_rx_clk_bufg

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 59
UG144 August 8, 2007

Implementing External GMII
R

Virtex-4 Devices

The logic required to implement the transmitter GMII is identical to that described in
“GMII Transmitter Logic,” on page 55. However, the logic described in “GMII Receiver
Logic” does not meet the input setup and hold requirements for GMII with Virtex-4
devices. An IDELAY component may be used on the clock, data and control paths, as
illustrated in Figure 7-4. These can be used to either shift the input clock gmii_rx_clk or
the data and control signals to meet the setup and hold requirements and to allow for any
bus skew across the data and control inputs.The IDELAY components are used in fixed
delay mode, where the attribute IOBDELAY_VALUE determines the tap delay value. An
IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-4
User Guide for more information about the IDELAYCTRL and IDELAY components.

Figure 7-4: External GMII Receiver Logic for Virtex-4 Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD

gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

1-Gigabit Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

IDELAY

IDELAY

IDELAY

IDELAY

http://www.xilinx.com

60 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Virtex-5 Devices

The logic required to implement the transmitter GMII is identical to that described in
“GMII Transmitter Logic,” on page 55. However, the logic described in “GMII Receiver
Logic” does not meet the input setup and hold requirements for GMII with Virtex-5
devices. An IODELAY component may be used on the clock, data and control paths, as
illustrated in Figure 7-5. These can be used to either shift the input clock gmii_rx_clk or
the data and control signals to meet the setup and hold requirements and to allow for any
bus skew across the data and control inputs. The IODELAY components are used in fixed
delay mode, where the attribute IDELAY_VALUE determines the tap delay value. An
IDELAYCTRL primitive must be instantiated for this mode of operation. Refer to the
Virtex-5 User Guide for more information on the use of IDELAYCTRL and IODELAY
components.

Implementing External RGMII
The HDL example design delivered with the core implements an external RGMII when
RGMII is selected from the CORE Generator GUI (see Chapter 3, “Generating the Core”).
For more information about using the example design, see the 1-Gigabit Ethernet MAC
Getting Started Guide.

Figure 7-5: External GMII Receiver Logic for Virtex-5 Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD

gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

1-Gigabit Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

IODELAY

IODELAY

IODELAY

IODELAY

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 61
UG144 August 8, 2007

Implementing External RGMII
R

RGMII Transmitter Logic

Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices

Figure 7-6 illustrates how to use the physical transmitter interface of the core to create an
external RGMII in a Virtex-II device. The signal names and logic shown in this figure
precisely match those delivered with the example design when the RGMII is selected. If
other families are used, equivalent primitives and logic specific to that family is used in the
example design.

Figure 7-6 shows that the output transmitter signals are registered on gtx_clk_bufg, in
the FPGA fabric, including the encoded rgmii_tx_ctl_int signal, derived from the
logical xor of gmii_tx_en_int and gmii_tx_er_int. The signals to be transmitted on
the RGMII falling clock edge are then registered on the falling edge clock,
not_gtx_clk_bufg. This ensures that the data is presented to the Double Data Rate
registers at the correct time. Finally, the transmitter signals are registered by an IOB output
Double-Data-Rate (DDR) register before being driven to output pads.

The logic required to forward the transmitter clock is also shown. This uses an IOB output
DDR register so the clock signal produced incurs on exactly the same delay as the data and

Figure 7-6: External RGMII Transmitter Logic

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg

BUFG

gtx_clk_bufg

rgmii_txc

IOB LOGIC

OBUF

FDDRRSE

OPAD

D Q

D Q

rgmii_txc_obuf

'1'

'0'

1-Gigabit Ethernet MAC Core

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

gtx_clk gmii_txd[0]

gmii_tx_en

gmii_tx_er

DCM

CLKIN

CLK0FB

CLK180

CLK90

CLK270

IOB LOGIC

D Q

OBUF

FDDRRSE

OPAD

D Q

D QD Q

D Q

D Q

OBUF

FDDRRSE

OPAD

D Q

D QD Q

D Q

gmii_txd[4]
gmii_txd_int[4]

rgmii_txd[0]

rgmii_tx_ctl

rgmii_tx_clk_bufg

not_rgmii_tx_clk_bufg

not_gtx_clk_bufg

http://www.xilinx.com

62 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

control signals. The rgmii_tx_clk clock signal is phase-shifted by 90 degrees in the
DCM with respect to gtx_clk_bufg. This means that the rising edge of rgmii_txc
occurs in the center of the data valid window—which maximizes setup and hold times
across the interface, as specified in the Reduced Gigabit Media Independent Interface (RGMII)
Version 2.0 specification.

Virtex-4 Devices

Figure 7-7 shows using the physical transmitter interface of the core to create an external
RGMII in a Virtex-4 device. The signal names and logic shown exactly match those
delivered with the example design when the RGMII is selected

Figure 7-7 also shows that the output transmitter signals are registered in the IOBs in
ODDR components. These components convert the input signals into one double-data-rate
signal. These signals are then output through OBUFs before being driven to output pads.

Figure 7-7: External RGMII Transmitter Logic in Virtex-4 Devices

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg

BUFG

gtx_clk_bufg

IOB LOGIC

’1’

’0’

1-Gigabit Ethernet MAC Core
gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

gtx_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

DCM

CLKIN

CLK0FB

CLK90
rgmii_tx_clk_bufg

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

OBUF

ODDR

OPAD

D1

Q
rgmii_txd_obuf[0]D2

C

rgmii_tx_ctl
OBUF

ODDR

OPAD

D1

Q
rgmii_tx_ctl_obufD2

C

rgmii_txc
OBUF

ODDR

OPAD

D1

Q
rgmii_txc_obufD2

C

gmii_txd_int[4]
gmii_txd[4]

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 63
UG144 August 8, 2007

Implementing External RGMII
R

The logic required to forward the transmitter clock is also shown: this uses an ODDR
register so that the clock signal produced incurs exactly on the same delay as the data and
control signals. The rgmii_tx_clk clock signal is phase-shifted by 90 degrees in the
DCM with respect to gtx_clk_bufg. This means that the rising edge of rgmii_txc
occurs in the center of the data valid window—which maximizes setup and hold times
across the interface, as specified in the RGMII v2.0 specification.

Virtex-5 Devices

The same logic that is used in Figure 7-7 can also be used without modification for Virtex-5
devices. However, an alternative solution has been adopted for the example design
delivered with the core. Figure 7-8 shows using the physical transmitter interface of the
core to create an external RGMII in a Virtex-5 device. The signal names and logic shown
exactly match those delivered with the example design when the RGMII is selected.

Figure 7-8 also shows that the output transmitter signals are registered in the IOBs in
ODDR components. These components convert the input signals into one double-data-rate
signal. The ODDR outputs are passed through IODELAYs—and these can be used to
adjust the relationship between the individual signals. These signals are then output
through OBUFs before being driven to output pads.

http://www.xilinx.com

64 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

The logic required to forward the transmitter clock is also shown. It has matching logic to
the data and control signals to provide a known relationship between the signals. An
IODELAY component is used to phase-shift the rgmii_txc clock signal by 90 degrees
with respect to gtx_clk_bufg. This allows the rising edge of rgmii_txc to occur in the
center of the data valid window—which maximizes setup and hold times across the
interface, as specified in the RGMII v2.0 specification. The IODELAY component is used in
fixed delay mode, where the attribute ODELAY_VALUE determines the tap delay value. An
IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-5
User Guide for more information on the use of IDELAYCTRL and IODELAY components.

Figure 7-8: External RGMII Transmitter Logic in Virtex-5 Devices

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg
gtx_clk_bufg

IOB LOGIC

1-Gigabit Ethernet MAC Core
gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

gtx_clk

gmii_txd[0]

gmii_tx_en

gmii_tx_er

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

OBUF

ODDR

OPAD

D1

Q

rgmii_txd_obuf[0]

D2

C

rgmii_tx_ctl
OBUF

ODDR

OPAD

D1

Q

rgmii_tx_ctl_obuf

D2

C

rgmii_txc
OBUF

IODELAY OPAD
rgmii_txc_obuf

gmii_txd_int[4]
gmii_txd[4]

ODDR

D1

QD2

C

IODELAY

IODELAY

‘1’
‘0’

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 65
UG144 August 8, 2007

Implementing External RGMII
R

RGMII Receiver Logic

Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices

Figure 7-9 shows using the physical receiver interface of the core to create an external
RGMII in a Virtex-II device. The signal names and logic exactly match those delivered with
the example design when the RGMII is selected. If other families are used, equivalent
primitives and logic specific to that family is used in the example design.

Figure 7-9 also shows that the input receiver signals are registered in device IOBs on rising
edges of both gmii_rx_clk_bufg and not_gmii_rx_clk_bufg. The signals are then
registered inside the FPGA fabric, before a final register stage to synchronize signals to the
rising edge clock. To achieve the required setup and hold times across the interface, the
DCM uses a phase-shift to adjust the clock relative to the data. See Appendix C,
“Calculating DCM Phase-Shifting.”

Figure 7-9: External RGMII Receiver Logic

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

rgmii_rxd[0]
IBUF

IPAD
rgmii_rxd_ibuf[0]

DQ

1-Gigabit Ethernet MAC Core

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

BUFG

IOB LOGIC

DCM

CLKINCLK0

FB

gmii_rx_clk_bufg

CLK180

not_gmii_rx_clk_bufg

DQDQ

rgmii_rxd_ddr[0]rgmii_rxd_reg[0]

DQDQDQ

rgmii_rxd_ddr[4]rgmii_rxd_reg[4]

gmii_rxd_reg[4]
gmii_rxd[4]

rgmii_rx_ctl
IBUF

IPAD
rgmii_rx_ctl_ibuf

DQDQDQ

rgmii_rx_dv_ddrrgmii_rx_dv_reg

DQDQDQ

rgmii_rx_ctl_ddrrgmii_rx_ctl_reg

http://www.xilinx.com

66 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Virtex-4 Devices

Figure 7-10 shows using the physical receiver interface of the core to create an external
RGMII in a Virtex-4 device. The signal names and logic exactly match those delivered with
the example design when RGMII is selected.

Figure 7-10 also shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_int signal is derived in the FPGA fabric from
the outputs of the control IDDR component.

The IDELAY components can be used to phase-shift the input RGMII clock, data, and
control signals to meet the setup and hold margins and counter any bus skew. The IDELAY
components are used in fixed delay mode, where the attribute IOBDELAY_VALUE
determines the tap delay value. An IDELAYCTRL primitive must be instantiated for this
mode of operation. See the Virtex-4 User Guide for more information about the
IDELAYCTRL and IDELAY components.

Figure 7-10: External RGMII Receiver Logic for Virtex-4 Devices

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

1-Gigabit Ethernet MAC Core

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

BUFG

gmii_rx_clk_bufg

gmii_rxd_int[4]
gmii_rxd[4]

IOB LOGIC

rgmii_rx_ctl
IBUF

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]
IBUF

IDDR

IPAD

Q1

DQ2

C

IDELAY

IDELAY

IDELAY

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 67
UG144 August 8, 2007

Implementing External RGMII
R

Virtex-5 Devices

Figure 7-11 shows using the physical receiver interface of the core to create an external
RGMII in a Virtex-5 device. The signal names and logic exactly match those delivered with
the example design when RGMII is selected.

Figure 7-11 also shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_int signal is derived in the FPGA fabric from the
outputs of the control IDDR component.

The IODELAY components are used to phase-shift the input RGMII clock, data and control
signals to meet the setup and hold margins. The IODELAY components are used in fixed
delay mode, where the attribute IDELAY_VALUE determines the tap delay value. An
IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-5
User Guide for more information on the use of IDELAYCTRL and IODELAY components.

Figure 7-11: External RGMII Receiver Logic for Virtex-5 Devices

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

1-Gigabit Ethernet MAC Core

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

gmii_rx_clk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

BUFG

gmii_rx_clk_bufg

gmii_rxd_int[4]
gmii_rxd[4]

IOB LOGIC

rgmii_rx_ctl
IBUF

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]
IBUF

IDDR

IPAD

Q1

DQ2

C

IODELAY

IODELAY

IODELAY

http://www.xilinx.com

68 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

RGMII Inband Status Decoding Logic
The inband status decoding logic is common to all device families. Figure 7-12 illustrates
the decoding of RGMII inband status information. This information is received through
the RGMII interface between frames in a Virtex-II device. The signal names and logic
shown exactly match those delivered with the example design when the RGMII is selected.
If other families are used, equivalent primitives and logic specific to that family is used in
the example design.

Using the MDIO interface
The MDIO interface is accessed through the optional management interface and is
typically connected to the MDIO port of a physical-layer device to access its configuration
and status registers (see “MDIO Interface,” on page 79). The MDIO format is defined in
IEEE 802.3, clause 22.

Connecting the MDIO to an Internally Integrated PHY
The MDIO ports of the GEMAC core can be connected to the MDIO ports of an internally
integrated physical-layer device, such as the MDIO port of the Xilinx Ethernet 1000BASE-
X PCS/PMA or SGMII core. See Chapter 11, “Interfacing to Other Cores” for more
information.

Figure 7-12: RGMII Inband Status Decoding Logic

1-Gigabit Ethernet MAC Core

gmii_rx_dv_reg

gmii_rx_er_reg

gmii_rx_clk

gmii_rx_dv

gmii_rx_er

RGMII RECEIVER LOGIC
gmii_rx_clk_bufg

gmii_rxd_reg[3]
gmii_rxd[3]

gmii_rxd_reg[2]
gmii_rxd[2]

gmii_rxd_reg[1]
gmii_rxd[1]

gmii_rxd_reg[0]
gmii_rxd[0]

OBUF

OPAD

inband_link_status

D Q

D Q

D Q

D Q

CE

CE

CE

CE

OBUF

OPAD

inband_clock_speed[0]

OBUF

OPAD

inband_clock_speed[1]

OBUF

OPAD

inband_duplex_status

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 69
UG144 August 8, 2007

Using the MDIO interface
R

Connecting the MDIO to an External PHY
The MDIO ports of the GEMAC core can be connected to the MDIO of an external
physical-layer device. In this situation, mdio_in, mdio_out, and mdio_tri must be
connected to a tri-state buffer to create a bidirectional wire, mdio. This tri-state buffer can
be either external to the FPGA, or internally integrated by using an IOB IOBUF component
with an appropriate SelectIOTM standard for the external PHY (illustrated in Figure 7-13).

Figure 7-13: Creating an External MDIO Interface

OBUF

IOB LOGIC

OPAD
OI

O

I IO

T

IOPAD

IOB LOGIC

IOBUF

1-Gigabit Ethernet MAC Core

mdc

mdio_tri

mdio_out

mdio_in

MDC

MDIO

http://www.xilinx.com

70 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 71
UG144 August 8, 2007

R

Chapter 8

Configuration and Status

This chapter provides general guidelines for configuring and monitoring the GEMAC
core, including a detailed description of the client-side management interface and registers
present in the core. It also describes the alternative to the optional management interface
which is the Configuration Vector.

Using the Optional Management Interface
The Management Interface is a processor-independent interface with standard address,
data, and control signals. It may be used as is, or a wrapper (not supplied) may be used to
interface to common bus architectures. For port definition, see “Management Interface
(Optional),” on page 26.

This interface is used for:

• Configuring of the GEMAC core via the configuration registers.

• Access through the MDIO interface to the management registers located in the PHY
connected to the GEMAC core.

The Management Interface can be accessed in different ways, depending on the type of
transaction. A truth table showing which access method is required for each transaction
type is shown in Table 8-1. These access methods are described in the following sections.

Host Clock Frequency
The Management Interface clock, host_clk, is used to derive the MDIO clock, mdc, and
for this reason is subject to the following frequency restriction:

≥ 10 MHz

Configuring the GEMAC core to derive the mdc signal from this clock is detailed in “MDIO
Interface,” on page 79.

Configuration Registers
After a power-up or system reset, the client may reconfigure the core parameters using
their defaults. Configuration changes can be written at any time. Both the receiver and

Table 8-1: Management Interface Transaction Types

Transaction host_miim_sel host_addr[9]

Configuration 0 1

MIIM access 1 X

http://www.xilinx.com

72 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

transmitter logic responds only to configuration changes during inter-frame gaps. The
exceptions to this are the configurable resets that take effect immediately.

Configuration of the GEMAC core is performed through a register bank that is accessed
through the management interface. The configuration registers available in the core are
listed in Table 8-2. As shown, the address has some implicit don’t care bits; any access to an
address in the ranges shown performs a 32-bit read or write from the same configuration
word.

Receiver Configuration

The register contents for the two receiver configuration words are shown in Table 8-3 and
Table 8-4.

Table 8-2: Configuration Registers

Address Description

0x200-0x23F Receiver Configuration (Word 0)

0x240-0x27F Receiver Configuration (Word 1)

0x280-0x2BF Transmitter Configuration

0x2C0-0x2FF Flow Control Configuration

0x300-0x33F Reserved

0x340-0x37F Management Configuration

0x380-0x383 Unicast Address (Word 0) (if Address Filter is present)

0x384-0x387 Unicast Address (Word 1) (if Address Filter is present)

0x388-0x38B Address Table Configuration (Word 0) (if Address Filter is present)

0x38C-0x38F Address Table Configuration (Word 1) (if Address Filter is present)

0x390-0x393 Address Filter Mode (if Address Filter is present)

Table 8-3: Receiver Configuration Word 0

Bit
Default
Value

Description

31-0 All 0s Pause frame MAC Source Address[31:0]. This address is
used by the MAC to match against the destination address
of any incoming flow control frames. It is also used by the
flow control block as the source address (SA) for any
outbound flow control frames. See Chapter 6, “Using Flow
Control.”

The address is ordered so the first byte
transmitted/received is the lowest positioned byte in the
register; for example, a MAC address of AA-BB-CC-DD-
EE-FF would be stored in Address[47:0] as
0xFFEEDDCCBBAA.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 73
UG144 August 8, 2007

Using the Optional Management Interface
R

Transmitter Configuration

The register contents for the Transmitter Configuration Word are described in Table 8-5.

Table 8-4: Receiver Configuration Word 1

Bit
Default
Value

Description

15-0 All 0s Pause frame MAC Source Address[47:32]

24-16 n/a Reserved

25 0 Length/Type Error Check Disable When this bit is set to
‘1,’ the core will not perform the length/type field error
checks as described in “Length/Type Field Error Checks,”
on page 40. When this bit is set to ‘0,’ the length/type field
checks will be performed; this is normal operation.

26 n/a Reserved

27 0 VLAN Enable When this bit is set to ‘1,’ VLAN tagged
frames will be accepted by the receiver.

28 1 Receiver Enable. If set to ‘1,’ the receiver block will be
operational. If set to ‘0,’ the block will ignore activity on the
physical interface RX port.

29 0 In-band FCS Enable When this bit is ‘1,’ the MAC receiver
will pass the FCS field up to the client. When at ‘0,’ the
client will not be passed the FCS. In both cases, the FCS
will be verified on the frame.

30 0 Jumbo Frame Enable When this bit is set to ‘1,’ the MAC
receiver will accept frames over the specified IEEE 802.3-
2002 maximum legal length. When this bit is ‘0,’ the MAC
will only accept frames up to the specified maximum.

31 0 Reset When this bit is set to ‘1,’ the receiver will be reset.
The bit will then automatically revert to ‘0.’ Note that this
reset also sets all of the receiver configuration registers to
their default values.

Table 8-5: Transmitter Configuration Word

Bit
Default
Value

Description

24-0 n/a Reserved

25 0 Interframe Gap Adjust Enable If ‘1,’ the transmitter will
read the value on the port tx_ifg_delay at the start of frame
transmission and adjust the interframe gap following the
frame accordingly.

26 n/a Reserved

27 0 VLAN Enable When this bit is set to ‘1,’ the transmitter
will allow the transmission of VLAN tagged frames.

http://www.xilinx.com

74 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

Flow Control Configuration

Table 8-6 lists the register contents for the Flow Control Configuration Word.

28 1 Transmit Enable When this bit is ‘1,’ the transmitter is
operational. When it is ‘0,’ the transmitter is disabled.

29 0 In-band FCS Enable When this bit is ‘1,’ the MAC
transmitter will expect the FCS field to be passed in by the
client. When this bit is ‘0,’ the MAC transmitter will
append padding as required, compute the FCS and
append it to the frame.

30 0 Jumbo Frame Enable When this bit is set to ‘1,’ the MAC
transmitter will send frames that are greater than the
specified IEEE 802.3-2002 maximum legal length. When
this bit is ‘0,’ the MAC will only send frames up to the
specified maximum.

31 0 Reset When set to ‘1,’ the transmitter will be reset. The bit
will then automatically revert to ‘0.’ Note that this reset
will also set all of the transmitter configuration registers to
their default values.

Table 8-5: Transmitter Configuration Word (Continued)

Bit
Default
Value

Description

Table 8-6: Flow Control Configuration Word

Bit
Default
Value

Description

28-0 n/a Reserved

29 1 Flow Control Enable (RX) When this bit is ‘1,’ received
flow control frames will inhibit the transmitter operation.
When this bit is ‘0,’ received flow control frames will
always be passed up to the client.

30 1 Flow Control Enable (TX) When this bit is ‘1,’ asserting the
PAUSE_REQ signal will send a flow control frame out
from the transmitter. When this bit is ‘0,’ asserting the
PAUSE_REQ signal has no effect.

31 n/a Reserved

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 75
UG144 August 8, 2007

Using the Optional Management Interface
R

MDIO Configuration

The register contents for the Management Configuration Word are described in Table 8-7.

Address Filter Configuration

Table 8-8 through Table 8-12 describe the registers used to access the Address Filter
configuration when the GEMAC core implemented with an Address Filter. The register
contents for the two unicast address registers are found in Table 8-8 and Table 8-9.

Table 8-7: Management Configuration Word

Bits
Default
Value

Description

4-0 All 0s Clock Divide[4:0] This value enters a logical equation
which enables the mdc frequency to be set as a divided
down ratio of the host_clk frequency.

5 0 MDIO Enable When this bit is ‘1,’ the MDIO interface can
be used to access attached PHY devices. When this bit is
‘0,’ the MDIO interface is disabled and the MDIO signals
remain inactive.

31-6 n/a Reserved

Table 8-8: Unicast Address Word 0

Bits
Default
Value

Description

31-0 All 0s Address filter unicast address[31:0].

The address is ordered so the first byte received is the
lowest positioned byte in the register; for example, a MAC
address of AA-BB-CC-DD-EE-FF would be stored in
Address[47:0] as 0xFFEEDDCCBBAA.

Table 8-9: Unicast Address Word 1

Bits
Default
Value

Description

15-0 All 0s Address filter unicast address[47:32].

31-16 N/A Reserved

http://www.xilinx.com

76 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

The Address Filter can be programmed to respond to four separate additional addresses
stored in an address table in the Address Filter. Table 8-10 and Table 8-11 describe how the
contents of the address table are set.

The contents of the Address Filter mode register are described in Table 8-12.

Writing and Reading to and from the Configuration Registers

Writing to the configuration registers through the management interface is shown in
Figure 8-1. When accessing the configuration registers (when host_addr[9] = ‘1’ and
host_miim_sel = ‘0’), the upper bit of host_opcode functions as an active low write
enable signal. The lower host_opcode bit is a don’t care bit.

Table 8-10: Address Table Configuration Word 0

Bits
Default
Value

Description

31–0 All 0s MAC Address[31:0].

The address is ordered so the first byte received is the
lowest positioned byte in the register; for example, a MAC
address of AA-BB-CC-DD-EE-FF would be stored in
Address[47:0] as 0xFFEEDDCCBBAA.

Table 8-11: Address Table Configuration Word 1

Bits
Default
Value

Description

15–0 All 0s MAC Address[47:32].

17–16 All 0s The location in the address table that the MAC address is
to be written to or read from. There are up to 4 entries in
the table (Location 0 to 3).

22–18 N/A Reserved

23 0 Read not write This bit is set to ‘1’ to read from the address
table. If it is set to ‘1,’ the contents of the table entry that is
being accessed by the bits 17-16 will be output on the
hostrddata bus in consecutive cycles (least significant
word first). If it is set to ‘0,’ the data on bits 15-0 is written
into the table at the address specified by bits 17-16.

31–24 N/A Reserved

Table 8-12: Address Filter Mode

Bits
Default
Value

Description

30–0 N/A Reserved

31 0 Promiscuous Mode If this bit is set to ‘1,’ the Address Filter
operates in promiscuous mode. All frames are passed to
the receiver client, regardless of the destination address.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 77
UG144 August 8, 2007

Using the Optional Management Interface
R

Reading from the configuration register words is similar, but the upper host_opcode bit
should be ‘1,’ as shown in Figure 8-2. In this case, the contents of the register appear on
host_rd_data the host_clk edge after the register address is asserted onto
host_addr.

Accessing the Address Table

To write to a specific entry in the address table, you must first write the least significant 32-
bits of the address into the Address Table Configuration (Word 0) register. You then write
the most significant 16 bits together with the location in the table (bits 17–16) to the

Figure 8-1: Configuration Register Write Timing

Figure 8-2: Configuration Register Read Timing

host_clk

host_addr[8:0]

host_addr[9]

host_opcode[1]

host_miim_sel

host_wr_data[31:0]

host_clk

host_addr[8:0]

host_addr[9]

host_opcode[1]

host_miim_sel

host_rd_data[31:0]

http://www.xilinx.com

78 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

Address Table Configuration (Word1) register with bit 23 (read not write) set to ‘0.’ This is
shown in Figure 8-3. Although it is shown in the figure, there is no requirement for the two
writes to be on adjacent cycles.

As shown in Figure 8-4, you must write to the Address Table Configuration register (Word
1) with the location set to the desired table entry and bit 23 set to ‘1’ to read from the
address table. On the next cycle the least significant word appears on the hostrddata
bus. One cycle afterwards, the most significant 16-bits are output on the lower 16 bits of the
bus.

Figure 8-3: Address Table Write Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

BITS15..0 = ADDR[47:32]

hostwrdata[31:0]

0x188 0x18C

ADDR[31:0]

BITS17..16 = LOCATION
BIT23 = 0

BIT31 BIT0

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 79
UG144 August 8, 2007

Using the Optional Management Interface
R

MDIO Interface

Introduction to MDIO

The MDIO interface for 1 Gbps operation (and slower speeds) is defined in IEEE 802.3
clause 22. This is a two wire interface consisting of a clock, mdc, and a shared serial data
line, mdio.

An MDIO bus in a system consists of a single Station Management (STA) master
management entity and a number of MDIO Managed Device (MMD) slave entities.
Figure 8-5 illustrates a typical system. All transactions are initiated by the STA entity. The
GEMAC core implements a STA and can be connected to MMDs (PHY devices) to access
their management registers.

Figure 8-4: Address Table Read Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

hostrddata[31:0]

hostwrdata[23]

hostwrdata[17:16]

31 : 0 47 : 32

0x18C

LOCATION

http://www.xilinx.com

80 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

There are two different transaction types of MDIO for write and read. They are described
in this section.

Abbreviations Used

The following abbreviations apply for the remainder of this chapter.

• PRE Preamble

• ST Start of frame

• OP Operation code

• PHYAD PHY address

• REGAD Register address

• TA Turnaround

Write Transaction

Figure 8-6 shows a write transaction across the MDIO, as defined by OP=’01.’ The
addressed MMD (PHYAD) device takes the 16-bit word in the data field and writes it to the
register at REGAD.

Read Transaction

Figure 8-7 shows a Read transaction; this is defined by OP=”10”. The addressed MMD
(PHYAD) device returns the 16-bit word from the register at REGAD.

Figure 8-5: Typical MDIO-managed System

MAC 1 MAC 2

STA mdc

mdio

MMD

MMD

MMD

MMD

MMD

MMD

Figure 8-6: MDIO Write Transaction

Z1 1 1 0 0 1 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 1 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit WRITE DATA

STA drives MDIO

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 81
UG144 August 8, 2007

Using the Optional Management Interface
R

For details of the register map of MMD (PHY layer devices) and a detailed description of
the operation of the MDIO Interface itself, see IEEE 802.3-2002.

Accessing MDIO With GEMAC

More information about MDIO with GEMAC can be found in the following sections of this
guide:

• For the GEMAC port definition of the MDIO, see “MDIO Interface” in Chapter 2

• “Connecting the MDIO to an Internally Integrated PHY,” on page 68

• “Connecting the MDIO to an External PHY,” on page 69

The management interface is also used to access the MDIO interface of the GEMAC core.
The MDIO interface supplies a clock to the connected PHY, mdc. This clock is derived from
the host_clk signal using the value in the Clock Divide[4:0] configuration register.
The frequency of mdc is given by the following equation:

The frequency of mdc given by this equation should not exceed 2.5 MHz in order to comply
with the IEEE 802.3-2002 specification for this interface. To prevent mdc from being out of
specification, the Clock Divide[4:0] value powers up at 00000. While this value is in
the register, it is impossible to enable the MDIO interface.

For details of the register map of PHY layer devices and a detailed description of the
operation of the MDIO interface itself, see IEEE 802.3-2002.

Figure 8-7: MDIO Read Transaction

Z1 1 1 0 1 0 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 Z 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PRTAD REGAD TA 16-bit READ DATA

STA drives MDIO MMD drives MDIO

fMDC

fHOST_CLK
1 Clock Divide[4:0]+() 2×

---=

http://www.xilinx.com

82 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

Figure 8-8 shows access to the MDIO interface through the Management Interface.

For MDIO transactions, the following applies:

• host_miim_sel is ‘1’

• host_opcode[1:0] maps to the OP (opcode) field of the MDIO frame

• host_addr maps to the two address fields of the MDIO frame; PHYAD is
host_addr[9:5], and REGAD is host_addr[4:0]

• host_wr_data[15:0] maps into the data field of the MDIO frame when
performing a write operation

• The data field of the MDIO frame maps into host_rd_data[15:0] when
performing a read operation

The GEMAC core signals the host that it is ready for an MDIO transaction by asserting
host_miim_rdy. A read or write transaction on the MDIO is initiated by a pulse on the
host_req signal. This pulse is ignored if the MDIO interface already has a transaction in
progress. The GEMAC core then deasserts the host_miim_rdy signal while the
transaction across the MDIO is in progress. When the transaction across the MDIO
interface has been completed, the host_miim_rdy signal is asserted by the GEMAC core;
if the transaction is a read, the data is available on the host_rd_data[15:0] bus at this
time.

Figure 8-8: MDIO Access through Management Interface

host_clk

host_addr9:0]

host_opcode1:0]

host_req

host_miim_sel

host_rd_data[15:0]

host_wr_data15:0]

host_rdy

*

*

* If a read transaction is initiated, the host_rd_data bus is valid
at the point indicated. If a write transaction is initiated, the
host_wr_data bus must be valid at the indicated point.
Simultaneous read and write is not permitted.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 83
UG144 August 8, 2007

Access without the Management Interface
R

Access without the Management Interface
If the optional management interface is omitted from the core, all of the relevant
configuration settings described in Table 8-3 through Table 8-6 are brought out of the core
as signals. These signals are bundled into the configuration_vector[64:0] signal as
described in Table 8-13.

These signals may permanently set by connecting to logic 0 or 1, or may be changed by the
user application at any time; however, with the exception of the reset and the flow control
configuration signals, any changes do not take effect until the current frame has completed
transmission or reception.

The Clock heading in Table 8-13 denotes which clock domain the configuration signal is
registered into before use by the core. It is not necessary to drive the signal from this clock
domain.

Table 8-13: Configuration Vector Bit Definition

Bit(s)
Configuration
Register cross

reference
Clock Description

47:0 “Receiver
Configuration
Word 0” bits 31-0
and “Receiver
Configuration
Word 1” bits 15-0

gmii_rx_clk Pause frame MAC Source Address[47:0]
This address is used by the GEMAC core to
match against the destination address of any
incoming flow control frames, and as the
source address for any outbound flow control
frames.

The address is ordered such that the first byte
transmitted or received is the least significant
byte in the register; for example, a MAC
address of AA-BB-CC-DD-EE-FF will be
stored in bite [47:0] as 0xFFEEDDCCBBAA.

48 n/a n/a This input is unused.

49 “Receiver
Configuration
Word 1” bit 27

gmii_rx_clk Receiver VLAN Enable When this bit is set
to '1,’ VLAN tagged frames are accepted by
the receiver.

50 “Receiver
Configuration
Word 1” bit 28

gmii_rx_clk Receiver Enable If set to '1,’ the receiver
block is operational. If set to '0,’ the block
ignores activity on the physical interface RX
port.

51 “Receiver
Configuration
Word 1” bit 29

gmii_rx_clk Receiver In-band FCS Enable When this bit
is ‘1,’ the MAC receiver will pass the FCS
field up to the client. When it is ‘0,’ the MAC
receiver will not pass the FCS field. In both
cases, the FCS field will be verified on the
frame.

52 “Receiver
Configuration
Word 1” bit 30

gmii_rx_clk Receiver Jumbo Frame Enable When this bit
is ‘0,’ the receiver will not pass frames longer
than the maximum legal frame size specified
in IEEE 802.3-2002. At ‘1,’ the receiver will not
have an upper limit on frame size.

http://www.xilinx.com

84 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

53 “Receiver
Configuration
Word 1” bit 31

n/a Receiver Reset. When this bit is ‘1,’ the
receiver is held in reset. This signal is an input
to the reset circuit for the receiver block.

54 “Transmitter
Configuration
Word” bit 25

gtx_clk Transmitter Interframe Gap Adjust Enable
If ‘1,’ then the transmitter will read the value
of the tx_ifg_delay port and set the
interframe gap accordingly. If ‘0,’ the
transmitter will always insert at least the
legal minimum interframe gap.

55 n/a n/a Not used.

56 “Transmitter
Configuration
Word” bit 27

gtx_clk Transmitter VLAN Enable When this bit is
set to ‘1,’ the transmitter allows the
transmission of VLAN tagged frames.

57 “Transmitter
Configuration
Word” bit 28

gtx_clk Transmitter Enable When this bit is ‘1,’ the
transmitter will be operational. When it is ‘0,’
the transmitter is disabled.

58 “Transmitter
Configuration
Word” bit 29

gtx_clk Transmitter In-Band FCS Enable When this
bit is ‘1,’ the MAC transmitter will expect the
FCS field to be pass in by the client. When it
is ‘0,’ the MAC transmitter will append
padding as required, compute the FCS and
append it to the frame.

59 “Transmitter
Configuration
Word” bit 30

gtx_clk Transmitter Jumbo Frame Enable When this
bit is ‘1,’ the MAC transmitter will allow
frames larger than the maximum legal frame
length specified in IEEE 802.3-2002 to be sent.
When set to ‘0,’ the MAC transmitter will
only allow frames up to the legal maximum
to be sent.

60 “Transmitter
Configuration
Word” bit 31

n/a Transmitter Reset. When this bit is ‘1,’ the
MAC transmitter is held in reset. This signal
is an input to the reset circuit for the
transmitter block.

61 “Flow Control
Configuration
Word” bit 29

gtx_clk Transmit Flow Control Enable. When this bit
is ‘1,’ asserting the pause_req signal causes
the GEMAC core to send a flow control frame
out from the transmitter. When this bit is ‘0,’
asserting the pause_req signal will have no
effect.

Table 8-13: Configuration Vector Bit Definition (Continued)

Bit(s)
Configuration
Register cross

reference
Clock Description

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 85
UG144 August 8, 2007

Access without the Management Interface
R

62 “Flow Control
Configuration
Word” bit 30

gtx_clk Receive Flow Control Enable. When this bit
is ‘1,’ received flow control frames will inhibit
the transmitter operation. When at ‘0,’
received flow frames are passed up to the
client.

63 “Receiver
Configuration
Word 1” bit 25

gtx_clk Length/Type Error Check Disable. When
this bit is set to ‘1,’ the core will not perform
the length/type field error checks as
described in “Length/Type Field Error
Checks,” on page 40. When this bit is set to
‘0,’ the length/type field checks will be
performed: this is normal operation.

64 “Address Filter
Mode” bit 31

gmii_rx_clk Address Filter Enable. When this bit is ‘0,’
the Address Filter is enabled. If it is set to ‘1,’
the Address Filter will operate in
promiscuous mode.

Table 8-13: Configuration Vector Bit Definition (Continued)

Bit(s)
Configuration
Register cross

reference
Clock Description

http://www.xilinx.com

86 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 8: Configuration and Status
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 87
UG144 August 8, 2007

R

Chapter 9

Constraining the Core

This chapter defines the GEMAC core constraint requirements. An example UCF that
implements the constraints defined in this chapter is provided with the HDL example
design for the core.

See the 1-Gigabit Ethernet MAC Getting Started Guide for more information about the CORE
Generator output files and detailed information about the HDL example design.

Required Constraints

Device, Package, and Speedgrade Selection
The GEMAC can be implemented in Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5, Spartan-3,
Spartan-3E, and Spartan-3A devices with the following attributes:

• Large enough to accommodate the core

• Contains a sufficient number of IOBs

• Operates at the following speed grades:

♦ –4 for Virtex-II, Spartan-3, Spartan-3E, and Spartan-3A

♦ –5 for Virtex-II Pro

♦ –10 for Virtex-4

♦ –1 for Virtex-5

I/O Location Constraints
No specific I/O location constraints are required.

Placement Constraints
No specific placement constraints are required.

Timing Constraints
The core can have up to three separate clock domains: gtx_clk for the transmitter logic,
gmii_rx_clk for the receiver logic, and host_clk for the optional management logic.
These clock nets and the signals within the core that cross these clock domains must be
constrained appropriately in a UCF.

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the following descriptions

http://www.xilinx.com

88 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

to provide examples. These examples should be studied in conjunction with the HDL
source code for the example design.

PERIOD Constraints for Clock Nets

gtx_clk

The clock provided to gtx_clk must be constrained for a clock frequency of 125 MHz.

The following UCF syntax shows the necessary constraints being applied to the
gtx_clk_bufg signal (which is routed to the gtx_clk port of the core):

Set the Transmitter clock period constraints: please do not relax
NET "gtx_clk_bufg" TNM_NET = "clk_tx";
TIMEGRP "tx_clock" = "clk_tx";
TIMESPEC "TS_tx_clk" = PERIOD "tx_clock" 8000 ps HIGH 50 %;

gmii_rx_clk

The clock provided to gmii_rx_clk must be constrained for a clock frequency of 125 MHz.

The following UCF syntax shows the necessary constraints being applied to the
gmii_rx_clk_bufg signal (which is routed to the gmii_rx_clk port of the core):

Set the Receiver clock period constraints: please do not relax
NET "gmii_rx_clk_bufg" TNM_NET = "clk_rx";
TIMEGRP "rx_clock" = "clk_rx";
TIMESPEC "TS_rx_clk" = PERIOD "rx_clock" 8000 ps HIGH 50 %;

host_clk

The clock provided to host_clk must be constrained to the desired frequency within the
allowable range (see “Host Clock Frequency,” on page 71).

The following UCF syntax shows a 100 MHz period constraint being applied to the
host_clk signal (which is routed to the host_clk port of the core):

Set the Management Clock period constraints: relax as required
NET "host_clk" TNM_NET = "host_clk";
TIMEGRP "host" = "host_clk" EXCEPT "mdio_logic";
TIMESPEC "TS_host_clk" = PERIOD "host" 10000 ps HIGH 50 %;

MDIO Logic

The MDIO logic (see “MDIO Interface,” on page 28) is synchronous to host_clk, but
data only changes at the mdc output rate (as configured in the “MDIO Configuration,” on
page 75). Nominally mdc will be set to a frequency of 2.5 MHz. Every flip-flop in the
MDIO logic is clocked with host_clk, but is sent a clock enable pulse at the mdc
frequency. To prevent this logic being over constrained by the host_clk period, the
relevant flip-flops for the MDIO logic can be grouped together and removed from the
host_clk period constraint. This is shown in the previous UCF syntax for host_clk.
The UCF syntax which follows targets the MDIO logic flip-flops and groups them together.
Reduced clock period constraints are then applied.

##
MDIO Constraints: please do not edit
##

Place the MDIO logic in it's own timing groups
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/PHY/ENABLE_REG" TNM = "mdc_rising";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/PHY/READY_INT" TNM = "mdc_rising";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/PHY/STATE_COUNT*" TNM = FFS "mdc_rising";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/PHY/MDIO_TRISTATE" TNM = "mdc_falling";

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 89
UG144 August 8, 2007

Required Constraints
R

INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/PHY/MDIO_OUT" TNM = "mdc_falling";
TIMEGRP "mdio_logic" = "mdc_rising" "mdc_falling";

TIMESPEC "TS_mdio1" = PERIOD "mdio_logic" 400 ns;
TIMESPEC "TS_mdio2" = FROM "mdc_rising" TO "mdc_falling" 200 ns;

Timespecs for Critical Logic within the Core

Signals must cross clock domains at certain points in the core, as described in the following
sections.

Flow Control

Pause requests are received and decoding in the gmii_rx_clk domain and must be
transferred into the gtx_clk domain to pause the transmitter. Therefore, whenever
gmii_rx_clk and gtx_clk are derived from different clock sources, the following
constraints must always be applied:

Flow Control logic reclocking
INST "*gmac_core/BU2/U0/FLOW/RX_PAUSE/GOOD_FRAME_TO_TX" TNM="flow_rx_to_tx";
INST "*gmac_core/BU2/U0/FLOW/RX_PAUSE/PAUSE_REQ_TO_TX" TNM="flow_rx_to_tx";
INST "*gmac_core/BU2/U0/FLOW/RX_PAUSE_/AUSE_VALUE_TO_TX*" TNM="flow_rx_to_tx";
TIMESPEC "TS_flow_rx_to_tx" = FROM "flow_rx_to_tx" TO "tx_clock" 8000 ps;

Configuration

When the optional Management Interface is used with the core, configuration information
is written synchronously to host_clk. Receiver configuration data must be transferred
onto the gmii_rx_clk clock domain for use with the receiver and into the gtx_clk
clock domain for use with the transmitter. The following UCF syntax targets this logic and
a timing ignore attribute (TIG) is applied. It does not matter when configuration changes
take place—the current configurations are sampled between frames by both the receiver
and transmitter.

Configuration Register reclocking
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/CONF/RX0_OUT*" TNM="config_to_rx";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/CONF/RX1_OUT*" TNM="config_to_rx";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/CONF/FC_OUT_29" TNM="config_to_rx";
TIMESPEC "TS_config_to_rx" = FROM "config_to_rx" TO "rx_clock" TIG;

INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/CONF/TX_OUT*" TNM="config_to_tx";
INST "*gmac_core/BU2/U0/MANIFGEN?MANAGEN/CONF/FC_OUT_30" TNM="config_to_tx";
TIMESPEC "TS_config_to_tx" = FROM "config_to_tx" TO "tx_clock" TIG;

Timespecs for Reset Logic within the Core

Internally, the core is divided into clock/reset domains that group elements with common
clock and reset signals. The reset circuitry for one of these domains is illustrated in
Figure 10-5. This circuit provides controllable skews on the reset nets within the design.
More information on the operation and rationale behind this circuit can be found in Ken
Chapman’s Xilinx TechXclusive, “Get Smart About Reset” at:

www.xilinx.com/support/techxclusives/global-techX19.htm

The following UCF syntax identifies the relevant reset logic and groups them together.
Timing constraints are then applied to constrain the skews on the reset nets:

INST "*gmac_core/BU2/U0/SYNC_RX_RESET_I/RESET_OUT" TNM = "reset_dist_grp";
INST "*gmac_core/BU2/U0/SYNC_TX_RESET_I/RESET_OUT" TNM = "reset_dist_grp";
INST "*gmac_core/BU2/U0/G_SYNC_MGMT_RESET?SYNC_MGMT_RESET_HOST_I/RESET_OUT" TNM =
"reset_dist_grp";
TIMESPEC "TS_reset_dist" = FROM "reset_dist_grp" 6100 ps;

Note: The third line in the above UCF syntax is only required when the optional Management
Interface is used.

http://www.xilinx.com/support/techxclusives/global-techX19.htm
http://www.xilinx.com

90 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

Constraints when Implementing an External GMII
The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the descriptions below to
provide examples. These examples should be studied in conjunction with the HDL source
code for the example design and with the description “Implementing External GMII,” on
page 55.

GMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL file for
the example design; constraints are set to ensure that these are placed in IOBs.

GMII Transmitter Constraints: place flip-flops in IOB
INST "*gmii_interface/gmii_txd_reg*" IOB = true;
INST "*gmii_interface/gmii_tx_en_reg" IOB = true;
INST "*gmii_interface/gmii_tx_er_reg" IOB = true;

GMII Receiver Constraints: place flip-flops in IOB
INST "*gmii_interface/gmii_rxd_reg*" IOB = true;
INST "*gmii_interface/gmii_rx_dv_reg" IOB = true;
INST "*gmii_interface/gmii_rx_er_reg" IOB = true;

The GMII is a 3.3 volt signal-level interface. The 3.3 volt LVTTL SelectIO standard is the
default for Virtex-II devices. The following constraints may be added without harm. The
3.3 volt LVTTL SelectIO standard is not the default for Virtex-5, Virtex-4, Virtex-II Pro,
Spartan-3, Spartan-3E and Spartan-3A devices. Use the following constraints with the
device IO Banking rules.

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;

INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;

INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this
core.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 91
UG144 August 8, 2007

Required Constraints
R

GMII Input Setup/Hold Timing

Figure 9-1 and Table 9-1 illustrate the setup and hold time window for the input GMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

Observe that there is a 2 ns data valid window which is presented across the GMII input
bus. This must be correctly sampled by the FPGA devices.

Virtex-II, and Virtex-II Pro Devices

These families have input delay elements (which are always of a fixed delay) that are
automatically inserted by the Xilinx tools and are set to provide a zero-hold time. These
input delays will automatically meet input setup and hold timing on the GMII without any
specific constraints.

Spartan-3, Spartan-3E, and Spartan-3A Devices

The GMII design uses a DCM on the receiver clock domain for Spartan-3, Spartan-3E, and
Spartan-3A devices. Phase-shifting is then applied to the DCM to align the resultant clock
so that it will correctly sample the 2 ns GMII data valid window at the input flip-flops.

The fixed phase-shift is applied to the DCM using the following UCF syntax:

INST *gmii_interface/gmii_rxc_dcm CLKOUT_PHASE_SHIFT = FIXED;
INST *gmii_interface/gmii_rxc_dcm PHASE_SHIFT = 0;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase-shift. Appendix C,
“Calculating DCM Phase-Shifting” describes a more accurate method for fixing the phase-
shift by using hardware measurement of a unique PCB design.

Figure 9-1: Input GMII Timing

Table 9-1: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_RXD[7:0],
GMII_RX_DV,
GMII_RX_ER

GMII_RX_CLK

http://www.xilinx.com

92 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

Virtex-4 Devices

The GMII design uses IDELAY components on the receiver clock, data and control signals
for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and control
signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependent upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice. Delaying
the clock is clock-period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different. See “Understanding Timing Reports for GMII Setup/Hold Timing.”

The following constraint shows an example of setting the delay value for one of these
IDELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IOBDELAY_VALUE = 53;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-4 User Guide and code comments for more information.

Virtex-5 Devices

The GMII design uses IODELAY components on the receiver clock, data and control
signals for Virtex-5 devices. A fixed tap delay can be applied to either delay the data and
control signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice. Delaying
the clock is clock-period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different. See “Understanding Timing Reports for GMII Setup/Hold Timing.”

The following constraint shows an example of setting the delay value for one of these
IODELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IDELAY_VALUE = 33;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 93
UG144 August 8, 2007

Required Constraints
R

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-5 User Guide and code comments for more information.

Understanding Timing Reports for GMII Setup/Hold Timing

Non-Virtex-4 or Virtex-5 devices

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-2 device. The
implementation requires 1.531 ns of setup—this is less than the 2 ns required so there is
some slack. The implementation requires -0.125 ns of hold— this is less than the 0 ns
required so there is some slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_rx_dv | 1.531(R)| -0.141(R)|gmii_rx_clk_bufg | 0.000|
gmii_rx_er | 1.531(R)| -0.141(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<0> | 1.531(R)| -0.141(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<1> | 1.525(R)| -0.135(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<2> | 1.531(R)| -0.141(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<3> | 1.525(R)| -0.135(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<4> | 1.515(R)| -0.125(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<5> | 1.515(R)| -0.125(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<6> | 1.520(R)| -0.130(R)|gmii_rx_clk_bufg | 0.000|
gmii_rxd<7> | 1.520(R)| -0.130(R)|gmii_rx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

Virtex-4 or Virtex-5 devices with Delayed Data/Control

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-5 device. The
implementation requires 1.962 ns of setup—this is less than the 2 ns required, so there is
slack. The implementation requires –0.008 ns of hold—this is less than the 0 ns required, so
there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+------------------+--------+

http://www.xilinx.com

94 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_rx_dv | 1.955(R)| -0.017(R)| gmii_rx_clk_bufg | 0.000|
gmii_rx_er | 1.962(R)| -0.031(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<0>| 1.949(R)| -0.013(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<1>| 1.944(R)| -0.009(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<2>| 1.947(R)| -0.012(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<3>| 1.942(R)| -0.008(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<4>| 1.950(R)| -0.015(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<5>| 1.962(R)| -0.026(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<6>| 1.957(R)| -0.022(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<7>| 1.952(R)| -0.020(R)| gmii_rx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Clock

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. However, depending on how the setup/hold requirements have been met,
it may not be immediately obvious how the results relate to Figure 9-1. The following is an
example for the GMII report from a Virtex-4 device where the clock has been delayed to
meet the setup/hold requirements.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_rx_dv | -6.198(R)| 7.526(R)| gmii_rx_clk_bufg | 0.000|
gmii_rx_er | -6.225(R)| 7.554(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<0> | -6.149(R)| 7.484(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<1> | -6.152(R)| 7.486(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<2> | -6.206(R)| 7.532(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<3> | -6.207(R)| 7.533(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<4> | -6.134(R)| 7.476(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<5> | -6.134(R)| 7.476(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<6> | -6.170(R)| 7.506(R)| gmii_rx_clk_bufg | 0.000|
gmii_rxd<7> | -6.170(R)| 7.506(R)| gmii_rx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

The implementation requires -6.134 ns of setup. Figure 9-2 illustrates that this represents a
figure of 1.866 ns relative to the following rising edge of the clock (since the IDELAY has
acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 2 ns required, so there is slack.

The implementation requires 7.554 ns of hold. Figure 9-2 illustrates that this represents a
figure of -0.446 ns relative to the following rising edge of the clock (since the IDELAY has
acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 0 ns required so there is slack.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 95
UG144 August 8, 2007

Required Constraints
R

Constraints when Implementing an External RGMII
The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the descriptions below to
provide examples. These examples should be studied in conjunction with the HDL source
code for the example design and with the description “Implementing External GMII,” on
page 55.

RGMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design. Constraints are set to ensure that these are placed in IOBs. The DDR
register constraints are not present for a Virtex-4 or Virtex-5 device where DDR
components are instantiated rather than inferred.

RGMII Receiver Constraints: place DDR registers in IOB
INST "*rgmii_interface/rgmii_rxd_ddr*" IOB = true;
INST "*rgmii_interface/rgmii_rx_dv_ddr" IOB = true;
INST "*rgmii_interface/rgmii_rx_ctl_ddr" IOB = true;

Inband Status Registers: place registers in IOB
INST "*rgmii_interface/link_status" IOB = true;
INST "*rgmii_interface/clock_speed*" IOB = true;
INST "*rgmii_interface/duplex_status" IOB = true;

The RGMII v2.0 is a 1.5 volt signal-level interface. The 1.5 volt HSTL Class I SelectIO
standard is used for RGMII interface pins. Use the following constraints with the device IO
Banking rules. The IO slew rate is set to fast to ensure that the interface can meet setup and
hold times.

Figure 9-2: Timing Report Setup/Hold Illustration

tSETUP

tHOLD

GMII_RXD[7:0],
GMII_RX_DV
GMII_RX_ER

GMII_RX_CLK

8 ns

-6.134 ns

= 8 - 6.134
= 1.866 ns

8 ns

7.554 ns

= 7.554 - 8
= -0.446 ns

http://www.xilinx.com

96 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

INST "rgmii_txd<?>" IOSTANDARD = HSTL_I;
INST "rgmii_tx_ctl" IOSTANDARD = HSTL_I;
INST "rgmii_rxd<?>" IOSTANDARD = HSTL_I;
INST "rgmii_rx_ctl" IOSTANDARD = HSTL_I;

INST "rgmii_txc" IOSTANDARD = HSTL_I;
INST "rgmii_rxc" IOSTANDARD = HSTL_I;

INST "rgmii_txd<?>" SLEW = FAST;
INST "rgmii_tx_ctl" SLEW = FAST;
INST "rgmii_txc" SLEW = FAST;

In addition, the example design provides pad locking on the RGMII for several families.
This is provided as a guideline only; there are no specific I/O location constraints for this
core.

RGMII Input Setup/Hold Timing

Figure 9-3 and Table 9-2 illustrate the setup and hold time window for the input RGMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

Note the 2 ns data valid window which is presented across the RGMII input bus. This must
be correctly sampled on both clock edges by the FPGA devices.

For RGMII, the lower data bits, rgmii_rxd[3:0], should be sampled internally on the
rising edge of rgmii_rxc, and the upper data bits, rgmii_rxd[7:4], should be
sampled internally on the falling edge of rgmii_rxc.

Virtex-II, Virtex-II Pro, Spartan-3, Spartan-3E, and Spartan-3A Devices

The RGMII design uses a DCM on the receiver clock domain for all devices except Virtex-4
and Virtex-5. Phase-shifting is then applied to the DCM to align the resultant clock so that
it will correctly sample the 2 ns RGMII data valid window at the input flip-flops.

Figure 9-3: Input RGMII Timing

Table 9-2: Input RGMII Timing

Symbol Min Typical Units

tSETUP 1.0 2.0 ns

tHOLD 1.0 2.0 ns

tSETUP

tHOLD

tSETUP

tHOLD

RGMII_RXC

RGMII_RXD[3:0],
RGMII_RX_CTL

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 97
UG144 August 8, 2007

Required Constraints
R

The fixed phase-shift is applied to the DCM using the following UCF syntax.

INST *rgmii_interface/rgmii_rxc_dcm CLKOUT_PHASE_SHIFT = FIXED;
INST *rgmii_interface/rgmii_rxc_dcm PHASE_SHIFT = 40;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the datasheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase-shift. Appendix C,
“Calculating DCM Phase-Shifting” describes a more accurate method for fixing the phase-
shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

The RGMII design uses IDELAY components on the receiver clock, data and control
signals for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and
control signals or to delay the clock so that the data/control are correctly sampled by the
rgmii_rxc clock at the IOB IDDR registers—thus meeting RGMII setup and hold timing.

The choice of delaying data/control or clock is dependent upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice. Delaying
the clock is clock-period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different. See “Understanding Timing Reports for RGMII Setup/Hold timing.”

The following constraint shows an example of setting the delay value for one of these
IDELAY components. Data/Control bits can be adjusted individually to compensate for
any PCB routing skew if desired.

INST *rgmii_interface/delay_rgmii_rx_ctl IOBDELAY_TYPE = “FIXED”;
INST *rgmii_interface/delay_rgmii_rx_ctl IOBDELAY_VALUE = 40;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the datasheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-4 User Guide and code comments for more information.

Virtex-5 Devices

The RGMII design uses IODELAY components on both the receiver and transmitter clock
domains for Virtex-5 devices. A fixed tap delay is applied to the rgmii_txc output clock
to move the rising edge of this clock to the centre of the output data window. For the
receiver clock, data and control signals, a fixed tap delay can be applied to either delay the
data and control signals or delay the clock so that the data/control are correctly sampled
by the rgmii_rxc clock at the IOB IDDR registers, meeting RGMII setup and hold timing.

http://www.xilinx.com

98 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice. Delaying
the clock is clock-period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different. See “Understanding Timing Reports for RGMII Setup/Hold timing.”

The following constraint shows an example of setting the delay value for two of these
IODELAY components. Data/Control bits can be adjusted individually to compensate for
any PCB routing skew, if desired.

INST *rgmii_interface/delay_rgmii_tx_clk IDELAY_TYPE = “FIXED”;
INST *rgmii_interface/delay_rgmii_tx_clk ODELAY_VALUE = 25;
INST *rgmii_interface/delay_rgmii_tx_clk DELAY_SRC = “O”;

INST *rgmii_interface/delay_rgmii_rx_ctl IDELAY_TYPE = “FIXED”;
INST *rgmii_interface/delay_rgmii_rx_ctl IDELAY_VALUE = 20;
INST *rgmii_interface/delay_rgmii_rx_ctl DELAY_SRC = “I”;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the datasheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented-out in the
UCF. See the Virtex-5 User Guide and code comments for more information.

RGMII DDR Constraints

The following constraints are present for RGMII designs in all devices with the exception
of Virtex-4 and Virtex-5 devices. Due to the use of IDDR and ODDR primitives in the
Virtex-4 design, these extra clocking constraints are not required. The RGMII design uses
extra clock signals for falling-edge data. These clocks require further period constraints
and are constrained relative to their rising edge clock counterparts.

NET "not_gtx_clk_bufg" TNM_NET = "not_clk_tx";
TIMESPEC "TS_not_tx_clk" = PERIOD "not_clk_tx" "TS_tx_clk" PHASE + 4
nS;
NET "*rgmii_interface/not_rgmii_rx_clk_bufg" TNM_NET =
"not_rgmii_rx_clk_bufg";
TIMESPEC "TS_rnot_gmii_rx_clk_bufg" = PERIOD "not_rgmii_rx_clk_bufg"
"TS_rgmii_rx_clk_bufg" PHASE + 4 nS;

The RGMII design requires further clock crossing constraints to ensure timing is met when
crossing from rising to falling clock edges and vice versa. A stringent time constraint
ensures that timing is met with the worst-case timing allowed in the RGMII specification.

INST "*rgmii_interface/rgmii_rxd_reg_4" TNM="rgmii_falling";
INST "*rgmii_interface/rgmii_rxd_reg_5" TNM="rgmii_falling";
INST "*rgmii_interface/rgmii_rxd_reg_6" TNM="rgmii_falling";
INST "*rgmii_interface/rgmii_rxd_reg_7" TNM="rgmii_falling";
INST "*rgmii_interface/rgmii_rx_ctl_reg" TNM="rgmii_falling";
INST "*rgmii_interface/gmii_rxd_reg_4" TNM="rgmii_rising";

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 99
UG144 August 8, 2007

Required Constraints
R

INST "*rgmii_interface/gmii_rxd_reg_5" TNM="rgmii_rising";
INST "*rgmii_interface/gmii_rxd_reg_6" TNM="rgmii_rising";
INST "*rgmii_interface/gmii_rxd_reg_7" TNM="rgmii_rising";
INST "*rgmii_interface/gmii_rx_er_reg" TNM="rgmii_rising";
TIMESPEC "TS_rgmii_falling_to_rising" = FROM "rgmii_falling" TO
"rgmii_rising" 3200 ps;

Understanding Timing Reports for RGMII Setup/Hold timing

Non-Virtex-4 or Virtex-5 Devices

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-3.

Following is an example for the RGMII report from a Virtex-2 device. Each Input lists two
sets of values—one corresponding to the –ve edge of the clock and one to the +ve edge. The
first set listed corresponds to –ve edge which occurs at time 4 ns. The implementation
requires 0.648 ns of setup to the –ve edge and 0.661 ns to the +ve edge. This is less than the
1 ns required, so there is slack. The implementation requires 0.300 ns of hold to the –ve
edge and 0.316 ns to the +ve edge. This is less than the 1 ns required, so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+---------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+---------------------+--------+
rgmii_rx_ctl| -3.352(R)| 4.300(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.661(R)| 0.284(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<0>| -3.384(R)| 4.332(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.629(R)| 0.316(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<1>| -3.348(R)| 4.296(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.665(R)| 0.280(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<2>| -3.360(R)| 4.308(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.653(R)| 0.292(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<3>| -3.428(R)| 4.382(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.585(R)| 0.366(R)|rgmii_rx_clk_bufg | 0.938|
------------+------------+------------+---------------------+--------+

Virtex-4 or Virtex-5 devices with delayed Data/Control

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-3.

Following is an example for the RGMII report from a Virtex-5 device. Each Input lists two
sets of values—one corresponding to the –ve edge of the clock and one to the +ve edge. The
first set listed corresponds to +ve edge which occurs at time 0 ns. The implementation
requires 0.818 ns of setup to the +ve edge and 0.794 ns to the –ve edge. This is less than the
1 ns required, so there is slack. The implementation requires 0.946 ns of hold to the –ve
edge and 0.972 ns to the +ve edge. This is less than the 1 ns required, so there is slack.

http://www.xilinx.com

100 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
rgmii_rx_ctl| 0.810(R)| 0.933(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.214(F)| 4.959(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<0>| 0.811(R)| 0.940(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.213(F)| 4.966(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<1>| 0.801(R)| 0.946(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.223(F)| 4.972(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<2>| 0.818(R)| 0.929(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.206(F)| 4.955(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<3>| 0.809(R)| 0.936(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.215(F)| 4.962(F)| rgmii_rx_clk_bufg| 4.000|
------------+------------+------------+------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Clock

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. However, depending on how the setup/hold requirements have been
met, it may not be immediately obvious how the results relate to Figure 9-3. Following is
an example for the RGMII report from a Virtex-4 device where the clock has been delayed
to meet the setup/hold requirements.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
rgmii_rx_ctl| -7.178(R)| 8.880(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.178(F)| 12.880(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<0>| -7.192(R)| 8.893(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.192(F)| 12.893(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<1>| -7.182(R)| 8.884(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.182(F)| 12.884(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<2>| -7.180(R)| 8.882(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.180(F)| 12.882(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<3>| -7.179(R)| 8.881(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.179(F)| 12.881(F)| rgmii_rx_clk_bufg| 4.000|
------------+------------+------------+------------------+--------+

Each Input lists two sets of values—one corresponding to the +ve edge of the clock and one
to the –ve edge. The first set listed corresponds to +ve edge, which occurs at time 8 ns as we
have delayed the clock to use the following +ve edge.

The implementation requires –7.179 ns of setup to the +ve edge. Figure 9-4 illustrates that
this represents 0.821 ns relative to the following rising edge of the clock (since the IDELAY
has acted to delay the clock by an entire period when measured from the input flip-flop).

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 101
UG144 August 8, 2007

Required Constraints
R

This is less than the 1 ns required, so there is slack. Equally for the –ve edge, we have
–11.179 ns of setup—this edge is at time 12 ns and therefore this equates to a setup of
0.821 ns.

The implementation requires 8.893 ns of hold to the +ve edge. Figure 9-4 illustrates that
this represents 0.893 ns relative to the following rising edge of the clock (since the IDELAY
has acted to delay the clock by an entire period when measured from the input flip-flop).
This is less than the 1 ns required, so there is slack. Equally for the –ve edge, we have
12.893 ns of hold —this edge is at time 12 ns and therefore equates to a hold time of
0.893 ns.

Figure 9-4: Timing Report Setup/Hold Illustration

tSETUP

tHOLD

RGMII_RXD[3:0],
RGMII_RX_CTL

RGMII_RXC

8 ns

-6.134 ns

= 8 - 7.179
= 0.821 ns

8 ns

8.893 ns

= 8.893 - 8
= 0.893 ns

12 ns

-11.179 ns12 ns

12.893 ns tHOLD = 12.893 - 12
= 0.893 ns tSETUP = 12 - 11.179

= 0.821 ns

http://www.xilinx.com

102 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 9: Constraining the Core
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 103
UG144 August 8, 2007

R

Chapter 10

Clocking and Resetting

This chapter describes clock management considerations that are associated with
implementing the GEMAC core. It describes the clock management logic for all
implementations of the core and how clock management logic can be shared across
multiple instantiations of the core. The reset circuitry within the core is also described.

Clocking the Core

With Internal GMII
When the GMII-style interface of the core is used as an internal interface (for example, with
an internally connected PHY core), it is likely that gtx_clk and gmii_rx_clk will be
derived from the same clock source. See Chapter 11, “Interfacing to Other Cores” for an
example.

With External GMII
Figure 10-1 illustrates the clock management used with an external GMII interface. All
clocks illustrated have a frequency of 125 MHz. The clock gtx_clk must be provided to
the GEMAC core. This is a high-quality clock that satisfies the IEEE 802.3-2002
requirements. It is expected that this clock will be derived from an external oscillator and
connected into the device through an IBUFG, as illustrated in Figure 10-1.

When an external GMII, gmii_rx_clk will usually be derived from a different clock
source to gtx_clk. In this case, gmii_rx_clk is received through an IBUFG. This clock is
then usually routed onto a global clock network by connecting it to a BUFG. The resulting
global clock is used by all MAC receiver logic. The exception to this is the Spartan-3,
Spartan-3E, and Spartan-3A devices, which require a DCM on the gmii_rx_clk path to
meet GMII setup and hold requirements. See “Spartan-3, Spartan-3E and Spartan-3A
Devices.”

Figure 10-1: Clock Management Logic with External GMII

IBUFGBUFG

1-Gigabit Ethernet MAC

gmii_rx_clkgtx_clk

IBUFG BUFG

gmii_rx_clkgtx_clk

http://www.xilinx.com

104 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 10: Clocking and Resetting
R

With RGMII

Standard Clocking Scheme

Figure 10-2 illustrates the clock management used with an external RGMII interface. All
clocks illustrated have a frequency of 125 MHz. The gtx_clk clock must be provided to
the GEMAC core. This is a high-quality clock that satisfies IEEE 802.3-2002 requirements. It
is expected that this clock will be derived from an external oscillator and connected into the
device through an IBUFG as illustrated in Figure 10-2. This clock is used as the input clock
to a DCM from where phase-shifted clock signals are generated for use in the RGMII
transmitter logic. The zero phase-shifted clock is used as the input gtx_clk to the
GEMAC core.

The receiver clock, rgmii_rxc is usually derived from a different clock source to
gtx_clk. In this case, rgmii_rxc will be received through an IBUFG. This clock is routed
into a DCM where it is used to generate phase-shifted clock signals for use in the RGMII
receiver logic. A fixed phase-shift value is applied to the DCM to meet RGMII setup and
hold requirements. See Appendix C, “Calculating DCM Phase-Shifting.” The zero clock is
used as the input gmii_rx_clk to the GEMAC core.

Reducing Global Clock Buffers in Virtex-II Pro Devices

The clock schemes shown previously for RGMII are fairly expensive in global clock buffer
resources, due to their use in providing both the in-phase and out-of-phase clocks for the
DDR registers. Seven global clock buffers are used in the worst-case scenario (including a
global clock buffer for host_clk).

To halve the number of clock buffers used in each DDR register implementation, consult
Xilinx Application Note XAPP685, High-Speed Clock Architecture for DDR Designs Using
Local Inversion.

Multiple Cores

With External GMII
Figure 10-3 illustrates how to share clock resources across multiple instantiations of the
core when using the optional GMII. gtx_clk may be shared between multiple cores as
illustrated, resulting in a common transmitter clock domain across the device.

Figure 10-2: Clock Management with External RGMII

IBUFG

BUFG

gtx_clk rgmii_rxc

1-Gigabit Ethernet
MAC Core

gmii_rx_clkgtx_clk

IBUFG

BUFG

CLK_0

CLK_180

CLK_90

CLK_270

DCM

CLK_0

CLK_180

DCM

RGMII Tx Logic RGMII Rx Logic

http://www.xilinx.com/bvdocs/appnotes/xapp685.pdf
http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 105
UG144 August 8, 2007

Multiple Cores
R

A common receiver clock domain is usually not possible as each core will receive an
independent receiver clock from the PHY attached to the other end of the GMII. As
illustrated in Figure 10-3, this results in a separate receiver clock domain for each core.

Note: Although not illustrated, if the optional Management Interface is used, host_clk can also be
shared between cores.

With RGMII
Figure 10-4 illustrates sharing clock resources across multiple instantiations of the core
using the optional RGMII. gtx_clk may be shared between multiple cores as illustrated,
resulting in a common transmitter clock domain across the device.

As a general rule, a common receiver clock domain is not possible. Each core receives an
independent receiver clock from the PHY attached to the other end of the RGMII—as
illustrated in Figure 10-4. This results in a separate receiver clock domain for each core.

Note: Although not illustrated, if the optional Management Interface is used, host_clk can also be
shared between cores.

Figure 10-3: Clock Management Logic with External GMII (Multiple Cores)

IBUFGBUFG

gtx_clk gmii_rx_clk1

1-Gigabit Ethernet MAC

gmii_rx_clkgtx_clk

IBUFG BUFG

IBUFGBUFG

gmii_rx_clk2

1-Gigabit Ethernet MAC

gmii_rx_clkgtx_clk

http://www.xilinx.com

106 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 10: Clocking and Resetting
R

Reset Conditions
Internally, the core is divided up into clock/reset domains that group together elements
with common clock and reset signals. The reset circuitry for one of these domains is
illustrated in Figure 10-5. This circuit provides controllable skews on the reset nets within
the design.

More information on the operation and rationale behind this circuit can be found in Ken
Chapman’s Xilinx TechXclusive, “Get Smart About Reset” which can be found at:

www.xilinx.com/support/techxclusives/global-techX19.htm

Figure 10-4: Clock Management Logic with External RGMII (Multiple Cores)

IBUFG

BUFG

gtx_clk

rgmii_rxc1

gmii_rx_clk

gmii_rx_clk

gtx_clk

gtx_clk

IBUFG

BUFG

CLK_0

CLK_180

CLK_90

CLK_270

DCM

CLK_0

CLK_180

DCM

RGMII Tx Logic RGMII Rx Logic

1-Gigabit Ethernet MAC Core

1-Gigabit Ethernet MAC Core

RGMII Tx Logic

IBUFG

BUFG

rgmii_rxc2

CLK_0

CLK_180

DCM

RGMII Rx Logic

Figure 10-5: Reset Circuit for a Single Clock/reset Domain

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

PRE PRE PRE

'0'

reset
Configuration reset

Clock

Core Registers

http://www.xilinx.com/support/techxclusives/global-techX19.htm
http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 107
UG144 August 8, 2007

R

Chapter 11

Interfacing to Other Cores

Ethernet 1000Base-X PCS/PMA or SGMII Core
The GEMAC core can be integrated in a single device with the Ethernet 1000BASE-X
PCS/PMA or SGMII core to extend core functionality to provide the following:

• 1000BASE-X Physical Coding Sublayer (PCS) logic designed to the IEEE 802.3
specification with either:

• 1000BASE-X Physical Medium Attachment (PMA) using an integrated Virtex-II
Pro, Virtex-4 or Virtex-5 RocketIO™ transceiver.

• 1000BASE-X parallel Ten-Bit-Interface (TBI) for connection to external SERDES.

• Alternatively, the Ethernet 1000BASE-X PCS/PMA or SGMII core can function as a
GMII to Serial-GMII (SGMII) bridge, meaning that this can be used to provide the
GEMAC core with an SGMII for serial connection to appropriate PHYs.

A description of the latest available IP Update containing the Ethernet 1000BASE-X
PCS/PMA or SGMII core and instructions for obtaining the IP Update can be found on the
Ethernet 1000BASE-X PCS/PMA or SGMII product page at:
www.xilinx.com/systemio/1gbsx_phy/index.htm.

A full description of the Ethernet 1000BASE-X PCS/PMA or SGMII core is outside the
scope of this document.

Integration to Provide 1000BASE-X PCS with TBI
Figure 11-1 illustrates the connections and clock management logic required to interface
the GEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in
1000BASE-X mode with the parallel TBI). It depicts the following:

• Direct internal connections are made between the GMII interfaces of the two cores.

• If the GEMAC has been built with the optional management logic, the MDIO port can
be connected up to that of the Ethernet 1000BASE-X PCS/PMA or SGMII core to
access its embedded configuration and status registers. See “Using the Optional
Management Interface.”

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA
or SGMII core, the entire GMII is synchronous to a single clock domain. For this
reason, gtx_clk is used as the 125 MHz reference clock for both cores and the
transmitter and receiver logic of the GEMAC core now operate in the same clock
domain. This allows clock crossing constraints between the gtx_clk and
gmii_rx_clk clock domains to be removed from the GEMAC user constraints file
(UCF). See “Timespecs for Critical Logic within the Core.”

http://www.xilinx.com
http://www.xilinx.com/systemio/1gbsx_phy/index.htm

108 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

Integration to Provide 1000BASE-X PCS and PMA using RocketIO

Virtex-II Pro Devices

Figure 11-2 illustrates the connections and clock management logic required to interface
the GEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in
1000BASE-X mode with PMA using the Virtex-II Pro RocketIO transceiver).

Figure 11-1: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS with TBI

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

gtx_clk

TBI

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_bufg (125 MHz)

BUFG

component_name_block
(Block Level from example design)

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 109
UG144 August 8, 2007

Ethernet 1000Base-X PCS/PMA or SGMII Core
R

Figure 11-2: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA
using a Virtex-II Pro RocketIO Transceiver

1-Gigabit Ethernet
MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-II Pro
RocketIO

(GT_ETHERNET_1)

brefclk

txusrclk

txusrclk2

rxusrclk

rxusrclk2

no
connection

userclk

userclk2

RocketIO I/F

DCM

CLKIN CLK0

FB

BUFG

CLK2X180
BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

component_name_block
(Block Level from example design)

http://www.xilinx.com

110 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

Figure 11-2 illustrates the following:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If the GEMAC is built with the optional management logic, the MDIO port can be
connected to that of the Ethernet 1000BASE-X PCS/PMA or SGMII core to access its
embedded configuration and status registers. See “Using the Optional Management
Interface.”

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA
or SGMII core, the entire GMII is synchronous to a single clock domain. For this
reason, userclk2 is used as the 125 MHz reference clock for both cores and the
transmitter and receiver logic of the GEMAC core now operate in the same clock
domain. This allows clock crossing constraints between the gtx_clk and
gmii_rx_clk clock domains to be removed from the GEMAC UCF. See “Timespecs
for Critical Logic within the Core.”

Virtex-4 Devices

Figure 11-3 illustrates the connections and clock management logic required to interface
the GEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in
1000BASE-X mode with PMA using the Virtex-4 RocketIO transceiver).

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 111
UG144 August 8, 2007

Ethernet 1000Base-X PCS/PMA or SGMII Core
R

Figure 11-3 illustrates the following:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If the GEMAC has been generated with the optional Management Interface, the
MDIO port can be connected up to that of the Ethernet 1000BASE-X PCS/PMA or
SGMII core to access its embedded configuration and status registers. See “Using the
Optional Management Interface.”

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA
or SGMII core, the entire GMII is synchronous to a single clock domain. For this
reason, userclk2 is used as the 125 MHz reference clock for both cores and the
transmitter and receiver logic of the GEMAC core now operate in the same clock
domain. This allows clock crossing constraints between the gtx_clk and

Figure 11-3: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA
using a Virtex-4 RocketIO Transceiver

1-Gigabit Ethernet

MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-4

GT11

RocketIO

no

connection

userclk

userclk2

RocketIO I/F

IPAD

IPAD

brefclkn

(125 MHz)

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

brefclkp

(125 MHz)

REFCLK1

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1

(125MHz)

‘0’

‘0’

BUFG

TXOUTCLK1

component_name_block
(Block Level from example design)

http://www.xilinx.com

112 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

gmii_rx_clk clock domains to be removed from the GEMAC UCF. See “Timespecs
for Critical Logic within the Core.”

Virtex-5 Devices

Figure 11-4 illustrates the connections and clock management logic required to interface
the GEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in
1000BASE-X mode with PMA using the Virtex-5 RocketIO transceiver).

Figure 11-4 illustrates the following:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If the GEMAC has been generated with the optional Management Interface, the
MDIO port can be connected up to that of the Ethernet 1000BASE-X PCS/PMA or
SGMII core to access its embedded configuration and status registers. See “Using the
Optional Management Interface.”

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA
or SGMII core, the entire GMII is synchronous to a single clock domain. For this

Figure 11-4: 1-Gigabit Ethernet MAC Extended to Include 1000BASE-X PCS and PMA
using a Virtex-5 RocketIO Transceiver

1-Gigabit Ethernet

MAC

 LogiCORE

gmii_rx_clk

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

gtx_clk

mdc

mdio_in

mdio_out

mdio_tri

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-5

GTP

RocketIO

no

connection

userclk

userclk2

RocketIO I/F

CLKIN

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

BUFG

TXOUTCLK0

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 113
UG144 August 8, 2007

Ethernet Statistics Core
R

reason, userclk2 is used as the 125 MHz reference clock for both cores and the
transmitter and receiver logic of the GEMAC core now operate in the same clock
domain. This allows clock crossing constraints between the gtx_clk and
gmii_rx_clk clock domains to be removed from the GEMAC UCF. See “Timespecs
for Critical Logic within the Core.”

Integration to Provide SGMII Functionality
The connections between the two cores to provide SGMII functionality are identical to the
connections required for 1000BASE-X PCS and PMA using the RocketIO transceiver. The
only difference is that the Ethernet 1000BASE-X PCS/PMA or SGMII core is generated
with the SGMII option. See “Integration to Provide 1000BASE-X PCS and PMA using
RocketIO” for a description of SGMII integration.

Ethernet Statistics Core
The Ethernet Statistics core can be integrated in a single device with the 1-Gigabit Ethernet
MAC core. Using the Ethernet Statistics core allows you to:

• Count statistics based on the rx_statistics_vector and
tx_statistics_vector outputs from the MAC.

• Select 32-bit or 64-bit counters.

• Specify which statistics are counted and have precise control of the conditions under
which the counters are incremented.

• Read statistics optionally through the host interface of the GEMAC or independently
of the MAC.

A description of the latest available IP Update containing the Ethernet Statistics core and
instructions on obtaining the IP update can be found on the Ethernet Statistics product
page at:

www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=ETHERNET_STATS

Connecting the Ethernet Statistics core to Provide Statistics Gathering
The Ethernet Statistics core interfaces directly to the 1-Gigabit Ethernet MAC core. The
Ethernet Statistics core takes in the tx_statistics_vector and
rx_statistics_vector as inputs. Statistics values gathered can then be read out
through the Statistics core Management Interface, that can be shared with the MAC
Management Interface.

Figure 11-5 illustrates connecting the Ethernet Statistics core to the MAC.

http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=ETHERNET_STATS
http://www.xilinx.com

114 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

The management interfaces of the two cores can be shared by avoiding bus conflict, as
follows:

• Selecting a different address range for the statistics to that of the MAC configuration
registers. This is achieved by setting host_addr[9] to logic 0 when reading from the
statistics and logic 1 when writing and reading to the MAC configuration registers.

• Using the host_miim_sel signal to differentiate between a statistical counter read
and a MAC initiated MDIO transaction. This is achieved by setting host_miim_sel

Figure 11-5: Interfacing the Ethernet Statistics to the 1-Gigabit Ethernet MAC

Ethernet Statistics
Example Design

LogiCORE 1-Gigabit
Ethernet MAC

host_clk

host_addr[8:0]

host_addr[9]

host_req

host_miim_sel

host_wr_data[31:0]

host_rd_data[31:0]

I0

I1
S

host_clk

host_addr[8:0]

host_addr[9]

host_req

host_miim_sel

host_wr_data[31:0]

host_rd_data[31:0]

host_clk

host_addr[8:0]

host_addr[9]

host_req

host_miim_sel

host_rd_data[31:0]

tx_clk

tx_statistics_vector[21:0]

tx_statistics_valid

rx_clk

rx_statistics_vector[26:0]

rx_statistics_valid

gtx_clk

tx_statistics_vector[21:0]

tx_statistics_valid

gmii_rx_clk

rx_statistics_vector[26:0]

rx_statistics_valid

host_rd_data_mac[31:0]

host_rd_data_stats[31:0]

OR

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 115
UG144 August 8, 2007

Ethernet Statistics Core
R

to logic 0 for a statistical counter read and logic 1 for a MAC initiated MDIO
transaction.

Table 11-1 describes the type of host transactions that occur if the host interface is shared
(as illustrated in Figure 11-5).

Table 11-1: Management Interface Transaction Types

Transaction host_miim_sel host_addr[9]

Configuration 0 1

MIIM access 1 X

Statistics Read 0 0

http://www.xilinx.com

116 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 117
UG144 August 8, 2007

R

Chapter 12

Implementing Your Design

This chapter describes how to simulate and implement your design containing the
GEMAC core.

Pre-implementation Simulation
A unit delay structural model of the GEMAC core netlist is provided as a CORE Generator
output file. This can be used for simulation of the block in the design phase of the project.

Using the Simulation Model
For information about setting up your simulator to use the pre-implemented model, see
the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

The unit delay structural model of the GEMAC core can be found in the CORE Generator
project directory. Details of the CORE Generator outputs can be found in the 1-Gigabit
Ethernet MAC Getting Started Guide.

VHDL

• <component_name>.vhd

Verilog

• <component_name>.v

Synthesis

XST—VHDL
A component and instantiation template for the core named <component_name>.vho is
provided in the CORE Generator project directory. Use this to help instance the GEMAC
core into your VHDL source.

After your entire design is complete, create:

• An XST project file top_level_module_name.prj listing all the user source code
files.

• An XST script file top_level_module_name.scr containing your required
synthesis options.

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

http://www.xilinx.com

118 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 12: Implementing Your Design
R

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

XST—Verilog
A module declaration for the GEMAC core is provided in the CORE Generator project
directory:

<component_name>/example_design/<component_name>_mod.v

Use this module to help instance the GEMAC core into your Verilog source.

After your entire design is complete, create:

• An XST project file top_level_module_name.prj listing all the user source code
files. Make sure you include

%XILINX%/verilog/src/iSE/unisim_comp.v

and

<component_name>/example_design/component_name_mod.v

as the first two files in the project list.

• An XST script file top_level_module_name.scr containing your required
synthesis options.

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

Implementation

Generating the Xilinx Netlist
To generate the Xilinx netlist, the ngdbuild tools are used to translate and merge the
individual design netlists into a single design database, the NGD file. Also merged at this
stage is the UCF for the design.

An example of the ngdbuild command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \

-uc top_level_module_name.ucf top_level_module_name

Mapping the Design
To map the logic gates of the user design netlist into the CLBs and IOBs of the FPGA, run
the map command. The map command writes out a physical design to an NCD file. An
example of the map command is:

$ map -o top_level_module_name_map.ncd top_level_module_name.ngd \

top_level_module_name.pcf

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 119
UG144 August 8, 2007

Post-Implementation Simulation
R

Placing-and-Routing the Design
Execute the par command to place-and-route your design logic components (mapped
physical logic cells) contained within an NCD file in accordance with the layout and timing
requirements specified within the PCF file. The par command outputs the placed and
routed physical design to an NCD file.

An example of the par command is:

$ par top_level_module_name_map.ncd top_level_module_name.ncd \

top_level_module_name.pcf

Static Timing Analysis
Execute the trace command to evaluate timing closure on a design and create a Timing
Report file (TWR) derived from static timing analysis of the Physical Design file (NCD).
The analysis is typically based on constraints included in the optional PCF file.

An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \

top_level_module_name.pcf

Generating a Bitstream
To create the configuration bitstream (BIT) file based on the contents of a physical
implementation file (NCD), the bitgen command must be executed. The BIT file defines
the behavior of the programmed FPGA. An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation
The purpose of post-implementation simulation is to verify that the design as
implemented in the FPGA works as expected.

Generating a Simulation Model
Run the netgen command to generate a chip-level simulation netlist for your design.

VHDL

$ netgen -sim -ofmt vhdl -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.v

http://www.xilinx.com

120 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Chapter 12: Implementing Your Design
R

Using the Model
For information about setting up your simulator to use the pre-implemented model, see
the Xilinx Synthesis and Verification Design Guide included in your Xilinx software
installation.

Other Implementation Information
For more information about using the Xilinx implementation tool flow, including
command line switches and options, see the Xilinx ISE software manuals.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 121
UG144 August 8, 2007

R

Appendix A

Using the Client-Side FIFO

The example design provided with the GEMAC core contains a FIFO used on the client-
side of the core. The source code for the FIFO is provided, and may be used and adjusted
for user applications.

The 10 Mbps/100 Mbps/1 Gbps Ethernet FIFO is designed for use with the GEMAC and
Tri-Mode Ethernet MAC (TEMAC) cores. The FIFO directly interfaces to the MAC client
interface providing a buffer between the MAC and the user’s logic. The FIFO implements
a LocalLink user interface, (see “Overview of LocalLink Interface,” on page 123) allowing
a direct connection to other LocalLink modules or the user’s logic.

The 10 Mbps/100 Mbps/1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into a
typical implementation.

Figure A-1: Typical 10 Mbps/100 Mbps/ 1 Gbps Ethernet FIFO Implementation

Twisted
Copper

Pair

GMII/RGMII

1-Gigabit Ethernet MAC
Core

Xilinx FPGA

10 Mbps,
100 Mbps,

1 Gbps
Ethernet FIFO

Client
I/F

GMII

Switch or
Router

IOBs
1000BASE-T

PHYTx
FIFO

Rx
FIFO

LocalLink Interface Client Interface

http://www.xilinx.com

122 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix A: Using the Client-Side FIFO
R

Interfaces

Transmit FIFO
Table A-1 describes the transmit FIFO client interface. For more information on the MAC
client interface, see “Transmitting Outbound Frames,” on page 43.

Table A-2 describes the transmit FIFO LocalLink interface. For more information on the
LocalLink interface see “Overview of LocalLink Interface,” on page 123.

Table A-1: Transmit FIFO Client Interface

Signal Direction
Clock

Domain
Description

tx_clk Input N/A Transmit clock used by MAC.

tx_reset Input tx_clk Synchronous reset.

tx_enable Input tx_clk Clock enable for tx_clk. Tie to logic 1
when using GEMAC.

tx_data[7:0] Output tx_clk Data presented t o MAC for
transmission.

tx_data_valid Output tx_clk Valid signal for data.

tx_ack Input tx_clk Ack signal from MAC.

tx_underrun Output tx_clk Underrun signal to MAC.

tx_collision Input tx_clk Collision indication from MAC. Tie
to logic 0 when using GEMAC.

tx_retransmit Input tx_clk Retransmit request from MAC. Tie to
logic 0 when using GEMAC.

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

tx_ll_clock Input N/A Write clock for LocalLink interface

tx_ll_reset Input tx_ll_clock Synchronous reset

tx_ll_data_in[7:0] Input tx_ll_clock Write data to be sent to transmitter

tx_ll_sof_in_n Input tx_ll_clock Start of frame indicator

tx_ll_eof_in_n Input tx_ll_clock End of frame indicator

tx_ll_src_rdy_in_n Input tx_ll_clock Source ready indicator

tx_ll_dst_rdy_out_n Output tx_ll_clock Destination ready indicator

tx_fifo_status[3:0] Output tx_ll_clock FIFO memory status

tx_overflow Output tx_ll_clock Overflow signal indicates when a
frame has been dropped in the FIFO

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 123
UG144 August 8, 2007

Overview of LocalLink Interface
R

Receive FIFO
Table A-3 describes the receive FIFO client interface. For more information on the MAC
client interface, see “Receiving Inbound Frames,” on page 37.

Table A-4 describes the receive FIFO LocalLink interface. For more information on the
LocalLink interface, see “Overview of LocalLink Interface,” on page 123.

Overview of LocalLink Interface

Data Flow
Data is transferred on the LocalLink interface from source to destination, with the flow
being governed by the four active low control signals sof_n, eof_n, src_rdy_n, and

Table A-3: Receive FIFO Client Interface

Signal Direction
Clock

Domain
Description

rx_clk Input N/A Receive clock used by MAC

rx_reset Input rx_clk Synchronous reset

rx_enable Input rx_clk Clock enable for rx_clk, tie to logic 1
when using GEMAC

rx_data[7:0] Input rx_clk Data received from MAC

rx_data_valid Input rx_clk Valid signal for data

rx_good_frame Input rx_clk Indicates if frame is valid and should
be accepted by client

rx_bad_frame Input rx_clk Indicates if frame is invalid and
should be dropped by the FIFO

rx_overflow Output rx_clk Overflow signal indicates when a
frame has been dropped in the FIFO

Table A-4: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

rx_ll_clock Input N/A Read clock for LocalLink interface

rx_ll_reset Input rx_ll_clock Synchronous reset

rx_ll_data_out[7:0] Output rx_ll_clock Data read from FIFO

rx_ll_sof_out_n Output rx_ll_clock Start of frame indicator

rx_ll_eof_out_n Output rx_ll_clock End of frame indicator

rx_ll_src_rdy_out_n Output rx_ll_clock Source ready indicator

rx_ll_dst_rdy_in_n Input rx_ll_clock Destination ready indicator

rx_fifo_status[3:0] Output rx_ll_clock FIFO memory status

http://www.xilinx.com

124 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix A: Using the Client-Side FIFO
R

dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n
signals. For more information on the LocalLink interface see to Xilinx Application Note
XAPP691, “Parameterizable LocalLink FIFO” available at
direct.xilinx.com/bvdocs/appnotes/xapp691.pdf.

Figure A-2 shows the transfer of an 8-byte frame.

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

Functional Operation

Clock Requirements
The FIFO is designed to work with rx_clk and tx_clk running at MAC clock speeds up
to 125 MHz. The rx_ll_clock should be no slower than the rx_clk. The tx_ll_clock
should be no slower than the clock on the transmitter client interface divided by 2. For this
reason, it is suggested that the rx_ll_clock and tx_ll_clock are always 125 MHz or
faster.

Receive FIFO
The receive FIFO is built around two Dual Port Block RAMs giving a memory capacity of
4096 bytes.

Figure A-2: Frame Transfer across LocalLink Interface

Figure A-3: Frame Transfer with Flow Control

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4

http://direct.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 125
UG144 August 8, 2007

Functional Operation
R

The receive FIFO takes data from the client interface of the GEMAC core and converts it
into LocalLink format. See “Receiving Inbound Frames,” on page 37 for a description of
the GEMAC receive client interface. If the frame is marked as good by the GEMAC, that
frame is presented on the LocalLink interface for reading by the user. If the frame is
marked as bad, it is dropped by the FIFO.

If the receive FIFO memory overflows, the frame currently being received is dropped,
regardless of whether it is a good or bad frame,. The signal rx_overflow is then asserted.
Situations in which the memory may overflow are:

• The FIFO may overflow if the user is reading data from the FIFO at a slower data rate
than data is being written in from the MAC receiver.

• The FIFO size of 4096 bytes limits the size of the frames that it can store without error.
If a frame is larger than 4000 bytes, the FIFO may overflow and data will be lost. For
this reason, it is recommended that the FIFO not be used with the GEMAC in jumbo
frame mode for frames larger than 4000 bytes.

Transmit FIFO
The transmit FIFO is built around two Dual Port block RAMs, giving a total memory
capacity of 4096 byes of frame data.

The transmit FIFO accepts frames in LocalLink format and stores them in block RAM for
transmission via the GEMAC. When a full frame has been written into the transmit FIFO,
the FIFO will present data to the MAC transmitter. On receiving the tx_ack signal from
the MAC, the rest of the frame is transmitted to the MAC.

VHDL

The generic FULL_DUPLEX_ONLY is provided to allow the removal of logic and
performance constraints necessary for half-duplex operation when using with the Xilinx
Tri-Mode Ethernet MAC core. This generic can always be set to true when the FIFO is used
with the GEMAC.

Verilog

The compiler directive FULL_DUPLEX_ONLY is defined to allow for removal of logic and
performance constraints that are necessary only in half-duplex operation, that is, when
using with the Tri-Mode Ethernet MAC core. This directive can always be defined when
the FIFO is used with the GEMAC.

The FIFO has two signal inputs specific to half-duplex operation, tx_collision and
tx_retransmit. These signals are provided to make the FIFO compatible with both the
1-Gigabit Ethernet MAC and Tri-Mode Ethernet MAC cores, and should be tied to logic 0
when using the FIFO with the GEMAC core.

If the FIFO memory fills up, the dst_rdy_out_n signal is used to halt the LocalLink
interface writing in data until space becomes available in the FIFO. If the FIFO memory
fills up but no frames are available for transmission (for example, if a frame larger than
4000 bytes is written into the FIFO), the FIFO may assert the tx_overflow signal and
continue to accept the rest of the frame from the user. The overflow frame will be dropped
by the FIFO. This ensures that the LocalLink interface does not lock up. For this reason, it
is recommended that the FIFO not be used with the GEMAC in jumbo frame mode for
frames larger than 4000 bytes.

http://www.xilinx.com

126 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix A: Using the Client-Side FIFO
R

Expanding Maximum Frame Size
The transmit FIFO size is optimized to allow line rate transmission of maximum size
Ethernet frames at 1518 bytes in half-duplex operation.

When using the FIFO in full-duplex operation, the full block RAM capacity can be utilized
at all times. As a whole frame must be stored in the FIFO block RAM before being
presented to the MAC transmitter, the maximum size frame that can be handled is
determined by the memory capacity of the FIFO (in this case 4000 bytes).

Both transmit and receive FIFO sizes can be expanded by the user to handle larger frame
sizes. This can be done by instantiating further block RAMs into the FIFO design,
expanding the block RAM address signals, and adding the necessary control signals. The
HDL source files provide guidance in the comments on how to achieve this.

User Interface Data Width Conversion
Conversion of the user interface 8 bit data path to a 16, 32, 64 or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO, Xilinx Application Note XAPP691, Parameterizable LocalLink FIFO found at
direct.xilinx.com/bvdocs/appnotes/xapp691.pdf.

http://direct.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 127
UG144 August 8, 2007

R

Appendix B

Core Verification, Compliance, and
Interoperability

The GEMAC core has been verified with extensive simulation and hardware testing.

Verification by Simulation
A highly parameterizable transaction-based test bench (not part of the core deliverables)
was used to test the core. Tests include:

• Register Access

• MDIO Access

• Frame Transmission and error handling

• Frame Reception and error handling

• Address Filtering

Hardware Verification
The GEMAC core has been tested in a variety of hardware test platforms at Xilinx to
include a variety of parameterizations, including the following.

The core has been tested with the Ethernet 1000BASE-X PCS/PMA or SGMII core from
Xilinx. This follows the architecture shown in Figure 11-2, page 109. A test platform was
built around these cores, including a back-end FIFO capable of performing a simple ping
function, and a test pattern generator. Software running on the embedded PowerPC™ was
used to provide access to all configuration, status and statistical counter registers. Version
3.0 of this core was taken to the University of New Hampshire Interoperability Lab (UNH
IOL) where conformance and interoperability testing was performed.

The core has been tested with an external 1000BASE-T PHY device. The MAC was
connected to the external PHY device using GMII, RGMII, and SGMII (in conjunction with
the Ethernet 1000BASE-X PCS/PMA or SGMII core).

The core has been tested with the Ethernet Statistics core from Xilinx, following the
architecture show in Figure 11-5, page 114.

http://www.xilinx.com

128 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix B: Core Verification, Compliance, and Interoperability
R

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 129
UG144 August 8, 2007

R

Appendix C

Calculating DCM Phase-Shifting

DCM Phase-Shifting
A DCM is used in the receiver clock path to meet the input setup and hold requirements
when using the core with an RGMII (see “Implementing External RGMII,” on page 60) and
with an external GMII implementation in Spartan-3, Spartan-3E, and Spartan-3A devices
(see “Spartan-3, Spartan-3E and Spartan-3A Devices,” on page 58.)

In these cases, a fixed phase-shift offset is applied to the receiver clock DCM to skew the
clock. This performs static alignment by using the receiver clock DCM to shift the internal
version of the receiver clock such that its edges are centered on the data eye at the IOB DDR
flip-flops. The ability to shift the internal clock in small increments is critical for sampling
high-speed source synchronous signals such as RGMII. For statically aligned systems, the
DCM output clock phase offset (as set by the phase shift value) is a critical part of the
system, as is the requirement that the PCB is designed with precise delay and impedance-
matching for all the GMII/RGMII receiver data bus and control signals.

You must determine the best DCM setting (phase-shift) to ensure that the target system has
the maximum system margin to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best DCM phase-shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time).

System margin is defined as the following:

System Margin (ps) = UI(ps) * (working phase-shift range/128)

Finding the Ideal Phase-Shift
Xilinx cannot recommend a singular phase-shift value that is effective across all hardware
platforms, and does not recommend attempting to determine the phase-shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock-to-data relationship at the sample point (in the IOB) and are difficult to
characterize.

Xilinx recommends extensive investigation of the phase-shift setting during hardware
integration and debugging. The phase-shift settings provided in the example design UCF
are placeholders, and work successfully in back-annotated simulation of the example
design.

Perform a complete sweep of phase-shift settings during your initial system test. Use only
positive (0 to 255) phase-shift settings, and use a test range that covers a range of no less
than 128, corresponding to a total 180 degrees of clock offset. This does not imply that 128
phase-shift values must be tested; increments of 4 (52, 56, 60, etc.) correspond to roughly

http://www.xilinx.com

130 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix C: Calculating DCM Phase-Shifting
R

one DCM tap, and consequently provide an appropriate step size. Additionally, it is not
necessary to characterize areas outside the working phase-shift range.

At the edge of the operating phase-shift range, system behavior changes dramatically. In
eight phase-shift settings or less, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase-shift range. Once the range is determined, choose the
average of the high and low working phase-shift values as the default. During the
production test, Xilinx recommends that you re-examine the working range at corner case
operating conditions to determine whether any final adjustments to the final phase-shift
setting are needed.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in phase-shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

1-Gigabit Ethernet MAC v8.3 www.xilinx.com 131
UG144 August 8, 2007

R

Appendix D

Core Latency

Transmit Path Latency
As measured from a data octet accepted on tx_data[7:0] of the transmitter client-side
interface, until that data octet appears on gmii_txd[7:0] of the physical side GMII style
interface, the latency through the core in the transmit direction is 9 clock periods of
gtx_clk.

Receive Path Latency
As measured from a data octet accepted on gmii_rxd[7:0] of the physical side GMII
style interface, until that data octet appears on rx_data[7:0] of the receiver client-side
interface, the latency through the core in the receive direction is 9 clock periods of
gmii_rx_clk.

http://www.xilinx.com

132 www.xilinx.com 1-Gigabit Ethernet MAC v8.3
UG144 August 8, 2007

Appendix D: Core Latency
R

http://www.xilinx.com

	LogiCORE™ 1-Gigabit Ethernet MAC v8.3
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Additional Core Resources
	Related Xilinx Ethernet Products and Services
	Specifications
	Technical Support
	Feedback
	GEMAC Core
	Document

	Core Architecture
	System Overview
	Core Components

	Core Interfaces
	GMAC Core with Optional Management Interface
	GMAC Core Without Management Interface and With Address Filter
	GEMAC Core Without Management Interface and Without Address Filter
	Client Side Interface
	Physical Side Interface

	Generating the Core
	Graphical User Interface
	Component Name
	Management Interface
	Address Filter
	Number of Address Table Entries
	Physical Interface

	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	General Design Guidelines
	Design Steps
	Know the Degree of Difficulty
	Keep it Registered
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Using the Client Side Data Path
	Receiving Inbound Frames
	Normal Frame Reception
	rx_good_frame, rx_bad_frame timing
	Frame Reception with Errors
	Client-Supplied FCS Passing
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Length/Type Field Error Checks
	Address Filter
	Receiver Statistics Vector

	Transmitting Outbound Frames
	Normal Frame Transmission
	Padding
	Client-Supplied FCS Passing
	Client Underrun
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Inter-Frame Gap Adjustment
	Transmitter Statistics Vector

	Using Flow Control
	Overview of Flow Control
	Flow Control Requirement
	Flow Control Basics
	Pause Control Frames

	Flow Control Operation of the GEMAC
	Transmitting a PAUSE Control Frame
	Receiving a Pause Control Frame

	Flow Control Implementation Example

	Using the Physical Side Interface
	Implementing External GMII
	GMII Transmitter Logic
	GMII Receiver Logic

	Implementing External RGMII
	RGMII Transmitter Logic
	RGMII Receiver Logic
	RGMII Inband Status Decoding Logic

	Using the MDIO interface
	Connecting the MDIO to an Internally Integrated PHY
	Connecting the MDIO to an External PHY

	Configuration and Status
	Using the Optional Management Interface
	Host Clock Frequency
	Configuration Registers
	MDIO Interface

	Access without the Management Interface

	Constraining the Core
	Required Constraints
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Placement Constraints
	Timing Constraints
	Constraints when Implementing an External GMII
	Understanding Timing Reports for GMII Setup/Hold Timing
	Constraints when Implementing an External RGMII
	Understanding Timing Reports for RGMII Setup/Hold timing

	Clocking and Resetting
	Clocking the Core
	With Internal GMII
	With External GMII
	With RGMII

	Multiple Cores
	With External GMII
	With RGMII

	Reset Conditions

	Interfacing to Other Cores
	Ethernet 1000Base-X PCS/PMA or SGMII Core
	Integration to Provide 1000BASE-X PCS with TBI
	Integration to Provide 1000BASE-X PCS and PMA using RocketIO
	Integration to Provide SGMII Functionality

	Ethernet Statistics Core
	Connecting the Ethernet Statistics core to Provide Statistics Gathering

	Implementing Your Design
	Pre-implementation Simulation
	Using the Simulation Model

	Synthesis
	XST-VHDL
	XST-Verilog

	Implementation
	Generating the Xilinx Netlist
	Mapping the Design
	Placing-and-Routing the Design
	Static Timing Analysis
	Generating a Bitstream

	Post-Implementation Simulation
	Generating a Simulation Model
	Using the Model

	Other Implementation Information

	Using the Client-Side FIFO
	Interfaces
	Transmit FIFO
	Receive FIFO

	Overview of LocalLink Interface
	Data Flow

	Functional Operation
	Clock Requirements
	Receive FIFO
	Transmit FIFO
	Expanding Maximum Frame Size
	User Interface Data Width Conversion

	Core Verification, Compliance, and Interoperability
	Verification by Simulation
	Hardware Verification

	Calculating DCM Phase-Shifting
	DCM Phase-Shifting
	Finding the Ideal Phase-Shift

	Core Latency
	Transmit Path Latency
	Receive Path Latency

