
Table of Contents
 HSIOOpcodeDev..1

 v4129..2

 Introduction..3

 Overview of OCB operation..4
 Opcode bus operation...4

 Writing an OCB (don't start from scratch!)...5

i

HSIOOpcodeDev

 HSIOOpcodeDev 1

v4129

 v4129 2

Introduction
How-to write an opcode block (OCB) for the HSIO. Opcodes are a 16b number that specify an operation in
the HSIO. When software would like the HSIO to do something it sends a block of data prefixed by an
opcode. In other words, the opcode defines what the data will be used for. Along with the opcode, a 16b
sequence number and 16b payload size are also sent as part of the opcode packet. As each opcode defines a
specific function, we have come to use opcode as shorthand for a block of firmware that performs that
function. Consequently opcode-id is sometimes used to identify the 16b number identifying an opcode.
Firmware for processing opcodes lives in an opcode block (OCB). An OCB receives data from the PC
(identified by its opcode-id), does something and sends a reply/ack to back to the PC. An OCB can send a
serial stream, provide a read/write register block, collect and send data to the PC etc etc. All OCBs send
something back to the PC, even if it's just a tiny "Ack" packet that only contains 1 word of payload
(0xACAC). This helps the software keep track of what is outstanding and whether the HSIO has stopped
responding.

An OCB has a fixed/common interface for transfering data to/from the PC, and it's hoped can be treated
somewhat as a plug-in.

 Introduction 3

Overview of OCB operation
Data sent to the HSIO arrives in packet form. The packet is stored with transport specific headers etc.
stripped. Packets start with some information about length and number of opcodes it contains. When the
HSIO packet decoder is ready it requests one word at a time and fills and opcode FIFO. The opcode FIFO
then feeds the "opcode bus". The opcode bus is a simplified FIFO inteface without source flow control by
design. It consists of 16b oc_data , an oc_valid signal and a bussed data acknowledge signal:
oc_dack_n .

Opcode bus operation

The packet decoder will place the received opcode number on the oc_data lines and assert oc_valid. It then
waits for a dack_n . Each OCB has a dack_n output, these are tristates that will become ORed into a single
global dack_n (a way of making a wired-OR in an FPGA). When an OCB sees the oc_valid signal transition
low to high it knows the data on oc_data is an opcode, and compares it with it's own value. If there is a match
it asserts dack_n. At this point all other OCBs must remain idle until the oc_valid line is deasserted. See
picture below.

In the case where an opcode is un-recognised by any OCB, the echo OCB will timeout and and send the
opcode back as an echo reply, but with the forst nibble of the opcode-id set ot 0xB. When an OCB is finished
a task it will issue an ack packet.

All data sent to the PC needs some sort of FIFO to allow for flow-control from downstream. Data is sent from
an OCB is in Xilinx LocalLink format. This is more complicated than the opcode bus as it needs to respect
both source and destination flow control. To make this a little easier there are a few FIFO's written that
provide for almost all needs. See ll_ack_gen and ll_fifo_ack_gen . The former has no buffering and
implements a little protocol to allow variable length packets to be sent, the later is a complete 1kx16 FIFO.

 Overview of OCB operation 4

https://twiki.cern.ch/twiki/bin/edit/Atlas/LocalLink?topicparent=Atlas.HSIOOpcodeDev;nowysiwyg=1

Writing an OCB (don't start from scratch!)
Existing opcode blocks are prefixed ocb_ in the hsio/src/ directory. Try to select one that most closely
matches your application and use it as a template. A good criteria for selecting a similar OCB is the type of
data it will return to the PC - whether it will send just a tiny "ack" packet, a short fixed length reply, or a
larger (or arbitary length) data block. Talk to me (Matt)!

For simulation use rx_packet_decoder_tb: it allows injection of packets at a usefully high-level.

Major updates:
-- MattWarren - 30-Jun-2011

Responsible: warren_40hep_2eucl_2eac_2euk
Last reviewed by: Never reviewed

This topic: Atlas > HSIOOpcodeDev
Topic revision: r7 - 21-Sep-2012 - warren_40hep_2eucl_2eac_2euk

Copyright &© by the contributing authors. All material on this collaboration platform is the
property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

 Writing an OCB (don't start from scratch!) 5

https://twiki.cern.ch/twiki/bin/view/Main/MattWarren
http://twiki.org/
mailto:twtool@support@cern.ch?subject=TWiki%20Feeedback%20on%20Atlas.HSIOOpcodeDev

	Table of Contents
	 HSIOOpcodeDev
	 v4129
	 Introduction
	 Overview of OCB operation
	 Opcode bus operation

	 Writing an OCB (don't start from scratch!)

