
R

Tri-Mode

LogiCORE™
Tri-Mode Ethernet
MAC v3.4

User Guide
UG138 August 8, 2007

www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-
PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2004-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Tri-Mode Ethernet MAC v3.4 Revision History

The following table shows the revision history for this document.

R

Date Version Revision

9/30/04 1.1 Initial Xilinx release.

4/28/05 2.0 Updated to version 2.1 of the core, Xilinx tools 7.1i, support for Spartan-3E.

1/18/06 2.1 Updated to version 2.2 of the core, release date, and Xilinx tools 8.1i.

7/13/06 3.1 Updated to version 3.1 of the core; Xilinx tools 8.2i.

9/21/06 3.2 Updated to version 3.2 of the core, added support for Spartan-3A.

2/15/07 3.3 Updated to version 3.3 of the core; Xilinx tools 9.1i.

8/8/07 3/4 Updated to version 3.4 of the core; Xilinx tools 9.2i.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Schedule of Tables . 9

Schedule of Figures . 11

Preface: About This Guide
Guide Contents . 15
Additional Resources . 16
Conventions . 17

Typographical . 17
Online Document . 18

Chapter 1: Introduction
About the Core . 19
Recommended Design Experience . 19
Additional Core Resources . 19
Related Xilinx Ethernet Products and Services . 20
Specifications . 20
Technical Support. 20
Feedback. 20

Tri-Mode Ethernet MAC Core . 20
Document . 20

Chapter 2: Core Architecture
System Overview . 21

Core Components . 21
Core Interfaces . 23

Optional Interfaces . 23
Client Side Interface Signals . 27
Management Interface Signals . 29
Configuration Vector Signals . 29
Address Filter Signals . 30
Clock, Speed Indication, and Reset Signals . 30
Physical Interface Signals . 31
Optional MDIO Signals . 32

Chapter 3: Generating the Core
GUI Interface. 33

Component Name. 33
Management Interface . 33
Clock Enables . 34
Address Filter . 34
Number of Address Table Entries. 34

Table of Contents

http://www.xilinx.com

www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

R

Physical Interface . 34
Parameter Values in the XCO File . 34
Output Generation . 35

Chapter 4: Designing with the Core
General Design Guidelines . 37
Design Steps . 37

Using the HDL Example Design as User Top-level . 37
Using the HDL Example Design in a User Design . 37

Understand Signal Pipelining . 38
Register All I/Os . 38
Recognize Timing Critical Signals . 38
Use Supported Design Flows . 38
Make Only Allowed Modifications . 38

Chapter 5: Using the Client Side Data Path
Receiving Inbound Frames . 39

Normal Frame Reception . 39
Without Clock Enables . 39
Using Clock Enables . 41

emacclientrxgoodframe and emacclientrxbadframe Timing . 42
Frame Reception with Errors . 42
Client-Supplied FCS Passing . 42
VLAN Tagged Frames. 43
Maximum Permitted Frame Length . 43
Length/Type Field Error Checks. 44

Enabled . 44
Disabled . 44

Address Filter . 44
Receiver Statistics Vector . 45

Transmitting Outbound Frames . 47
Normal Frame Transmission . 47

Without Clock Enables . 47
Using Clock Enables . 48

Padding . 49
Client-Supplied FCS Passing . 50
Client Underrun . 50
Back-to-Back Transfers . 51
VLAN Tagged Frames. 52
Maximum Permitted Frame Length . 53
Frame Collisions: Half-Duplex Operation Only . 53
Interframe Gap Adjustment: Full-Duplex Mode Only . 54
Transmitter Statistics Vector. 55

Chapter 6: Using Flow Control
Overview of Flow Control . 57

Flow Control Requirement . 57
Flow Control Basics . 58
Pause Control Frames . 58

Flow Control Operation of the TEMAC . 59
Transmitting a Pause Control Frame . 59

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

R

Core-initiated Pause Request . 59
Client-initiated Pause Request . 60

Receiving a Pause Control Frame . 60
Core-initiated Response to a Pause Request . 60
Client-initiated Response to a Pause Request . 61

Flow Control Implementation Example . 61

Chapter 7: Using the Physical Side Interface
Implementing External GMII. 63

GMII/MII Transmit Interface. 63
Virtex-II Pro, Virtex-II, Spartan-3, Spartan-3E, and Spartan-3A Devices 63
Virtex-4 and Virtex-5 Devices . 65

GMII/MII Receive Interface . 66
Virtex-II and Virtex-II Pro Devices . 66
Spartan-3, Spartan-3E, and Spartan-3A Devices . 66
Virtex-4 Devices . 68
Virtex-5 Devices . 69

Implementing External RGMII . 70
RGMII Transmit Interface . 70

Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices . 70
Virtex-4 Devices . 71
Virtex-5 Devices . 73

RGMII Receiver Interface . 74
Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices . 74
Virtex-4 Devices . 74
Virtex-5 Devices . 75

RGMII Inband Status Decoding Logic . 77
Using the MDIO Interface. 77

Connecting the MDIO to an Internally Integrated PHY . 77
Connecting the MDIO to an External PHY . 78
Connecting the MDIO to an External and Internal PHY. 78

Chapter 8: Configuration and Status
Using the Optional Management Interface. 81

hostclk . 81
Configuration Registers . 81
Register Maps . 82
Using the Management Interface . 88

Accessing Configuration. 88
MDIO Interface . 91

Introduction to MDIO. 91
Write Transaction . 92
Read Transaction . 92
Accessing MDIO via the TEMAC . 92

Accessing Configuration without the Management Interface 94
Configuration Vector Description . 95

Chapter 9: Constraining the Core
Required Constraints. 101

Device, Package, and Speedgrade Selection . 101

http://www.xilinx.com

www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

R

I/O Location Constraints . 101
Placement Constraints . 101
Timing Constraints . 101

PERIOD(s) for Clock nets . 101
Timespecs for Reset Logic within the Core . 104
Constraints when Implementing an External GMII . 104

Understanding Timing Reports for GMII Setup/Hold timing 107
Spartan-3 Devices . 107
Virtex-II or Virtex-II Pro Devices . 108
Virtex-4 or Virtex-5 Devices with Delayed Data/Control. 108
Virtex-4 or Virtex-5 Devices with Delayed Clock . 109
Constraints when Implementing an External RGMII . 110
RGMII DDR Constraints . 113

Understanding Timing Reports for RGMII Setup/Hold timing 113
None Virtex-4 or Virtex-5 Devices . 113
Virtex-4 or Virtex-5 Devices with Delayed Data/Control. 114
Virtex-4 or Virtex-5 Devices with Delayed Clock . 115

Chapter 10: Clocking and Reset
Clocking . 117

GMII/MII Transmit Clock Generation . 117
GMII/MII Receive Clock Generation . 119
RGMII Transmit Clock Generation . 120
RGMII Receive Clock Generation . 122

Multiple Cores . 123
Clock Sharing . 123

BUFGMUX Usage . 124
Reset Conditions . 126

Chapter 11: Interfacing to Other Cores
Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core. 127

Integration to Provide SGMII . 127
Virtex-II Pro Devices. 127
Virtex-4 Devices . 129
Virtex-5 Devices . 130

Integrating with the Ethernet Statistics Core . 130

Chapter 12: Implementing Your Design
Pre-implementation Simulation . 133

Using the Simulation Model . 133
Synthesis . 133

XST - VHDL . 133
XST - Verilog . 134

Implementation . 134
Generating the Xilinx Netlist . 134
Mapping the Design . 134
Placing and Routing the Design . 134
Static Timing Analysis . 135
Generating a Bitstream . 135

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

R

Post-Implementation Simulation . 135
Generating a Simulation Model . 135
Using the Model . 135

Other Implementation Information . 136

Appendix A: Using the Client Side FIFO
Overview of LocalLink Interface . 137
Receive FIFO Operation . 138

LocalLink Interface . 138
Transmit FIFO Operation . 139

LocalLink Interface . 139
Clock Requirements. 140
User Interface Data Width Conversion. 140

Appendix B: Core Verification, Compliance, and Interoperability
Verification by Simulation . 141
Hardware Verification . 141

Appendix C: Core Latency
General . 143
Transmit Path Latency . 143
Receive Path Latency . 143

Appendix D: Calculating the DCM Phase Shift
DCM Phase Shifting Requirements . 145
Finding the Ideal Phase Shift Value . 145

http://www.xilinx.com

www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Schedule of Tables

Chapter 2: Core Architecture
Table 2-1: Client Interface Signal Pins . 27
Table 2-2: Optional Management Interface Signal Pinout . 29
Table 2-3: Alternative to the Optional Management Interface: Configuration

Vector Signal Pinout . 29
Table 2-4: Address Filter Unicast Address . 30
Table 2-5: Clock, Speed Indication and Reset Signals . 30
Table 2-6: GMII/MII Interface Signal Pinout . 31
Table 2-7: MDIO Interface Signal Pinout . 32

Chapter 3: Generating the Core
Table 3-1: XCO File Values and Default Values. 34

Chapter 5: Using the Client Side Data Path
Table 5-1: Abbreviations Used in Timing Diagrams . 39
Table 5-2: Bit Definition for the Receiver Statistics Vector . 45
Table 5-3: Bit Definition for the Transmitter Statistics Vector . 55

Chapter 8: Configuration and Status
Table 8-1: Management Interface Transaction Types . 81
Table 8-2: Configuration Registers . 82
Table 8-3: Receiver Configuration Word 0. 82
Table 8-4: Receiver Configuration Word 1. 83
Table 8-5: Transmitter Configuration Word . 84
Table 8-6: Flow Control Configuration Word . 84
Table 8-7: Management Configuration Word . 85
Table 8-8: MAC Speed Configuration Word . 85
Table 8-9: Unicast Address (Word 0) . 86
Table 8-10: Unicast Address (Word 1) . 86
Table 8-11: Address Table Configuration (Word 0) . 86
Table 8-12: Address Table Configuration (Word 1) . 87
Table 8-13: Address Filter Mode . 87
Table 8-14: Configuration Vector Bit Definition . 95

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Chapter 9: Constraining the Core
Table 9-1: Input GMII Timing . 105
Table 9-2: Input RGMII Timing . 111

Appendix A: Using the Client Side FIFO
Table A-1: Receive FIFO LocalLink Interface . 138
Table A-2: Transmit FIFO LocalLink Interface . 139

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Schedule of Figures

Chapter 2: Core Architecture
Figure 2-1: Tri-Mode Ethernet MAC Block Diagram. 21
Figure 2-2: Component Pinout for MAC with Optional Management

Interface (clock_enables = false). 23
Figure 2-3: Component Pinout for MAC without Optional Management

Interface (clock_enables = false). 24
Figure 2-4: Component Pinout for MAC with Optional Management

Interface (clock_enables = true) . 25
Figure 2-5: Component Pinout for MAC without Optional Management

Interface (clock_enables = true) . 26

Chapter 3: Generating the Core
Figure 3-1: Core Customization Screen . 33

Chapter 5: Using the Client Side Data Path
Figure 5-1: Normal Frame Reception . 40
Figure 5-2: Normal Frame Reception at 1 Gbps with Optional Clock Enables 41
Figure 5-3: Normal Frame Reception at 10/100 Mbps with Optional Clock Enables . . . 41
Figure 5-4: Frame Reception with Error . 42
Figure 5-5: Frame Reception with In-Band FCS Field. 43
Figure 5-6: Reception of a VLAN Tagged Frame . 43
Figure 5-7: Receiver Statistics Vector Timing . 45
Figure 5-8: Normal Frame Transmission Across Client Interface. 48
Figure 5-9: Normal Frame Transmission at 1000 Mbps with Optional Clock Enables . 48
Figure 5-10: Normal Frame Transmission at 10/100 Mbps with

Optional Clock Enables . 49
Figure 5-11: Frame Transmission with Client-supplied FCS. 50
Figure 5-12: Frame Transmission with Underrun . 51
Figure 5-13: Back-to-Back Frame Transmission . 52
Figure 5-14: Transmission of a VLAN Tagged Frame . 52
Figure 5-15: Collision Handling: Frame Retransmission Required 53
Figure 5-16: Collision Handling: No Frame Retransmission Required 54
Figure 5-17: Interframe Gap Adjustment. 54
Figure 5-18: Transmitter Statistics Vector Timing . 55

Chapter 6: Using Flow Control
Figure 6-1: The Requirement for Flow Control . 57
Figure 6-2: MAC Control Frame Format . 58
Figure 6-3: Pause Request Timing. 59

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Figure 6-4: Pause Request Timing with Clock Enables . 59
Figure 6-5: Flow Control Implementation Triggered from FIFO Occupancy. 62

Chapter 7: Using the Physical Side Interface
Figure 7-1: External GMII/MII Transmit Interface . 64
Figure 7-2: External GMII/MII Transmit Interface in a Virtex-4/Virtex-5 Device 65
Figure 7-3: External GMII/MII Receive Interface . 66
Figure 7-4: GMII/MII Receive Logic for Spartan-3, Spartan-3E,

and Spartan-3A Devices . 67
Figure 7-5: GMII/MII Receive Logic for Virtex-4 Devices . 68
Figure 7-6: GMII/MII Receive Logic for Virtex-5 Devices . 69
Figure 7-7: External RGMII Transmit Interface . 70
Figure 7-8: External RGMII Transmit Interface in a Virtex-4 Device 71
Figure 7-9: External RGMII Transmit Interface in a Virtex-5 Device 73
Figure 7-10: External RGMII Receive Interface . 74
Figure 7-11: External RGMII Receive Interface in Virtex-4 Devices 75
Figure 7-12: External RGMII Receive Interface in Virtex-5 Devices 76
Figure 7-13: RGMII Inband Status Logic. 77
Figure 7-14: External MDIO Interface . 78
Figure 7-15: Internal and External MDIO Interfaces. 79

Chapter 8: Configuration and Status
Figure 8-1: Configuration Register Write Timing . 88
Figure 8-2: Configuration Register Read Timing. 89
Figure 8-3: Address Table Write Timing . 90
Figure 8-4: Address Table Read Timing . 91
Figure 8-5: MDIO Write Transaction . 92
Figure 8-6: MDIO Read Transaction. 92
Figure 8-7: MDIO Access Through Management Interface . 93

Chapter 9: Constraining the Core
Figure 9-1: Input GMII Timing . 105
Figure 9-2: Timing Report Setup/Hold . 110
Figure 9-3: Input RGMII Timing. 111
Figure 9-4: Timing Report Setup/Hold . 116

Chapter 10: Clocking and Reset
Figure 10-1: GMII/MII Transmit Clock Generator . 117
Figure 10-2: 10/100 Mbps MII Transmit Clock Generator . 118
Figure 10-3: GMII/MII Transmit Clock Generator (clock_enables = true) 118
Figure 10-4: GMII/MII Receive Clock Generator. 119
Figure 10-5: 10/100 Mbps MII Receive Clock Generator . 119
Figure 10-6: GMII/MII Receive Clock Generator (clock_enables = true) 120

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com
UG138 August 8, 2007

Figure 10-7: RGMII Transmit Clock Generator (clock_enables = false) 120
Figure 10-8: RGMII Transmit Clock Generator (clock_enables = true). 121
Figure 10-9: RGMII Transmit Clock Generator (clock_enables = false) for Virtex-5 . . 121
Figure 10-10: RGMII Receive Clock Generator (clock_enables = false) 122
Figure 10-11: RGMII Receive Clock Generator (clock_enables = true) 122
Figure 10-12: RGMII Receive Clock Generator (clock_enables = false) for

Virtex-4 and Virtex-5 Devices . 123
Figure 10-13: Clock Sharing across Two MAC Cores . 124
Figure 10-14: Suggested BUFGMUX Scheme . 125
Figure 10-15: Alternative BUFGMUX Scheme . 125
Figure 10-16: Reset Circuit for One Clock/reset Domain . 126

Chapter 11: Interfacing to Other Cores
Figure 11-1: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-II Pro) 128
Figure 11-2: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-4) 129
Figure 11-3: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-5) 130
Figure 11-4: Tri-Mode Ethernet MAC with Statistics . 131

Appendix A: Using the Client Side FIFO
Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation 137
Figure A-2: Frame Transfer across LocalLink Interface . 138
Figure A-3: Frame Transfer with Flow Control . 138

http://www.xilinx.com

www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 15
UG138 August 8, 2007

R

Preface

About This Guide

The Tri-Mode Ethernet MAC v3.4 User Guide describes the function and operation of the
LogiCORE™ Tri-Mode Ethernet MAC (TEMAC) core, as well as information about
designing, customizing, and implementing the core.

Guide Contents
This guide contains the following chapters:

• “Preface, About this Guide” introduces the organization and purpose of the user
guide and provides a list of additional resources and conventions used in this
document.

• Chapter 1, “Introduction” describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Core Architecture” provides an overview of the core and discusses the
signal interface.

• Chapter 3, “Generating the Core” describes how to generate the core and defines
customization options.

• Chapter 4, “Designing with the Core” provides general guidelines for creating
designs using the core.

• Chapter 5, “Using the Client Side Data Path” provides information about using the
client-side interface of the core.

• Chapter 6, “Using Flow Control” details the flow control capabilities of the core.

• Chapter 7, “Using the Physical Side Interface” describes how to use the core to
provide GMII/MII, RGMII and MDIO functionality.

• Chapter 8, “Configuration and Status” describes how to operate the Management
Interface.

• Chapter 9, “Constraining the Core” describes constraints in the design.

• Chapter 10, “Clocking and Reset” discusses suggested clocking schemes and reset
circuitry.

• Chapter 11, “Interfacing to Other Cores,” describes how to interface the core to the
Ethernet 1000BASE-X PCS/PMA or SGMII core in order to provide SGMII
functionality. In addition, the integration of the core with the Ethernet Statistics Core
is discussed.

• Chapter 12, “Implementing Your Design” provides instructions for setting up the
synthesis, simulation, and implementation environment, and how to generate a
bitstream.

http://www.xilinx.com

16 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Preface: About This Guide
R

• Appendix A, “Using the Client Side FIFO” describes the operation of the FIFO
included in the core example design.

• Appendix B, “Core Verification, Compliance, and Interoperability” describes how the
core was verified and certified for compliance, as well as its interoperability with
other devices.

• Appendix C, “Core Latency” describes the core latency.

• Appendix D, “Calculating the DCM Phase Shift” provides instructions for calculating
a DCM phase shift value to meet input setup and hold timing.

Additional Resources
For additional information, go to www.xilinx.com/support. The following table lists some
of the resources you can access from this website or by using the provided URLs.

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

www.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

www.xilinx.com/support/apps/appsweb.htm

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

www.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

www.xilinx.com/xlnx/xil_tt_home.jsp

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=Application+Notes

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 17
UG138 August 8, 2007

Conventions
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands you enter in
a syntactical statement ngdbuild design_name

Italic font
References to other manuals See the User Guide for details.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Dark Shading Items that are not supported
or reserved This feature is not supported

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Brackets <>
User-defined variable, for
example, a directory or project
name.

<project directory>

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Omitted repetitive material allow block block_name
loc1 loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address
0x00112975 returned
45524943h.

An ‘_n’ means the signal is
active low usr_teof_n is active low.

http://www.xilinx.com

18 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Preface: About This Guide
R

Online Document
The following linking conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

See “Title Formats” in Chapter
1 for details.

Red text
Cross-reference link to a
location in another
document

See Figure 2-5 in the Virtex-II
Handbook.

Blue, underlined text Hyperlink to a website
(URL)

Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 19
UG138 August 8, 2007

R

Chapter 1

Introduction

The Tri-Mode Ethernet MAC (TEMAC) core is a fully verified solution design that
supports Verilog-HDL and VHDL. In addition, the example design provided with the core
is in both Verilog and VHDL.

This chapter introduces the TEMAC core and provides related information, including
recommended design experience, additional resources, technical support, and submitting
feedback to Xilinx.

About the Core
The TEMAC core is a Xilinx CORE Generator™ IP core, included in the latest IP Update on
the Xilinx IP Center. For detailed information about the core, see
www.xilinx.com/systemio/temac/index.htm. For information about system
requirements and licensing the core, see Chapter 2, “Licensing the Core,” in the Getting
Started Guide.

Recommended Design Experience
Although the TEMAC core is a fully verified solution, the challenge associated with
implementing a complete design varies depending on the configuration and functionality
of the application. For best results, previous experience building high performance,
pipelined FPGA designs using Xilinx implementation software and User Constraint Files
(UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Core Resources
For more details and updates on the TEMAC core, see the following documents, located on
the Xilinx Tri-Mode Ethernet MAC product page, accessible from the
www.xilinx.com/systemio/temac/index.htm

• Tri-Mode Ethernet MAC Data Sheet

• Tri-Mode Ethernet MAC Release Notes

• Tri-Mode Ethernet MAC Getting Started Guide

For updates to this document, see the Tri-Mode Ethernet MAC User Guide located on the Tri-
Mode Ethernet MAC product page.

http://www.xilinx.com
http://www.xilinx.com/systemio/temac/index.htm
http://www.xilinx.com/systemio/temac/index.htm

20 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 1: Introduction
R

Related Xilinx Ethernet Products and Services
See the Ethernet Products and Services page at:

www.xilinx.com/products/design_resources/conn_central/grouping/ethernet.htm

Specifications
• IEEE 802.3-2002

• Reduced Gigabit Media Independent Interface (RGMII) version 2.0

Technical Support
For technical support, see support.xilinx.com/. Questions are routed to a team of engineers
with expertise using the TEMAC core.

Xilinx will provide technical support for use of this product as described in the Tri-Mode
Ethernet MAC User Guide and the Tri-Mode Ethernet MAC Getting Started Guide. Xilinx
cannot guarantee timing, functionality, or support of this product for designs that do not
follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the TEMAC core and the
documentation supplied with the core.

Tri-Mode Ethernet MAC Core
For comments or suggestions about the core, please submit a WebCase from
www.xilinx.com/support/clearexpress/websupport.htm. Be sure to include the
following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about the core, please submit a WebCase from
www.xilinx.com/support/clearexpress/websupport.htm. Be sure to include the
following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com/products/design_resources/conn_central/grouping/ethernet.htm
http://www.xilinx.com/support/clearexpress/websupport.htm
http://support.xilinx.com/
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 21
UG138 August 8, 2007

R

Chapter 2

Core Architecture

This chapter describes the TEMAC core architecture including all interfaces and the major
functional blocks.

System Overview
Figure 2-1 illustrates a block diagram of the TEMAC core.

Core Components
The major functional blocks of the MAC are:

• Client interface

Figure 2-1: Tri-Mode Ethernet MAC Block Diagram.

Flow Control

Transmit Engine

Receive Engine

Configuration

Optional
Address

Filter

MDIO

Client
Transmitter
Interface

Client
Management
Interface

Client
Receiver
Interface

To Physical
SublayersC

lie
nt

 In
te

rf
ac

e

G
M

II
/ M

II
B

lo
ck

Optional Management

Tri-Mode Ethernet MAC Core

http://www.xilinx.com

22 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

• Transmit engine
• Flow control block
• Receive engine
• Optional Management Interface and MDIO
• GMII/MII interface
• Optional Address Filter

The client interface has fully independent 8-bit interfaces for both transmit and receive to
support full-duplex operation.

Configuration of the core and access to the MDIO port are accessed through the optional
Management Interface, a 32 bit processor-neutral data pathway that is independent of the
Ethernet data pathway. When the Management Interface is omitted, configuration of the
core can still be made via an alternative configuration vector.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 23
UG138 August 8, 2007

Core Interfaces
R

Core Interfaces

Optional Interfaces
Figure 2-2 shows the pinouts with the optional Management Interface when the core is
built with the clock_enables option set to false

Figure 2-2: Component Pinout for MAC with Optional Management Interface (clock_enables = false)

emacphymclkout

phyemacmdin

phyemacrxd[7:0]

emacphytxd[7:0]

emacphytxen

emacphytxer

clientemactxd[7:0]

emacclienttxack

clientemctxunderrun

clientemacpausereq

clientemacpauseval

hostclk

hostopcode[1:0]

hostaddr[9:0]

hostwrdata[31:0]

hostrddata[31:0]

hostmiimsel

hostreq

hostmiimrdy

reset

emacclientrxd[7:0]

emacclientrxgoodframe

emacclientrxbadframe

emacclienttxcollision

emacclienttxretransmit

clientemactxdvld

emacclientrxdvld

phyemaccol
phyemaccrs

phyemacrxdv

phyemacrxer

txcoreclk Domain

rxcoreclk Domain

hostclk Domain

clientemactxifgdelay[7:0]

emacclienttxstats[31:0]

emacclienttxstatsvld

emacclientrxstats[27:0]

emacclientrxstatsvld

emacphymdout

emacphymdtri

txgmiimiiclk Domain

rxgmiimiiclk Domain

txcoreclk

rxcoreclk

txgmiimiiclk

rxgmiimiiclk

speedis100

speedis10100

tieemacunicastaddr[47:0]
(if address_filter = true)

http://www.xilinx.com

24 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

Figure 2-3 shows the pinouts without the optional Management Interface when the core is
built with the clock_enables option set to false.

Figure 2-3: Component Pinout for MAC without Optional Management Interface (clock_enables = false)

phyemacrxd[7:0]

emacphytxd[7:0]

emacphytxen

emacphytxer

clientemactxd[7:0]

emacclienttxack

clientemctxunderrun

clientemacpausereq

clientemacpauseval

reset

emacclientrxd[7:0]

emacclientrxgoodframe

emacclientrxbadframe

emacclienttxcollision

emacclienttxretransmit

clientemactxdvld

emacclientrxdvld

phyemaccol
phyemaccrs

phyemacrxdv

phyemacrxer

txcoreclk Domain

rxcoreclk Domain

clientemactxifgdelay[7:0]

emacclienttxstats[31:0]

emacclienttxstatsvld

emacclientrxstats[27:0]

emacclientrxstatsvld

txgmiimiiclk Domain

rxgmiimiiclk Domain

txcoreclk

rxcoreclk

txgmiimiiclk

rxgmiimiiclk

speedis100

speedis10100

tieemacunicastaddr[47:0]
(if address_filter = true)

tieemacconfigvec[66:0]

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 25
UG138 August 8, 2007

Core Interfaces
R

Figure 2-4 shows the pinouts with the optional Management Interface when the core is
built with the clock_enables option set to true.

Figure 2-4: Component Pinout for MAC with Optional Management Interface (clock_enables = true)

emacphymclkout

phyemacmdin

phyemacrxd[7:0]

emacphytxd[7:0]

emacphytxen

emacphytxer

clientemactxd[7:0]

emacclienttxack

clientemctxunderrun

clientemacpausereq

clientemacpauseval

hostclk

hostopcode[1:0]

hostaddr[9:0]

hostwrdata[31:0]

hostrddata[31:0]

hostmiimsel

hostreq

hostmiimrdy

reset

emacclientrxd[7:0]

emacclientrxgoodframe

emacclientrxbadframe

emacclienttxcollision

emacclienttxretransmit

clientemactxdvld

emacclientrxdvld

phyemaccol
phyemaccrs

phyemacrxdv

phyemacrxer

hostclk Domain

clientemactxifgdelay[7:0]

emacclienttxstats[31:0]

emacclienttxstatsvld

emacclientrxstats[27:0]

emacclientrxstatsvld

emacphymdout

emacphymdtri

txgmiimiiclk Domain

rxgmiimiiclk Domain

txgmiimiiclk

rxgmiimiiclk

speedis100

speedis10100

tieemacunicastaddr[47:0]
(if address_filter = true)

clientemactxenable

clientemacrxenable

http://www.xilinx.com

26 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

Figure 2-5 shows the pinouts without the optional Management Interface when the core is
built with the clock_enables option set to true.

Figure 2-5: Component Pinout for MAC without Optional Management Interface (clock_enables = true)

phyemacrxd[7:0]

emacphytxd[7:0]

emacphytxen

emacphytxer

clientemactxd[7:0]

emacclienttxack

clientemctxunderrun

clientemacpausereq

clientemacpauseval

reset

emacclientrxd[7:0]

emacclientrxgoodframe

emacclientrxbadframe

emacclienttxcollision

emacclienttxretransmit

clientemactxdvld

emacclientrxdvld

phyemaccol
phyemaccrs

phyemacrxdv

phyemacrxer

clientemactxifgdelay[7:0]

emacclienttxstats[31:0]

emacclienttxstatsvld

emacclientrxstats[27:0]

emacclientrxstatsvld

txgmiimiiclk Domain

rxgmiimiiclk Domain

txgmiimiiclk

rxgmiimiiclk

speedis100

speedis10100

tieemacunicastaddr[47:0]
(if address_filter = true)

clientemactxenable

clientemacrxenable

tieemacconfigvec[66:0]

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 27
UG138 August 8, 2007

Core Interfaces
R

Client Side Interface Signals
Table 2-1 describes the client-side transmit signals of the TEMAC core. These signals are
used to transmit data from the client to the TEMAC core.

Table 2-1: Client Interface Signal Pins

Signal Direction Description

clientemactxd[7:0] Input Frame data to be transmitted is supplied on
this port.

clientemactxdvld Input Control signal for clientemactxd port.

clientemactxifgdelay[7:0] Input Control signal for configurable interframe
gap adjustment. See “Interframe Gap
Adjustment: Full-Duplex Mode Only,” on
page 54 for timing diagrams.

emacclienttxack Output Handshaking signal. Asserted when the
current data on clientemactxd has been
accepted. See “Transmitting Outbound
Frames,” on page 47 for timing diagrams.

clientemactxenable Input If the core is built using the optional clock
enable logic the number of clock resources
is reduced by clocking the transmit client
interface on the txgmiimiiclk input. At
speeds below 1 Gbps this signal must toggle
between ‘1’ and ‘0’ on alternate
txgmiimiiclk cycles for correct operation of
the core. At 1 Gbps it must be held high. See
“Transmitting Outbound Frames,” on page
47 for timing diagrams.

clientemactxunderrun Input Asserted by client to force MAC core to
corrupt the current frame.

emacclienttxcollision Output Asserted by the MAC core to signal a
collision on the medium and that any
transmission in progress should be aborted.
Always ‘0’ when the MAC core is in full-
duplex mode.

emacclienttxretransmit Output When asserted at the same time as the
emacclienttxcollision signal, this signals to
the client that the aborted frame should be
resupplied to the MAC core for
retransmission. Always ‘0’ when the MAC
core is in full-duplex mode.

emacclienttxstats[31:0] Output This gives information on the last frame
transmitted. See “Transmitter Statistics
Vector,” on page 55 for vector contents.

emacclienttxstatsvld Output Asserted at end of frame transmission,
indicating that the emacclienttxstats is
valid.

http://www.xilinx.com

28 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

emacclientrxd[7:0] Output Frame data received is supplied on this
port.

emacclientrxdvld Output Control signal for the emacclientrxd port.

emacclientrxgoodframe Output Asserted at end of frame reception to
indicate that the frame should be processed
by the MAC client. See “Normal Frame
Reception,” on page 39.

emacclientrxbadframe Output Asserted at end of frame reception to
indicate that the frame should be discarded
by the MAC client. See “Frame Reception
with Errors,” on page 42.

clientemacrxenable Input If the core is built using the optional clock
enable logic the number of clock resources
is reduced by clocking the receive client
interface on the rxgmiimiiclk input. At
speeds below 1 Gbps, this signal must
toggle between ‘1’ and ‘0’ on alternate
rxgmiimiiclk cycles for correct operation of
the core. At 1 Gbps, it must be held high. See
“Receiving Inbound Frames,” on page 39
for timing diagrams.

emacclientrxstats[27:0] Output Provides information about the last frame
received. See “Receiver Statistics Vector,”
on page 45 for the vector contents.

emacclientrxstatsvld Output Asserted at end of frame reception,
indicating that the emacclientrxstats is
valid.

clientemacpausereq Input Pause request: sends a pause frame down
the link. See “Transmitting a Pause Control
Frame,” on page 59.

clientemacpauseval[15:0] Input Pause value: inserted into the parameter
field of the transmitted pause frame.

Table 2-1: Client Interface Signal Pins (Continued)

Signal Direction Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 29
UG138 August 8, 2007

Core Interfaces
R

Management Interface Signals
Table 2-2 describes the Management Interface and support signals. These signals are used
by the client to configure the MAC core and to read the status of configuration bits. See
“Using the Optional Management Interface,” on page 81.

Configuration Vector Signals
If the Management Interface is not present, the configuration of the core is carried out by a
configuration vector. (Table 2-3.)

Table 2-2: Optional Management Interface Signal Pinout

Signal Direction Description

hostclk Input Clock for Management Interface.

hostopcode[1:0] Input Defines operation to be performed over
MDIO interface. Bit 1 is also used in
configuration register access. See “Using
the Management Interface,” on page 88.

hostaddr[9:0] Input Address of register to be accessed.

hostwrdata[31:0] Input Data to write to register.

hostrddata[31:0] Output Data read from register.

hostmiimsel Input When asserted, the MDIO interface is
accessed. When disasserted, the MAC
internal configuration is accessed.

hostreq Input Used to signal a transaction on the MDIO
interface. See “Using the Management
Interface,” on page 88.

hostmiimrdy Output When high, the MDIO interface has
completed any pending transaction and is
ready for a new transaction.

Table 2-3: Alternative to the Optional Management Interface: Configuration Vector
Signal Pinout

Signal Direction Description

tieemacconfigvec[66:0] Input The Configuration Vector is used to
replace the functionality of the MAC
Configuration Registers when the
Management Interface is not used. See
“Accessing Configuration without the
Management Interface,” on page 94.

http://www.xilinx.com

30 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

Address Filter Signals
If the optional address filter is included in the core, the user may specify a unicast address
for the MAC by setting the tieemacunicastaddr signal. If the Management Interface is
present, this can be overwritten by writing to the unicast address register. See “Using the
Management Interface,” on page 88.

Clock, Speed Indication, and Reset Signals
Table 2-5 describes the clock signals that are input to the core and the outputs that can be
used to select between the three operating speeds. The clock signals are generated in the
top-level example design provided with the core. See “Clocking,” on page 117.

Table 2-4: Address Filter Unicast Address

Signal Direction Description

tieemacunicastaddr[47:0] Input This vector is used to set the default
address for the MAC. See “Address
Filter,” on page 44.

Table 2-5: Clock, Speed Indication and Reset Signals

Signal Direction Description

txcoreclk Input Only present when clock_enables=false.
The clock for data transmission on the
client side of the core. This is 125 MHz at
1 Gbps, 12.5 MHz at 100 Mbps and 1.25
MHz at 10 Mbps. This clock should be
used to clock the client transmit
circuitry. For more information see
“Clocking,” on page 117.

rxcoreclk Input Only present when clock_enables=false.
The clock for the reception of data on
the client side of the core. This is 125
MHz at 1 Gbps, 12.5 MHz at 100 Mbps
and 1.25 MHz at 10 Mbps. This clock
should be used to clock the client
receiver circuitry. For more
information, see “Clocking,” on page
117.

txgmiimiiclk Input The clock for the transmission of data
on the physical interface. This is 125
MHz at 1 Gbps, 25 MHz at 100 Mbps
and 2.5 MHz at 10 Mbps. This clock
should be used to clock the physical
interface transmit circuitry. For more
information, see “Clocking,” on page
117. When clock_enables=true, this
clock is used to clock the entire transmit
side of the core.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 31
UG138 August 8, 2007

Core Interfaces
R

Physical Interface Signals
Table 2-6 describes the GMII/MII signals of the MAC core. These are typically attached to
a PHY module, either off-chip or internally integrated. The GMII is defined in IEEE 802.3
clause 35. The GMII/MII physical interface, together with logic to convert these signals to
RGMII format, is described in “Using the Physical Side Interface,” on page 63

rxgmiimiiclk Input The clock for the reception of data on
the physical interface. This is 125 MHz
at 1 Gbps, 25 MHz at 100 Mbps and 2.5
MHz at 10 Mbps. This clock should be
used to clock the physical interface
receive circuitry. For more information,
see “Clocking,” on page 117. When
clock_enables=true, this clock is used to
clock the entire receive side of the core.

speedis100 Output This output is asserted when the core is
operating at 100 Mbps. It is derived
from either bits 30 and 31 of the MAC
Speed Configuration register (See
“Configuration Registers,” on page 81)
if the optional Management Interface is
present. If the Management Interface is
not present, this is derived from
configuration vector bits 65 and 66.

speedis10100 Output This output is asserted when the core is
operating at either 10 Mbps or 100
Mbps. It is derived from either bits 30
and 31 of the MAC Speed Configuration
register (see “Configuration Registers,”
on page 81) if the optional Management
Interface is present. If the Management
Interface is not present, this is derived
from configuration vector bits 65 and
66.

reset Input Asynchronous reset for entire core. See
“Reset Conditions,” on page 126 for
more information on the reset circuit.

Table 2-5: Clock, Speed Indication and Reset Signals

Signal Direction Description

Table 2-6: GMII/MII Interface Signal Pinout

Signal Direction Description

emacphytxd[7:0] Output Transmit data to PHY.

emacphytxen Output Data Enable control signal to PHY.

emacphytxer Output Error control signal to PHY.

phyemaccrs Input Control signal from PHY.

http://www.xilinx.com

32 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 2: Core Architecture
R

Optional MDIO Signals
Table 2-7 describes the MDIO (MII Management) interface signals of the MAC core (see
“Using the MDIO Interface,” on page 77. These signals are typically connected to the
MDIO port of a PHY device, either off-chip or an SoC-integrated core. The MDIO format is
defined in IEEE 802.3 clause 22.

phyemaccol Input Control signal from PHY.

phyemacrxd[7:0] Input Received data from PHY.

phyemacrxdv Input Data Valid control signal from PHY.

phyemacrxer Input Error control signal from PHY.

corehassgmii Input Tie this input high if the core is
interfaced to the Ethernet 1000BASE-X
PCS/PMA or SGMII core in SGMII
mode. See “Integrating with the
Ethernet 1000BASE-X PCS/PMA or
SGMII Core,” on page 127 for more
information.

Table 2-6: GMII/MII Interface Signal Pinout (Continued)

Signal Direction Description

Table 2-7: MDIO Interface Signal Pinout

Signal Direction Description

emacphymclkout Output MDIO Management Clock: derived
from hostclk on the basis of supplied
configuration data when the optional
Management Interface is used. See
“Accessing MDIO via the TEMAC,”
on page 92.

emacphymdin Input Input data signal for communication
with PHY configuration and status.
Tie high if unused.

emacphymdout Output Output data signal for communication
with PHY configuration and status.

emacphymdtri Output Tristate control for MDIO signals; ‘0’
signals that the value on
emacphymdout should be asserted
onto the MDIO bus.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 33
UG138 August 8, 2007

R

Chapter 3

Generating the Core

This chapter provides information about configuring and generating the core using the
CORE Generator™ tool.

GUI Interface
Figure 3-1 displays the TEMAC core customization screen.

Component Name

The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_”.

Management Interface

Select this option if you wish to include the optional Management Interface (see “Using the
Optional Management Interface,” on page 81). If this option is not selected, the core will be
generated with a configuration vector. The default is to have the Management Interface.

Figure 3-1: Core Customization Screen

http://www.xilinx.com

34 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 3: Generating the Core
R

Clock Enables

Select this option to run the transmit and receive sections of the core on the clocks from the
physical interface. This reduces the number of BUFGMUXes that are used by the core by 2.

Address Filter

It is possible to generate the core with an address filter. This will prevent the reception of
frames that are not addressed to this MAC. See “Address Filter,” on page 44.

Number of Address Table Entries

The Address Filter can be instantiated with an address table that holds up to 4 additional
valid addresses. The user may select an integer between 0 and 4 to define the number of
addresses that are present in the table.

Physical Interface

It is possible to select from two different physical interface choices for the core:

• GMII/MII - see “Implementing External GMII,” on page 63.

• RGMII - see “Implementing External RGMII,” on page 70.

The choice of physical interface will determine the content of the example design delivered
with the core: the external GMII or RGMII will be added in the HDL top-level design file.
There is no change in the core’s netlist for this option.

The default is the GMII physical interface.

Parameter Values in the XCO File
XCO file parameter names and their values are identical to the names and values shown in
the GUI, except that underscore characters (_) are used instead of spaces. The text in an
XCO file is case insensitive.

Table 3-1 shows the XCO file parameters and values, and summarizes the GUI defaults.
The following is an example of the CSET parameters in an XCO file:

CSET component_name = abc123
CSET address_filter = true
CSET management_interface = true
CSET clock_enables = false
CSET physical_interface = gmii
CSET number_of_address_table_entries = 4

Table 3-1: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting

component_name ASCII text starting with a
letter and based upon the
following character set: a..z,
0..9 and _

blank

address_filter One of the following
keywords: true, false true

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 35
UG138 August 8, 2007

R

Output Generation
The output files generated from the CORE Generator tool are placed in the CORE
Generator project directory. The list of output files includes

• the netlist file

• supporting CORE Generator files

• release notes and other documentation

• subdirectories containing example design files

• scripts to run the core through the back-end tools and to simulate the core using the
Mentor Graphics® ModelSim® and the Cadence® IUS simulators

See “CORE Generator Directory Structure,” on page 121 for definitions of all output files.

number_of_address_table_
entries

Integer in the range 0 - 4 4

clock_enables One of the following
keywords: true, false true

management_interface One of the following
keywords: true, false true

physical_interface One of the following
keywords: gmii, rgmii gmii

Table 3-1: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting

http://www.xilinx.com

36 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 3: Generating the Core
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 37
UG138 August 8, 2007

R

Chapter 4

Designing with the Core

This chapter provides general guidelines for creating designs using the TEMAC core,
including a detailed description of each interface to the core. For information about special
design considerations, for example, clocking schemes, see “Clocking and Reset,” on page
117. To work with the FIFO provided in the example design included with the TEMAC
core, see Appendix A, “Using the Client Side FIFO.” For more information about the
example design see the Tri-Mode Ethernet MAC Getting Started Guide.

General Design Guidelines
This section describes the steps required to turn a TEMAC core into a fully-functioning
design integrated with user application logic. Its important to recognize that not all
designs will require all the design steps listed in this chapter. The following discusses the
design steps required for various implementations. Follow the logic design guidelines in
this manual carefully.

Design Steps
Generate the core from the CORE Generator (see Chapter 3, “Generating the Core”).

Using the HDL Example Design as User Top-level

See the Tri-Mode Ethernet MAC Getting Started Guide.

• Edit the HDL example design file produced by the CORE Generator to add user logic
and any other I/Os required. Add/change clocking scheme.

• Synthesize the entire design. For a VHDL design, the Xilinx Synthesis Tool (XST)
script and project file in the /implement directory may be adapted to include the
user’s HDL files. For a verilog design, the XST script file and the implement script in
the /implement directory may be adapted.

• Run the implement script in the /implement directory to create a top-level netlist,
which includes the TEMAC core netlist. The script may also run the Xilinx tools map,
par, and bitgen, creating a bitstream that can be downloaded to a Xilinx device.

• Simulate the entire design using the demonstration test bench provided in the
/simulation directory.

• Download the bitstream to a Virtex-5™, Virtex-4, Virtex-II, Virtex-II Pro,
Spartan™-3, Spartan-3E or Spartan-3A device.

Using the HDL Example Design in a User Design

Generate the core from the CORE Generator (see Chapter 3, “Generating the Core”).

http://www.xilinx.com

38 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 4: Designing with the Core
R

• Edit the HDL example design file produced by the CORE Generator to remove
unnecessary IOBs, pipeline registers, Digital Clock Managers (DCMs), and anything
else not required by the user. These may need to be replicated within the user top-
level design.

• Add an interface to the HDL example design so that it may be instanced in the user
design.

• Synthesize the entire design, including the same files used for default
implementation.

• Run the Xilinx tools map, par, and bitgen to creates a bitstream that can be
downloaded to a Xilinx device. Care must be taken to constrain the design correctly,
and the UCF produced by CORE Generator should be used as the basis for the user’s
UCF. See Chapter 9, “Constraining the Core” for more information.

• Simulate the entire design using the demonstration test bench provided in the /test
directory.

• Download the bitstream to a Virtex-5™, Virtex-4, Virtex-II, Virtex-II Pro,
Spartan™-3, Spartan-3E or Spartan-3A device.

Understand Signal Pipelining
Pipeline registers are used in the HDL example design provided with the core only to allow
the core interfaces to be interfaced cleanly to the IOBs on the selected device; these registers
create artificial latency on some inputs and outputs in the example design file. Because a
user design will most likely connect to the core interfaces on the same FPGA fabric, the
pipeline registers will probably not be required in a user design and can be safely removed
if the user plans to add interface registers to their own logic.

Register All I/Os
To simplify timing and increase system performance in an FPGA design, register all I/Os.
All inputs and outputs from the user application should come from, or connect to, a flip-
flop inside the user application. It may not be possible to register the signal on all paths;
however, doing so simplifies timing analysis and makes it easier for the Xilinx tools to
place and route the design.

Recognize Timing Critical Signals
The UCF provided with the core identifies the timing critical signals and the timing
constraints that should be applied.

Use Supported Design Flows
The XST/ISE 9.1i/Mentor ModelSim or Cadence IUS design flow is supported for the
TEMAC core.

Make Only Allowed Modifications
The TEMAC core should not be modified by the user, as they may cause adverse effects on
system timing and protocol compliance. Supported user configurations of the TEMAC
core can only be made by the selecting options from the CORE Generator screen when the
core is generated. For more information, see Chapter 3, “Generating the Core.”

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 39
UG138 August 8, 2007

R

Chapter 5

Using the Client Side Data Path

This chapter provides a detailed description of the client-side data-flow interface. The
definitions and abbreviations used in this chapter are described in Table 5-1.

Receiving Inbound Frames
The client interface is designed for maximum flexibility in matching to a client switching
fabric or network processor interface.

The data pathway is 8 bits wide in both the transmit and receive directions. If the core is
generated with the clock_enable option set to false, each pathway is synchronous to
txcoreclk and rxcoreclk respectively. If the core is generated with the clock_enable
option set to true, each pathway is synchronous to txgmiimiiclk and rxgmiimiiclk.
This gives completely independent full-duplex operation.

Normal Frame Reception

Without Clock Enables

Figure 5-1 shows the timing of a normal inbound frame transfer when the core is generated
without the optional clock enables. The client must be prepared to accept data at any time;
there is no buffering within the MAC to allow for latency in the receive client. Once frame
reception begins, data is transferred on consecutive clock cycles to the receive client until
the frame is complete. The MAC asserts the emacclientrxgoodframe signal to indicate
that the frame was successfully received and that the frame should be analyzed by the
client.

Table 5-1: Abbreviations Used in Timing Diagrams

Abbreviation Definition

DA Destination address; 6 bytes

SA Source address; 6 bytes

L/T Length/type field; 2 bytes

FCS Frame check sequence; 4 bytes

http://www.xilinx.com

40 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Frame parameters (destination address, source address, length/type and optionally FCS)
are supplied on the data bus according to the timing diagram. The abbreviations are
described in Table 5-1.

If the length/type field in the frame has the length interpretation, and this indicates that
the inbound frame has been padded to meet the Ethernet minimum frame size
specification, then this padding will not be passed to the client in the data payload. The
exception to this is in the case where FCS passing is enabled. See "Client-Supplied FCS
Passing" on page 42.

Therefore, when client-supplied FCS passing is disabled, emacclientrxdvld = ‘0’
between frames for the duration of the padding field (if present), the FCS field, carrier
extension (if present), the interframe gap following the frame, and the preamble field of the
next frame. When client-supplied FCS passing is enabled, emacclientrxdvld = ‘0’
between frames for the duration of carrier extension (if present), the interframe gap, and
the preamble field of the following frame.

Figure 5-1: Normal Frame Reception

rxcoreclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 41
UG138 August 8, 2007

Receiving Inbound Frames
R

Using Clock Enables

Figure 5-2 and Figure 5-3 show the timing of the reception of frames when the core is
generated with the optional clock enable circuitry. Here the signals are synchronous to the
rxgmiimiiclk input. At 1 Gbps, the client should hold the clientemacrxenable line
high (Figure 5-2). At slower speeds, the clientemacrxenable line should be toggled on
the rising edge of rxgmiimiiclk. This signal should be used to enable the client receiver
logic. As 4 bits of data are transferred across the MII interface on each rising edge of
rxgmiimiick at 10/100 Mbps, this gives 8 bits of valid data every second
rxgmiimiiclk period.

In the remainder of this section, the timing diagrams are shown for the non-clock enabled
version of the core. The timing of the clock enabled core is identical to the given diagrams
at 1 Gbps with rxgmiimiiclk replacing rxcoreclk and clientemacrxenable held
high. At 10/100 Mbps, the frequency of rxgmiimiiclk is double that of the illustrated
rxcoreclk and the clientemacrxenable signal is toggled on every rising edge of
rxgmiimiiclk to provide the necessary data rate.

Figure 5-2: Normal Frame Reception at 1 Gbps with Optional Clock Enables

Figure 5-3: Normal Frame Reception at 10/100 Mbps with Optional Clock Enables

rxgmiimiiclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T

clientemacrxenable

rxgmiimiiclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T

clientemacrxenable

http://www.xilinx.com

42 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

emacclientrxgoodframe and emacclientrxbadframe Timing
Although Figure 5-1 illustrates the emacclientrxgoodframe signal asserted shortly
after the last valid data on emacclientrxd, this is not always the case. The
emacclientrxgoodframe or emacclientrxbadframe signals are asserted only after
all frame checks are completed. This is after the FCS field has been received (and after
reception of carrier extension, if present).

Therefore, either emacclientrxgoodframe or emacclientrxbadframe is asserted
following frame reception at the beginning of the interframe gap.

Frame Reception with Errors
Figure 5-4 illustrates an unsuccessful frame reception (for example, a fragment frame or a
frame with an incorrect FCS). In this case, the emacclientrxbadframe signal is asserted
to the client at the end of the frame. It is then the responsibility of the client to drop the data
already transferred for this frame.

Client-Supplied FCS Passing
If the MAC core is configured to pass the FCS field to the client (see “Configuration
Registers,” on page 81), it is handled as displayed in Figure 5-5.

In this case, any padding inserted into the frame to meet Ethernet minimum frame length
specifications will be left intact and passed to the client.

Figure 5-4: Frame Reception with Error

rxcoreclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T

xip2144

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 43
UG138 August 8, 2007

Receiving Inbound Frames
R

Even though the FCS is passed up to the client, it is also verified by the MAC core, and
emacclientrxbadframe asserted if the FCS check fails.

VLAN Tagged Frames
The reception of a VLAN tagged frame (if enabled, see “Configuration Registers,” on page
81) can be seen in Figure 5-6. The VLAN frame is passed to the client so that the frame may
be identified as VLAN tagged; this is followed by the Tag Control Information bytes, V1
and V2. More information on the interpretation of these bytes may be found in IEEE 802.3-
2002 standard.

Maximum Permitted Frame Length
The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the core receives a frame which exceeds the maximum
legal length, emacclientrxbadframe will be asserted. When jumbo frame handling is
enabled, frames which are longer than the legal maximum are received in the same way as
shorter frames.

For more information on enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 81.

Figure 5-5: Frame Reception with In-Band FCS Field

rxcoreclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T FCS

xip2145

Figure 5-6: Reception of a VLAN Tagged Frame

rxcoreclk

emacclientrxd[7:0]

emacclientrxdvld

emacclientrxgoodframe

emacclientrxbadframe

DA SA DATAL/T

81 00 V1 V2

VLAN

tag

xip2146

http://www.xilinx.com

44 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Length/Type Field Error Checks

Enabled

Default operation is with the length/type error checking enabled. In this mode, the
following checks are made on all frames received. If either of these checks fail, the frame is
marked as BAD.

A value in the length/type field that is greater than or equal to decimal 46 but less than
decimal 1536 (a Length interpretation) is checked against the actual data length received.

A value in the length/type field that is less than decimal 46 is checked to see that the data
field is padded to exactly 46 bytes (so that the resultant frame is minimum frame size: 64
bytes total in length).

Furthermore, if padding is indicated (the length/type field is less than decimal 46) and
“Client-Supplied FCS Passing” is disabled, then the length value in the length/type field
will be used to deassert emacclientrxdvld after the indicated number of data bytes so
that the padding bytes are removed from the frame.

Disabled

When the length/type error checking is disabled (see "Register Maps" on page 82) and the
length/type field has a length interpretation, the MAC does not check the length value
against the actual data length received. A frame containing only this error is marked as
good. However, if the length/type field is less than decimal 46, the MAC will mark a frame
as bad if it is not the minimum frame size of 64 bytes.

Furthermore, if padding is indicated and “Client-Supplied FCS Passing” is disabled, then
a length value in the length/type field will not be used to deassert emacclientrxdvld.
Instead emacclientrxdvld will be deasserted before the start of the FCS field; in this
way any padding will not be removed from the frame.

Address Filter
If the optional address filter is included in the core, the MAC is able to reject frames that do
not contain a known address in their destination address field. If a frame is rejected, the
emacclientrxdvld signal is not asserted for the duration of the frame. In addition
neither emacclientrxgoodframe or emacclientrxbadframe are asserted at the end
of the frame. The statistics vectors are still output with a valid pulse at the end of the
rejected frame.

If the address filter is not in promiscuous mode, it will reject frames in which the
destination address does not meet any of the following criteria:

• It is equal to the broadcast address defined in the IEEE 802.3-2002 specification.

• It is equal to the pause multicast address defined in the IEEE 802.3-2002 specification.

• The destination address field contains the Pause frame MAC source address specified
in Receiver Configuration Word 0 and Word 1.

• It is equal to the MAC Unicast Address. When the optional Management Interface is
present this is contained in the unicast address configuration registers (Table 8-9 and
Table 8-10). If the Management Interface is not present the unicast address is input on
the tieemacunicastaddr input.

• It matches any of the addresses stored in the MAC address table. The address table is
only present when the MAC contains the optional Management Interface.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 45
UG138 August 8, 2007

Receiving Inbound Frames
R

Receiver Statistics Vector
The statistics for the frame received are contained within the emacclientrxstats
output. The vector is driven synchronously by the receiver clock, rxcoreclk
(rxgmiimiiclk if clock_enables = true) following frame reception. Table 5-2 defines the
bit field for the vector.

All bit fields, with the exception of BYTE_VALID are valid only when the
emacclientrxstatsvld is asserted, as illustrated in Figure 5-7. BYTE_VALID is
significant on every receiver clock cycle.

Figure 5-7: Receiver Statistics Vector Timing

Table 5-2: Bit Definition for the Receiver Statistics Vector

emacclientrx
stats Name Description

27 ADDRESS_MATCH

If the optional address filter is included in
the core, this bit is asserted if the address
of the incoming frame matches one of the
stored or pre-set addresses in the address
filter. If the address filter is omitted from
the core, or is configured in promiscuous
mode, this line is held high.

26 ALIGNMENT_ERROR
Asserted at speeds below 1 Gbps if the
frame contains an odd number of nibbles
and the FCS for the frame is invalid.

25 LENGTH/TYPE Out of
Range

If the length/type field contained a
length value that did not match the
number of MAC client data bytes
received and the length/type field checks
are enabled, then this bit is asserted.

This bit is also asserted if the length/type
field is less than 46, and the frame is not
padded to exactly 64 bytes. This is
independent of whether or not the
length/type field checks are enabled.

rxcoreclk

emacclientrxstats[26:0]

emacclientrxstatsvld

xip2147

http://www.xilinx.com

46 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

24 BAD_OPCODE

Asserted if the previous frame was error-
free and contained the special control
frame identifier in the length/type field,
but contained an opcode that is
unsupported by the MAC (any opcode
other than PAUSE).

23 FLOW_CONTROL_FRAME

Asserted if the previous frame was error-
free, contained the special control frame
identifier in the length/type field,
contained a destination address that
matched either the MAC Control
multicast address or the configured
source address of the MAC, contained the
supported PAUSE opcode, and was acted
upon by the MAC.

22 BYTE_VALID

Asserted if a MAC frame byte
(destination address to FCS inclusive) is
in the process of being received. This is
valid on every clock cycle.

Do not use this as an enable signal to
indicate that data is present on
emacclientrxd[7:0].

21 VLAN_FRAME

Asserted if the previous frame contained
a VLAN identifier in the length/type
field when receiver VLAN operation is
enabled.

20 OUT_OF_BOUNDS

Asserted if the previous frame exceeded
the specified IEEE 802.3-2002 maximum
legal length (see "Maximum Permitted
Frame Length" on page 43). This is only
valid if jumbo frames are disabled.

19 CONTROL_FRAME
Asserted if the previous frame contained
the special control frame identifier in the
length/type field.

18 down to 5 FRAME_LENGTH_COUNT

The length of the previous frame in
number of bytes. The count will stick at
16368 for any jumbo frames larger than
this value.

4 MULTICAST_FRAME
Asserted if the previous frame contained
a multicast address in the destination
address field.

3 BROADCAST_FRAME
Asserted if the previous frame contained
the broadcast address in the destination
address field.

Table 5-2: Bit Definition for the Receiver Statistics Vector (Continued)

emacclientrx
stats Name Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 47
UG138 August 8, 2007

Transmitting Outbound Frames
R

Transmitting Outbound Frames

Normal Frame Transmission

Without Clock Enables

The timing of a normal outbound frame transfer can be seen in Figure 5-8. When the client
wants to transmit a frame, it places the first column of data onto the clientemactxd port
and asserts a ‘1’ onto clientemactxdvld.

When the MAC core has read this first byte of data, it will assert the emacclienttxack
signal; on the next and subsequent rising clock edges, the client must provide the
remainder of the data for the frame.

The end of frame is signalled to the MAC core by taking clientemactxdvld low.

For maximum flexibility in switching applications, the Ethernet frame parameters
(destination address, source address, length/type and optionally FCS) are encoded within
the same data stream that the frame payload is transferred upon, rather than on separate
ports.

The transmitter cannot guarantee that the minimum interframe gap will be output in half-
duplex mode when clock enables are not selected. The gap may be larger than the specified

2 FCS_ERROR

Asserted if the previous frame received
was correctly aligned but had an
incorrect FCS value or the MAC detected
error codes during frame reception.

1 BAD_FRAME1 Asserted if the previous frame received
contained errors.

0 GOOD_FRAME1 Asserted if the previous frame received
was error-free.

1. If the length/type field error checks are disabled, a frame which has an actual data length that does not
match the length/type field value will be marked as a GOOD_FRAME providing no additional errors
were detected. See "Length/Type Field Error Checks" on page 44 for more information.

Table 5-2: Bit Definition for the Receiver Statistics Vector (Continued)

emacclientrx
stats Name Description

http://www.xilinx.com

48 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

minimum of 12 bytes. If the 12-byte minimum is required, the clock enable option should
be selected. This only applies to half-duplex mode.

Using Clock Enables

If the core is generated with the optional clock enable circuitry, the client drives the
clientemactxenable line high at 1000 Mbps and toggles it on every rising edge of
txgmiimiiclk at slower speeds. Figure 5-9 and Figure 5-10 show normal frame
transmission in this mode. The clientemactxenable line should be used to enable the
client transmission circuitry.

Figure 5-8: Normal Frame Transmission Across Client Interface

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATAL/T

emacclienttxcollision

emacclienttxretransmit

Figure 5-9: Normal Frame Transmission at 1000 Mbps with Optional Clock Enables

txgmiimiiclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATAL/T

emacclienttxcollision

emacclienttxretransmit

clientemactxenable

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 49
UG138 August 8, 2007

Transmitting Outbound Frames
R

In the remainder of this section, the timing diagrams are shown for the non-clock enabled
version of the core. The timing of the clock enabled core is identical to the given diagrams
at 1000 Mbps with txgmiimiiclk replacing txcoreclk and clientemactxenable
held high. At 10/100 Mbps, the frequency of txgmiimiiclk is double that of the
illustrated txcoreclk and the clientemactxenable signal is toggled on every rising
edge of txgmiimiiclk to provide the necessary data rate.

Padding
When fewer than 46 bytes of data are supplied by the client to the MAC core, the
transmitter module will add padding up to the minimum frame length. The exception to
this is when the MAC core is configured for client-passed FCS; in this case the client must
also supply the padding to maintain the minimum frame length.

Figure 5-10: Normal Frame Transmission at 10/100 Mbps with
Optional Clock Enables

txgmiimiiclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATAL/T

emacclienttxcollision

emacclienttxretransmit

clientemactxenable

http://www.xilinx.com

50 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Client-Supplied FCS Passing
If the MAC core is configured to have the FCS field passed in by the client, the transmission
timing is as depicted in Figure 5-11. In this case, it is the responsibility of the client to
ensure that the frame meets the Ethernet minimum frame length requirements; the MAC
core will not perform any padding of the payload.

Client Underrun
Figure 5-12 shows the timing of an aborted transfer. This can occur, for example, if a FIFO
connected to the client interface empties before a frame is completed. When the client
asserts clientemactxunderrun during a frame transmission, the MAC core inserts an
error code to corrupt the current frame and then falls back to idle transmission. It is the
responsibility of the client to re-queue the aborted frame for transmission. To error the
frame, the clientemactxunderrun signal may be asserted during the data transmission
or up to 1 valid clock cycle after clientemactxdvld goes low.

When an underrun occurs, clientemactxdvld may be asserted on the clock cycle after
the clientemactxunderrun assertion to request a new transmission.

Figure 5-11: Frame Transmission with Client-supplied FCS

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATA FCSL/T

emacclienttxcollision

emacclienttxretransmit

xip2134

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 51
UG138 August 8, 2007

Transmitting Outbound Frames
R

Back-to-Back Transfers
Figure 5-13 shows the MAC client immediately ready to transmit a second frame of data
following completion of its first frame. In this figure, the end of the first frame is shown on
the left. On the clock cycle immediately following the final byte of the first frame,
clientemactxdvld is taken low by the client, and is taken high one clock cycle later to
indicate that the first byte of the destination address of the second frame is on
clientemactxd awaiting transmission.

When the MAC core is ready to accept data, emacclienttxack is asserted and the
transmission continues in the same manner as in the case of the single frame. The MAC
core will defer the assertion of emacclienttxack appropriately to comply with inter-
packet gap requirements and flow control requests.

If the MAC core is operating at 1 Gbps in half-duplex mode, the timing shown in
Figure 5-13 is required to take advantage of frame bursting; the MAC core is only
guaranteed to retain control of the medium if the clientemactxdvld signal is low for a
single clock cycle. For more information on frame bursting, see IEEE 802.3-2002.

Figure 5-12: Frame Transmission with Underrun

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATAL/T

emacclienttxcollision

emacclienttxretransmit

xip2135

http://www.xilinx.com

52 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

VLAN Tagged Frames
Transmission of a VLAN tagged frame (if enabled) can be seen in Figure 5-14. The
handshaking signals across the interface do not change; however, the VLAN type tag 81-00
must be supplied by the client to signify that the frame is VLAN tagged. The client also
supplies the two bytes of Tag Control Information, V1 and V2, at the appropriate times in
the data stream. More information on the contents of these two bytes can be found in IEEE
802.3-2002.

Figure 5-13: Back-to-Back Frame Transmission

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

emacclienttxcollision

emacclienttxretransmit

xip2136

Figure 5-14: Transmission of a VLAN Tagged Frame

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

DA SA DATAL/TVLAN

tag

81 00V1V2

emacclienttxcollision

emacclienttxretransmit

xip2137

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 53
UG138 August 8, 2007

Transmitting Outbound Frames
R

Maximum Permitted Frame Length
The maximum legal length of a frame specified in IEEE 802.3-2002 is 1518 bytes for non-
VLAN tagged frames. VLAN tagged frames may be extended to 1522 bytes. When jumbo
frame handling is disabled and the client attempts to transmit a frame which exceeds the
maximum legal length, the MAC core will insert an error code to corrupt the current frame
and the frame will be truncated to the maximum legal length. When jumbo frame handling
is enabled, frames which are longer than the legal maximum are transmitted error-free.

For more information on enabling and disabling jumbo frame handling, see
“Configuration Registers,” on page 81.

Frame Collisions: Half-Duplex Operation Only
In half-duplex Ethernet operation, collisions occur on the medium as a matter of course;
this is how the arbitration algorithm is fulfilled. In the case of a collision, the MAC core
signals to the client that data may need to be resupplied as follows.

If there is a collision, the emacclienttxcollision signal will be set to ‘1’ by the MAC
core. If a frame is in progress, the client must abort the transfer and take
clientemactxdvld to ‘0.’

If the emacclienttxretransmit signal is ‘1’ in the same clock cycle that the
emacclienttxcollision signal is ‘1,’ the client must resubmit the previous frame to
the MAC core for retransmission; clientemactxdvld must be asserted to the MAC core
within 8 clock cycles of the emacclienttxretransmit signal in order to meet Ethernet
timing requirements. See Figure 5-15.

If the emacclienttxretransmit signal is ‘0’ in the same clock cycle that the
emacclienttxcollision signal is ‘1,’ the number of retries for this frame has exceeded
the Ethernet specification or the collision has been classed as late, and the frame should be
dropped by the client. The client can then make any new frame available to the MAC for
transmission without timing restriction. See Figure 5-16.

Figure 5-15: Collision Handling: Frame Retransmission Required

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

emacclienttxcollision

emacclienttxretransmit

8 clocks max.

xip2138

http://www.xilinx.com

54 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

Interframe Gap Adjustment: Full-Duplex Mode Only
A configuration bit in the transmitter control register (see “Configuration Registers,” on
page 81) allows the user to control the length of the interframe gap transmitted by the
MAC on the physical interface. If this function is selected, the MAC exerts back pressure on
the client interface to delay the transmission of the next frame until the requested number
of idle cycles has elapsed. The number of idle cycles is controlled by the value on the
clientemactxifgdelay port seen at the start of frame transmission on the client
interface. Figure 5-17 shows the MAC operating in this mode.

The transmitter will never separate frames by less than the minimum interframe gap
specified in the IEEE 802.3-2002. This corresponds to 12 transmit clock cycles on the
GMMI/MII interface. The value on the clientemactxifgdelay port must be larger
than 12 to have an effect.

Figure 5-16: Collision Handling: No Frame Retransmission Required

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

clientemactxunderrun

emacclienttxcollision

emacclienttxretransmit

xip2139

Figure 5-17: Interframe Gap Adjustment

txcoreclk

clientemactxd[7:0]

clientemactxdvld

emacclienttxack

DA SA

clientemactxifgdelay

IFG ADJUST VALUE

0x0D

ack response from MAC delayed
to allow requested number of Idles
to be inserted in-between frames

DA

Next IFG ADJUST VALUE

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 55
UG138 August 8, 2007

Transmitting Outbound Frames
R

Transmitter Statistics Vector
The statistics for the frame transmitted are contained within the emacclienttxstats
output. The vector is driven synchronously by the transmitter clock following frame
transmission. The bit field definition for the Vector is defined in Table 5-3.

All bit fields, with the exception of BYTE_VALID are valid only when the
emacclienttxstatsvld is asserted, as illustrated in Figure 5-18. BYTE_VALID is
significant on every transmitter clock cycle.

emacclienttxstats bits 28 down to 20 inclusive are for half-duplex only and will be set
to logic 0 when operating in full-duplex mode.

Figure 5-18: Transmitter Statistics Vector Timing

Table 5-3: Bit Definition for the Transmitter Statistics Vector

emacclienttxst
ats Name Description

31 PAUSE_FRAME_TRANSMITTED Asserted if the previous frame
was a pause frame that the
MAC itself initiated in response
to a clientemacpausereq
assertion.

30 BYTE_VALID Asserted if a MAC frame byte
(DA to FCS inclusive) is in the
process of being transmitted.
This is valid on every clock
cycle.

Do not use this as an enable
signal to indicate that data is
present on emacphytxd[7:0].

29 Reserved Returns logic 0.

28 down to 25 TX_ATTEMPTS[3:0] The number of attempts that
have been made to transmit the
previous frame. This is a 4-bit
number: 0 should be
interpreted as 1 attempt; 1 as 2
attempts, up until 15 as 16
attempts.

txcoreclk

emacclienttxstats[31:0]

emacclienttxstatsvld

xip2141

http://www.xilinx.com

56 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 5: Using the Client Side Data Path
R

24 Reserved Returns logic 0.

23 EXCESSIVE_COLLISION Asserted if a collision has been
detected on each of the last 16
attempts to transmit the
previous frame.

22 LATE_COLLISION Asserted if a late collision
occurred during frame
transmission.

21 EXCESSIVE_DEFERRAL Asserted if the previous frame
was deferred for an excessive
amount of time as defined by
the constant “maxDeferTime”
in IEEE 802.3-2002.

20 TX_DEFERRED Asserted if transmission of the
frame was deferred.

19 VLAN_FRAME Asserted if the previous frame
contained a VLAN identifier in
the length/type field when
transmitter VLAN operation is
enabled.

18 down to 5 FRAME_LENGTH_COUNT The length of the previous
frame in number of bytes. The
count will stick at 16368 for any
jumbo frames larger than this
value.

4 CONTROL_FRAME Asserted if the previous frame
had the special MAC Control
Type code 88-08 in the
length/type field.

3 UNDERRUN_FRAME Asserted if the previous frame
contained an underrun error.

2 MULTICAST_FRAME Asserted if the previous frame
contained a multicast address in
the destination address field.

1 BROADCAST_FRAME Asserted if the previous frame
contained a broadcast address
in the destination address field.

0 SUCCESSFUL_FRAME Asserted if the previous frame
was transmitted without error.

Table 5-3: Bit Definition for the Transmitter Statistics Vector (Continued)

emacclienttxst
ats Name Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 57
UG138 August 8, 2007

R

Chapter 6

Using Flow Control

This chapter describes the operation of the flow control logic of the TEMAC core. The flow
control block is designed to clause 31 of the IEEE 802.3-2002 standard. The MAC may be
configured to transmit pause requests and to act on their reception; these modes of
operation can be independently enabled or disabled. (See "Configuration Registers" on
page 81.)

Overview of Flow Control

Flow Control Requirement

Figure 6-1: The Requirement for Flow Control

MAC

FIFO

Client Logic

Tx

Rx

MAC

Tx

Rx

125MHz -100ppm

125MHz +100ppm

A
pp

lic
at

io
n

http://www.xilinx.com

58 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 6: Using Flow Control
R

Figure 6-1 illustrates the requirement for Flow Control at 1 Gbps. The MAC on the right
side of the figure has a reference clock slightly faster than the nominal 125 MHz. The MAC
on the left side of the figure has a reference clock slightly slower than the nominal 125
MHz. This results in the MAC on the left side of the figure not being able to match the full
line rate of the MAC on the right side (due to clock tolerances). The MAC at the left is
illustrated as performing a loopback implementation, which results in the FIFO filling up
over time. Without Flow Control, this FIFO will eventually fill and overflow, resulting in
the corruption or loss of ethernet frames. Flow Control is one solution to this problem.

Flow Control Basics
A MAC may transmit a Pause Control frame to request that its link partner cease
transmission for a specific period of time. For example, the left MAC in Figure 6-1 may
initiate a pause request when its client FIFO (illustrated) reaches a nearly full state.

A MAC should respond to received Pause Control frames by ceasing transmission of
frames for the period of time defined in the received pause control frame. For example, the
right MAC of Figure 6-1 may cease transmission after receiving the Pause Control frame
transmitted by the left MAC. In a well designed system, the right MAC ceases
transmission before the client FIFO of the left MAC overflows to provide time to empty the
FIFO to a safe level before resuming normal operation. This practice safeguards the system
against FIFO overflow conditions and frame loss.

Pause Control Frames
Control frames are a special type of ethernet frame defined in clause 31 of the IEEE 802.3
standard. Control frames are identified from other frame types by a defined value placed
into the length/type field (the MAC Control Type code). Figure 6-2 illustrates control
frame format.

Figure 6-2: MAC Control Frame Format

DESTINATION
ADDRESS

SOURCE
ADDRESS

LENGTH/TYPE

MAC CONTROL
OPCODE

MAC CONTROL
PARAMETERS

RESERVED
(transmitted as zeroes)

6 OCTETS

6 OCTETS

2 OCTETS

2 OCTETS

(minFrameSize - 160) /8
OCTETS

OCTETS WITIHIN
FRAME TRANSMITTED
TOP-TO-BOTTOM

LSB MSB

BITS WITHIN
FRAME TRANSMITTED

LEFT-TO-RIGHT

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 59
UG138 August 8, 2007

Flow Control Operation of the TEMAC
R

A Pause Control frame is a special type of Control frame, identified by a defined value
placed into the MAC Control opcode field.

Note: MAC Control OPCODES other than for Pause (Flow Control) frames have recently been
defined for Ethernet Passive Optical Networks.

The MAC Control Parameter field of the Pause Control frame contains a 16-bit field which
contains a binary value directly relating to the duration of the pause. This defines the
number of pause_quantum (512 bit times of the particular implementation). At 1 Gbps, a
single pause_quantum corresponds to 512 ns. At 100 Mbps, a single pause_quantum
corresponds to 5120 ns, and at 10 Mbps, a single pause_quantum corresponds to 51200 ns.

Flow Control Operation of the TEMAC

Transmitting a Pause Control Frame

Core-initiated Pause Request

If the TEMAC core is configured to support transmit flow control, the client may initiate a
flow control frame by asserting clientemacpausereq while the pause value is on the
clientemacpauseval bus. If the core is generated with the clock_enable option set to
false, these signals are synchronous to txcoreclk. Figure 6-3 illustrates this timing.

If the MAC core is generated with the clock_enable option set to true, the signals are
synchronous to txgmiimiiclk. Figure 6-4 illustrates this timing.

Figure 6-3: Pause Request Timing

Figure 6-4: Pause Request Timing with Clock Enables

txcoreclk

clientemacpauseval[15:0]

clientemacpausereq

txgmiimiiclk

clientemacpauseval[15:0]

clientemacpausereq

clientemactxenable

http://www.xilinx.com

60 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 6: Using Flow Control
R

This action causes the core to construct and transmit a Pause Control frame on the link
with the following MAC Control frame parameters (see Figure 6-2):

• The destination address used is an IEEE 802.3 globally assigned multicast address
(which any Flow Control capable MAC will respond to).

• The source address used is the configurable Pause Frame MAC Address (see
"Configuration Registers" on page 81).

• The value sampled from the clientemacpauseval[15:0] port at the time of the
clientemacpausereq assertion will be encoded into the MAC Control Parameter
field to select the duration of the pause (in units of pause_quantum).

If the transmitter is currently inactive at the time of the pause request, this Pause Control
frame is transmitted immediately. If the transmitter is currently busy, the current frame
being transmitted is allowed to complete; the Pause Control frame will then follow in
preference to any pending client supplied frame.

A Pause Control frame initiated by this method will be transmitted even if the transmitter
itself has ceased transmission in response to receiving an inbound pause request.

Note: Only a single pause control frame request is stored by the transmitter. If the
clientemacpausereq signal is asserted numerous times in a short time period (before the
control pause frame transmission has had a chance to begin), only a single pause control frame will
be transmitted. The clientemacpauseval[15:0] value used will be the most recent value
sampled.

Client-initiated Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core. Any type of Control frame can be
transmitted through the core via the client interface using the same transmission
procedure as a standard ethernet frame (see "Transmitting Outbound Frames" on page 47).

Receiving a Pause Control Frame

Core-initiated Response to a Pause Request

An error free Control frame is a received frame matching the format of Figure 6-2. It must
pass all standard receiver frame checks (e.g. FCS field checking); in addition, the control
frame received must be exactly 64-bytes in length (from destination address through to the
FCS field inclusive). This is minimum legal ethernet MAC frame size and the defined size
for control frames.

Any Control frame received that does not conform to these checks contains an error, and it
is passed to the receiver client with the emacclientrxbadframe signal asserted.

Pause Frame Reception Disabled

When pause control reception is disabled, an error free control frame is received through
the client interface with the emacclientrxgoodframe signal asserted. In this way, the
frame is passed to the client logic for interpretation (see "Client-initiated Response to a
Pause Request" on page 61).

Pause Frame Reception Enabled

When pause control reception is enabled and an error-free frame is received by the MAC
core, the following frame decoding functions are performed:

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 61
UG138 August 8, 2007

Flow Control Implementation Example
R

1. The destination address field is matched against the IEEE 802.3 globally assigned
multicast address or the configurable Pause Frame MAC Address (see "Configuration
Registers" on page 81).

2. The length/type field is matched against the MAC Control Type code.

3. The opcode field contents are matched against the PAUSE opcode.

If any of the previously listed checks are false, the frame is ignored by the Flow Control
logic and passed up to the client logic for interpretation by marking it with
emacclientrxgoodframe asserted. It is then the responsibility of the MAC client logic
to decode, act on (if required) and drop this control frame.

If all the previously listed checks are true, the 16-bit binary value in the MAC control
parameters field of the control frame is then used to inhibit transmitter operation for the
required number of pause_quantum. This inhibit is implemented by delaying the assertion
of clientemactxack at the transmitter client interface until the requested pause
duration has expired. Because the received pause frame has been acted upon, it is passed to
the client with emacclientrxbadframe asserted to indicate to the client that can now be
dropped.

Note: Any frame in which the length/type field contains the MAC Control Type in the length/type
field should be dropped by the receiver client logic. All Control frames are indicated by
emacclientrxstats bit 19 (see "Receiver Statistics Vector" on page 45).

Client-initiated Response to a Pause Request

For maximum flexibility, flow control logic can be disabled in the core and alternatively
implemented in the client logic connected to the core. Any type of error free Control frame
will then be passed through the core with the emacclientrxgoodframe signal asserted.
In this way, the frame is passed to the client for interpretation. It is then the responsibility
of the client to drop this control frame and to act on it by ceasing transmission through the
core, if applicable.

Flow Control Implementation Example
This explanation is intended to describe a simple (but crude) example of a Flow Control
implementation to introduce the concept.

Consider the system illustrated in Figure 6-1. To summarize the example, the MAC on the
left hand side of the figure cannot match the full line rate of the right hand MAC due to
clock tolerances. Over time, the FIFO illustrated will fill and overflow. The aim is to
implement a Flow Control method which will, over a long time period, reduce the full line
rate of the right hand MAC to average that of the lesser full line rate capability of the left
hand MAC.

Method

1. Choose a FIFO nearly full to occupancy threshold (7/8 occupancy is used in this
description). When the occupancy of the FIFO exceeds this occupancy, initiate a single
pause control frame with 0xFFFF used as the pause_quantum duration (0xFFFF is
placed on clientemacpauseval[15:0]). This is the maximum pause duration.
This will cause the right hand MAC to cease transmission and the FIFO of the left hand
MAC will start to empty.

2. Choose a second FIFO occupancy threshold (3/4 is used in this description). When the
occupancy of the FIFO falls below this occupancy, initiate a second pause control
frame with 0x0000 used as the pause_quantum duration (0x0000 is placed on

http://www.xilinx.com

62 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 6: Using Flow Control
R

clientemacpauseval[15:0]). This indicates a zero pause duration, and upon
receiving this pause control frame, the right hand MAC will immediately resume
transmission (it does not wait for the original requested pause duration to expire). This
pause control frame can therefore be considered a “pause cancel” command.

Operation

Figure 6-5 illustrates the FIFO occupancy over time.

1. The average FIFO occupancy of the left hand MAC gradually increases over time due
to the clock tolerances. At point A, the occupancy has reached the threshold of 7/8
occupancy. This triggers the maximum duration pause control frame request.

2. Upon receiving the pause control frame, the right hand MAC ceases transmission.

3. After the right hand MAC ceases transmission, the occupancy of the FIFO attached to
the left hand MAC rapidly empties. The occupancy falls to the second threshold of 3/4
occupancy at point B. This triggers the zero duration pause control frame request (the
pause cancel command).

4. Upon receiving this second pause control frame, the right hand MAC resumes
transmission.

5. Normal operation resumes and the FIFO occupancy again gradually increases over
time. At point C, this cycle of Flow Control repeats.

Figure 6-5: Flow Control Implementation Triggered from FIFO Occupancy

time

FI
FO

 o
cc

u
p

an
cy

3/4

7/8

5/8

1/2

Full

A

B

C

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 63
UG138 August 8, 2007

R

Chapter 7

Using the Physical Side Interface

The HDL example design supplied with the core implements an external GMII/MII or
RGMII interface. These are typically attached to an external PHY device. For more
information about the example design files, see the Tri-Mode Ethernet MAC Getting Started
Guide.

Implementing External GMII

GMII/MII Transmit Interface

Virtex-II Pro, Virtex-II, Spartan-3, Spartan-3E, and Spartan-3A Devices

Figure 7-1 shows a block diagram of the GMII/MII transmit interface. The signal names in
the figure match those in the HDL example design. There are two transmit clock inputs to
the chip:

• gtx_clk is a user-supplied 125 MHz clock. This is used to derive the core and
gmii/mii clocks when running at 1 Gbps.

• mii_tx_clk is provided by the PHY and runs at 25 MHz when the device is running
at 100 Mbps and at 2.5 MHz when it is operating at 10 Mbps.

The clock generator module takes the clock inputs and generates
tx_gmii_mii_clk_int. This runs at 125 MHz, 25 MHz, or 2.5 MHz depending on the
MAC operating speed. This is used to drive the GMII/MII logic in the example design and
the core. See "Clocking" on page 117 for more information on the clock generator circuit.

Figure 7-1 shows that the output transmitter signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the transmitter clock is also
shown: this uses an IOB output double-data-rate (DDR) register so that the clock signal
produced incurs exactly the same delay as the data and control signals. This clock signal,
gmii_tx_clk, is inverted with respect to tx_gmii_mii_clk_int so that the rising
edge of gmii_tx_clk will occur in the center of the data valid window, therefore
maximizing setup and hold times across the interface.

The half-duplex signals gmii_col and gmii_crs are asynchronous to the transmit clock.
These are routed through PADs and IOBs and then input to the core.

http://www.xilinx.com

64 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Figure 7-1: External GMII/MII Transmit Interface

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_ibufg

gmii_tx_clk
OBUF

FDDRRSE

IOB LOGIC

OPAD

D Q

D Q

gmii_tx_clk_obuf

'0'

'1'

D Q

gmii_txd[0]
OBUF

OPAD
gmii_txd_reg[0]

D Q

gmii_tx_en
OBUF

OPAD
gmii_tx_en_reg

D Q

gmii_tx_er
OBUF

OPAD
gmii_tx_er_reg

Tri-Mode Ethernet MAC LogiCORE

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

emacphytxd[0]

emacphytxen

emacphytxer

IPAD

mii_tx_clk
IBUFG

mii_tx_clk_ibufg

Clock Generation

txgmiimiiclk

tx_gmii_mii_clk_int

MII_TX_CLK

CLK

TX_GMII_MII_CLK

IPAD

IPAD

gmii_col

gmii_crs

gmii_col_int

gmii_crs_int

phyemaccolphyemaccrs

IBUF

IBUF

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 65
UG138 August 8, 2007

Implementing External GMII
R

Virtex-4 and Virtex-5 Devices

Figure 7-2 illustrates how to implement a GMII/MII transmit interface when either a
Virtex-4 or Virtex-5 device is selected. An ODDR component is used instead of an
FDDRRSE component to generate a transmitter clock. This is designed so that the rising
edge of gmii_tx_clk will occur in the center of the data valid window, therefore
maximizing setup and hold times across the interface.

Figure 7-2: External GMII/MII Transmit Interface in a Virtex-4/Virtex-5 Device

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_ibufg gmii_tx_clk

OBUF

ODDR

IOB LOGIC

OPAD

D2

gmii_tx_clk_obuf

'0'

D Q

gmii_txd[0]
OBUF

OPAD
gmii_txd_reg[0]

D Q

gmii_tx_en
OBUF

OPAD
gmii_tx_en_reg

D Q

gmii_tx_er
OBUF

OPAD
gmii_tx_er_reg

Tri-Mode Ethernet MAC LogiCORE

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

emacphytxd[0]

emacphytxen

emacphytxer

IPAD
mii_tx_clk

IBUFG

mii_tx_clk_ibufg

Clock Generation

txgmiimiiclk

tx_gmii_mii_clk_int

MII_TX_CLK

CLK

TX_GMII_MII_CLK

IPAD

IPAD

gmii_col

gmii_crs

gmii_col_int

gmii_crs_int

phyemaccolphyemaccrs

IBUF

IBUF

D1'1'

http://www.xilinx.com

66 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

GMII/MII Receive Interface

Virtex-II and Virtex-II Pro Devices

Figure 7-3 shows how to implement an external GMII/MII receiver interface.

The clock generator module derives rx_gmii_mii_clk from the gmii_rx_clk input
from the PHY. This runs at 125 MHz, 25 MHz or 2.5 MHz, depending on the speed, and is
used to clock the GMII/MII logic in the HDL example design and the core. For more
information on the clock generator module, see "Clocking" on page 117.

Figure 7-3 shows that the input receiver signals are registered in device IOBs before
driving them to the device pads.

Spartan-3, Spartan-3E, and Spartan-3A Devices

The logic described in the previous section does not meet the input setup and hold
requirements for GMII with Spartan-3, Spartan-3E, and Spartan-3A devices. In these
devices, a DCM must be used on the gmii_rx_clk clock path as illustrated in Figure 7-4.
This is performed by the example design delivered with the core (all signal names and
logic match).

Phase shifting may then be applied to the DCM to fine-tune the setup and hold times at the
GMII IOB input flip-flops; fixed-phase shift is applied to the DCM via the example UCF for
the example design. For more information, see “Calculating the DCM Phase Shift” in
Appendix D.

Figure 7-3: External GMII/MII Receive Interface

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD
gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

phyemacrxd[0]

phyemacrxdv

phyemacrxer

DQ

DQ

Clock Generation

RX_CLK

RX_GMII_MII_CLK

rx_gmii_mii_clk_int

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 67
UG138 August 8, 2007

Implementing External GMII
R

As there are only 8 BUFGMUXes on the Spartan-3 device, the clock multiplexing for the
txgmiimiiclk is performed in the FPGA fabric (see Figure 10-15). The Spartan-3 device
should always be reset after a speed change in order to avoid the core entering an
undefined state due to a glitch on the txgmiimiiclk signal.

Figure 7-4: GMII/MII Receive Logic for Spartan-3, Spartan-3E,
and Spartan-3A Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD
gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

IOB LOGIC

DCM

CLKINCLK0

FB

Clock Generation

speedis10100

BUFGMUX

I1

I0

http://www.xilinx.com

68 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Virtex-4 Devices

The logic described in "GMII/MII Receive Interface" on page 66 does not meet the input
setup and hold requirements for GMII with Virtex-4 devices. An IDELAY component may
be used on the clock, data and control paths, as illustrated in Figure 7-5. These can be used
to either shift the input clock gmii_rx_clk or shift the data and control signals to meet
the setup and hold requirements and to allow for any bus skew across the data and control
inputs. The IDELAY components are used in fixed delay mode, where the attribute
IOBDELAY_VALUE determines the tap delay value. An IDELAYCTRL primitive must be
instantiated for this mode of operation. See the Virtex-4 User Guide for more information
about using the IDELAYCTRL and IDELAY components.

Figure 7-5: GMII/MII Receive Logic for Virtex-4 Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

IDELAY

IDELAY

IDELAY

IDELAY

Clock Generation

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 69
UG138 August 8, 2007

Implementing External GMII
R

Virtex-5 Devices

The logic described in "GMII/MII Receive Interface" on page 66 does not meet the input
setup and hold requirements for GMII with Virtex-5 devices. An IODELAY component
may be used on the data and control signals, as illustrated in Figure 7-6. These can be used
to either shift the input clock gmii_rx_clk or the data and control signals to meet the
setup and hold requirements and to allow for any bus skew across the data and control
inputs.The IODELAY components are used in fixed delay mode, where the attribute
IDELAY_VALUE determines the tap delay value. An IDELAYCTRL primitive must be
instantiated for this mode of operation. See the Virtex-5 User Guide for more information
about using the IDELAYCTRL and IODELAY components.

Figure 7-6: GMII/MII Receive Logic for Virtex-5 Devices

gmii_rx_clk
IBUFG

IOB LOGIC

IPAD

gmii_rx_clk_ibufg

gmii_rxd[0]
IBUF

IPAD
gmii_rxd_ibuf[0]

DQ

gmii_rx_dv
IBUF

IPAD
gmii_rx_dv_ibuf

gmii_rx_er
IBUF

IPAD
gmii_rx_er_ibuf

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

DQ

DQ

BUFG

IODELAY

IODELAY

IODELAY

IODELAY

Clock Generation

http://www.xilinx.com

70 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Implementing External RGMII

RGMII Transmit Interface

Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices

The RGMII interface is designed to the RGMII V2.0 specification. Figure 7-7 shows a block
diagram of the RGMII transmit interface in a Virtex-II device. The signal names in the
figure match those in the HDL example design. There is one transmit clock input to the
chip, gtx_clk. This is a 125 MHz clock that is used to generate the RGMII transmit clock
output at all speeds. For more information on the clock generator module, see "Clocking"
on page 117.

The output transmitter signals are registered on tx_rgmii_clk_int, in the FPGA fabric,
including the encoded rgmii_tx_ctl_int signal, derived from the logical xor of
gmii_tx_en_int and gmii_tx_er_int. The signals to be transmitted on the rgmii
falling clock edge are then registered on the falling edge clock. This ensures that the data is
presented to the double data rate registers at the correct time. Finally the transmitter
signals are registered by an IOB output double-data-rate (DDR) register before being
driven to output pads.

Figure 7-7: External RGMII Transmit Interface

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg

tx_rgmii_clk_int

rgmii_txc

IOB LOGIC

OBUF

FDDRRSE

OPAD

D Q

D Q

rgmii_txc_obuf

'1'

'0'

Tri-Mode Ethernet MAC LogiCORE

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

txgmiimiiclk emacphytxd[0]

emacphytxen

emacphytxer

IOB LOGIC

D Q

OBUF

FDDRRSE

OPAD

D Q

D QD Q

D Q

D Q

OBUF

FDDRRSE

OPAD

D Q

D QD Q

D Q

emacphytxd[4]
gmii_txd_int[4]

rgmii_txd[0]

rgmii_tx_ctl

tx_rgmii_clk90_int

Clock Generation

TX_GMII_MII_CLK90

TX_GMII_MII_CLK

CLK

SPEED_IS_10_100

1
0

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 71
UG138 August 8, 2007

Implementing External RGMII
R

The logic required to forward the transmitter clock is also shown: this uses an IOB output
double-data-rate (DDR) register so that the clock signal produced incur exactly the same
delay as the data and control signals. At 1 Gbps this clock signal, tx_rgmii_clk90_int,
is phase shifted by 90 degrees in the clock generator module with respect to
tx_rgmii_clk_int, so that the rising edge of rgmii_txc will occur in the center of the
data valid window. This maximizes setup and hold times across the interface, as specified
in the Reduced Gigabit Media Independent interface (RGMII) Version 2.0 specification.

Virtex-4 Devices

Figure 7-8 illustrates how to use the physical transmitter interface of the core to create an
external RGMII in a Virtex-4 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is chosen.

Figure 7-8 shows that the output transmitter signals are registered in the IOBs in ODDR
components. These components convert the input signals into one double data rate signal.
These signals are then output through OBUFs before being driven to output pads.

The logic required to forward the transmitter clock is also shown. This uses an ODDR
register so that the clock signal produced incur exactly the same delay as the data and
control signals. At 1 Gbps this clock signal, tx_rgmii_clk90_int, is phase shifted by
90 degrees in the clock generator module with respect to tx_rgmii_clk_int, so that
the rising edge of rgmii_txc will occur in the center of the data valid window. This

Figure 7-8: External RGMII Transmit Interface in a Virtex-4 Device

BUFG

tx_rgmii_clk_int

IOB LOGIC

'1'

'0'

Tri-Mode Ethernet MAC LogiCORE

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

txgmiimiiclk

emacphytxd[0]

emacphytxen

emacphytxer

tx_rgmii_clk90_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

OBUF

ODDR

OPAD

D1

Q
rgmii_txd_obuf[0]

D2

C

rgmii_tx_ctl
OBUF

ODDR

OPAD

D1

Q
rgmii_tx_ctl_obuf

D2

C

rgmii_txc
OBUF

ODDR

OPAD

D1

Q
rgmii_txc_obuf

D2

C

gmii_txd_int[4]
emacphytxd[4]

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg

Clock Generation

TX_GMII_MII_CLK90

TX_GMII_MII_CLK

CLK

I0

I1

speed_is_10_100_int

http://www.xilinx.com

72 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

maximizes setup and hold times across the interface, as specified in the Reduced Gigabit
Media Independent interface (RGMII) Version 2.0 specification.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 73
UG138 August 8, 2007

Implementing External RGMII
R

Virtex-5 Devices

The example design provided for a Virtex-5 device is significantly different from the other
families, as it has been designed to use new architecture features in order to reduce the
number of global clocking resources required. Figure 7-9 shows how an external RGMII
physical interface has been created for a Virtex-5 device.

At 1 Gbps the clock signal, rgmii_tx_odelay, is phase shifted by 90 degrees with
respect to tx_clk_int by the IODELAY component, so that the rising edge of
rgmii_txc will occur in the center of the data valid window. This will maximize the
setup and hold times across the interface, as specified in the Reduced Gigabit Media
Independent interface (RGMII) Version 2.0 specification. The IODELAY component is
used in fixed delay mode, where the attribute ODELAY_VALUE determines the tap delay
value. An IDELAYCTRL primitive must be instantiated for this mode of operation. Refer to
the Virtex-5 User Guide for more information on the use of IDELAYCTRL and IODELAY
components.

For 100 Mbps and 10 Mbps, the clock signal rgmii_tx_odelay is inverted with respect to
tx_clk_int so that the rising edge of the clock is approximately in the middle of the data
window.

The RGMII data/control signals are routed through IODELAY components with an
ODELAY_VALUE of zero to provide similar path delays to that of the clock signal.

Figure 7-9: External RGMII Transmit Interface in a Virtex-5 Device

BUFG

IOB LOGIC

Tri-Mode Ethernet MAC LogiCORE
gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

txgmiimiiclk

emacphytxd[0]

emacphytxen

emacphytxer

tx_rgmii_clk_int

IOB LOGIC

rgmii_txd[0]

IOB LOGIC

OBUF

ODDR

OPAD

D1

Q

rgmii_txd_odelay[0]
D2

C

rgmii_tx_ctl
OBUF

ODDR

OPAD

D1

Q

rgmii_tx_ctl_odelay
D2

C

rgmii_txc
OBUF

ODDR

OPAD

D1

Q
rgmii_txc_odelay

D2

C

gmii_txd_int[4]
emacphytxd[4]

IPAD

IBUFG

IOB LOGIC

gtx_clk

gtx_clk_ibufg

Clock Generation

TX_GMII_MII_CLK

CLK

I0

I1

speedis10100

I0

I1

speedis10100

'1'

'0'

I0

I1

'0'

'1'

ODELAY

ODELAY

ODELAY

http://www.xilinx.com

74 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

RGMII Receiver Interface

Virtex-II Pro, Virtex-II, Spartan-3, and Spartan-3A Devices

Figure 7-10 shows a block diagram of the RGMII receiver interface in a Virtex-II device.
The input receiver signals are registered in device IOBs on rising and falling edges of
gmii_rx_clk_bufg. The signals are then registered inside the FPGA fabric before a final
register stage to synchronize signals to the rising edge clock. In order to achieve the
required setup and hold times across the interface, the clock generator uses a DCM with a
phase shift to adjust the clock relative to the data. See "Clocking" on page 117 and
“Calculating the DCM Phase Shift,” on page 145.

Virtex-4 Devices

Figure 7-11 illustrates how to use the physical receiver interface of the core to create an
external RGMII in a Virtex-4 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is selected.

Figure 7-11 shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_reg signal is derived in the FPGA fabric from the
outputs of the control IDDR component.

IDELAY components can be used to phase-shift the input RGMII clock, data and control
signals to meet the setup and hold margins. The IDELAY components are used in fixed
delay mode, where the attribute IOBDELAY_VALUE determines the tap delay value. An

Figure 7-10: External RGMII Receive Interface

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

rgmii_rxd[0]
IBUF

IPAD
rgmii_rxd_ibuf[0]

DQ

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_reg[0]

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

phyemacrxd[0]

phyemacrxdv

phyemacrxer

IOB LOGIC

rx_rgmii_clk_int

DQDQ

rgmii_rxd_ddr[0]rgmii_rxd_reg[0]

DQDQDQ

rgmii_rxd_ddr[4]rgmii_rxd_reg[4]

gmii_rxd_reg[4]
phyemacrxd[4]

rgmii_rx_ctl
IBUF

IPAD
rgmii_rx_ctl_ibuf

DQDQDQ

rgmii_rx_dv_ddrrgmii_rx_dv_reg

DQDQDQ

rgmii_rx_ctl_ddrrgmii_rx_ctl_reg

Clock Generation

RX_CLK

RX_GMII_MII_CLK

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 75
UG138 August 8, 2007

Implementing External RGMII
R

IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-4
User Guide for more information about using the IDELAYCTRL and IDELAY components.

Virtex-5 Devices

Figure 7-12 illustrates how to use the physical receiver interface of the core to create an
external RGMII in a Virtex-5 family device. The signal names and logic shown on the
figure match those delivered with the example design when the RGMII is selected.

Figure 7-12 shows that the input receiver signals are registered in the IOBs in IDDR
components. These components convert the input double data rate signals into GMII
specification signals. The gmii_rx_er_reg signal is derived in the FPGA fabric from the
outputs of the control IDDR component.

IODELAY components can be used to phase-shift the input RGMII clock, data and control
signals to meet the setup and hold margins. The IODELAY components are used in fixed
delay mode, where the attribute IDELAY_VALUE determines the tap delay value. An
IDELAYCTRL primitive must be instantiated for this mode of operation. See the Virtex-5
User Guide for more information about using the IDELAYCTRL and IODELAY component.

Figure 7-11: External RGMII Receive Interface in Virtex-4 Devices

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

Tri-Mode Ethernet MAC LogiCORE

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

rxgmiimiiclk

phyemacrxd[0]

phyemacrxdv

phyemacrxer

rx_rgmii_clk_int

gmii_rxd_int[4]
phyemacrxd[4]

IOB LOGIC

rgmii_rx_ctl
IBUF

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]
IBUF

IDDR

IPAD

Q1

DQ2

C

IDELAY

IDELAY

IDELAY

Clock Generation

RX_CLK
RX_GMII_MII_CLK

http://www.xilinx.com

76 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Figure 7-12: External RGMII Receive Interface in Virtex-5 Devices

gmii_rxd_int[0]

gmii_rx_dv_int

gmii_rx_er_int

rx_rgmii_clk_int

gmii_rxd_int[4]

IOB LOGIC

rgmii_rx_ctl
IBUF

IDDR

IPAD

Q1

DQ2

C

IOB LOGIC

rgmii_rxd[0]
IBUF

IDDR

IPAD

Q1

DQ2

C

IODELAY

IODELAY

Tri-Mode Ethernet MAC LogiCORE

rxgmiimiiclk

phyemacrxd[0]

phyemacrxdv

phyemacrxer

phyemacrxd[4]

rgmii_rxc
IBUFG

IOB LOGIC

IPAD
rgmii_rxc_ibufg

Clock Generation

RX_CLK
RX_GMII_MII_CLK

IODELAY

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 77
UG138 August 8, 2007

Using the MDIO Interface
R

RGMII Inband Status Decoding Logic

The Inband Status decoding logic is common to all device families. Figure 7-13 illustrates
how to decode the RGMII inband status information, that is received through the RGMII
interface between frames, in a Virtex-II family device. The signal names and logic shown in
the figure exactly match those delivered with the example design when the RGMII is
chosen. If other families are chosen, equivalent primitives and logic specific to that family
will automatically be used in the example design.

Using the MDIO Interface
This interface is accessed through the optional Management Interface (see “Accessing
MDIO via the TEMAC,” on page 92) and is typically connected to the MDIO port of a
physical layer device (PHY) to access its configuration and status registers. The MDIO
format is defined in IEEE 802.3 clause 22.

Connecting the MDIO to an Internally Integrated PHY

The MDIO ports of the TEMAC core can be connected to the MDIO ports of an internally
integrated physical layer device. For example, the MDIO port of the Ethernet 1000BASE-X
PCS/PMA or SGMII from Xilinx (see “Integrating with the Ethernet 1000BASE-X
PCS/PMA or SGMII Core,” on page 127).

Figure 7-13: RGMII Inband Status Logic

Tri-Mode Ethernet MAC LogiCORE

gmii_rx_dv_reg

gmii_rx_er_reg

rxgmiimiiclk

phyemacrxdv

phyemacrxer

RGMII RECEIVER LOGIC

rx_rgmii_clk_int

gmii_rxd_reg[3]
phyemacrxd[3]

gmii_rxd_reg[2]
phyemacrxd[2]

gmii_rxd_reg[1]
phyemacrxd[1]

gmii_rxd_reg[0]
phyemacrxd[0]

OBUF

OPAD

inband_link_status

D Q

D Q

D Q

D Q

CE

CE

CE

CE

OBUF

OPAD

inband_clock_speed[0]

OBUF

OPAD

inband_clock_speed[1]

OBUF

OPAD

inband_duplex_status

http://www.xilinx.com

78 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

Connecting the MDIO to an External PHY

The MDIO ports of the TEMAC core can be connected to the MDIO of an external PHY. In
this situation, phyemacmdin, emacphymdout and emacphymdtri must be connected to
a Tri-State buffer to create a bidirectional wire, mdio. This Tri-State buffer can be either
external to the FPGA, or internally integrated by using an IOB IOBUF component with an
appropriate SelectIO™ standard for the external PHY. (This is illustrated in Figure 7-14.)

Connecting the MDIO to an External and Internal PHY

The MDIO can connect to more than one device. If an internal PHY is present but the
device is also connected to external devices via the MDIO, an arbitration circuit is required.
An example circuit is shown in Figure 7-15. Both PHY devices must be assigned an unique
physical address.

Figure 7-14: External MDIO Interface

OBUF

IOB LOGIC

OPAD
OI

O

I IO

T

IOPAD

IOB LOGIC

IOBUF

Tri-Mode Ethernet MAC

LogiCORE

emacphymclkout

emacphymdtri

emacphymdout

phyemacmdin

MDC

MDIO

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 79
UG138 August 8, 2007

Using the MDIO Interface
R

Figure 7-15: Internal and External MDIO Interfaces

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

mdc

mdio_in

mdio_out

mdio_tri

OPAD MDC

IOPAD MDIO

IOB Logic

T

I

O

Tri-Mode Ethernet MAC LogiCore

Internal PHY Device

http://www.xilinx.com

80 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 7: Using the Physical Side Interface
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 81
UG138 August 8, 2007

R

Chapter 8

Configuration and Status

Using the Optional Management Interface
The Management Interface is a processor-independent interface with standard address,
data, and control signals. It may be used as is, or a wrapper (not supplied) may be applied
to interface to common bus architectures.

This interface is used for:

• Configuration of the MAC core

• Access through the MDIO interface to the management registers located in the PHY
attached to the MAC core

The Management Interface is accessed differently depending on the type of transaction; a
truth table showing which access method is required for each transaction type is shown in
Table 8-1. These access methods are described in the following sections.

hostclk
The Management Interface clock, hostclk, is used to derive the MDIO clock,
emacphymclkout. To save on clock resources, it may be tied to the user supplied 125
MHz input clock.

Configuring the MAC core to derive the MDC signal from this clock is detailed in
“Accessing MDIO via the TEMAC,” on page 92.

Configuration Registers
After power up or reset, the client may reconfigure the core parameters from their defaults,
such as flow control support. Configuration changes can be written at any time. Both the
receiver and transmitter logic will only respond to configuration changes during inter-
frame gaps. The exceptions to this are the configurable resets which take effect
immediately.

Configuration of the MAC core is performed through a register bank accessed through the
Management Interface. The configuration registers available in the core are detailed in
Table 8-2. As can be seen, the address has some implicit don’t care bits; any access to an

Table 8-1: Management Interface Transaction Types

Transaction HOST_MIIM_SEL HOST_ADDR[9]

Configuration 0 1

MIIM access 1 X

http://www.xilinx.com

82 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

address in the ranges shown will perform a 32-bit read or write from the same
configuration word.

Register Maps
The register contents for the two receiver configuration words can be seen in Table 8-3 and
Table 8-4.

Table 8-2: Configuration Registers

Address Description

0x200-0x23F Receiver Configuration (Word 0)

0x240-0x27F Receiver Configuration (Word 1)

0x280-0x2BF Transmitter Configuration

0x2C0-0x2FF Flow Control Configuration

0x300-0x31F MAC Speed Configuration

0x320-0x33F Reserved

0x340-0x37F Management Configuration

0x380-0x383 Unicast Address (Word 0) (if address filter is present)

0x384-0x387 Unicast Address (Word 1) (if address filter is present)

0x388-0x38B Address Table Configuration (Word 0) (if address filter is
present)

0x38C-0x38F Address Table Configuration (Word 1) (if address filter is
present)

0x390-0x3BF Address Filter Mode (if address filter is present)

Table 8-3: Receiver Configuration Word 0

Bit
Default
Value Description

31-0 All 0’s

Pause frame MAC Source Address[31:0] This address is
used by the MAC to match against the destination
address of any incoming flow control frames. It is also
used by the flow control block as the source address (SA)
for any outbound flow control frames.

The address is ordered so the first byte
transmitted/received is the lowest positioned byte in the
register; for example, a MAC address of AA-BB-CC-DD-
EE-FF would be stored in Address[47:0] as
0xFFEEDDCCBBAA.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 83
UG138 August 8, 2007

Using the Optional Management Interface
R

Table 8-4: Receiver Configuration Word 1

Bit Default Value Description

15-0 All 0’s Pause frame MAC Source Address[47:32] See
description in Table 8-3.

24-16 N/A Reserved

25 0

Length/Type Error Check Disable When this bit is
set to ‘1,’ the core will not perform the length/type
field error checks as described in “Length/Type Field
Error Checks,” on page 44. When this bit is set to ‘0,’
the length/type field checks will be performed: this is
normal operation.

26 0
Half Duplex If ‘1,’ the receiver will operate in half-
duplex mode. If ‘0,’ the receiver will operate in full-
duplex mode.

27 0 VLAN Enable When this bit is set to ‘1,’ VLAN tagged
frames will be accepted by the receiver.

28 1
Receiver Enable If set to ‘1,’ the receiver block will be
operational. If set to ‘0,’ the block will ignore activity
on the physical interface RX port.

29 0

In-band FCS Enable When this bit is ‘1,’ the MAC
receiver will pass the FCS field up to the client as
described in “Client-Supplied FCS Passing,” on page
50. When it is ‘0,’ the client will not be passed the FCS.
In both cases, the FCS will be verified on the frame.

30 0

Jumbo Frame Enable When this bit is set to ‘1,’ the
MAC receiver will accept frames over the specified
IEEE 802.3-2002 maximum legal length. When this bit
is ‘0,’ the MAC will only accept frames up to the
specified maximum.

31 0

Reset When this bit is set to ‘1,’ the receiver will be
reset. The bit will then automatically revert to ‘0.’ This
reset will also set all of the receiver configuration
registers to their default values.

http://www.xilinx.com

84 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

The register contents for the Transmitter Configuration Word are described in Table 8-5.

The register contents for the Flow Control Configuration Word are described in Table 8-6.

Table 8-5: Transmitter Configuration Word

Bit
Default
Value Description

24-0 N/A Reserved

25 0

Interframe Gap Adjust Enable If ‘1,’ the transmitter will
read the value on the port clientemactxifgdelay at the start
of frame transmission and adjust the interframe gap
following the frame accordingly (see “Interframe Gap
Adjustment: Full-Duplex Mode Only,” on page 54). If ‘0,’
the transmitter will output a minimum interframe gap of at
least twelve clock cycles, as specified in IEEE 802.3-2002.

26 0 Half Duplex If ‘1,’ the transmitter will operate in half-
duplex mode.

27 0 VLAN Enable When this bit is set to ‘1,’ the transmitter will
recognize the transmission of VLAN tagged frames.

28 1 Transmit Enable When this bit is ‘1,’ the transmitter is
operational. When it is ‘0,’ the transmitter is disabled.

29 0

In-band FCS Enable When this bit is ‘1,’ the MAC
transmitter will expect the FCS field to be passed in by the
client as described in “Client-Supplied FCS Passing,” on
page 50. When this bit is ‘0,’ the MAC transmitter will
append padding as required, compute the FCS and
append it to the frame.

30 0

Jumbo Frame Enable When this bit is set to ‘1,’ the MAC
transmitter will send frames that are greater than the
specified IEEE 802.3-2002 maximum legal length. When
this bit is ‘0,’ the MAC will only send frames up to the
specified maximum.

31 0

Reset When this bit is set to ‘1,’ the transmitter will be reset.
The bit will then automatically revert to ‘0.’ This reset will
also set all of the transmitter configuration registers to their
default values.

Table 8-6: Flow Control Configuration Word

Bit
Default
Value Description

28-0 N/A Reserved

29 1

Flow Control Enable (RX) When this bit is ‘1,’ received
flow control frames will inhibit the transmitter operation
as described in “Receiving a Pause Control Frame,” on
page 60. When this bit is ‘0,’ received flow control frames
will always be passed up to the client.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 85
UG138 August 8, 2007

Using the Optional Management Interface
R

The register contents for the Management Configuration Word are described in Table 8-7.

The register contents for the MAC Speed Configuration Word are described in Table 8-8.

Note: The setting of the MAC Speed Configuration register is not affected by a reset.

30 1

Flow Control Enable (TX) When this bit is ‘1,’ asserting
the clientemacpausereq signal sends a flow control
frame out from the transmitter as described in
“Transmitting a Pause Control Frame,” on page 59. When
this bit is ‘0,’ asserting the clientemacpausereq signal
has no effect.

31 N/A Reserved

Table 8-7: Management Configuration Word

Bits
Default
Value Description

5-0 All 0’s Clock Divide[5:0] See “Accessing MDIO via the
TEMAC,” on page 92.

6 0

MDIO Enable When this bit is ‘1,’ the MDIO interface
can be used to access attached PHY devices. When this
bit is ‘0,’ the MDIO interface is disabled and the MDIO
signals remain inactive. A write to this bit will only take
effect if Clock Divide is set to a non-zero value.

31-7 N/A Reserved

Table 8-8: MAC Speed Configuration Word

Bits
Default
Value Description

29-0 N/A Reserved

31-30 “10”

MAC Speed Configuration

“00” - 10 Mbps

“01” - 100 Mbps

“10” - 1 Gbps

Table 8-6: Flow Control Configuration Word

Bit
Default
Value Description

http://www.xilinx.com

86 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

The register contents for the two unicast address registers are described in Table 8-9 and
Table 8-10.

In addition to the unicast address, broadcast address and pause addresses, the address
filter can be programmed to respond to 4 separate addresses. These are stored in an
address table in the address filter. See “Address Filter,” on page 44. Table 8-11 and
Table 8-12 show how the contents of the table are set.

Table 8-9: Unicast Address (Word 0)

Bits Default Value Description

31-0 tieemacunicastaddr[31 downto 0]

Address filter unicast
address[31:0]. This address is used
by the MAC to match against the
destination address of any
incoming frames. The address is
ordered so the first byte
transmitted/received is the lowest
positioned byte in the register; for
example, a MAC address of AA-
BB-CC-DD-EE-FF would be stored
in Address[47:0] as
0xFFEEDDCCBBAA.

Table 8-10: Unicast Address (Word 1)

Bits Default Value Description

15-0 tieemacunicastaddr[47 downto 32]
Address filter unicast
address[47:32]. See description in
Table 8-9.

31-16 N/A Reserved

Table 8-11: Address Table Configuration (Word 0)

Bits Default Value Description

31-0 All 0s

MAC Address[31:0]. The address that is to be written
to the address table. The address is ordered so the first
byte transmitted/received is the lowest positioned
byte in the register; for example, a MAC address of
AA-BB-CC-DD-EE-FF would be stored in
Address[47:0] as 0xFFEEDDCCBBAA.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 87
UG138 August 8, 2007

Using the Optional Management Interface
R

The contents of the address filter mode register are described in Table 8-13.

Table 8-12: Address Table Configuration (Word 1)

Bits Default Value Description

15-0 All 0s MAC Address[47:32] See description in Table 8-11.

17-16 All 0s
The location in the address table that the MAC
address is to be written to or read from. There are up
to 4 entries in the table (Location 0 to 3).

22-18 N/A Reserved

23 0

Read not write This bit is set to ‘1’ to read from the
address table. If it is set to ‘1,’ the contents of the table
entry that is being accessed by bits 17-16 will be
output on the hostrddata bus in consecutive cycles
(Least Significant Word first). If it is set to ‘0,’ the data
on bits 15-0 is written into the table at the address
specified by bits 17-16.

31-24 N/A Reserved

Table 8-13: Address Filter Mode

Bits Default Value Description

31 1

Promiscuous Mode If this bit is set to ‘1,’ the address
filter is set to operate in promiscuous mode. All
frames will be passed to the receiver client regardless
of the destination address.

30-0 N/A Reserved

http://www.xilinx.com

88 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

Using the Management Interface

Accessing Configuration

Writing to the configuration registers through the Management Interface is depicted in
Figure 8-1. When accessing the configuration registers (for example, when hostaddr[9] =
‘1’ and hostmiimsel = ‘0’), the upper bit of hostopcode functions as an Active Low
write enable signal. The lower hostopcode bit is a don’t care bit.

Figure 8-1: Configuration Register Write Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

hostwrdata[31:0]

xip2149

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 89
UG138 August 8, 2007

Using the Optional Management Interface
R

Reading from the configuration register words is similar, but the upper hostopcode bit
should be ‘1,’ as shown in Figure 8-2. In this case, the contents of the register appear on
hostrddata the hostclk edge after the register address is asserted onto hostaddr.

Accessing the Address Table

Writing and reading to the to the address table configuration words is less straightforward.
To write to a specific entry in the table, the user must first write the least significant 32-bits
of the address into the address table configuration (Word 0) register. The user then writes
the most significant 16-bits together with the location in the table (bits 17-16) to the address
table configuration (Word 1) register with bit 23 (read not write) set to ‘0.’ This is shown in

Figure 8-2: Configuration Register Read Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

hostrddata[31:0]

xip2150

http://www.xilinx.com

90 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

Figure 8-3. Although it is shown in the figure, there is no requirement for the two writes to
be on adjacent cycles.

To read from the address table the user writes to the address table configuration register
(Word 1) with the location set to the desired table entry and bit 23 set to ‘1.’ On the next
cycle the least significant word appears on the hostrddata bus. One cycle afterwards the

Figure 8-3: Address Table Write Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

BITS15..0 = ADDR[47:32]

hostwrdata[31:0]

0x188 0x18C

ADDR[31:0]

BITS17..16 = LOCATION
BIT23 = 0

BIT31 BIT0

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 91
UG138 August 8, 2007

Using the Optional Management Interface
R

most significant 16-bits are output on the lower 16 bits of the bus. This is shown in
Figure 8-4.

MDIO Interface

Introduction to MDIO

The MDIO interface for 1 Gbps operation and slower speeds is defined in IEEE 802.3 clause
22. This is a two wire interface consisting of a clock, mdc, and a shared serial data line,
mdio. This interface is typically connected to the MDIO ports of a physical layer device
(PHY) to access its configuration and status registers.

There are two different transaction types of MDIO for write and read; they are described in
the next sections. The following abbreviations apply for the remainder of this chapter:

• PRE - preamble

• ST - start of frame

• OP - operation code

• PHYAD - PHY address

• REGAD - Register address

• TA - turnaround.

Figure 8-4: Address Table Read Timing

hostclk

hostaddr[8:0]

hostaddr[9]

hostopcode[1]

hostmiimsel

hostrddata[31:0]

hostwrdata[23]

hostwrdata[17:16]

31 : 0 47 : 32

0x18C

LOCATION

http://www.xilinx.com

92 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

Write Transaction

Figure 8-5 shows a Write transaction across the MDIO; this is defined by OP=”01”. The
addressed PHY (PHYAD) device takes the 16-bit word in the data field and writes it to the
register at REGAD.

Read Transaction

Figure 8-6 shows a Read transaction; this is defined by OP=”10”. The addressed PHY
(PHYAD) device returns the 16-bit word from the register at REGAD.

For details of the register map of PHY layer devices and a fuller description of the
operation of the MDIO Interface itself, see IEEE 802.3-2002.

Accessing MDIO via the TEMAC

The Management Interface is also used to access the MDIO interface of the MAC core. The
MDIO interface supplies a clock to the connected PHY, mdc. This clock is derived from the
hostclk signal using the value in the Clock Divide[4:0] configuration register. The
frequency of mdc is given by the following equation:

The frequency of mdc given by this equation should not exceed 2.5 MHz in order to comply
with the IEEE 802.3-2002 specification for this interface. To prevent mdc from being out of
specification, the Clock Divide[4:0] value powers up at 00000, and while this value is
in the register, it is impossible to enable the MDIO interface.

Figure 8-5: MDIO Write Transaction

Z1 1 1 0 0 1 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 1 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit WRITE DATA

GEMAC drives MDIO

Figure 8-6: MDIO Read Transaction

Z1 1 1 0 1 0 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 Z 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PRTAD REGAD TA 16-bit READ DATA

MAC drives MDIO PHY drives MDIO

fMDC

fHOST_CLK
1 Clock Divide[4:0]+() 2×

---=

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 93
UG138 August 8, 2007

Using the Optional Management Interface
R

For details of the register map of PHY layer devices and a fuller description of the
operation of the MDIO interface itself, see IEEE 802.3-2002.

Access to the MDIO interface through the Management Interface is depicted in the timing
diagram in Figure 8-7.

For MDIO transactions, the following points apply:

• hostmiimsel is ‘1’

• hostopcode[1:0] maps to the OP (opcode) field of the MDIO frame

• hostaddr maps to the two address fields of the MDIO frame; PHYAD is
hostaddr[9:5], and REGAD is host_addr[4:0]

• hostwrdata[15:0] maps into the data field of the MDIO frame when performing a
write operation

• The data field of the MDIO frame maps into hostrddata[15:0] when performing a
read operation

The MAC core signals to the host that it is ready for an MDIO transaction by asserting
hostmiimrdy. A read or write transaction on the MDIO is initiated by a pulse on the
hostreq signal. This pulse is ignored if the MDIO interface already has a transaction in
progress.

The MAC core then deasserts the hostmiimrdy signal while the transaction across the
MDIO is in progress. When the transaction across the MDIO interface has been completed,
the hostmiimrdy signal will be asserted by the MAC core; if the transaction is a read, the
data will also be available on the hostrddata[15:0] bus at this time.

Figure 8-7: MDIO Access Through Management Interface

hostclk

hostaddr[9:0]

hostopcode[1:0]

hostreq

hostmiimsel

hostrddata[15:0]

hostwrdata[15:0]

hostrdy

*

*

* If a read transaction is initiated, the hostrddata bus is valid

at the point indicated. If a write transaction is initiated, the

hostwrdata bus must be valid at the indicated point.

Simultaneous read and write is not permitted.

xip2152

http://www.xilinx.com

94 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

For the TEMAC port definition of the MDIO, see “Optional MDIO Signals,” on page 32. In
addition, see the following sections:

• "Connecting the MDIO to an Internally Integrated PHY" on page 77

• "Connecting the MDIO to an External PHY" on page 78

• "Connecting the MDIO to an External and Internal PHY" on page 78

Accessing Configuration without the Management Interface
If the optional Management Interface is omitted from the core, all of relevant configuration
signals are brought out of the core. These signals are bundled into the
tieemacconfigvec signal. The bit mapping of the configuration vector signal is defined
in Table 8-14. See the corresponding entry in the configuration register tables for the full
description of each signal.

These configuration vector signals can be changed by the user at any time; however, with
the exception of the reset and the flow control configuration signals, they will not take
effect until the current frame has completed transmission or reception.

The Clock heading denotes which clock domain the configuration signal is registered into
before use by the core. It is not necessary to drive the signal from this clock domain.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 95
UG138 August 8, 2007

Accessing Configuration without the Management Interface
R

Configuration Vector Description

Table 8-14: Configuration Vector Bit Definition

Bit(s)

Configuration
Register cross

reference Clock Description

47 ... 0

“Receiver Configuration
Word 0” bits 31-0 and
“Receiver Configuration
Word 1” bits 15-0

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Pause frame MAC Source
Address[47:0] This address
is used by the MAC core to
match against the
destination address of any
incoming flow control
frames, and as the source
address for any outbound
flow control frames.

The address is ordered such
that the first byte
transmitted or received is
the least significant byte in
the register; for example, a
MAC address of AA-BB-
CC-DD-EE-FF will be
stored in bite [47:0] as
0xFFEEDDCCBBAA.

48

“Receiver Configuration
Word 1” bit 26

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver Half Duplex If ‘1,’
the receiver operates in
half-duplex mode. If ‘0,’ the
receiver operates in full-
duplex mode.

49

“Receiver Configuration
Word 1” bit 27

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver VLAN Enable
When this bit is set to '1,'
VLAN tagged frames are
accepted by the receiver.

50

“Receiver Configuration
Word 1” bit 28

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver Enable If set to '1,'
the receiver block is
operational. If set to '0,' the
block ignores activity on
the physical interface RX
port.

http://www.xilinx.com

96 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

51 “Receiver Configuration
Word 1” bit 29

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver In-band FCS
Enable When this bit is ‘1,’
the MAC receiver will pass
the FCS field up to the client
as described in “Client-
Supplied FCS Passing,” on
page 42. When it is ‘0,’ the
MAC receiver will not pass
the FCS field. In both cases,
the FCS field will be
verified on the frame.

52 “Receiver Configuration
Word 1” bit 30

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receiver Jumbo Frame
Enable When this bit is ‘0,’
the receiver will not pass
frames longer than the
maximum legal frame size
specified in IEEE 802.3-2002
(“Maximum Permitted
Frame Length,” on page
53). When it is ‘1,’ the
receiver will not have an
upper limit on frame size.

53 “Receiver Configuration
Word 1” bit 31

N/A Receiver Reset When this
bit is ‘1,’ the receiver is held
in reset.

This signal is an input to the
reset circuit for the receiver
block.

54 “Transmitter
Configuration Word”
bit 25

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Interframe
Gap Adjust Enable If ‘1,’
and the MAC is set to
operate in full-duplex
mode, then the transmitter
will read the value of the
clientemactxifgdelay port
and set the Interframe Gap
accordingly. If ‘0,’ the
transmitter will always
insert at least the legal
minimum interframe gap.

55 “Transmitter
Configuration Word”
bit 26

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Half Duplex If
‘1,’ the transmitter operates
in half-duplex mode. If ‘0,’
the transmitter operates in
full-duplex mode.

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross

reference Clock Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 97
UG138 August 8, 2007

Accessing Configuration without the Management Interface
R

56 “Transmitter
Configuration Word”
bit 27

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter VLAN Enable
When this bit is set to ‘1,’
the transmitter allows the
transmission of VLAN
tagged frames.

57 “Transmitter
Configuration Word”
bit 28

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Enable When
this bit is ‘1,’ the transmitter
will be operational. When it
is ‘0,’ the transmitter is
disabled.

58 “Transmitter
Configuration Word”
bit 29

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter In-Band FCS
Enable When this bit is ‘1,’
the MAC transmitter will
expect the FCS field to be
pass in by the client as
described in “Client-
Supplied FCS Passing,” on
page 50. When it is ‘0,’ the
MAC transmitter will
append padding as
required, compute the FCS
and append it to the frame.

59 “Transmitter
Configuration Word”
bit 30

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmitter Jumbo Frame
Enable When this bit is ‘1,’
the MAC transmitter will
allow frames larger than the
maximum legal frame
length specified in IEEE
802.3-2002 to be sent. When
set to ‘0,’ the MAC
transmitter will only allow
frames up to the legal
maximum to be sent.

60 “Transmitter
Configuration Word”
bit 31

N/A Transmitter Reset When
this bit is ‘1,’ the MAC
transmitter is held in reset.

This signal is an input to the
reset circuit for the
transmitter block.

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross

reference Clock Description

http://www.xilinx.com

98 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

61 “Flow Control
Configuration Word”
bit 29

txcoreclk
(txgmiimiiclk if
clock_enables =
true)

Transmit Flow Control
Enable When this bit is ‘1,’
asserting the
clientemacpausereq
signal causes the MAC core
to send a flow control frame
out from the transmitter as
described in “Transmitting
a Pause Control Frame,” on
page 59. When this bit is ‘0,’
asserting the
clientemacpausereq
signal will have no effect.

62 “Flow Control
Configuration Word”
bit 30

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Receive Flow Control
Enable When this bit is ‘1,’
received flow control
frames will inhibit the
transmitter operation as
described in “Receiving a
Pause Control Frame,” on
page 60. When it is ‘0,’
received flow frames are
passed up to the client.

63 “Receiver Configuration
Word 1” bit 25

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Length/Type Error Check
Disable When this bit is ‘1,’
the core will not perform
the length/type field error
checks as described in
“Length/Type Field Error
Checks,” on page 44. When
it is set to ‘0,’ the
length/type field checks
will be performed; this is
normal operation.

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross

reference Clock Description

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 99
UG138 August 8, 2007

Accessing Configuration without the Management Interface
R

64 “Address Filter Mode”
bit 31

rxcoreclk
(rxgmiimiiclk if
clock_enables =
true)

Address Filter Enable
When this bit is ‘0,’ the
address filter is enabled. If
it is set to ‘1,’ the address
filter will operate in
promiscuous mode.

66 downto
65

“MAC Speed
Configuration Word”
bits 31 downto 30

txcoreclk and
rxcoreclk
(txgmiimiiclk
and
rxgmiimiiclk if
clock_enables =
true)

MAC Speed

Table 8-14: Configuration Vector Bit Definition (Continued)

Bit(s)

Configuration
Register cross

reference Clock Description

http://www.xilinx.com

100 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 8: Configuration and Status
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 101
UG138 August 8, 2007

R

Chapter 9

Constraining the Core

This chapter defines the constraint requirements of the TEMAC core. An example UCF is
provided with the HDL example design to provide samples of constraint requirements for
the design. See the Tri-Mode Ethernet MAC Getting Started Guide for more information.

Required Constraints

Device, Package, and Speedgrade Selection
The TEMAC can be implemented in Virtex-II, Virtex-II Pro, Spartan-3, Spartan-3E,
Spartan-3A, Virtex-4, and Virtex-5 devices with the following attributes:

• Large enough to accommodate the core

• Contains a sufficient number of IOBs

• -4 speed grade for Virtex-II, -5 speed grade for Virtex-II Pro, Spartan-3, Spartan-3E
and Spartan-3A, -10 speed grade for Virtex-4, and -1 speed grade for Virtex-5

I/O Location Constraints
No specific I/O location constraints are required.

Placement Constraints
With the exception of Virtex-4 and Virtex-5, the constraints file contains placement
information for the global clock buffers. These are provided as an example only and may
be removed. However, in RGMII, it is recommended that all the transmitter clock buffers
are confined to the same bank of BUFGs.

Timing Constraints
Example(s) are in the UCF delivered with the HDL example design for the core.

PERIOD(s) for Clock nets

GMII Clock Constraints

If an external GMII interface is implemented then the following constraints should be
applied.

http://www.xilinx.com

102 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

gmii_rx_clk

The gmii_rx_clk signal is connected to the rxgmiimiiclk input of the TEMAC in the
example design that is provided with the core. In order for the core to operate correctly at
1 Gbps, this must be constrained to run at 125 MHz.

NET "gmii_rx_clk*" TNM_NET = "clk_rx";
TIMEGRP "rx_clock" = "clk_rx";
TIMESPEC "TS_rx_clk" = PERIOD "rx_clock" 8000 ps HIGH 50 %;

rx_clk_int

If the clock_enables option is set to false, the rx_clk_int signal must be constrained to
run at 125 MHz for 1 Gbps operation. This is connected to the rxcoreclk input of the
TEMAC, in addition to driving the user receive logic. If the clock_enables option is set to
true, the constraint should not be present.

NET "rx_clk_int" TNM_NET = "clk_rx_core";
TIMEGRP "rx_clock_core" = "clk_rx_core";
TIMESPEC "TS_rx_clk_core" = PERIOD "rx_clock_core" 8000 ps HIGH 50 %;

tx_gmii_mii_clk

The tx_gmii_mii_clk signal is connected to the txgmiimiiclk input of the TEMAC.
This signal must be constrained for a frequency of 125 MHz for 1 Gbps operation.

NET "tx_gmii_mii_clk*" TNM_NET = "clk_tx_gmii";
TIMEGRP "tx_clock_gmii" = "clk_tx_gmii";
TIMESPEC "TS_tx_clk_gmii" = PERIOD "tx_clock_gmii" 8000 ps HIGH 50 %;

tx_clk_int

If the clock_enables option is set to false, the tx_clk_int signal drives the txcoreclk
input of the core and the users transmit logic. This signal must be constrained to run at 125
MHz for 1 Gbps operation. If the clock_enables option is set to true, the constraint should
not be present.

NET "tx_clk_int" TNM_NET = "clk_tx_core";
TIMEGRP "tx_clock_core" = "clk_tx_core";
TIMESPEC "TS_tx_clk_core" = PERIOD "tx_clock_core" 8000 ps HIGH 50 %;

RGMII Clock Constraints

If an external RGMII interface is implemented, the following constraints should be
applied.

rx_rgmii_clk_int

The rx_rgmii_clk_int signal is connected to the rxgmiimiiclk input of the TEMAC
in the example design that is provided with the core. In order for the core to operate
correctly at 1 Gbps, this must be constrained to run at 125 MHz.

NET "rx_rgmii_clk_int" TNM_NET = "clk_rx";
TIMEGRP "rx_clock" = "clk_rx";
TIMESPEC "TS_rx_clk" = PERIOD "rx_clock" 8000 ps HIGH 50 %;

rx_clk_int

If the clock_enables option is set to false, the rx_clk_int signal must be constrained to
run at 125 MHz for 1 Gbps operation. This is connected to the rxcoreclk input of the
TEMAC, in addition to driving the user receive logic. If the clock_enables option is set to
true, the constraint should not be present.

NET "rx_clk_int" TNM_NET = "clk_rx_core";
TIMEGRP "rx_clock_core" = "clk_rx_core";
TIMESPEC "TS_rx_clk_core" = PERIOD "rx_clock_core" 8000 ps HIGH 50 %;

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 103
UG138 August 8, 2007

Required Constraints
R

tx_clk180

The tx_clk180 signal is used to generate the transmit clocks at 10 Mbps and 100 Mbps for
the RGMII interface. This should be constrained to run at 125 MHz.

Note: This period constraint does not exist for Virtex-5 devices, as this clock is not generated.

NET "*tx_clk180" TNM_NET = "clk_tx";
TIMEGRP "tx_clock" = "clk_tx";
TIMESPEC "TS_tx_clk" = PERIOD "tx_clock" 8000 ps HIGH 50 %;

tx_rgmii_clk

The tx_rgmii_clk signal is connected to the txgmiimiiclk input of the TEMAC. This
signal must be constrained for a frequency of 125 MHz for 1 Gbps operation.

NET "tx_rgmii_clk*" TNM_NET = "clk_tx_gmii";
TIMEGRP "tx_clock_gmii" = "clk_tx_gmii";
TIMESPEC "TS_tx_clk_gmii" = PERIOD "tx_clock_gmii" 8000 ps HIGH 50 %;

tx_clk_int

If the clock_enables option is set to false, the tx_clk_int signal drives the txcoreclk
input of the core and the users transmit logic. This signal must be constrained to run at 125
MHz for 1 Gbps operation. If the clock_enables option is set to true, the constraint should
not be present.

NET "tx_clk_int" TNM_NET = "clk_tx_core";
TIMEGRP "tx_clock_core" = "clk_tx_core";
TIMESPEC "TS_tx_clk_core" = PERIOD "tx_clock_core" 8000 ps HIGH 50 %;

refclk_bufg

For Virtex-4 and Virtex-5 devices, an additional constraint is provided in the UCF for the
IDELAYCTRL reference clock. This clock is constrained to run at 200 MHz, but may be
relaxed for Virtex-5 devices within the guidelines described in the Virtex-5 User Guide for
IDELAYCTRL components.

NET "*refclk_bufg" TNM_NET = "clk_ref_clk";
TIMEGRP "ref_clk" = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "ref_clk" 5000 ps HIGH 50 %;

Management Clock Constraints

host_clk

The host_clk signal must be constrained to run at the desired frequency.

NET "host_clk" TNM_NET = "host_clk";
TIMEGRP "host" = "host_clk" EXCEPT "mdio_logic";
TIMESPEC "TS_host_clk" = PERIOD "host" 10000 ps HIGH 50 %;

MDIO Logic

The MDIO logic is driven from the MDC clock. This is output from the core as
emacphymclkout. The following constraints must be applied for the MDIO logic to
operate correctly.

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?ENABLE_REG" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?READY_INT" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?STATE_COUNT*" TNM = "mdc_rising";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?MDIO_TRISTATE" TNM = "mdc_falling";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?PHY?MDIO_OUT" TNM = "mdc_falling";
TIMEGRP "mdio_logic" = "mdc_rising" "mdc_falling";

TIMESPEC "TS_mdio1" = PERIOD "mdio_logic" 400 ns;
TIMESPEC "TS_mdio2" = FROM "mdc_rising" TO "mdc_falling" 200 ns;

http://www.xilinx.com

104 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

Timespecs for Critical Logic

Signals must cross clock domains at certain points in the core. These are described in the
following section.

Configuration Logic

When the optional Management Interface is used with the core (see “Using the Optional
Management Interface,” on page 81), configuration information is written synchronously
to hostclk. Receiver configuration data must be transferred onto the rxcoreclk clock
domain for use with the receiver; transmitter configuration data must be transferred onto
the txcoreclk domain for use with the transmitter. The following UCF syntax targets
this logic and a timing ignore attribute (TIG) is applied It does not matter when
configuration changes take place; the current configurations are sampled between frames
by both the receiver and transmitter.

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?RX0_OUT*" TNM="config_to_rx";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?RX1_OUT*" TNM="config_to_rx";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?FC_OUT_29" TNM="config_to_rx";
TIMESPEC "TS_config_to_rx" = FROM "config_to_rx" TO "rx_clock" TIG;

INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?TX_OUT*" TNM="config_to_tx";
INST "trimac_core?BU2?U0?TRIMAC_INST?MANIFGEN?MANAGEN?CONF?FC_OUT_30" TNM="config_to_tx";
TIMESPEC "TS_config_to_tx" = FROM "config_to_tx" TO "tx_clock_gmii" TIG;

Timespecs for Reset Logic within the Core

Internally, the core is divided up into clock/reset domains, which group together elements
with common clock and reset signals. The reset circuit provides controllable skews on the
reset nets within the design. More information on the operation and rationale behind this
circuit can be found in Ken Chapman’s Xilinx TechXclusive, “Get Smart About Reset” at:

www.xilinx.com/support/techxclusives/global-techX19.htm

The following UCF syntax identifies the relevant reset logic and ensures that the reset
signals do not cause set-up or hold violations in the circuit:

NET "trimac_core?BU2?U0?TRIMAC_INST?RXRSTGENNOEN?SYNC_RX_RESET_I?RESET_OUT*" MAXDELAY=6100
ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?TXRSTGENNOEN?SYNC_TX_RESET_I?RESET_OUT*" MAXDELAY=6100
ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?INT_GMII_MII_RX_RESET" MAXDELAY=6100 ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?RXGMIIRSTGENEN?SYNC_GMII_MII_RX_RESET_I?RESET_OUT*"
MAXDELAY=6100 ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?SYNC_GMII_MII_TX_RESET_I?RESET_OUT*" MAXDELAY=6100 ps;
NET "trimac_core?BU2?U0?TRIMAC_INST?G_SYNC_MGMT_RESET?SYNC_MGMT_RESET_HOST_I?RESET_OUT*"
MAXDELAY=6100 ps;

Note: The lastline is only required when the optional Management Interface is used.

Note: The first three lines are only required when the clock enables option is not selected.

Constraints when Implementing an External GMII

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the following descriptions
to act as an example. These should be studied in conjunction with the HDL source code for
the example design and with the description given in “Implementing External GMII,” on
page 63.

GMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL file for
the example design; constraints are set to ensure that these are placed in IOBs.

INST "*gmii_txd_reg*" IOB = true;

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/global-techX19.htm

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 105
UG138 August 8, 2007

Required Constraints
R

INST "*gmii_tx_en_reg" IOB = true;
INST "*gmii_tx_er_reg" IOB = true;

INST "*rxd_to_mac*" IOB = true;
INST "*rx_dv_to_mac" IOB = true;
INST "*rx_er_to_mac" IOB = true;

The GMII is a 3.3 volt signal level interface. The 3.3 volt LVTTL SelectIO standard is the
default for Virtex-II devices; the following constraints may be added without harm. The 3.3
volt LVTTL SelectIO standard is not the default for Virtex-5, Virtex-4, Virtex-II Pro,
Spartan-3, Spartan-3E and Spartan-3A devices. Use the following constraints with the
device IO Banking rules:

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;

INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;

INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this
core.

GMII Input Setup/Hold Timing

Figure 9-1 and Table 9-1 illustrate the setup and hold time window for the input GMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

Observe that there is a 2 ns data valid window which is presented across the GMII input
bus. This must be correctly sampled by the FPGA devices.

Virtex-II, and Virtex-II Pro Devices

These families have input delay elements (which are always of a fixed delay) that are
automatically inserted by the Xilinx tools and are set to provide a zero-hold time. These

Figure 9-1: Input GMII Timing

Table 9-1: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

tSETUP

tHOLD

GMII_RXD[7:0],
GMII_RX_DV,
GMII_RX_ER

GMII_RX_CLK

http://www.xilinx.com

106 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

input delays will automatically meet input setup and hold timing on the GMII without any
specific constraints.

Spartan-3, Spartan-3E, and Spartan-3A Devices

The GMII design uses a DCM on the receiver clock domain for Spartan-3, Spartan-3E and
Spartan-3A devices. Phase-shifting is then applied to the DCM to align the resultant clock
so that it will correctly sample the 2 ns GMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST *gmii_rxc_dcm CLKOUT_PHASE_SHIFT = FIXED;
INST *gmii_rxc_dcm PHASE_SHIFT = -30;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). A further explanation of these numbers is
detailed in “Understanding Timing Reports for GMII Setup/Hold timing”.

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix D,
“Calculating the DCM Phase Shift” describes a more accurate method for fixing the phase
shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

The GMII design uses IDELAY components on the receiver clock, data and control signals
for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and control
signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for GMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IOBDELAY_VALUE = 53;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example GMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-4 User Guide and code comments for more information.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 107
UG138 August 8, 2007

Required Constraints
R

Virtex-5 devices

The GMII design uses IODELAY components on the receiver clock, data and control
signals for Virtex-5 devices. A fixed tap delay can be applied to either delay the data and
control signals or delay the clock so that the data/control are correctly sampled by the
gmii_rx_clk clock at the IOB flip-flop, meeting GMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for GMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IODELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

INST *gmii_interface/delay_gmii_rx_dv IDELAY_VALUE = 33;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-5 User Guide and code comments for more information.

Understanding Timing Reports for GMII Setup/Hold timing

Spartan-3 Devices

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report.

The Clock Generation logic includes a BUFGMUX which provides a path for the pre-DCM
clock, see Figure 7-4. When this BUFGMUX is present the timing engine will use the non-
DCM clock path resulting in false setup and hold numbers. It is therefore necessary to edit
the example design HDL to remove this non-DCM path if the setup/hold numbers are to
be used for DCM phase adjustment.

Once this is done the results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Spartan-3A device. The
implementation requires 1.965 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.007 ns of hold: this is less than the 0 ns required and
so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

http://www.xilinx.com

108 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+-------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+-------------------+--------+
gmii_rx_dv | 1.958(R)| -0.014(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rx_er | 1.940(R)| -0.007(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<0> | 1.957(R)| -0.012(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<1> | 1.958(R)| -0.014(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<2> | 1.965(R)| -0.022(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<3> | 1.940(R)| -0.007(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<4> | 1.958(R)| -0.014(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<5> | 1.961(R)| -0.017(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<6> | 1.965(R)| -0.022(R)|rx_gmii_mii_clk_int| -2.812|
gmii_rxd<7> | 1.956(R)| -0.011(R)|rx_gmii_mii_clk_int| -2.812|
------------+------------+------------+-------------------+--------+

Virtex-II or Virtex-II Pro Devices

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-II device. The
implementation requires 1.835 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.226 ns of hold: this is less than the 0 ns required and
so there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+-------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+-------------------+--------+
gmii_rx_dv | 1.820(R)| -0.281(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rx_er | 1.770(R)| -0.226(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<0> | 1.821(R)| -0.283(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<1> | 1.833(R)| -0.295(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<2> | 1.790(R)| -0.253(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<3> | 1.789(R)| -0.252(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<4> | 1.834(R)| -0.296(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<5> | 1.829(R)| -0.291(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<6> | 1.793(R)| -0.255(R)|rx_gmii_mii_clk_int| 0.000|
gmii_rxd<7> | 1.835(R)| -0.296(R)|rx_gmii_mii_clk_int| 0.000|
------------+------------+------------+-------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Data/Control

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-5 device. The
implementation requires 1.962 ns of setup: this is less than the 2 ns required and so there is
slack. The implementation requires -0.008 ns of hold: this is less than the 0 ns required and
so there is slack.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 109
UG138 August 8, 2007

Required Constraints
R

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+--------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+--------------------+--------+
gmii_rx_dv | 1.955(R)| -0.017(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rx_er | 1.962(R)| -0.031(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<0> | 1.949(R)| -0.013(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<1> | 1.944(R)| -0.009(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<2> | 1.947(R)| -0.012(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<3> | 1.942(R)| -0.008(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<4> | 1.950(R)| -0.015(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<5> | 1.962(R)| -0.026(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<6> | 1.957(R)| -0.022(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<7> | 1.952(R)| -0.020(R)| rx_gmii_mii_clk_int| 0.000|
------------+------------+------------+--------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Clock

Setup and Hold results for the GMII input bus can be found in the data sheet section of the
Timing Report. However, depending on how the setup/hold requirements have been met
the results can initially look strange and it is not immediately obvious how they relate to
Figure 9-1. Here follows an example for the GMII report from a Virtex-4 device where the
clock has been delayed to meet the setup/hold requirements.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_rx_clk
------------+------------+------------+--------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+--------------------+--------+
gmii_rx_dv | -6.198(R)| 7.526(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rx_er | -6.225(R)| 7.554(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<0> | -6.149(R)| 7.484(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<1> | -6.152(R)| 7.486(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<2> | -6.206(R)| 7.532(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<3> | -6.207(R)| 7.533(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<4> | -6.134(R)| 7.476(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<5> | -6.134(R)| 7.476(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<6> | -6.170(R)| 7.506(R)| rx_gmii_mii_clk_int| 0.000|
gmii_rxd<7> | -6.170(R)| 7.506(R)| rx_gmii_mii_clk_int| 0.000|
------------+------------+------------+--------------------+--------+

The implementation requires -6.134 ns of setup. Figure 9-2 illustrates that this represents a
figure of 1.866 ns relative to the following rising edge of the clock (since the IDELAY has
acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 2 ns required and so there is slack.

The implementation requires 7.554 ns of hold. Figure 9-2 illustrates that this represents a
figure of -0.446 ns relative to the following rising edge of the clock (since the IDELAY has

http://www.xilinx.com

110 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

acted to delay the clock by an entire period when measured from the input flip-flop). This
is less than the 0 ns required and so there is slack.

Constraints when Implementing an External RGMII

The constraints defined in this section are implemented in the UCF for the example design
delivered with the core. Sections from this UCF are copied into the descriptions below to
act as an example. These should be studied in conjunction with the HDL source code for
the example design and with the description given in “Implementing External RGMII,” on
page 70.

RGMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design; constraints are set to ensure that these are placed in IOBs. The DDR
register constraints are not present for a Virtex-4 or Virtex-5 device where DDR
components are instantiated rather than inferred.

INST “rgmii_rxd_ddr*” IOB = true;
INST “rgmii_rx_dv_ddr” IOB = true;
INST “rgmii_rx_ctl_ddr” IOB = true;

INST “inband_link_status” IOB = true;
INST “inband_clock_speed*” IOB = true;
INST “inband_duplex_status” IOB = true;

The RGMII v2.0 is a 1.5 volt signal-level interface. The 1.5 volt HSTL Class I SelectIO
standard is used for RGMII interface pins. Use the following constraints with the device IO
Banking rules. The IO slew rate is set to fast to ensure that the interface can meet setup and
hold times.

INST "rgmii_txd<?>" IOSTANDARD = HSTL_I;

Figure 9-2: Timing Report Setup/Hold

tSETUP

tHOLD

GMII_RXD[7:0],
GMII_RX_DV
GMII_RX_ER

GMII_RX_CLK

8 ns

-6.134 ns

= 8 - 6.134
= 1.866 ns

8 ns

7.554 ns

= 7.554 - 8
= -0.446 ns

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 111
UG138 August 8, 2007

Required Constraints
R

INST "rgmii_tx_ctl" IOSTANDARD = HSTL_I;
INST "rgmii_rxd<?>" IOSTANDARD = HSTL_I;
INST "rgmii_rx_ctl" IOSTANDARD = HSTL_I;

INST "rgmii_txc" IOSTANDARD = HSTL_I;
INST "rgmii_rxc" IOSTANDARD = HSTL_I;

INST “rgmii_txd<?> SLEW = FAST;
INST “rgmii_tx_ctl” SLEW = FAST;
INST “rgmii_txc” SLEW = FAST;

In addition, the example design provides pad locking on the RGMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this
core.

RGMII Input Setup/Hold Timing

Figure 9-3 and Table 9-2 illustrate the setup and hold time window for the input RGMII
signals. This is the worst-case data valid window presented to the FPGA device pins.

Observe that there is a 2 ns data valid window which is presented across the RGMII input
bus. This must be correctly sampled on both clock edges by the FPGA devices.

For RGMII, the lower data bits, rgmii_rxd[3:0], should be sampled internally on the
rising edge of rgmii_rxc, and the upper data bits, rgmii_rxd[7:4], should be
sampled internally on the falling edge of rgmii_rxc.

Virtex-II, Virtex-II Pro, Spartan-3, Spartan-3E, and Spartan-3A Devices

The RGMII design uses a DCM on the receiver clock domain for all devices except Virtex-4
and Virtex-5. Phase-shifting is then applied to the DCM to align the resultant clock so that
it will correctly sample the 2 ns RGMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST *gmii_rxc_dcm CLKOUT_PHASE_SHIFT = FIXED;
INST *gmii_rxc_dcm PHASE_SHIFT = 10;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example RGMII pinout in the particular device. The setup/hold

Figure 9-3: Input RGMII Timing

Table 9-2: Input RGMII Timing

Symbol Min Typical Units

tSETUP 1.0 2.0 ns

tHOLD 1.0 2.0 ns

tSETUP

tHOLD

tSETUP

tHOLD

RGMII_RXC

RGMII_RXD[3:0],
RGMII_RX_CTL

http://www.xilinx.com

112 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix D,
“Calculating the DCM Phase Shift” describes a more accurate method for fixing the phase
shift by using hardware measurement of a unique PCB design.

Virtex-4 Devices

The RGMII design uses IDELAY components on the receiver clock, data and control
signals for Virtex-4 devices. A fixed tap delay can be applied to either delay the data and
control signals or delay the clock so that the data/control are correctly sampled by the
rgmii_rxc clock at the IOB IDDR registers, meeting RGMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite
different and for this reason this is discussed in “Understanding Timing Reports for RGMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *gmii_interface/delay_rgmii_rx_ctl IOBDELAY_VALUE = 40;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-4 User Guide and code comments for more information.

Virtex-5 Devices

The RGMII design uses IODELAY components on both the receiver and transmitter clock
domains for Virtex-5 devices. A fixed tap delay is applied to the rgmii_txc output clock
to move the rising edge of this clock to the centre of the output data window. For the
receiver clock, data and control signals, a fixed tap delay can be applied to either delay the
data and control signals or delay the clock so that the data/control are correctly sampled
by the rgmii_rxc clock at the IOB IDDR registers, meeting RGMII setup and hold timing.

The choice of delaying data/control or clock is dependant upon a number of factors, not
least being the required shift. There are trade-offs to be made with either choice: Delaying
the clock is clock period specific as we move the clock to line up each edge with data from
the following edge. Delaying the data/control introduces more jitter which degrades the
overall setup/hold window. The interface timing report in the two cases is also quite

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 113
UG138 August 8, 2007

Required Constraints
R

different and for this reason this is discussed in “Understanding Timing Reports for RGMII
Setup/Hold timing”.

The following constraint shows an example of setting the delay value for two of these
IODELAY components. Data/Control bits can be adjusted individually, if desired, to
compensate for any PCB routing skew.

INST *delay_rgmii_tx_clk ODELAY_VALUE = 26;

INST *gmii_interface/delay_rgmii_rx_ctl IDELAY_VALUE = 20;

The value of IDELAY_VALUE is preconfigured in the example designs to meet the setup
and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An
example LOC constraint for the IDELAYCTRL module is shown commented out in the
UCF. See the Virtex-5 User Guide and code comments for more information.

RGMII DDR Constraints

If the core is implemented on a device other than Virtex-4 or Virtex-5, the following
constraints are required to constrain the RGMII input registers for 1 Gbps operation. The
RGMII design requires these clock crossing constraints to ensure timing is met when
crossing from rising to falling clock edges and vice versa. A stringent time constraint
ensures that timing is met with the worst-case timing allowed in the RGMII specification.

INST “rgmii_rxd_reg_4” TNM=”rgmii_falling”;
INST “rgmii_rxd_reg_5” TNM=”rgmii_falling”;
INST “rgmii_rxd_reg_6” TNM=”rgmii_falling”;
INST “rgmii_rxd_reg_7” TNM=”rgmii_falling”;
INST “rgmii_rx_ctl_reg” TNM=”rgmii_falling”;
INST “gmii_rxd_reg_4” TNM=”rgmii_rising”;
INST “gmii_rxd_reg_5” TNM=”rgmii_rising”;
INST “gmii_rxd_reg_6” TNM=”rgmii_rising”;
INST “gmii_rxd_reg_7” TNM=”rgmii_rising”;
INST “gmii_rx_er_reg” TNM=”rgmii_rising”;

TIMESPEC “TS_rgmii_falling_to_rising” = FROM “rgmii_falling” TO “rgmii_rising” 3200 ps;

Understanding Timing Reports for RGMII Setup/Hold timing

None Virtex-4 or Virtex-5 Devices

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report.

The Clock Generation logic includes a BUFGMUX which provides a path for the pre-DCM
clock, see Figure 7-4. When this BUFGMUX is present the timing engine will use the non-
DCM clock path resulting in false setup and hold numbers. It is therefore necessary to edit
the example design HDL to remove this non-DCM path if the setup/hold numbers are to
be used for DCM phase adjustment.

http://www.xilinx.com

114 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

After this is completed, the results are self-explanatory and it is easy to see how they relate
to Figure 9-3. Here follows an example for the RGMII report from a Virtex-II device. Each
Input lists two sets of values - one corresponding to the -ve edge of the clock and one to the
+ve edge. The first set listed corresponds to -ve edge which occurs at time 4ns. The
implementation requires 0.648ns of setup to the -ve edge and 0.661ns to the +ve edge: this
is less than the 1ns required and so there is slack. The implementation requires 0.300 ns of
hold to the -ve edge and 0.316ns to the +ve edge: this is less than the 1ns required and so
there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+---------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+---------------------+--------+
rgmii_rx_ctl| -3.352(R)| 4.300(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.661(R)| 0.284(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<0>| -3.384(R)| 4.332(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.629(R)| 0.316(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<1>| -3.348(R)| 4.296(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.665(R)| 0.280(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<2>| -3.360(R)| 4.308(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.653(R)| 0.292(R)|rgmii_rx_clk_bufg | 0.938|
rgmii_rxd<3>| -3.428(R)| 4.382(R)|not_rgmii_rx_clk_bufg| 4.938|
 | 0.585(R)| 0.366(R)|rgmii_rx_clk_bufg | 0.938|
------------+------------+------------+---------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Data/Control

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. The results are self-explanatory and it is easy to see how they relate to
Figure 9-3. Here follows an example for the RGMII report from a Virtex-5 device. Each
Input lists two sets of values - one corresponding to the -ve edge of the clock and one to the
+ve edge. The first set listed corresponds to +ve edge which occurs at time 0ns. The
implementation requires 0.818ns of setupto the +ve edge and 0.794ns to the -ve edge: this
is less than the 1ns required and so there is slack. The implementation requires 0.946 ns of
hold to the +ve edge and 0.972ns to the +ve edge: this is less than the 1ns required and so
there is slack.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
rgmii_rx_ctl| 0.810(R)| 0.933(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.214(F)| 4.959(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<0>| 0.811(R)| 0.940(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.213(F)| 4.966(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<1>| 0.801(R)| 0.946(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.223(F)| 4.972(F)| rgmii_rx_clk_bufg| 4.000|

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 115
UG138 August 8, 2007

Required Constraints
R

rgmii_rxd<2>| 0.818(R)| 0.929(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.206(F)| 4.955(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<3>| 0.809(R)| 0.936(R)| rgmii_rx_clk_bufg| 0.000|
 | -3.215(F)| 4.962(F)| rgmii_rx_clk_bufg| 4.000|
------------+------------+------------+------------------+--------+

Virtex-4 or Virtex-5 Devices with Delayed Clock

Setup and Hold results for the RGMII input bus can be found in the data sheet section of
the Timing Report. However, depending on how the setup/hold requirements have been
met the results can initially look strange and it is not immediately obvious how they relate
to Figure 9-3. Here follows an example for the RGMII report from a Virtex-4 device where
the clock has been delayed to meet the setup/hold requirements.

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock rgmii_rxc
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
rgmii_rx_ctl| -7.178(R)| 8.880(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.178(F)| 12.880(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<0>| -7.192(R)| 8.893(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.192(F)| 12.893(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<1>| -7.182(R)| 8.884(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.182(F)| 12.884(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<2>| -7.180(R)| 8.882(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.180(F)| 12.882(F)| rgmii_rx_clk_bufg| 4.000|
rgmii_rxd<3>| -7.179(R)| 8.881(R)| rgmii_rx_clk_bufg| 0.000|
 | -11.179(F)| 12.881(F)| rgmii_rx_clk_bufg| 4.000|
------------+------------+------------+------------------+--------+

Each Input lists two sets of values - one corresponding to the +ve edge of the clock and one
to the -ve edge. The first set listed corresponds to +ve edge which occurs at time 8ns as we
have delayed the clock to use the following +ve edge.

The implementation requires -7.179 ns of setup to the +ve edge. Figure 9-4 illustrates that
this represents a figure of 0.821ns relative to the following rising edge of the clock (since
the IDELAY has acted to delay the clock by an entire period when measured from the input
flip-flop). This is less than the 1ns required and so there is slack. Equally for the -ve edge,
we have -11.179ns of setup - this edge is at time 12ns and therefore this equates to a setup
figure of 0.821ns.

The implementation requires 8.893ns of hold to the +ve edge. Figure 9-4 illustrates that this
represents a figure of 0.893 ns relative to the following rising edge of the clock (since the
IDELAY has acted to delay the clock by an entire period when measured from the input
flip-flop). This is less than the 1ns required and so there is slack. Equally for the -ve edge,

http://www.xilinx.com

116 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 9: Constraining the Core
R

we have 12.893ns of hold - this edge is at time 12ns and therefore this equates to a hold
figure of 0.893ns.

Figure 9-4: Timing Report Setup/Hold

tSETUP

tHOLD

RGMII_RXD[3:0],
RGMII_RX_CTL

RGMII_RXC

8 ns

-6.134 ns

= 8 - 7.179
= 0.821 ns

8 ns

8.893 ns

= 8.893 - 8
= 0.893 ns

12 ns

-11.179 ns12 ns

12.893 ns tHOLD = 12.893 - 12
= 0.893 ns tSETUP = 12 - 11.179

= 0.821 ns

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 117
UG138 August 8, 2007

R

Chapter 10

Clocking and Reset

This chapter describes design considerations associated with implementing the TEMAC
core.

Clocking
The example design files included with the TEMAC core include clocking circuitry to drive
the core at all three speeds.

GMII/MII Transmit Clock Generation
Figure 10-1 illustrates the GMII/MII transmit clocking circuit for all device families.

CLK must be provided to the MAC clock circuitry. This is a high quality 125 MHz clock
which satisfies the IEEE 802.3-2002 requirements. It is expected that this clock will be
derived from an external oscillator and connected into the device through an IBUFG.
MII_TX_CLK is provided by the PHY chip at speeds of 100 Mbps and below.

If the clock_enables option is set to false, the core requires two transmit clocks.
TX_CORE_CLK drives the 8-bit data path in the core, and the client logic.

Figure 10-1: GMII/MII Transmit Clock Generator

MII_TX_CLK

D Q

CLK

SPEED_IS_10_100

TX_GMII_MII_CLK

TX_CORE_CLK
I1

I0

I1

I0

BUFGMUX

BUFGMUX

http://www.xilinx.com

118 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 10: Clocking and Reset
R

TX_GMII_MII_CLK drives the GMII/MII logic in the core and the example design. This
clock is twice the frequency of the core clock when the device is operating at speeds below
1 Gbps. This is due to the fact that the MII interface implements a 4-bit data path. At these
speeds, the 4-bit data is carried on GMII_TXD[3 downto 0]. The upper bits are set to
zero. TX_CORE_CLK is connected to the txcoreclk input of the core. TX_GMII_MII_CLK
is connected to the txgmiimiiclk input. The clock selection is dependent on the state of
the SPEED_IS_10_100 input to the circuit. This is connected to the speedis10100
output of the core. For more information on the GMII/MII transmit interface, see
“GMII/MII Transmit Interface,” on page 63.

If the core is not required to operate at above 100 Mbps, the clocking scheme can be
simplified to remove the 125 MHz CLK input. Figure 10-2 shows the transmit clocking
scheme for a 10/100 Mbps implementation.

If the core is generated with the clock_enables option set to true, the TX_CORE_CLK
generation in Figure 10-1 and Figure 10-2 is omitted. The core clock is the
TX_GMII_MII_CLK signal with the user supplying a clock enable to the core and to the
remainder of the transmit client circuitry. The transmit clock generation for cores operating
at 10/100/1 Gbps in this case is illustrated in Figure 10-3.

Figure 10-2: 10/100 Mbps MII Transmit Clock Generator

Figure 10-3: GMII/MII Transmit Clock Generator (clock_enables = true)

MII_TX_CLK

D Q

TX_GMII_MII_CLK

TX_CORE_CLK

BUFG

BUFG

MII_TX_CLK

CLK

SPEED_IS_10_100

TX_GMII_MII_CLK
I1

I0

BUFGMUX

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 119
UG138 August 8, 2007

Clocking
R

GMII/MII Receive Clock Generation
Figure 10-4 shows the GMII/MII receiver clock generation circuit for all families apart
from Spartan-3, Spartan-3E and Spartan-3A.

RX_CLK is provided by the PHY chip via an IBUFG. This clock is output to the
RX_GMII_MII_CLK port via a BUFG where it is used to clock the GMII/MII receiver.

If SPEED_IS_10_100 (speedis10100 output from the core) is ‘0,’ RX_CORE_CLK is
generated from a frequency divided by 2 version of RX_CLK via a BUFGMUX. If
SPEED_IS_10_100 is ‘1,’ RX_CLK is routed through the BUFGMUX. The resulting global
clock is used by the core receiver and client side logic. For more information on the
GMII/MII receive interface, see “GMII/MII Receive Interface,” on page 66.

If the core is not required to operate at speeds over 100 Mbps, the clocking scheme can be
simplified to remove the BUFGMUX as RX_CORE_CLK will always be half the frequency of
RX_GMII_MII_CLK. shows the receiver clock generator for a 10/100 Mbps
implementation.

Figure 10-4: GMII/MII Receive Clock Generator

Figure 10-5: 10/100 Mbps MII Receive Clock Generator

RX_CLK

D Q

SPEED_IS_10_100

RX_GMII_MII_CLK

RX_CORE_CLK
I1

I0

BUFGMUX

BUFG

RX_CLK

D Q

RX_GMII_MII_CLK

RX_CORE_CLK

BUFG

BUFG

http://www.xilinx.com

120 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 10: Clocking and Reset
R

If the core is generated with the clock_enables option set to true, the RX_CORE_CLK
generation from Figure 10-4 and Figure 10-5 is omitted. The core clock is the
RX_GMII_MII_CLK signal with the user supplying a clock enable to the core and to the
remainder of the receiver client circuitry. This is illustrated in Figure 10-6.

RGMII Transmit Clock Generation
Figure 10-7 shows the RGMII transmit clock generator circuit for all device families except
Virtex-5.

A high quality 125 MHz clock (CLK) is supplied to the clock circuit. This is then input to a
DCM. The CLK0 output from the DCM is used to generate the TX_CORE_CLK (if the core is
generated with the clock_enables option set to false) and TX_GMII_MII_CLK outputs.

A Johnson counter is used to divide the CLK input down by 5 and 10 to provide clocks of
25 MHz and 12.5 MHz. The 12.5 MHz clock is then used to generate clock enable inputs to
a second Johnson counter to provide clocks of 2.5 MHz and 1.25 MHz. These are then
routed to the TX_CORE_CLK and TX_GMII_MII_CLK outputs depending on the state of
the SPEED_IS_10_100 and SPEED_IS_100 outputs from the core.

When the core is running at 1 Gbps, the rgmii_txc clock output must toggle at the center
of the valid data. To do this, the CLK90 output from the DCM is routed to the
TX_GMII_MII_CLK90 output where it is used to generate rgmii_txc. See “RGMII
Transmit Interface,” on page 70 for more details. At lower speeds, the clock for rgmii_txc
is generated from the CLK180 output of the DCM via two Johnson counters.

If the core is generated with the optional clock enable circuitry, TX_CORE_CLK is
unnecessary. In this case, the TX_GMII_MII_CLK output is used to clock the entire

Figure 10-6: GMII/MII Receive Clock Generator (clock_enables = true)

RX_CLK RX_GMII_MII_CLK

BUFG

Figure 10-7: RGMII Transmit Clock Generator (clock_enables = false)

CLK

SPEED_IS_10_100

TX_GMII_MII_CLK

TX_CORE_CLK
I1

I0

I1

I0

BUFGMUX

BUFGMUX

Johnson Counter

CLK/10

CLK/5

Johnson Counter

CLK/10

CLK/5

DCM

CLK0

CLK90

CLKIN

CLKFB

1

0

1

0

SPEED_IS_100

BUFGMUX

I1

I0

TX_GMII_MII_CLK90

CLK180

CE_R
CE_F

D Q

D Q

D

D

Q

Q

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 121
UG138 August 8, 2007

Clocking
R

transmitter circuit with the user supplying a clock enable to the core and the remainder of
the client circuitry, as illustrated in Figure 10-8.

For Virtex-5 devices, the RGMII transmit clock generation is simplified, as a 90 degree
phase-shifted clock can be generated using an IODELAY component described in “RGMII
Transmit Interface” in Chapter 7. Figure 10-9 shows the RGMII transmit clocking circuit
for Virtex-5 devices.

A high quality 125 MHz clock (CLK) is supplied to the clock circuit. For 1 Gbps operation,
this clock is routed through separate BUFGMUXs to create the TX_GMII_MII_CLK output
and the TX_CORE_CLK output (if the core is generated with the clock_enables option set to
false).

A Johnson counter is used to divide the CLK input down by 5 and 10 to provide clocks of
25 MHz and 12.5 MHz. The 12.5 MHz clock is then used to generate clock enable inputs to
a second Johnson counter to provide clocks of 2.5 MHz and 1.25 MHz. These are then
routed to the TX_CORE_CLK and TX_GMII_MII_CLK outputs depending on the state of
the SPEED_IS_10_100 and SPEED_IS_100 outputs from the core.

Figure 10-8: RGMII Transmit Clock Generator (clock_enables = true)

Figure 10-9: RGMII Transmit Clock Generator (clock_enables = false) for Virtex-5

CLK

SPEED_IS_10_100

TX_GMII_MII_CLK
I1

I0

BUFGMUX

BUFGMUX

Johnson Counter

CLK/10

CLK/5

Johnson Counter

CLK/10

CLK/5

DCM

CLK0

CLK90

CLKIN

CLKFB

1

0

SPEED_IS_100

BUFGMUX

I1

I0

TX_GMII_MII_CLK90

CLK180

CE_R
CE_F

D Q

D Q

D Q

CLK

SPEED_IS_10_100

TX_GMII_MII_CLK

TX_CORE_CLKI1

I0

I1

I0

BUFGMUX

BUFGMUX

Johnson Counter

CLK/10

CLK/5

Johnson Counter

CLK/10

CLK/5

1

0

1

0

TX_SPEED_IS_100

CE_R
CE_F

D Q

D Q

D Q

http://www.xilinx.com

122 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 10: Clocking and Reset
R

RGMII Receive Clock Generation
Figure 10-10 shows the clock generation circuitry for the RGMII receiver for all device
families except Virtex-4 and Virtex-5. At 1 Gbps, the clock is generated from the 125 MHz
rgmii_rxc input via a DCM. The DCM is set-up in fixed-phase shift mode. The phase
shift value can be varied to provide the correct set-up and hold times at the receiver input.
See “Calculating the DCM Phase Shift,” on page 145.

At slower speeds the DCM is bypassed (and held in reset). This is due to the fact that the
minimum CLKIN input of the DCM is 24 MHz. This is too low for the 10 Mbps
rgmii_rxc clock, which runs at a frequency of 2.5 MHz.

At 10/100 Mbps the clock is simply the rgmii_rxc input routed through a BUFGMUX.

If the core is generated with the clock_enables option set to true, the RX_CORE_CLK
generation is omitted. The core clock is the RX_GMII_MII_CLK signal with the user
supplying a clock enable to the core and to the remainder of the receive client circuitry.
This is shown in Figure 10-11.

For Virtex-4 and Virtex-5 devices the receive clock generation is simplified, as illustrated in
Figure 10-12. In Virtex-4 and Virtex-5 devices it is possible to meet the RGMII setup and
hold requirements by skewing the data and control signals using input delay elements. See

Figure 10-10: RGMII Receive Clock Generator (clock_enables = false)

Figure 10-11: RGMII Receive Clock Generator (clock_enables = true)

RX_CLK

D Q

SPEED_IS_10_100

RX_GMII_MII_CLK

RX_CORE_CLK
I1

I0

BUFGMUX

CLKIN

CLKFB

CLK0

BUFGMUX

I0

I1

DCM

RESET
SPEED_IS_10_100

RX_CLK

SPEED_IS_10_100

RX_GMII_MII_CLK

CLKIN

CLKFB

CLK0

BUFGMUX

I0

I1

DCM

SPEED_IS_10_100
RESET

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 123
UG138 August 8, 2007

Multiple Cores
R

“RGMII Receiver Interface” in Chapter 7 for details on how this is achieved for these
families.

Multiple Cores

Clock Sharing
Figure 10-13 illustrates how it is possible to share clock resources across multiple
instantiations of the core when using the GMII/MII interface.

A common receiver clock domain is not possible; each core will receive an independent
receiver clock from its GMII as illustrated.

At speeds below 1 Gbps, the transmit clock is also an input to the MAC. It is possible to
share the clock if the PHY outputs an identical clock for each MAC. If these clocks are
different, it is not possible to share the clock circuitry. The shared clock MACs must be
operating at the same speed.

Although not illustrated, if the optional Management Interface is used, hostclk can also
be shared between cores.

Figure 10-12: RGMII Receive Clock Generator (clock_enables = false) for
Virtex-4 and Virtex-5 Devices

RX_CLK

D Q
SPEED_IS_10_100

RX_GMII_MII_CLK

RX_CORE_CLKI1

I0

BUFGMUX

BUFG

http://www.xilinx.com

124 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 10: Clocking and Reset
R

If the RGMII interface is used, the rgmii_txc clock output can be shared between
multiple cores as long as they are all running at the same speed.

BUFGMUX Usage
The BUFGMUX components in Virtex-II, Virtex-II Pro, Spartan-3, Spartan-3E and
Spartan-3A devices are arranged in pairs. Both the inputs to each pair must be the same.
For the BUFGMUXes in the TEMAC this is not the case and so the partner of each

Figure 10-13: Clock Sharing across Two MAC Cores

IBUFG

OBUF

BUFG

GMII_TX_CLK_1

GMII_RX_CLK_1

MAC Core

rxgmiimiiclk

txcoreclk

MAC Core
txcoreclk

IBUFG

BUFGMUX

GTX_CLK

IBUFG

OBUF
GMII_TX_CLK_2

GMII_RX_CLK_2

BUFG

MII_TX_CLKDIV 2

txgmiimiiclk

DIV 2

rxcoreclk

BUFGMUX

IBUF

BUFGMUX

txgmiimiiclk

rxgmiimiiclk

rxcoreclk

DIV 2

TX Clock Generator

FDDRRSE

FDDRRSE

BUFGMUX

RX Clock Generator

RX Clock Generator

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 125
UG138 August 8, 2007

BUFGMUX Usage
R

BUFGMUX in the clock circuit cannot be used by another clock. This is illustrated in
Figure 10-14 for the generation of txgmiimiiclk.

If there are multiple cores on the chip, or if the user logic requires many independent
clocks, it is possible to multiplex the two clocks in the FPGA fabric and route the resultant
signal through a BUFG component (essentially a BUFGMUX with a constant select line).
This will free up the partner BUFGMUX for use by a different clock. This is illustrated in
Figure 10-15.

No glitches or short pulses appear on the output of the BUFGMUX components when the
select line is toggled. Performing the multiplexing in the FPGA fabric removes this
safeguard, and if the user has not implemented a glitch free clock multiplexer circuit, a

Figure 10-14: Suggested BUFGMUX Scheme

Figure 10-15: Alternative BUFGMUX Scheme

BUFGMUX BUFGMUX

MII_TX_CLK

GTX_CLK

SEL_A(SPEED_IS_10_100)

SEL_B

txgmiimiiclk

Switch Fabric

BUFGMUX BUFGMUX

MII_TX_CLK

GTX_CLK

'0'

SEL_B

TX_GMII_MII_CLK_INT

MUX(in fpga fabric)

SPEED_IS_10_100

ANOTHER CLOCK

txgmiimiiclk

Switch Fabric

http://www.xilinx.com

126 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 10: Clocking and Reset
R

reset should be performed after a speed change. The reset has no effect on the speed
setting, which is preserved in the configuration registers.

Reset Conditions
Internally, the core is divided up into clock/reset domains, which group together elements
with the common clock and reset signals. The reset circuitry for one of these domains is
illustrated in Figure 10-16. This circuit provides controllable skews on the reset nets within
the design.

More information on the operation and rationale behind this circuit can be found in Ken
Chapman’s Xilinx TechXclusive, “Get Smart About Reset” at:
www.xilinx.com/support/techxclusives/global-techX19.htm

Figure 10-16: Reset Circuit for One Clock/reset Domain

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

FDP

PRE
D

C

Q

PRE PRE PRE

'0'

RESET

Management Reset

Clock

Core Registers

http://www.xilinx.com
http://www.xilinx.com/support/techxclusives/global-techX19.htm

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 127
UG138 August 8, 2007

R

Chapter 11

Interfacing to Other Cores

Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core
The TEMAC core can be integrated in a single device with the Ethernet 1000BASE-X
PCS/PMA or SGMII core (Virtex II Pro, Virtex-4, and Virtex-5 only) to provide a SGMII
interface to an external PHY chip.

A description of the latest available IP Update containing the Ethernet 1000BASE-X
PCS/PMA or SGMII core and instructions on obtaining the IP update can be found in the
Ethernet 1000BASE-X PCS/PMA or SGMII Product web site at:

www.xilinx.com/systemio/1gbsx_phy/index.htm

A description of the Ethernet 1000BASE-X PCS/PMA or SGMII core is outside the scope of
this document.

The Tri-Mode Ethernet MAC should always be configured for full-duplex operation when
used with an SGMII. This constraint is due to the increased latency introduced by the
SGMII logic; frame collisions and the MACs response will not be detected or made in time.

Integration to Provide SGMII

Virtex-II Pro Devices

Figure 11-1 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-II pro
devices. This shows that:

• The TEMAC core is generated with optional clock enables.

• The cores are connected together via a SGMII adaptation module. This generates the
clock enable needed to run the TEMAC at speeds below 1 Gbps. The clock enable
should also be used to enable the client transmit and receive circuitry. These ensure
that data is only sampled every 10 clock cycles at 100 Mbps and every 100 clock cycles
at 10 Mbps.

• If the TEMAC has been built with the optional management logic (see “Using the
Optional Management Interface,” page 81), the MDIO port can be connected up to
that of the Ethernet 1000BASE-X PCS/PMA or SGMII core to access its embedded
configuration and status registers.

Some simplification to the UCF required for use with the TEMAC is possible. The
constraints which cover the clocks (with the exception of the hostclk) can be removed as
these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA or SGMII core

http://www.xilinx.com/systemio/1gbsx_phy/index.htm
http://www.xilinx.com

128 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

UCF. The GMII Transmitter and Receiver Constraints can also be removed as these signals
are no longer routed to IOBs.

Figure 11-1: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-II Pro)

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

brefclk

txusrclk

txusrclk2

no
connection

userclk

userclk2

RocketIO I/F

DCM

CLKIN CLK0

FB

BUFG

CLK2X180

BUFG

userclk (62.5MHz)

userclk2 (125MHz)

IPAD
IBUFGDS

IOB LOGIC

brefclkp

IPAD
brefclkn

brefclk (62.5MHz)

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

userclk2

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Tri-Mode Ethernet
MAC Core

Ethernet
1000BASE-X
PCS/PMA or
SGMII Core

pcs_pma/sgmii_component_name_block
(Block Level from Core Example Design)

Virtex-II Pro
RocketIO

(GT_CUSTOM)

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 129
UG138 August 8, 2007

Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core
R

Virtex-4 Devices

Figure 11-2 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-4 devices.
As in the Virtex-II Pro architecture, the TEMAC core is generated with optional clock
enables and the interface between the two cores is provided by an SGMII Adaptation
module.

As in the Virtex-II Pro, some simplification to the UCF required for use with the TEMAC is
possible. The constraints which cover the clocks (with the exception of the hostclk) can
be removed as these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA
or SGMII core UCF. The GMII Transmitter and Receiver Constraints can also be removed
as these signals are no longer routed to IOBs.

Figure 11-2: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-4)

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

userclk2

SGMII Adaptation
Module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

IPAD

brefclkp
(125MHz)

IPAD
brefclkn
(125MHz)

MGTCLKP

MGTCLKN

SYNCLK1OUT

REFCLK1

TXUSRCLK

TXUSRCLK2

userclk2
(125 MHz)

synclk1
(125MHz)

userclk

‘0’

BUFG

TXOUTCLK1

Tri-Mode
Ethernet MAC

Core

Ethernet
1000BASE-X
PCS/PMA or
SGMII Core

Virtex-4
GT11

RocketIO
(used)

pcs_pma/sgmii_component_name_block
(Block Level from Core Example Design)

Virtex-4
GT11CLK_MGT

http://www.xilinx.com

130 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

Virtex-5 Devices

Figure 11-3 illustrates the connections and clock management logic required to interface
the TEMAC core to the Ethernet 1000BASE-X PCS/PMA or SGMII core in Virtex-5 devices.
As with the Virtex-II Pro architecture, the TEMAC core is generated with optional clock
enables and the interface between the two cores is provided by an SGMII Adaptation
module.

As in the Virtex-II Pro, some simplification to the UCF required for use with the TEMAC is
possible. The constraints which cover the clocks (with the exception of the hostclk) can
be removed as these are covered by the constraints in the Ethernet 1000BASE-X PCS/PMA
or SGMII core UCF. The GMII Transmitter and Receiver Constraints can also be removed
as these signals are no longer routed to IOBs.

Integrating with the Ethernet Statistics Core
The TEMAC can be integrated with the Ethernet Statistics core to provide statistical
information on the frames that are processed by the MAC. Figure 11-4 illustrates the
connections required to interface the two cores when the TEMAC is generated with
optional clock enables. If the TEMAC is generated without clock enables, txcoreclk and
txcoreclk are connected to the tx_clk and rx_clk inputs of the Ethernet Statistics
core. The tx_enable and rx_enable inputs of the Ethernet Statistics core are tied high.

Figure 11-3: Tri-Mode Ethernet MAC Extended to Implement SGMII (Virtex-5)

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_triNo
Connection

userclk2

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

userclk2

SGMII Adaptation Module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC
CLKIN

TXUSRCLK0

TXUSRCLK20

userclk2
(125 MHz)

userclk

BUFG

TXOUTCLK0

clkin
(125MHz)

IBUFGDSbrefclkp

brefclkn

pcs_pma/sgmii_component_name_block
(Block Level from Core Example Design)

Tri-Mode
Ethernet MAC

Core

RocketIO I/F

Virtex-5
RocketIO

GTP

Ethernet
1000BASE-X
PCS/PMA or
SGMII Core

IPAD

IPAD

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 131
UG138 August 8, 2007

Integrating with the Ethernet Statistics Core
R

The Ethernet Statistics core contains two parts:

• The vector decode module decodes the information contained in the statistics vector
outputs from the TEMAC core. This block can be modified to allow the user to gather
information on the types of frame that are of interest.

• The Statistics 32/64-bit module contains the statistic counters. If the 32-bit module is
selected, each counter can count up to 232-1 frames. If the 64-bit module is selected,
the counters can count 264-1 frames. The information from the counters is read back
via the Management Interface.

For more information on the Ethernet Statistics core, see the LogiCORE Ethernet Statistics
User Guide.

Figure 11-4: Tri-Mode Ethernet MAC with Statistics

Tri-Mode
Ethernet MAC Core

BUFG

emacclienttxstats

emacclienttxstatsvld

txgmiimiiclk

clientemactxenable

emacclientrxstats

emacclientrxstatsvld

rxgmiimiiclk

clientemacrxenable

hostclk

hostopcode

hostreq

hostmiimsel

hostaddr

hostwrdata

hostmiimrdy

hostrddata

From Clock and Clock Enable
Generation Circuitry

tx_statistics_vector

tx_statistics_valid

tx_enable

tx_clk

rx_statistics_vector

rx_statistics_valid

rx_enable

rx_clk

tx_byte

rx_byte

rx_small

rx_frag

increment_vector

tx_byte

rx_byte

rx_small

rx_frag

increment_vector

tx_clk

rx_clk

host_opcode

host_req

host_miim_sel

host_addr

host_rd_data

host_clk

Managment Interface

ref_clk

Vector Decode Module Statistics 32/64
Bit Module

Ethernet Statistics Core

ref_clk

bit 9

01

http://www.xilinx.com

132 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 11: Interfacing to Other Cores
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 133
UG138 August 8, 2007

R

Chapter 12

Implementing Your Design

This chapter describes how to simulate and implement your design containing the TEMAC
core.

Pre-implementation Simulation
The CORE Generator generates a functional model of the TEMAC core netlist to allow
simulation of the block in the design phase of the project.

Using the Simulation Model
For information on setting up your simulator to use the functional model, see the Xilinx
Synthesis and Verification Design Guide, included in your Xilinx software installation.

The model is provided in the CORE Generator project directory.

VHDL

<component_name>.vhd

Verilog

<component_name>.v

This model can be compiled along with the users code to simulate the overall system.

Synthesis

XST - VHDL
In the CORE Generator project directory, there is a <component_name>.vho file that is a
component and instantiation template for the core. Use this to help instance the TEMAC
core into your VHDL source.

After your entire design is complete, create the following:

• An XST project file top_level_module_name.prj listing all the user source code
files

• an XST script file top_level_module_name.scr containing your required
synthesis options

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

http://www.xilinx.com

134 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 12: Implementing Your Design
R

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

XST - Verilog
In the CORE Generator project directory, locate the module declaration for the TEMAC
core at:

<component_name>/implement/<component_name>_mod.v

Use this module to help instance the TEMAC core into your Verilog source.

After your entire design is complete, create

• An XST project file top_level_module_name.prj listing all the user source code
files. Be sure to include

%XILINX%/verilog/src/iSE/unisim_comp.v

and

<component_name>/implement/component_name_mod.v

as the first two files in the project list.

• An XST script file top_level_module_name.scr containing your required
synthesis options

To synthesize the design, run

$ xst -ifn top_level_module_name.scr

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

Implementation

Generating the Xilinx Netlist
To generate the Xilinx netlist, the ngdbuild tools is used to translate and merge the
individual design netlists into a single design database, the NGD file. Also merged at this
stage is the UCF for the design. An example of the ngdbuild command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \

-uc top_level_module_name.ucf top_level_module_name

Mapping the Design
To map the logic gates of the user design netlist into the CLBs and IOBs of the FPGA, run
the map command. The map command writes out a physical design to an NCD file. An
example of the map command is:

$ map top_level_module_name -o top_level_module_name_map.ncd

Placing and Routing the Design
To place and route the user design’s logic components (mapped physical logic cells)
contained within an NCD file in accordance with the layout and timing requirements
specified within the PCF file, the par command must be executed. The par command

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 135
UG138 August 8, 2007

Post-Implementation Simulation
R

outputs the placed and routed physical design to an NCD file. An example of the par
command is:

$ par top_level_module_name_map.ncd top_level_module_name.ncd \

top_level_module_name.pcf

Static Timing Analysis
To evaluate timing closure on a design and create a Timing Report file (TWR) derived from
static timing analysis of the Physical Design file (NCD), the trce command must be
executed. The analysis is typically based on constraints included in the optional PCF file.
An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \

top_level_module_name.pcf

Generating a Bitstream
To create the configuration bitstream (BIT) file based on the contents of a physical
implementation file (NCD), the bitgen command must be executed. The BIT file defines
the behavior of the programmed FPGA. An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation
The purpose of post-implementation simulation is to verify that the design as
implemented in the FPGA works as expected.

Generating a Simulation Model
To generate a chip-level simulation netlist for your design, run the netgen command.

VHDL

$ netgen -sim -ofmt vhdl -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.v

Using the Model
For information on setting up your simulator to use the pre-implemented model, consult
the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

http://www.xilinx.com

136 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Chapter 12: Implementing Your Design
R

Other Implementation Information
For more information about using the Xilinx implementation tool flow, including
command line switches and options, see the Xilinx ISE software manuals.

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 137
UG138 August 8, 2007

R

Appendix A

Using the Client Side FIFO

The example design provided with the TEMAC core contains a LocalLink FIFO used to
interface to the client side of the TEMAC core. The source code for the FIFO is provided,
and can be used and edited for user applications.

The 10 Mbps/100 Mbps/1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into
a typical implementation. Each FIFO is built around two Dual Port Block RAMs giving a
memory capacity of 4096 bytes in each FIFO. This chapter describes the operation of the
FIFO.

Overview of LocalLink Interface
Data is transferred on the LocalLink interface from source to destination, with the flow
governed by the four active low control signals sof_n, eof_n, src_rdy_n and
dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n
signals. For more information on the LocalLink interface, see Xilinx Application Note
XAPP691, “Parameterizable LocalLink FIFO.” Figure A-2 shows the transfer of an 8-byte
frame.

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation

Tri-Mode Ethernet
MAC Core

User Logic

Core GMII/MII
Interface

PHY Chip

GMII/MII or RGMII
10M/100M/1G

Ethernet MAC FIFO

Transmit FIFO

Receive FIFO

Local Link Interface Client Interface

http://www.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

138 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Appendix A: Using the Client Side FIFO
R

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

Receive FIFO Operation
The receive FIFO takes data from the client interface of the TEMAC core and converts it
into LocalLink format. See “Receiving Inbound Frames,” on page 39 for a description of the
TEMAC receive client interface. If the frame is marked as good by the TEMAC, that frame
will then be presented on the LocalLink interface for reading by the user. If the frame is
marked as bad, that frame will be dropped by the FIFO.

LocalLink Interface
Table A-1 describes the receive FIFO LocalLink interface.

Figure A-2: Frame Transfer across LocalLink Interface

Figure A-3: Frame Transfer with Flow Control

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4

Table A-1: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

rx_ll_clock Input N/A Read clock for LocalLink
interface

rx_ll_reset Input rx_ll_clock Synchronous reset

rx_ll_data_out[7:0] Output rx_ll_clock Data read from FIFO

rx_ll_sof_out_n Output rx_ll_clock Start of frame indicator

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 139
UG138 August 8, 2007

Transmit FIFO Operation
R

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be
asserted. Frames will continue to be dropped until space is made available in the FIFO by
reading data out. The FIFO status signal indicates the occupancy of the FIFO.

Transmit FIFO Operation
The transmit FIFO accepts frames in LocalLink format and stores them in block RAM for
transmission via the TEMAC. When a full frame is written into the transmit FIFO, the FIFO
will present the data to the TEMAC transmitter client interface. On receiving the tx_ack
signal from the TEMAC core, the rest of the frame is transmitted. For a description of the
TEMAC transmit client interface, see “Transmitting Outbound Frames,” on page 47.

LocalLink Interface
Table A-2 shows the transmit FIFO LocalLink interface signals.

In half-duplex operation, if the client interface emacclienttxcollision signal is
asserted by the TEMAC, the current frame transmission will be terminated. If the
emacclienttxretransmit signal is also asserted, the FIFO re-queues the frame for
transmission.

If the FIFO memory fills up, the dst_rdy_out_n signal will be used to halt the LocalLink
interface writing in data, until space becomes available in the FIFO. If the FIFO memory
fills up but no frames are available for transmission, i.e. if a frame larger than 4000 bytes is

rx_ll_eof_out_n Output rx_ll_clock End of frame indicator

rx_ll_src_rdy_out_n Output rx_ll_clock Source ready indicator

rx_ll_dst_rdy_in_n Input rx_ll_clock Destination ready indicator

rx_fifo_status[3:0] Output rx_ll_clock FIFO memory status

Table A-1: Receive FIFO LocalLink Interface (Continued)

Signal Direction
Clock

Domain
Description

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

tx_ll_clock Input N/A Write clock for LocalLink interface

tx_ll_reset Input tx_ll_clock Synchronous reset

tx_ll_data_in[7:0] Input tx_ll_clock Write data to be sent to transmitter

tx_ll_sof_in_n Input tx_ll_clock Start of frame indicator

tx_ll_eof_in_n Input tx_ll_clock End of frame indicator

tx_ll_src_rdy_in_n Input tx_ll_clock Source ready indicator

tx_ll_dst_rdy_out_n Output tx_ll_clock Destination ready indicator

tx_fifo_status[3:0] Output tx_ll_clock FIFO memory status

http://www.xilinx.com

140 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Appendix A: Using the Client Side FIFO
R

written into the FIFO, the FIFO will assert the tx_overflow signal and continue to accept
the rest of the frame from the user. The overflow frame will be dropped by the FIFO. This
ensures that the LocalLink interface does not lock up.

Clock Requirements
The FIFO has been designed to work with rxcoreclk and txcoreclk running at speeds
in the range of 125 MHz to 1.25 MHz or, with the optional clock enables, rxgmiimiiclk
and txgmiimiiclk in the range of 125 MHz to 2.5 MHz. The rx_ll_clock should be no
slower than the clock on the receiver client interface. The tx_ll_clock should be no
slower than the clock on the transmitter client interface divided by 2. It is therefore
suggested that the rx_ll_clock and tx_ll_clock are always 125 MHz or faster.

User Interface Data Width Conversion
Conversion of the user interface 8 bit data path to a 16, 32, 64 or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO (XAPP691).

http://www.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 141
UG138 August 8, 2007

R

Appendix B

Core Verification, Compliance, and
Interoperability

The TEMAC has been verified with extensive simulation and hardware verification.

Verification by Simulation
A highly parameterizable transaction-based test bench (not part of the primary core
deliverables) was used to test the core. Tests include:

• Register access

• MDIO access

• Frame transmission and error handling

• Frame reception and error handling

• Speed switching

• Address filter operation

Hardware Verification
The core has been tested in a variety of hardware test platforms at Xilinx to cover a variety
of parameterizations, including the following:

• Testing with the Ethernet 1000BASE-X PCS/PMA or SGMII cores from Xilinx. A test
platform was built around these cores, including a back-end FIFO capable of
performing a simple ping function and a test pattern generator. Software running on
the embedded PowerPC™ was used to provide access to all configuration, status and
statistical counter registers.

• Testing with an external PHY device. The MAC was connected to the external PHY
device via the GMII interface.

http://www.xilinx.com

142 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Appendix B: Core Verification, Compliance, and Interoperability
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 143
UG138 August 8, 2007

R

Appendix C

Core Latency

General
The latency figures given in the following sections may vary by three clock ticks in either
direction, due to the crossing of clock domains within the core.

Transmit Path Latency
The transmit path latency is measured by counting the number of clock cycles between a
data byte being placed on the client interface (clientemactxd), and it appearing at the
GMII/MII output (emacphytxd). At 1 Gbps, this has been measured as 12 clock cycles, at
10/100 Mbps this has been measured as 10 clock cycles.

Receive Path Latency
The receive path latency is measured as the number of clock cycles between a byte being
driven onto the GMII/MII receive interface (phyemacrxd), and it appearing at the client
(emacclientrxd). This has been measured as 18 clock cycles at all speeds.

http://www.xilinx.com

144 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Appendix C: Core Latency
R

http://www.xilinx.com

Tri-Mode Ethernet MAC v3.4 www.xilinx.com 145
UG138 August 8, 2007

R

Appendix D

Calculating the DCM Phase Shift

DCM Phase Shifting Requirements
A DCM is used in the receiver clock path to meet the input setup and hold requirements
when implementing GMII/MII using the core in Spartan-3, Spartan-3E, and Spartan-3A
devices (see “Implementing External GMII,” on page 63). In RGMII, a DCM is used to
maintain the setup and hold times in all devices, except Virtex-5 and Virtex-4 (see “RGMII
Receive Clock Generation,” on page 122).

In these cases, a fixed-phase shift offset is applied to the receiver clock DCM to skew the
clock; this performs static alignment by using the receiver clock DCM to shift the internal
version of the receiver clock such that the data is sampled at the optimum time. The ability
to shift the internal clock in small increments is critical for sampling high-speed source
synchronous signals. For statically aligned systems, the DCM output clock phase offset (as
set by the phase shift value) is a critical part of the system, as is the requirement that the
PCB is designed with precise delay and impedance-matching for all the GMII receiver data
bus and control signals.

You must determine the best DCM setting (phase shift) to ensure that the target system has
the maximum system margin to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best DCM phase shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time). System margin is defined as the following:

System Margin (ps) = UI(ps) * (working phase shift range/128)

Finding the Ideal Phase Shift Value
Xilinx cannot recommend a singular phase shift value that is effective across all hardware
platforms. Xilinx does not recommend attempting to determine the phase shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock to data relationship at the sample point (in the IOB) and are difficult to
characterize.

Xilinx recommends extensive investigation of the phase shift setting during hardware
integration and debugging. The phase shift settings provided in the example design
constraint file are placeholders, and work successfully in back-annotated simulation of the
example design.

Perform a complete sweep of phase shift settings during your initial system test. Use only
positive (0 to 255) phase shift settings, and use a test range that covers a range of no less
than 128, corresponding to a total 180 degrees of clock offset. This does not imply that 128
phase shift values must be tested; increments of 4 (52, 56, 60, and so forth) correspond to

http://www.xilinx.com

146 www.xilinx.com Tri-Mode Ethernet MAC v3.4
UG138 August 8, 2007

Appendix D: Calculating the DCM Phase Shift
R

roughly one DCM tap, and consequently provide an appropriate step size. Additionally, it
is not necessary to characterize areas outside the working phase shift range.

At the edge of the operating phase shift range, system behavior changes dramatically. In
eight phase shift settings or less, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase shift range. Once the range is determined, choose the average
of the high and low working phase shift values as the default. During the production test,
Xilinx recommends that you re-examine the working range at corner case operating
conditions to determine whether any final adjustments to the final phase shift setting are
needed.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in phase shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

	LogiCORE™ Tri-Mode Ethernet MAC v3.4
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	About the Core
	Recommended Design Experience
	Additional Core Resources
	Related Xilinx Ethernet Products and Services
	Specifications
	Technical Support
	Feedback
	Tri-Mode Ethernet MAC Core
	Document

	Core Architecture
	System Overview
	Core Components

	Core Interfaces
	Optional Interfaces
	Client Side Interface Signals
	Management Interface Signals
	Configuration Vector Signals
	Address Filter Signals
	Clock, Speed Indication, and Reset Signals
	Physical Interface Signals
	Optional MDIO Signals

	Generating the Core
	GUI Interface
	Parameter Values in the XCO File
	Output Generation

	Designing with the Core
	General Design Guidelines
	Design Steps
	Understand Signal Pipelining
	Register All I/Os
	Recognize Timing Critical Signals
	Use Supported Design Flows
	Make Only Allowed Modifications

	Using the Client Side Data Path
	Receiving Inbound Frames
	Normal Frame Reception
	emacclientrxgoodframe and emacclientrxbadframe Timing
	Frame Reception with Errors
	Client-Supplied FCS Passing
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Length/Type Field Error Checks
	Address Filter
	Receiver Statistics Vector

	Transmitting Outbound Frames
	Normal Frame Transmission
	Padding
	Client-Supplied FCS Passing
	Client Underrun
	Back-to-Back Transfers
	VLAN Tagged Frames
	Maximum Permitted Frame Length
	Frame Collisions: Half-Duplex Operation Only
	Interframe Gap Adjustment: Full-Duplex Mode Only
	Transmitter Statistics Vector

	Using Flow Control
	Overview of Flow Control
	Flow Control Requirement
	Flow Control Basics
	Pause Control Frames

	Flow Control Operation of the TEMAC
	Transmitting a Pause Control Frame
	Receiving a Pause Control Frame

	Flow Control Implementation Example

	Using the Physical Side Interface
	Implementing External GMII
	GMII/MII Transmit Interface
	GMII/MII Receive Interface

	Implementing External RGMII
	RGMII Transmit Interface
	RGMII Receiver Interface
	RGMII Inband Status Decoding Logic

	Using the MDIO Interface

	Configuration and Status
	Using the Optional Management Interface
	hostclk
	Configuration Registers
	Register Maps
	Using the Management Interface
	MDIO Interface

	Accessing Configuration without the Management Interface
	Configuration Vector Description

	Constraining the Core
	Required Constraints
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Placement Constraints
	Timing Constraints
	Understanding Timing Reports for GMII Setup/Hold timing
	Understanding Timing Reports for RGMII Setup/Hold timing

	Clocking and Reset
	Clocking
	GMII/MII Transmit Clock Generation
	GMII/MII Receive Clock Generation
	RGMII Transmit Clock Generation
	RGMII Receive Clock Generation

	Multiple Cores
	Clock Sharing

	BUFGMUX Usage
	Reset Conditions

	Interfacing to Other Cores
	Integrating with the Ethernet 1000BASE-X PCS/PMA or SGMII Core
	Integration to Provide SGMII

	Integrating with the Ethernet Statistics Core

	Implementing Your Design
	Pre-implementation Simulation
	Using the Simulation Model

	Synthesis
	XST - VHDL
	XST - Verilog

	Implementation
	Generating the Xilinx Netlist
	Mapping the Design
	Placing and Routing the Design
	Static Timing Analysis
	Generating a Bitstream

	Post-Implementation Simulation
	Generating a Simulation Model
	Using the Model

	Other Implementation Information

	Using the Client Side FIFO
	Overview of LocalLink Interface
	Receive FIFO Operation
	LocalLink Interface

	Transmit FIFO Operation
	LocalLink Interface

	Clock Requirements
	User Interface Data Width Conversion

	Core Verification, Compliance, and Interoperability
	Verification by Simulation
	Hardware Verification

	Core Latency
	General
	Transmit Path Latency
	Receive Path Latency

	Calculating the DCM Phase Shift
	DCM Phase Shifting Requirements
	Finding the Ideal Phase Shift Value

