

BCM FPGA Firmware v4 Code/Design Review

Aleš Svetek J. Stefan Institute, Ljubljana

CERN, 2011-05-05

■ BCM FPGA Main Tasks
■ Upgrade v3 → v4
■ BCM FPGA Data Flow
■ BCM FPGA Firmware v4 Design
■ FPGA Resource Utilization
■ Design Status

- ■DAQ of sensor data at 2.56 GHz (64 samples at 390 ps for each BC)
- Beam Monitor → Controls Interlocks Beam User (CIBU), Detector Safety System (DSS) and Post-Mortem Buffer
- Luminosity Monitor
- **#**TDAQ ROD functionality
- **#**CTP triggers
- # Detector Control System (DCS)

#On-board (system) MGT synchronization support

- #Adapt to channel remapping
 - (8 LG channels → Beam_Abort_ROD)
 - (8 HG channels → Lumi_ROD)
- **#**Redesign Basic Beam Abort Algorithm
- **#**Redesign CTP trigger outputs
- Integrate Test Vector "play back"
- #Gb Ethernet (TCP, UDP) faster Post-Mortem buffer download
- # Prepare only 1 FPGA firmware, final operation defined by SW

- Support GbE UDP and TCP/IP communication
- # Execute the MGT calibration algorithms
- **#**Generate and load MGT test vectors
- #Startup Built-in Self Test(BIST), DDR and DDR2 RAM
- **#**Provide additional debug information

Processor System Architecture

CERN, 2011-05-05

7 : IJS

Clock Domain Crossing and Sync.

- Edge detector
- 2-stage synchronizer
- Pulse_sync_1_way
- Pulse_sync_2_way

• (FIFOs)

- #Reset generator (reset sequencing of PPC405, PLB Bus, Peripherals)
- Clock generator (1x 300 MHz, 2x 100 MHz, 2x 200 MHz, 1x 50 MHz)
- **#JTAG** controller
- #Interrupt controller (intc)
- **#**UART/RS-232
- #Watchdog timer

- # Available well-known socket communication APIs
- # Post-Mortem buffer dump
- **#**Startup parameter configuration from OKS
- DCS slow control
- **#**Syslog daemon channel
- **# Command-line/Telnet interface to PPC** (used to read/write to any register, parameter reconfiguration, diagnostics)

Gb Ethernet throughput (LWIP)

■ Benchmark: iperf application for measuring maximum TCP and UDP bandwidth performance
 ■ Using MTU 1500 (Maximum Transmission Unit)
 ■ Using open-source LWIP (Lightweight IP) stack: sustained throughput (BCM FPGA → PC)

11 MB/s via TCP

Bandwidth Monitor
Intel(R) PRO/1000 GT Desktop Adapter - VirtualBox Bridged Networking Driver Miniport [192.168.1.1]
11.0 MB/s 10:55:06 10:55:36 10:56:06 10:56:36 10:56:36 10:57
9.82 MB/s-
8.59 MB/s
7.36 MB/s
6.13 MB/s
4.91 MB/s-
3.68 MB/s-
2.45 MB/s-
1.23 MB/s-
(Max: 10.8 MB/s) Down: 10.1 MB/s Up: 189.7 KB/s

25 MB/s via UDP

Commercial TCP/IP stack solution # Using the same FPGA hardware: MTU 1500 → 27 MB/s (213 Mbps) via TCP MTU 9000 → 115 MB/s (922 Mbps) via TCP # Price: 20.000 €

Source: Xilinx Application Note XAPP1043: Measuring Treck TCP/IP Performance Using the XPS LocalLink TEMAC in an Embedded Processor System

MGT Interface

CERN, 2011-05-05

MGT RX Operating Mode

MGT Receive Path

(Fine Delay implemented as a "RX slide" MGT feature.)

19

■ Separate 256 MB of DDR2 RAM in 2x128 MB buffers ■ Simultaneous read/write → MPMC

- Maximum write speed on 1 MPMC port: 1600 MB/s
- ■Actual data: 2560 MB/s → reduce the amount of recorded data, reduce resolution from 390 to 780 ps

NPI Data Path

NPI Signaling (FIFO empty)

Waveform - DEV:1 MyDevice1 (XC4VF)	X60) UN	NIT:0 N	MLAO (ILA)											호 다 🏼
Bus/Signal	х	0	355	360	365	370	375	380	385	390	395	400	405	410
- NPI FIFO Push	1	1												
- NPI Addr Ack	0	0												
- <mark>NPI Addr Req</mark>	0	1												
- NPI Addr Inc	0	0												
- User FIFO NPI empty	0	1												
- <mark>User FIFO NPI Rd En</mark>	1	1												
- User FIFO NPI Underflow	0	0												
- <mark>User FIFO NPI Wr</mark>	1	1												
- User FIFO NPI Full	0	0												
- <mark>User FIFO NPI Overflow</mark>	0	0												
⊶ <mark>Burst Cnt</mark>	19	00	B) 1C)(1D)(1	EX1FX 00 X	01)(02)(03)(0	04 X05X06X07	08 (09)(04	Ховх ос хор	(OE)(OF)(10	<u>) (11)(12)(13)</u>	14 (15)(16)	<u>17) 18 (19)(1</u>	A)(1B)(1C	(1D)(1E)(1F)
-Burst Cnt En	1	0												
-Burst Cnt Rst	0	0												
← <mark>Fifo NPI wr count</mark>	00	00						00						
⊶ <mark>User FIFO NPI Wr Count MAX</mark>	32	32						32						
🗢 <mark>Irg_Status Reg</mark>	0	0						0						

NPI Signaling (FIFO not empty)

Waveform - DEV:1 MyDevice1 (XC4V	FX60) UI	NIT:O N	MyILAO (ILA)												
Bus/Signal	х	0	1020	1025	1030	1035	1040	1045	1050	1055	1060	1065	1070	1075	1080
-NPI FIFO Push	1	1													
- NPI Addr Ack	0	0													
- <mark>NPI Addr Req</mark>	0	0													
- NPI Addr Inc	0	0													
- <mark>User FIFO NPI empty</mark>	0	0													
-User FIFO NPI Rd En	1	1													
- <mark>User FIFO NPI Underflow</mark>	0	0													
- <mark>User FIFO NPI Wr</mark>	1	1													
	0	0													
- <mark>User FIFO NPI Overflow</mark>	0	0													
⊶ <mark>Burst Cnt</mark>	00	1E	9/1A/1B/1C/1D/1E	1FX 00 X01X	02\03\04\05\0	6\07\08\09\0A\0E	3/0C/OD/OE/OF/10)(11)(12)(13)(14)(15)	16\17\18\19\1A	(1B(1C)(1D)(1E)(1F	X 00 X01X02	03\04\05\06\07	X08X09X0AX0BX0C	0D/0E/0F/10/11	12/13/14/15/1
-Burst Cnt En	1	1													
-Burst Cnt Rst	0	0									1				
⊶ <mark>Fifo NPI wr count</mark>	0A	13	1						0E						
∽ <mark>User FIFO NPI Wr Count MAX</mark>	32	32	:						32						
∽ <mark>Irq_Status Reg</mark>	0	0							0						

- **#**Based on pulse reconstruction on 64-bit data
- **#**Reconstruct max. 2 pulses in one BC sample
- #Count number of pulses (hits)
- #Each pulse encoded in:
- 6-bit rising edge position
- 5-bit pulse width
- Calculate collisions, background events and lumi conditions by applying time-windows
- **#**Provide 176-bit data stream to TDAQ
 - $(8 \text{ ch} \times 2 \text{ pulses} \times (6 \text{-bit} + 5 \text{-bit}))$

Pulse Reconstruction 1/2

- Calculate rising (RE) and falling(FE) edges in a sample
- Search for first bit set ("1") from forward (FWD) and reverse (REV) direction on RE and FE →
- **#**Pulse 1: position = FWD_RE

width = FWD_FE - FWD_RE

- # Pulse 2: position = REV_RE
 width = REV_FE REV_RE
- #Examples follow

Pulse Reconstruction Simulation

Pulse Reconstruction Simulation

Pulse Reconstruction Simulation

N	ame	¥alue		360 ns	370 ns	380 ns	390 ns
	Pulse reconstruction						
	🇤 clk_bc_i	0					
	₩ _a rst_i	0					
	Input RAW data						
۲	🌄 raw_data_i[63:0]	00000000000000000	0	7fc00000001ff80			
	Pulse 1						
۲	📲 re_pos_pulse1[5:0]	0	0	X	7		
Þ	nidth_pulse1[4:0]	0	0		10	X_	
	🇤 valid_pulse1	0					
	Pulse 2						
	🏹 re_pos_pulse2[5:0]	0	0	X	50		
	📲 width_pulse2[4:0]	0	0		9		
	🗤 valid_pulse2	0					

Name	¥.	1	1650 ns	660 ns	670 ns	680 ns
Pulse reconstruction						
🗤 clk_bc_i	1					
🌆 rst_i	0					
Input RAW data						
▶ 🔣 raw_data_i[63:0]	fí	00000)		FFFFFFFFFFFFFF		
Pulse 1						
re_pos_pulse1[5:0]	0					
Width_pulse1[4:0]	0					
🇤 valid_pulse1	0					
Pulse 2						
re_pos_pulse2[5:0]	O					
Width_pulse2[4:0]	O					
🇤 valid_pulse2	Ο					

Na	ame	٧.		1800 ns	810 ns	820 ns	1830 ns	1840 ns	850
	Pulse reconstruction								
	🇤 clk_bc_i	1							
	🇤 rst_i	0							
	Input RAW data								
۲	🌄 raw_data_i[63:0]	71	00000)	7 f	fffffffffffe				
	Pulse 1								
۲	📲 re_pos_pulse1[5:0]	1		0		1			
÷	📲 width_pulse1[4:0]	31		0		31			
	🇤 valid_pulse1	1							
	Pulse 2								
۲	📲 re_pos_pulse2[5:0]	0							
۲	📲 width_pulse2[4:0]	0							
	🗤 valid_pulse2	0							

BCM SLINK/ROD Data Format

$P{1,2}{x,w}[n]$ refers to pulse 1/2 position/width for channel n.

ROD Section	32-bit Word Counter		Word Description
HEADER	1	Start of ROD header	
HEADER	2	Header size	
HEADER	3	ROD version	
HEADER	4	ROD source ID (see BcmMapping)	
HEADER	5	o + 31-bit run number	12-bit BCID
HEADER	6	Extended L1ID (24-bit L1ID + 8-bit ECRC	+ 176-bit of data
HEADER	7	0x00000 + 12-bit BCID	
HEADER	8	0x000000 + 8-bit Level-1 trigger type	+ 4-bit error code
HEADER	9	Detector event type	per BC
DATA	1	12-bit BCID + 6-bit P1x[0] + 5-bit P1w[0] +	+ 6-bit P2x[0] + 3-bit P2w[0]
DATA	2	2-bit P2w[0] + 6-bit P1x[1] + 5-bit P1w[1] +	+ 6-bit P2x[1] + 5-bit P2w[1] + 6-bit P1x[2] + 2-bit P1w[2]
DATA	3	3-bit P1w[2] + 6-bit P2x[2] + 5-bit P2w[2] +	+ 6-bit P1x[3] + 5-bit P1w[3] + 6-bit P2x[3] + 1-bit P2w[3]
DATA	4	4-bit P2w[3] + 6-bit P1x[4] + 5-bit P1w[4] +	+ 6-bit P2x[4] + 5-bit P2w[4] + 6-bit P1x[5]
DATA	5	5-bit P1w[5] + 6-bit P2x[5] + 5-bit P2w[5] +	+ 6-bit P1x[6] + 5-bit P1w[6] + 5-bit P2x[6]
DATA	6	1-bit P2x[6] + 5-bit P2w[6] + 6-bit P1x[7] +	- 5-bit P1w[7] + 6-bit P2x[7] + 5-bit P2w[7] + 4-bit Error code
TRAILER	1	Status word 1 - bit errors	
TRAILER	2	Status word 2 - count of words with errors	3
TRAILER	3	Number of status words	
TRAILER	4	Number of data words	
TRAILER	5	Status block position (0=bef,1=aft data w	ords)

https://twiki.cern.ch/twiki/bin/view/Atlas/BcmRod

35 **: IJS**

Basic Abort:

36

- **# Basic Beam Abort** (desribed on previous slide)
- **# X-of-Y** : takes into account last Y Basic Abort results and demands that at least X of them will fire before it issues an abort condition.
- **# Forgetting Factor** (Leaky bucket) Extension of Basic Abort algorithm. It provides a more dynamic behaviour by "forgetting« past results as they get older.

- #L1ID bookkeeping with ECR load support
- BCID bookkeeping
- **#** Post-Mortem delay
- Regenerate 40 MHz (BC) and 80 MHz from 320 MHz (or use 40 MHz available on the new Personality Modules)
- ■LTP interface, proper latching of LTP signals (*L1A*, *ECR*, *Orbit*, *Trigger Type*)

40/80 MHz BC Clock Scheme

CERN, 2011-05-05

40

Figure 3-6: REL Waveform Example

Device Utilization Summary

Logic Utilization	Used	Available	Utilization
Number of Slice Flip Flops	20,797	50,560	41%
Number of 4 input LUTs	28,465	50,560	56%
Number of occupied Slices	21,611	25,280	85%
Number of bonded IPADs	24	80	30%
Number of bonded OPADs	18	32	56%
Number of bonded IOBs	222	576	38%
Number of BUFG/BUFGCTRLs	14	32	43%
Number of FIFO16/RAMB16s	137	232	59%
Number of DCM_ADVs	4	12	33%
Number of PMCDs	1	8	12%
Number of PPC405_ADVs	2	2	100%
Number of EMACs	1	2	50%
Number of BUFRs	1	32	3%
Number of JTAGPPCs	1	1	100%
Number of IDELAYCTRLs	10	20	50%
Number of GT11s	10	16	62%
Number of GT11CLKs	2	8	25%
Number of RPM macros	72		
Average Fanout of Non-Clock Nets	3.23		

Module Resource Utilization Breakdown

	Flin Flore Head	
XPS Synthesis Summary Report *	Flip Flops Used	LUIS USEd
proc_system	21715	30401
ddr_sdram_wrapper	5620	6400
ddr2_sdram_wrapper	3857	3104
trimode_mac_mii_wrapper	3712	3206
mgt_ctrl_0_wrapper	3405	3073
abort_ctrl_0_wrapper	1392	2626
data_proc_ctrl_0_wrapper	899	5976
npi_ctrl_0_wrapper	711	1177
slink_rod_ctrl_0_wrapper	700	1073
ltp_ctrl_0_wrapper	655	603
xps_central_dma_0_wrapper	566	1005
ppc405_0_wrapper	381	409
xps_intc_0_wrapper	283	274
xps_bram_if_cntlr_1_wrapper	229	184
plb_wrapper	180	1034
xps_timebase_wdt_0_wrapper	169	224
rs232_uart_1_wrapper	148	143
leds_8bit_wrapper	128	97
proc sys reset 0 wrapper	69	54

* XPS Synthesis Summary produces approximate report, but it is still relevant to determine relative size of the modules.

44 📫 IJS

Optimization will be applied if necessary
 Trade Ethernet speed for FPGA resources
 Processor System Architecture Redesign
 More than 20% of resources can be saved by:

- reducing DDR 64 MB MPMC to one port
- excluding DMA controller
- excluding Ethernet Checksum HW offloading

■ Matter of 10 minutes

Resource optimization: From this...

Resource optimization: ...to this.

CERN, 2011-05-05

Completed

- MGT DAQ
- MGT Test Vectors
- Gb Ethernet
- PPC development application

#To-do

- Finalize SLINK/ROD controller
- LTP interface and BC clock
- Finalize PPC application
- Slight modification of pulse reconstruction

Thank you!

