3

6

FELIX Phase-Il firmware specifications

ATLAS Doc.: ABC-D-EF-1234
EDMS Id: 1234567 v.1

ATLAS Phase-Il Upgrade Project

ATLAS FELIX firmware Phase-Ill Upgrade:

Firmware specifications

Abstract

This document describes the firmware specifications of the ATLAS FELIX Phase-1l Upgrade Project
[Collaboration:2285584].

FELIX Phase-ll firmware specifications

ATLAS Doc: ABC-D-EF-1234

EDMS Id: 1234567 v.1

EDMS Url: https://edms.cern.ch/document/1234567/1

Version: 0.87

Created: January 12, 2021

Last modified: May 7, 2021

Prepared by: Checked by: Approved by:

The FELIX Team The FELIX Team The ATLAS review commit-

tee

(© 2021 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed As specified in the CC-BY-4.0 license.

https://edms.cern.ch/document/1234567/1

[INTENTIONALLY BLANK PAGE]

20

21

/.\Tz |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

TEMPORARY ORGANISATIONAL THINGS

This chapter is just for info and shall be removed at the end.

0.1 TEMPLATES

The following lists templates that the ATLASPhasell document class brings along.
There are definitions (definition 0.1), requirements (requirement 0.1), recommendations (recommenda-
tion 0.1) and remarks (remark 0.1).

Definition 0.1: Definition template

Define the term definition first before you can define other terms.

Requirement 0.1: Requirement template

Requirements define behaviour or properties of something that has been defined.

Recommendation 0.1: Recommendation template

Recommendations give "should", "could" or "aught to" examples in addition to dedicated requirements.

Remark 0.1: Remark template

Remarks give additional precision in case e.g. a definition or recommendation is not directly clear or
needs further explanation.

At Temporary organisaﬁonal thlngs _

FELIX Phase-Il firmware specifications

= REVISION HISTORY

May 7, 2021 - Version 0.87

Revision | Date Author(s) Description

0.1 2019-12-13 | Frans Schreuder Initial commit of the FELIX phase 2 firmware specifica-
tions (mostly just copied from Phase2 FW_Blockdesign
and added Atlas Phase2 template)

0.2 2019-12-19 | Frans Schreuder Added some entities as a graphical symbol and wave-
forms for axi stream

0.3 2019-12-19 | Frans Schreuder Added skeleton for RD53b decoder

0.4 2019-12-20 | Frans Schreuder Added several blocks, entities and moved around some
text

0.5 2019-12-20 | Frans Schreuder Added full mode decoder entity

0.6 2020-01-07 | Frans Schreuder Split RD53b decoder and Aurora decoder in separate
subsections

0.7 2020-01-08 | Frans Schreuder Described the DecodingGearBox

0.8 2020-01-09 | Frans Schreuder Added block diagram of Decoding Egroups and Epaths
for (Ip)GBT 8b10b mode

0.9 2020-01-10 | Frans Schreuder Added block diagram for Pixel ToHost e-path

0.10 2020-01-10 | Frans Schreuder Added description of the 8b10b decoder

0.11 2020-01-10 | Frans Schreuder Added progress bars to the different sections (Thank you
LASP people for the idea)

0.12 2020-01-13 | Jacopo Pinzino added some informations about endeavour blocks

0.13 2020-01-14 | Frans Schreuder Added some missing encoder (skeleton) tex files

0.14 2020-01-14 | Frans Schreuder Added TTC Emulator

0.15 2020-01-14 | Jacopo Pinzino improving the Endeavour Encoder subsection

0.16 2020-01-16 | Frans Schreuder Added decoding egroup resources

0.17 2020-01-16 | Frans Schreuder regenerated pdf

0.18 2020-01-21 | Elena Zhivun Added description of the LCB protocol

0.19 2020-01-23 | Frans Schreuder Added atlas template

0.20 2020-01-24 | Frans Schreuder Changed information about CRC polynomial in
FullMode.pdf

0.21 2020-01-27 | Marius Wensing starting work on the RD53B Decoder

0.22 2020-01-28 | Frans Schreuder Replaced verbatim with Istlisting in LCBEncoder.tex, it
gave typesetting errors

0.23 2020-02-04 | Marius Wensing updating RD53B decoder entity and re-generated PDF

0.24 2020-02-04 | Marius Wensing adding entity for FromHost Central Router

0.25 2020-02-04 | Jacopo Pinzino add table

0.26 2020-02-10 | Marius Wensing more work on the RD53B decoder section

0.27 2020-02-10 | Jacopo Pinzino improvement endeavour encoder decoder part

0.28 2020-02-11 | Frans Schreuder Regenerated wupper documentation with rm4.9

0.29 2020-02-17 | Marius Wensing adding example waveform for CRFromHost input

0.30 2020-02-17 | Marius Wensing starting to document the FromHost Central Router

0.31 2020-02-18 | Marius Wensing adding resource usage for RD53B decoder

0.32 2020-02-20 | Frans Schreuder Fixed some issues in the EndeavourDecoder/Encoder
documents (figures not found etc) Unified tables through-
out the document

0.33 2020-02-20 | Jacopo Pinzino improvement endeavour encoder decoder part

0.34 2020-02-20 | Frans Schreuder regenerated pdf

0.35 2020-02-21 | Frans Schreuder Some minor updates to Endeavour Decoder / Encoder

0.36 2020-03-17 | Frans Schreuder Added section about TTC Encoder

0.37 2020-05-07 | jacopo pinzino added EndeavourDeglitcher in the Endeavour Decoder
subsection of the Phase2_FM_specs

Revision History

ATLASs FELIX Phase-ll firmware specifications

EXPERTN MENT

May 7, 2021 - Version 0.87

0.38 2020-05-07 | jacopo pinzino correct typo in Endeavour Decoder subsection of the
Phase2_FM_specs

0.39 2020-05-12 | jacopo pinzino small grammatical corrections

0.40 2020-06-05 | Elena Zhivun Started on updating ITk Strips documentation

0.41 2020-06-05 | Elena Zhivun Started on LCB module documentation

0.42 2020-06-07 | Elena Zhivun Editing the documentation

0.43 2020-06-08 | Elena Zhivun Fixed bit ordering

0.44 2020-06-08 | Elena Zhivun Editing the text

0.45 2020-06-08 | Elena Zhivun Edit documentation

0.46 2020-06-09 | Elena Zhivun Added examples

0.47 2020-06-10 | Elena Zhivun Updated Strips protocol description

0.48 2020-06-16 | Frans Schreuder Built PDF

0.49 2020-06-24 | Elena Zhivun Added remark about BC gating interval

0.50 2020-06-25 | Elena Zhivun Updated remark about BC gating generation

0.51 2020-07-23 | Nico Giangiacomi | Modified TTC Encoder table, removed useless TTCOp-
tions

0.52 2020-11-19 | Elena Zhivun Update Strips module documentation

0.53 2021-01-12 | Frans Schreuder Added chapter about testing

0.54 2021-01-12 | Frans Schreuder Added related documents

0.55 2021-01-15 | Frans Schreuder Added section about FULL mode, added detailed toplevel
schematic including all toplevel signals

0.56 2021-01-19 | Frans Schreuder Added register-map 5.0 as appendix

0.57 2021-01-21 | Frans Schreuder Added documentation for: * Wupper * Firmware flavours
* Minor other modifications

0.58 2021-01-21 | Frans Schreuder Minor modifications in felix toplevel (detailed) drawing

0.59 2021-01-21 | Marius Wensing working on CRFromHost

0.60 2021-01-22 | Frans Schreuder Started section about CRToHost

0.61 2021-01-26 | Kai Chen some texts are added in section 4/6/8, to be continued

0.62 2021-01-27 | Marius Wensing more work on CRFromHost chapter

0.63 2021-01-27 | Frans Schreuder Finished section about CRToHost, added resources for
CRFromHost

0.64 2021-01-27 | Frans Schreuder Removed FELIX_Phase2_firmware_specs generated
PDF, and instead generated it using Gitlab Cl. Need to
find a way to publish it somewhere.

0.65 2021-01-27 | Frans Schreuder Fixed capitalization of extension png=>PNG of file name

0.66 2021-01-28 | Frans Schreuder Added makefile for Wupper

0.67 2021-01-28 | Frans Schreuder Worked on Data Formats

0.68 2021-02-02 | Kai Chen add material for GBT/IpGBT in sec 8.6, and sec. 4

0.69 2021-02-02 | Frans Schreuder Updated front page and added glossaries

0.70 2021-02-02 | Elena Zhivun Add resource utilization for Strips links

0.71 2021-02-02 | Elena Zhivun Update the Strips documentation

0.72 2021-02-02 | Elena Zhivun Fix tables

0.73 2021-02-08 | Nico Giangiacomi Added 8b10bEncoder

0.74 2021-02-09 | Kai Chen Changes to the Section 8.6

0.75 2021-02-09 | Kai Chen Changes to the Section 6

0.76 2021-02-09 | Kai Chen Changes to the Section 8.6

0.77 2021-02-15 | Frans Schreuder Some work on Global Description

0.78 2021-02-16 | Frans Schreuder Added a chapter about AXI stream IDs per firmware
flavour

0.79 2021-02-18 | Frans Schreuder Added description of HDLC Decoder

0.80 2021-02-18 | Kai Chen add fansink information for FLX-712

0.81 2021-02-19 | Frans Schreuder Described HDLC Encoder

ATLAS Revision History

;;;;;;;;;;

FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

0.82 2021-03-04 | Frans Schreuder Added description of the BUSY ToHost Virtual E-Link

0.83 2021-03-04 | Frans Schreuder Modified makefile to generate History.tex from git log

0.84 2021-03-04 | Frans Schreuder Reverted template/Makefile, now generate History.tex
from MakeHistory.sh

0.85 2021-03-04 | Frans Schreuder Automatic version history from GIT with 0.xx numbering,
alsu automate the version of the document this way

0.86 2021-03-05 | Frans Schreuder Separated TTC (Legacy) and BUSY sections, added
LTI/TTC interface (empty placeholder)

0.87 2021-03-05 | Frans Schreuder Added section about the TTC ToHost Virtual E-Link

Revision History Vi

/.\Tz L As FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

» TABLE OF CONTENTS

» 0 Temporary organisationalthings iii

» 01 Templates 0000 e e e e e e i
» RevisionHistory 0V

~ TableofContents i

s 1 ConventionsandGlossary. 1
» 2 Related Documents 2
» 3 Global Description and Specification CEZTTTTT B...... 3
+ 3.1 FirmwareFlavours 3
% 3.1.1 E-Path IDs/ AXIs IDs . 4
« 3.2 Top level .. 5
! 3.2.1 Transceiver and link wrapper . 7
3 3.2.2 Encoding . 7
36 3.2.3 Decoding . e 4 7
a7 3.24 AXls MUX (ToHost Fanout Selector) > 8
38 3.25 CRFromHost: CentralRouter in FromHost direction 8
%9 3.2.6 CRToHost: CentralRouter in ToHost direction 8
40 3.2.7 ToHost Emulator 9
4 3.28 Wupper L Lo 9
a2 3.29 NumberinstancesperFPGA . 10
o 4 External Interfaces (I/0) T e e e e e e e e e 11

« 41 FrontEndlinks00 00000
s 42 PCle « o o e e e e e e e e e e e e e e e e 12
« 43 TTIClInterface« v v v v i v v o e e 12
e 44 BUSY e e e e e e e e e e e e e e e e 12
« 45 100Gb/s Ethernet. 12

w5 Target FPGACTHEEEN« v s s s o« 13
» 6 Powerand CoolingCCTH.+« « .. 15
. Input/OQutput To 18
= 8 Detailed Functional Description and Specification 21

s 8.1 Introduction e e e e e e e e e e e e e 2
54 8.2 Compatlblllty........21

55 8.3 DecodinglEl......................23
56 8.3.1 Introduction 23

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

57 832 Interfaces. 23
58 8.3.2.1 Overview . . 2
59 8.3.2.1.1 GBT mode, 8b10b HDLC 2
60 8.3.2.1.2 IpGBT mode,8010b . 26
o1 8.3.2.1.3 IpGBT mode, Pixel . 26
62 8.3.2.2 Interfaceto CRToHost . 26
& 8.3.2.3 Interface to Link Wrapper. .. 27
64 8.3.24 Interface to Wupper 27
6 8.3.3 Functional Description ... 27
6 8.3.4 Configuration Lo o2
67 8.3.5 StatusIndicators L. L L. 27
68 836 lLatency 28
6 8.3.7 ErrorHandling . . . 2t
70 8.3.8 Estimated Resource Usage 2t
7 8.3.9 DecodingGearbox CCii® oo o2
72 8.3.9.1 Introduction L L L . L 000 Lo s o029
7 8.3.9.2 Interfaces L. L. L L0 L0029
74 8.3.9.2.1 Overview . . . e 24e]
75 8.3.9.2.2 Interface to GBT or IpGBT Wrapper 24
7 8.3.9.23 Interface to Decoders . . . < 10
77 8.3.9.3 Functional Description. 30
78 8.3.9.4 Configuration ... 3
79 8.3.9.5 Status Indicators 3T
80 8.3.9.6 Latency oL . .03t
81 8.3.9.7 Error Handling . . . T 1
82 8.3.9.8 Estimated Resource Usage .-\ Y Y3t
83 8.3.10 StripDecoderC® .. 83
84 8.3.10.1 Introduction . . . P 1
85 8.3.11 Endeavour Decoder IEI P
86 8.3.11.1 Introduction L. L. L. L. 34
87 83.11.2 Interfaces 34
88 8.3.11.21 Overview . . . < 7
89 8.3.11.2.2 Interface from E- L|nk < 1<)
% 8.3.11.2.3 InterffacetoCRToHost . 3
of 8.3.11.3 Functional Descripton. 35
B 8.3.11.4 Configuration 35
% 8.3.11.5 StatusIndicators . 36
o 83116 Latency. 36
o 8.3.11.7 Error Handling . . . R 16
9% 8.3.11.8 Estimated Resource Usage N [
97 8.3.12 Aurora Decoder for RDS3 NN o.o.o.037
9 8.3.12.1 Introduction L . . L L L oL L oL, 37
% 8.3.12.2 Pixel Aurora Decoder . 37
100 8.3.123 Interfaceso ..o 000008
101 8.3.12.3.1 Overview . . . R 1 |
102 8.3.12.3.2 Interface to component 2 1Y)
103 8.3.12.4 Functional Description. .. 39
104 8.3.12.5 Configuration L 0039
105 8.3.12.6 Status Indicators .08
106 83.127 Latency L L L. o8
107 8.3.12.8 Error Handling . . . 1)
108 8.3.12.9 Estimated Resource Usage 1)
109 8.3.12.9.1 Auroradecoder08

Table of Contents viii

110

111

12

13

14

15

116

17

118

19

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

ATLASs FELIX Phase-ll firmware specifications

ssssssss

8.3.13 RD53B Decoder CCEETTTHEN

8.3.13.1 Introduction

8.3.13.2 Interfaces

8.3.13.21 Overview

8.3.13.2.2 Interface to the Aurora Decoder

8.3.13.2.3 Interface to the ToHost Central Router

8.3.13.3 Functional Description .

8.3.13.3.1 Input stage .

8.3.13.3.2 Stream decoder .

8.3.13.3.3 Output multiplexer

8.3.13.4 Configuration .

8.3.13.5 Status Indicators

8.3.13.6 Latency . .

8.3.13.7 Estimated Resource Usage .
8.3.14 8b10b E-Link decoder CCm™®

8.3.14.1 Introduction

8.3.14.2 Interfaces .

8.3.14.2.1 Interface to DecodlngGearBox .

8.3.14.2.2 Interface to ByteToAxiStream

8.3.14.3 Functional Description .

8.3.14.3.1 Alignment .

8.3.14.3.2 8b10b decoding .

8.3.14.3.3 Framing error detection

8.3.14.34 E-link busy assertion

8.3.14.3.5 Deframing .

8.3.14.4 Configuration .

8.3.14.5 Status Indicators

8.3.14.6 Latency .

8.3.14.7 Error Handling .

8.3.14.8 Estimated Resource Usage)
8.3.15 HDLC E-Link decoder CCim™d

8.3.15.1 Introduction

8.3.15.2 Interfaces

8.3.15.2.1 Generics

8.3.15.2.2 Elink interface .

8.3.15.2.3 Interface to ByteToAX|Stream

8.3.15.3 Functional Description .

8.3.15.4 Configuration .

8.3.15.5 Status Indicators

8.3.15.6 Latency .

8.3.15.7 Error Handling .

8.3.15.8 Estimated Resource Usage .

8.3.16 FULLModeDecoder @

8.3.16.1 Introduction

8.3.16.2 Interfaces .
8.3.16.2.1 Interface from LlnkWrapper .
8.3.16.2.2 Interface to CRToHost .
8.3.16.3 Functional Description .
8.3.16.3.1 Flow control

8.3.16.3.2 CRC .

8.3.16.4 Configuration .

8.3.16.5 Status Indicators

8.3.16.6 Latency .

8.3.16.7 Error Handling .
8.3.16.8 Estimated Resource Usage .

ATLAS Table of Contents

zzzzzzzzzz

May 7, 2021 - Version 0.87

40
40
40
40
40
41
41
41
41
41
41
42
42
42
45
45
45
45
45
46
46
46
46
46
46
47
47
47
47
47
48
48
48
48
48
49
49
49
49
49
50
50
51
51
52
52
52
52
53
54
54
54
54
55
55

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

165 8.3.16.9 User Example design . . . O o 1<
166 8.3.17 Direct mode E-Link Decoder IEI e 74
167 8.3.17.1 Introduction . . . - Y4
168 8.3.18 TTCToHost virtual E-Link IEI P o<
169 8.3.18.1 Introduction . 58
170 8.3.182 Interfaces . 58
171 8.3.18.21 Generics . . e e ©58
172 8.3.18.2.2 Interface from TTC Wrapper e e b8
173 8.3.18.2.3 clock, resetandenable . b9
174 8.3.18.24 Interface to Central Router ToHost B9
175 8.3.18.3 Functional Description. 59
176 8.3.18.4 Configuration o05
177 8.3.18.5 Status Indicators .. 5
178 83.186 Latency L L ... oo B9
179 8.3.18.7 ErrorHandling . . . P o 1
180 8.3.18.8 Estimated Resource Usage o 1
181 8.3.19 BUSYvirtual E-Link 0000009 . 0 0 0 0 L L 0 0 0000 s s et
182 8.3.19.1 Introduction 6
183 8.3.19.2 Interfaces 6
184 8.3.19.21 Generics o)
185 8.3.19.2.2 Interface from various BUSY sources 6
186 8.3.19.2.3 Timestampinputs . B2
187 8.3.19.2.4 clock, resetandenable . 62
188 8.3.19.25 Interface to Central Router ToHost 62
189 8.3.19.3 Functional Description. 62
190 8.3.19.4 Configuration ... B2
191 8.3.19.5 StatusIndicators ... B2
192 83.196 Latency. B2
183 8.3.19.7 Error Handling . . . I < X
194 8.3.19.8 Estimated Resource Usage I < X
195 8.3.20 25GbLinksDecoder EImmmm— . b4
196 8.3.20.1 Introduction ... b4
197 8.3.20.2 Interfaces 064
198 8.3.20.2.1 Overview . . . e o7
189 8.3.20.2.2 Interface to component 2 o 2
200 8.3.20.3 Functional Description. 64
201 8.3.20.4 Configuration ... b4
202 8.3.20.5 StatusIndicators . b4
203 83.206 Latency 64
204 8.3.20.7 Error Handling . . . o
205 8.3.20.8 Estimated Resource Usage o
v 84 EncodingCC 7Bttt .. 65
207 8.4.1 Introduction .. . 65
208 842 Interffaces. .. . b5
209 8.4.21 Overview . . . T 15
210 8422 Interface from CRFromHost e 15
211 8.4.2.3 Interface to LinkWrapper . 65
212 8.4.3 Functional Descripton . ©66
213 8.44 Configuraton 06
214 8.4.5 StatusIndicators . ©6
215 846 lLatency 06
216 84.7 ErrorHandling . 66
217 8.4.8 Estimated ResourceUsage . ©6

Table of Contents X

218

219

220

221

222

223

224

225

226

227

228

229

230

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ATLAs FELIX Phase-Il firmware specifications

ssssssss

8.4.9
8.4.9.1
8.4.9.2
8.4.9.2.1
8.4.9.2.2
8.4.9.3
8.4.9.4
8.4.9.5
8.4.9.6
8.4.9.7
8.4.9.8

Encoding Gearbox NN .

Introduction
Interfaces

Overview

Interface to component 2
Functional Description .
Configuration .
Status Indicators
Latency .
Error Handling .
Estimated Resource Usage .

8.4.10 Endeavour Encoder CCC T

8.4.10.1
8.4.10.2

8.4.10.2.1
8.4.10.2.2
8.4.10.2.3

8.4.10.3
8.4.10.4
8.4.10.5
8.4.10.6
8.4.10.7
8.4.10.8
8.4.11
8.4.11.1
8.4.11.2

8.4.11.21
8.4.11.2.2

8.4.11.3
8.4.11.4
8.4.11.5
8.4.11.6
8.4.11.7
8.4.11.8
8.4.12
8.4.12.1
8.4.12.2

8.4.12.3
8.4.12.4
8.4.12.5
8.4.12.6

8.4.12.7
8.4.12.8
8.4.12.9
8.4.12.10
8.4.12.11

Introduction
Interfaces
Overview
Interface to IpGBT
Interface to CRFromHost .
Functional Description .
Configuration .
Status Indicators
Latency .
Error Handling .
Estimated Resource Usage .

RD53 Encoder NS .

Introduction
Interfaces

Overview

Interface to component 2
Functional Description .
Configuration .
Status Indicators
Latency .
Error Handling .
Estimated Resource Usage .

ITk Strips LCB Encoder CEEEEEETT .

Introduction .
Configuration storage submodule .

8.4.12.2.1 Configuration command.

LCB frame generator submodule .
Bypass frame aggregator submodule
Trickle configuration memory
Command decoder .
8.4.12.6.1
8.4.12.6.2

No operatlon

8.4.12.6.4 Fast command.

8.4.12.6.5 Register commands.

LCB sequence encoder
LCB frame FIFO .
Trickle trigger generator
LCB scheduler
Examples .

ATLAS Table of Contents

zzzzzzzz

IDLE command. . . .
8.4.12.6.3 LOA command.. . . .

May 7, 2021 - Version 0.87

67
67
67
67
67
67
67
67
67
67
67
68
68
68
68
68
68
69
69
69
69
69
69
70
70
70
70
70
70
70
70
70
70
70
71
71
74
74
74
74
76
76
76
77
77
77
77
77
77
77
79
79

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

8.4.12.11.1 Sending basic LCB commands via LCB Command elink and Command Decoder
(ENCODING_ENABLE=1) . .79

8.4.12.11.2 Sending basic LCB commands via LCB Command ellnk and Bypass Frame Aggre-
gator (ENCODING_ENABLE=0) . S 79
8.4.12.11.3 Writing trickle configuration 80
8.4.12.11.4 lIssuing software-generated trickle trlgger . < 0]
8.4.12.11.1Single LCBelink. 80
8.4.12.11.2 Continuous trickle configuration. 80
8.4.12.11.3 All LCB elinks simultaneously. 80
8.4.12.11.4 All LCB elinks simultaneously with pre-buffering. 80
8.4.12.11.5 Trickle trigger durlng specmed BCinterval 80
8.4.12.12 Latency . . 81
8.4.12.13 Estimated Resource Usage . 81
8.4.13 ITk Strips R3L1 Encoder CCEEEEETES 82
8.4.13.1 Introduction . 82
8.4.13.2 Configuration storage submodule . Y -
8.4.13.2.1 Configuratoncommand. 84
8.4.13.3 Frame synchronizer 84
8.4.13.4 R3and L1 Frame generators 84
8.4.13.5 R3andL1 Frame FIFOs . 84
8.4.13.6 Bypass frame aggregator . 85
8.4.13.7 R3L1 Scheduler . 85
8.4.13.8 Latency . . 85
8.4.13.9 Estimated Resource Usage . 85
8.4.14 8b10b Encoder CC . 86
8.4.14.1 Introduction 86
8.4.14.2 Interfaces 86
8.4.14.21 Interface to AX|StreamToByte . 86
8.4.14.22 Interface to EncodingGearBox . 86
8.4.14.3 Functional Description . 87
8.4.14.31 Overview . 87
8.4.14.3.2 8b10b encoding . 87
8.4.14.4 Configuration . 87
8.4.145 Latency . 87
8.4.14.6 Error Handling . 87
8.4.14.7 Estimated Resource Usage . 87
8.4.15 HDLC Encoder CEEECEEEED) 88
8.4.15.1 Introduction 88
8.4.15.2 Interfaces 88
8.4.15.21 Generics 88
8.4.15.2.2 Interface from AX|StreamToByte 88
8.4.15.2.3 Interface to GBT/IpGBT E-Link . 88
8.4.15.3 Functional Description . 89
8.4.15.4 Configuration . 89
8.4.15.5 Status Indicators 89
8.4.15.6 Latency . 89
8.4.15.7 Error Handling . 89
8.4.15.8 Estimated Resource Usage . . 89
8.4.16 Direct mode E-Link Encoder CEZZEETTT 90
8.4.16.1 Introduction 90
8.4.17 TTC EncoderlEl 91
8.4.171 Introduction 91
8.4.17.2 Interfaces 91
8.4.17.3 Functional Descrlptlon 91

Table of Contents

Xii

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

a24 8.4.17.3.1 TTC Delay and Extended testpulse 91
azs 8.4.17.3.2 TTCOptions92
326 8.4.17.4 Configuration . 93
327 8.4.17.5 StatusIndicators . 93
az8 84176 Latency .. 98
a29 8.4.17.7 Error Handling . . . -
330 8.4.17.8 Estimated Resource Usage <
3a1 8.4.18 Encoder for 25 Gb/s links TN 94
3a2 8.4.18.1 Introduction L L L. L. Lo L L L L L. 9%4
aas 8.4.18.2 Interfaces L. L L0 9%
334 8.4.18.2.1 Overview . . . T - 7
a5 8.4.18.2.2 Interface to component 2 e - 7
a6 8.4.18.3 Functional Description. 9%
337 8.4.18.4 Configuration ... 9%
338 8.4.185 StatusIndicators L Y%
339 84.18.6 Latency L L. L Lo 9%4
340 8.4.18.7 ErrorHandling . . . P L
a1 8.4.18.8 Estimated Resource Usage O -

we 85 LinkWrapperCEEEEEETTB v & v v v v v v e .. 95
343 8.5.1 Introduction 9
a4 852 Interfaces. 9
345 8.5.2.1 Overview L L e e 95
346 8.5.3 Functional Description97
347 8.5.3.1 GBT mode wrappero 97
a8 8.5.3.2 IpGBT mode wrapper . 98
349 8.5.3.3 Full mode wrapper . 98
350 8.5.4 Configuraton L9
as1 8.5.,5 StatusIndicators L. 000099
352 8.5.6 Latency . . - - - W - .9
353 8.5.7 Estimated Resource Usage P - YO |

= 8.6 ToHostDataEmulatorGllmmme 100
ass 8.6.0.1 Introduction .100
356 8.6.0.2 Interfaces .. .100
357 8.6.0.2.1 Overview . . . e K0 0]
as8 8.6.0.2.2 Interface to component2 P (0 0]
a5 8.6.0.3 Functional Description. 100
360 8.6.0.4 Configuration .100
361 8.6.0.5 Status Indicators .100
362 8.6.0.6 Latency .100
363 8.6.0.7 Error Handling . . . T 1010
a4 8.6.0.8 Estimated Resource Usage P 1010

ws 8.7 TTCEmulator DN = « « « « « 101
366 8.7.1 Introduction .10
367 872 Interfaces.o10
a8 8.7.2.1 Overview . . . o (0)
369 8.7.2.2 Interface to oomponent 2 e 0}
a70 8.7.3 Functional Description . 101
ant 8.7.4 Configuration .10
a72 8.7.5 StatusIndicators .10
373 87.6 Latency L ... L.o 10t
a74 8.7.7 ErrorHandling .10
a7s 8.7.8 Estimated ResourceUsage . 101

376

377

378

379

380

381

382

383

384

385

386

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

418

419

420

421

422

423

424

425

426

FELIX Phase-Il firmware specifications

8.8 Legacy TTC Wrapper 9
8.8.1 Introduction
8.8.2 Interfaces .
8.8.2.1 Overview
8.8.2.2 Interface to component 2
8.8.3 Functional Description
8.8.4 Configuration
8.8.5 Status Indicators
8.8.6 Latency
8.8.7 Error Handling
8.8.8 Estimated Resource Usage
8.9 LTITTC Interface NN
8.9.1 Introduction
8.9.2 Interfaces .
8.9.2.1 Overview
8.9.2.2 Interface to component 2
8.9.3 Functional Description
8.9.4 Configuration
8.9.5 Status Indicators
8.9.6 Latency
8.9.7 Error Handling
8.9.8 Estimated Resource Usage
8.10 BUSY Selection EEINNNNS
8.10.1 Introduction
8.10.2 Interfaces .

8.10.2.1 Overview
8.10.2.2 Interface to component 2

8.10.3
8.10.4
8.10.5
8.10.6
8.10.7
8.10.8

8.11

8.11.1
8.11.2

Functional Description
Configuration

Status Indicators

Latency

Error Handling .
Estimated Resource Usage

CRToHost: ToHost or Upstream Central Router CCCCT)

Introduction
Interfaces .

8.11.2.1 Overview
8.11.2.2 Interface from decodlng
8.11.2.3 Interface to Wupper

8.11.3

Functional Description

8.11.3.1 CRToHostdm . . .
8.11.3.1.1 ToHostAX|StreamControIIer .
8.11.3.1.2 Channel FIFO

8.11.3.1.3 XOFF Mechanism

8.11.3.2 CRToHost PCleManager .
8.11.3.3 CRToHost MUX .

8.11.3.4 CRResetManager

8.11.4
8.11.5
8.11.6
8.11.7
8.11.8

Configuration

Status Indicators

Latency

Error Handling

Estimated Resource Usage

Table of Contents

May 7, 2021 - Version 0.87

102
102
102
102
102
102
102
102
102
102
102

103
103
103
103
103
103
103
103
103
103
103

104
104
104
104
104
104
104
104
104
104
104

105
105
105
105
105
106
107
107
107
108
108
108
108
108
108
109
109
109
109

xiv

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

448

449

451

452

453

454

456

457

458

459

461

462

463

464

466

467

468

469

470

472

473

474

475

477

ATLASs FELIX Phase-ll firmware specifications

ssssssss

May 7, 2021 - Version 0.87

8.12 CRFromHost: FromHost or Downstream Central Router CC—————mmm . 110

8.12.1 Introduction
8.12.2 Interfaces . .
8.12.2.1 Interface to Wupper

8.12.2.2 Interface to the encoders .

8.12.3 Functional Description
8.12.3.1 CRFromHost top-level .

8.12.3.2 CRFromHost data manager .
8.12.3.3 CRFromHost transfer manager .

8.12.4 Configuration
8.12.41 Generics .
8.12.42 Run-time conflguratlon
8.12.5 Status Indicators
8.12.6 Latency
8.12.7 Error Handling
8.12.8 Estimated Resource Usage

110
110
110
111
111
111
111
111
111
111
112
112
112
112
112

8.13 Wupper: PCle DMA core and reglster maplEl. B R K

8.13.1 Introduction 113
8.13.2 Interfaces . 114
8.13.2.1 Generics 114
8.13.2.2 fromHostFifo . 115
8.13.2.3 toHostFifo . 115
8.13.2.4 interrupt_call . 116
8.13.2.5 Clocks and Resets . 116
8.13.2.6 BUSY 116
8.13.2.7 PCle . 116
8.13.2.8 Register Map . 117
8.13.3 Functional Description 117
8.13.4 DMA descriptors 118
8.13.5 Endless DMA with a C|rcular buffer and wrap around e]
8.13.6 Interrupt controller . . 123
8.13.7 Xilinx PCle EndPoint Core . 123
8.13.7.1 Xilinx AXI4-Stream interface . 124
8.13.7.2 Configuration of the core . 124
8.13.8 Status Indicators 124
8.13.9 Latency 124
8.13.10 Error Handling 124
8.13.11 Estimated Resource Usage 124
8.13.12 Simulation 125
8.14 RDMA Gl . 126
8.14.1 Introduction 126
8.14.2 Interfaces . 126
8.14.21 Overview . 126
8.14.2.2 Interface to component2 . 126
8.14.3 Functional Description 126
8.14.4 Configuration 126
8.14.5 Status Indicators 126
8.14.6 Latency 126
8.14.7 Error Handling . 126
8.14.8 Estimated Resource Usage 126

ATLAS Table of Contents

zzzzzzzzzz

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

w 8.15 HouseKeeping SN127

479 8.15.1 Introduction L0 L. 127
480 8.15.2 Interfaces L L. 12
481 8.15.21 Overview L ..o 12y
482 8.15.2.2 Interface to component2 . 127
48 8.15.3 Functional Description ..o 127
484 8.15.4 Configuration L L L L o127
485 8.15.5 StatusIndicators L . L. ..o 127
486 8.15.6 Latency L L oL ey
487 8.15.7 ErrorHandling L. L L. o2
488 8.15.8 Estimated Resource Usag e P-4
w 9 Radiation Tolerancc NN 128
«» 10 Testing, Validation and Commissioning 7. 129

sst 101 Simulation. o e e e e e e e e e e e e e e w129
492 1011 UVVM s 130

« 102 GitlabCl 130
« 10.3 Nightly firmware testonhardware 131

o 11 Firmware Management and Reliability Matters EEEEENEEN . 133

« 11.1 Firmware Source Management and ReleasePlan. 133
« 11.2 ConsequencesofFailures.133
w 11.3 Prior Knowledge of Expected Reliability 133
w 11.4 Measures Proposed to Ensure Reliability of the Firmware 134

o 12 Organization of Firmware Development EENNNNNNN. 135

« References L Lo . . 137
= Appendix A: Code Management NN A1
= Appendix B: Appendix0 e B.1

«« B.1 FELIX register map,version50B1
« B.2 DataFormatsB29

506 B.2.1 CRToHost Block format .B29
507 B.2.2 CRFromHost Data format . B30
508 B.2.3 TTC ToHost Data format . B3t
509 B.2.4 BUSY ToHost Data format . BS3i
510 B.2.5 Default emulator chunk payload .B32
- Appendix C: Terms, Definitionsand Glossary. C.1

s €1 Glossary eue.....Ch

Table of Contents XVi

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

1

CONVENTIONS AND GLOSSARY

GLOSSARY

ATLAS A Toroidal LHC Apparatus. i

AXI Advanced eXtensible Interface, widely used on Xilinx IP. AX14-Stream is widely used in the FELIX project
first. 24

BC Bunch Crossing, The CERN LHC bunch crossing clock frequency is 40.07897 MHz first. 71
Block Fixed section of memory with a specific formatting, headers and trailers first. B.29

BUSY A condition that can be raised from the FELIX system towards the central trigger processor in case
buffers fill up and data aquisition must be halted first. 102, 104

DMA Direct Memory Access first. 113

FELIX Front End LInk eXchange. i

FIFO First In First Out, a type of memory to store data, also used to cross clock domains first. 23, 65
FLX128 Xilinx VCU128 / VU37P Development kit with FELIX firmware. 13

FLX712 FELIX Phase | PCle card (BNL712) with FELIX firmware. 13

FromHost Direction of data communication, in ATLAS also referred to as Downlink. Data flows from the Host
PC towards the FPGA first. 110

GBT VersatileLink GigaBitTransceiver, a protocol and chip (GBTx) with 4.8Gb/s communication and logical
links (E-Links) first. 21

IPGBT low power GigaBitTransceiver, a successor of GBT with 9.6Gb/s Uplink, 2.56Gb/s Downlink and logi-
cal links (E-Links) first. 21

ToHost Direction of data communication, in ATLAS also referred to as Uplink. Data flows from the FPGA
towards the Host PC first. 105

TTC Timing, Trigger and Control, a protocol to distribute timing and trigger information first. 102

Wupper An implementation of a PCle DMA controller for Xilinx FPGAs first. 113

/.\1-Z LA!S 1. Conventions and Glossary Page 1 of 138

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

2

RELATED DOCUMENTS

Remark 2.1: Instructions for this chapter

List all documents (other than references) linked to this specification. Include in this list the specifica-
tion of the actual hardware where the firmware is supposed to be deployed as well as all specifications
related to interfaces and standards that the firmware refers to.

Most of the important documents can be found on the Atlas FELIX project website, under User documen-
tation:

e ATLAS FELIX website
https://atlas-project-felix.web.cern.ch

e FELIX user documentation
htips.//atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation. htm/

Three important documents are especially worth mentioning in this section:

e FELIX User Manual
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/

e BNL712 User manual
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

e FELIX software documentation
https.//atlas-project-felix.web.cern.ch/atlas-project-felix/user/felixdoc/

2. Related Documents Page 2 of 138

https://atlas-project-felix.web.cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felixdoc/

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

z L FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

GLOBAL DESCRIPTION AND SPECIFICATION
[I I I I IO I | .

Remark 3.1: Instructions for this chapter

Give a clear description of the overall firmware and its main functions, providing the general context
and where it will be used. (Re-)Introduce global design specifications as imposed by outer constraints
(latencies, frequencies) and terms.

While the FELIX firmware for ATLAS Phase-Il upgrade will inherit most of the functionalities from the
Phase-| firmware, the architecture or structure needs a throughout re-think and re-design. The aim is to
improve the generality of the core of the firmware while making it more flexible for developer to incorporate
different modules for specific detectors.

This document details a preliminary design of the FELIX firmware for ATLAS Phase-Il upgrade. It starts
from the top level firmware structure before going into details for each module. The interfaces between the
modules are specified.

The aim is to kick-start the discussion among the developers. Comments and ideas are most welcome.
As development progresses, the diagrams will be updated continuously, more details will be added.

3.1 FIRMWARE FLAVOURS

The FELIX Phase Il firmware is kept as generic as possible. All the firmware flavours that fall within the
scope of this document - the officially supported flavours - are built from a single toplevel VHDL file called
felix_top.vhd. The firmware flavour is determined at build time by means of a generic: "FIRMWARE_MODE".
Based on this generic, the appropriate Link Wrapper will be instantiated, and a set of encoders and decoders
is selected.

Flavour Link Wrapper Decoders Encoders Remarks
0: GBT GBT 8b10b 8.3.14 8b10b 8.4.14 The GBT mode flavour is available in 8 and 24
HDLC 8.3.15 HDLC 8.4.15 channel versions, with a complete set of encoders /
Direct 8.3.17 Direct 8.4.16 decoders, and a so called SemiStatic configuration
TTCToHost 8.3.18 TTC 8.4.17 where some decoders/encoders are left out. FELIX
BusyToHost ?? aims to provide a 24 channel fully configurable
version for FLX712, it has been demonstrated to
work but with high resource count (78% LUTSs)

/.\Z-|-|_E A!S 3. Global Description and Specification CC————— 1 Page 3 of 138

570

571

572

573

574

575

576

577

578

579

FELIX Phase-ll firmware specifications: 3.1 Firmware

May 7, 2021 - Version 0.87

1: FULL ToHost FULL, FULL 8.3.16 8b10b 8.4.14 The FULL mode flavour is available in 24 channels
FromHost GBT TTCToHost 8.3.18 HDLC 8.4.15 for FLX712 and FLX128. The ToHost side/decoding
BusyToHost ?? Direct 8.4.16 is using 9.6Gb/s 8b10b data without logical links.
TTC 8.4.17 FromHost/encoding is identical to GBT

2: LTDB GBT 8b10b 8.3.14 8b10b 8.4.14 LTDB mode is a 48 channel version of GBT mode,
HDLC 8.3.15 HDLC 8.4.15 but with reduced e-link configurability. This flavour
Direct 8.3.17 Direct 8.4.16 only includes the EC and IC e-links, as well as an
TTCToHost 8.3.18 TTC 8.4.17 AUX e-link (Egroup 4, link 7) with HDLC/8b10b/Direct
BusyToHost ?? configuration. Additionally TTC distribution is

available on all FromHost/ToFrontend e-links.

4: PIXEL IpGBT HDLC (EC/IC) RD53A/B 8.4.11 The Pixel flavour was designed to read out the ITk
8.3.15 TTC 8.4.17 Pixel detector over IpGBT with Aurora e-links. The
Aurora 8.3.12 HDLC (IC/EC) encoder uses a custom protocol for RD53 and
TTCToHost 8.3.18 8.4.15 includes a trigger and command state machine.
BusyToHost ??

5: STRIP IpGBT HDLC (IC) 8.3.15 HDLC (EC) 8.4.15 The Strip flavour was designed to read out the ITk
Endeavour (EC) Endeavour (EC) Strip detector over IpGBT with 8b10b e-links. The
8.3.11 8.4.10 encoder uses a strip custom protocol with so called
8b10b 8.3.14, LCB 8.4.12 trickle merge.

8.3.10 R3L18.4.13
TTCToHost 8.3.18
BusyToHost ?2?

9: LPGBT IpGBT HDLC (EC/IC) 8b10b 8.4.14 The IpGBT Flavour is the IpGBT equivalent of the
8.3.15 HDLC 8.4.15 GBT flavour. It involves 8b10b, HDLC and TTC
8b10b 8.3.14 Direct 8.4.16 protocols and the aim is to have a fully configurable
Direct 8.3.17 TTC 8.4.17 24 channel build available.

TTCToHost 8.3.18
BusyToHost ??
10: INTERLAKEN 64b67b Interlaken 8.3.20 Interlaken 8.4.18 The Interlaken Flavour has not yet been specified,
the aim is to have at least 8 bidirectional 25Gb/s
Interlaken links. Combinations with other protocols
(IPGBT/GBT) may be required by subdetectors.

Table 3.1: Firmware Flavours and their configurations.

The following firmware flavours fall outside the scope of this document, and are documented elsewhere.

e 3: FEI4, For internal development only, not an official release.

6: FELIG, GBT Front End emulator [1].

7: FMEMU, FULL Mode Front End Emulator [2].

e 8: MROD, FELIX_MROD is a special flavour that was developed in case the MRODs fail. [3]

3.1.1

E-PATH IDSs/ AXIs IDs

At build time, the firmware flavour is defined, and depending on this flavour every physical link is equipped
with a number of logical links (E-Links). Every individual encoder or decoder is associated with an AXls ID,
which is used to address the correct encoder / decoder. Addressing is done my means of the header in the
FromHost data format (see B.4), and the block header in the ToHost data format (see B.2)

Flavour ToHost AXIs IDs FromHost AXIs IDs Remarks
0: GBT 0-39: 8b10b, HDLC, Direct 0-39: 8b10b, HDLC, Direct, A semistatic configuration may have a subset
40: EC: 8b10b, HDLC, Direct TTC of this configuration
41:1C: HDLC 40: EC: 8b10b, HDLC, Direct
41:1C: HDLC
1: FULL 0: FULL 0-39: 8b10b, HDLC, Direct,
TTC
40: EC: 8b10b, HDLC, Direct
41:1C: HDLC
2:LTDB 39: AUX: 8b10b, HDLC, Direct 0-38: TTC
40: EC: 8b10b, HDLC, Direct 39: AUX 8b10b, HDLC, Direct,
41:1C: HDLC TTC
40: EC: 8b10b, HDLC, Direct
41:1C: HDLC

3. Global Description and Specification =wwrwwwws

Page 4 of 138

576

577

578

579

580

581

582

583

584

585

586

587

588

589

Z FELIX Phase-Il firmware specifications: 3.1 Firmware Flavours May 7, 2021 - Version 0.87

4: PIXEL 0,4,8,12,16,20,24: Aurora 0-15: RD53 1 E-Path per ToHost E-group, 3 AXls IDs per
28: EC: 8b10b, HDLC, Direct 16: EC: 8b10b, HDLC, Direct ToHost E-group are unused.
29: IC: HDLC 17:1C: HDLC
5: STRIP 0-27: 8b10b 0,5,10,15: Icb config Strip FromHost AXIs IDs are not associated
28: EC: Endeavour 1,6,11,16: Icb command with the E-Link number on the IpGBT frame,
29: IC: HDLC 2,7,12,17: Icb trickle but have a dedicated numbering scheme, see
3,8,13,18: r3I1 config also 8.4.12 and 8.4.13

4,9,14,19: r3I1 command
20: EC Endeavour

21: IC HDLC
9: LPGBT 0-27: 8b10b 0-15: 8b10b, HDLC, Direct,
28: EC: 8b10b, HDLC, Direct TTC
29: IC: HDLC 16: EC: 8b10b, HDLC, Direct
17:1C: HDLC
10: INTERLAKEN 0: Interlaken O:Interlaken No logical links on top of Interlaken

Table 3.2: E-Link configurations and AXls IDs for the Firmware Flavours.

Table 3.2 shows the available AXIs IDs which are mapped on the physical links. Every link and its asso-
ciated E-Links/AXls IDs are replicated by the number of physical optical links in the build, so the encoder /
decoder is not only addressed by the AXls ID, but also by the GBT ID, which is the number of the physical link
starting at 0 from every endpoint. For a typical 24 channel firmware flavour, every PCle endpoint is associated
with 12 GBT IDs (0-11).

In ToHost direction, there is one extra GBT ID for the virtual E-links, associated with axis_aux, the auxiliary
AXI| Streams. These streams contain the TTCToHost and BUSYToHost virtual E-links.

e TTCToHost: GBT ID: GBT_NUM (12), AXIs ID: 0
e BUSYToHost: GBT ID: GBT_NUM (12), AXIs ID: 1

3.2 TOP LEVEL

The design strategy is to keep the top level architecture as general as possible. At all time, the dependencies
among the module should be kept as minimal as possible to maintain the amount of change at a minimum
when a small change is needed in a feature. Modules with similar functionality shall be grouped together to
encourage code reuse.

Z-|-|_E A! 3. Global Description and Specification CCCCe—Tl Page 5 of 138

4 clock synchronous with BC frequency
Re iap RegMap
)

TTC / Busy out Control & Monitoring v
0 s
(TTC / PON Input) (TFC/ PON Emulator\ (Busy output Dead Time MonitorinQ (Monitoring ousekeeping w (Clock Manager w
(Trigger tag) Trigger tag LEMO output < Busy Busy monitoring Temperatures 12C manager Clock synthesizer
PON output XON/XOFF monitoring Fan speed Clock reset
) Optical input levels
&

RDMA (under investigation)
Busy 1: from FrontEnd

-
m
=
x
o
>
D
7]
o
e
=
=
3
s
o
3
o
]

o
@
o
=
o
o
=
o
3
o

&
2]
[
3
o
(@)
]
o
o
=
o
=
o
E)
0
>
o
(2]
o
@
(7}
=
o
-]
=
o
E)

TTC
<tRegMap: Busy 2: host memory buffer Busy 1,2 3 4 e N\ '
Busy 3: PCle FIFO XON/XOFF 1,2 RDMA FIFOs RDMA core w
TTC Busy 4: software o
100G Ethernet MAC el
FromHostFIFO| |€—| Roma (RoCE) «m@ ~
-
o
z? k-]
RegMap TTC l RegMap ToHostFIFO > 2
Vv N k _ 2
Encoding CRFromHost
Transceiver / link wrapper ITk Strips: PCle to AXI stream 8b Wupper T Busy 2
- Trickle merge / high prio / 6b/8b Protocol agnostic -
F Host (TX - R3 requests for strips Broadcast to all elinks § N (
romHost (TX) - Endeavor TX (EC E-link) Fanout WupperFifos Wupper Core
GBT 4.8 Gbls e Rgeast memory Fle < | 4 PCle
LpGBT 2.56 Gb/s L. i .) FromHostFIF <—| DMA
- Pixel custom protocol Axis 8b
25 Gbs N Broadcast memory E-link Interupts @
- er e-lin i
10 Gb/s k‘\ GBT mode / IpGBT mode: p Register Map 1/0
—————— - 8b/10b ToHostFIFO
Front_End ' -HDLC & j
H -TTC = .
— H - Direct (debugging) RegMap
ToHost (RX) ; S ~ — BuYy 2
/ XOFF Tags
GBT 4.8 Gb/s) v
LpGBT 10.24 Gb/s 7 () Axis 32b
FULL 9.6 Gb/s - > Decoding Xis CRToHost
25 Gbls : per E-link <«——{ RegMap Sync
H 8b/10b AXI stream 32b input Busy 4*
| B<—1 HDLC To PCle
\ usy 11 Aurora 64b/66b FIF Protocol agnostic <
Low Latency R3 Data Via ‘- ------ Endeavor - for Strip EC Link Add headers / trailers XON;EFFZT £
dedicated output(s) TTC ToHost Virtual E-link - A N
—p BUSY XON/XOFF Virtual E-link RegMap “N
TTC kDirect (debugging) Y, % %
) *Software controlled '
% RegMap (ToHost Emulator - ?:makre controlled, Legend &
@
g’ TTC driven event data Data path —_— g
= DCS data (FIFC‘] . Low latency path ~ ooo... > o
= R3 Data Axis 32b ©
&) Clock @_) J
A 4)
) Register Map Control <tRegMap{>
@ RegMap

Figure 3.1: The FELIX firmware top level block diagrams..

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

/.\Tz L As FELIX Phase-Il firmware specifications: 3.2 Top level May 7, 2021 - Version 0.87

3.2.1 TRANSCEIVER AND LINK WRAPPER
o Interfaces to electrical to optical and optical to electrical transceivers

e TX:GBT or IpGBT scrambling: input GBT or IpGBT E-Link frames @ BC frequency, 25Gb/s links (Aurora
or Interlaken), 10Gb/s links

e RX
— For GBT or IpGBT descrambling, FEC handling, output GBT or IpGBT E-Link frames @ BC fre-

quency to E-link Decoder

— For FULL mode output of 8B/10B decoded data stream, with a CharisK indicator. The FULL mode
Decoder block will further decode this data stream into 32b AXI stream.

— for 25Gb/s Interlaken links 64b67b frames will be delivered to the Encoding / Decoding blocks.

A more detailed description of the Transceiver and Link wrapper is given in 8.5

3.2.2 ENCODING

e Inputs: Encoding connects to CRFromHost by means of a 2D array of 8-bit AXI4-Stream, the size of
this array is the number optical links by the number of logical links (E-Links) on top of every optical link.
Data for the 25G Interlaken links will be delivered on a 64-bit AX14-Stream.

e Outputs: GBT or IpGBT E-link frames @ BC frequency, TTC virtual E-link, 64b67b encoded data for 25G
Interlaken links. Depending on the firmware flavour (See section 3.1) a set of the following encoders
may be included in some or all E-links:

HDLC coding for IC E-link and configurable per E-link for other E-Links
Endeavour for the EC e-link of the strip flavour
8B/10B coding for XON-XOFF messages configurable per E-link

6B/8B coding of merged FromHost data and TTC signals (accepts, resets) for strips configurable
per E-link

— Pixel custom coding of merged FromHost data and of TTC signals (accepts, resets) configurable
per E-link

— TTC signals @ BC frequency configurable per E-link
— Interlaken for 25 Gb/s links

e Broadcast Memory

— In combination with the TTC emulators, generates a fixed pattern and send them to front ends
chips at a programmable frequency in order to act as trigger loops.

— Broadcast memory will be used in combination with trickle merge, see figure 8.10

A more detailed description of the Encoding block is given in 8.4

3.2.3 DECODING

e Inputs:
— GBT frames, using E-Links. These E-links can carry multiple protocols such as 8b/10b, HDLC or
direct (no encoding) mode.

— IpGBT frames, using E-Links. These E-Links can carry multiple protocols such as 8b/10b, direct
(no encoding), Aurora streams or Endeavour.

— FULL mode. Links are 8b/10b encoded at 9.6Gb/s and chunks are delimited with special K-
characters defined in 8.3.16

/.\Z-|-|_E A!S 3. Global Description and Specification CCCCe—Tl Page 7 of 138

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

FELIX Phase-ll firmware specifications: 3.2 Top May 7, 2021 - Version 0.87

— 25Gb/s links Interlaken links, the raw (scrambled) 67b data is decoded in a submodule of the
decoding block. 8.3.20

GBT or IpGBT E-Link frames @ BC frequency or 8B/10B or Aurora streams via E-links @ rate syn-
chronous with BC frequency

Outputs: data fragments, to be forwarded via the ToHost Multplexer to the ToHost Router with associated
flags signaling start and end of fragments and error conditions, and an output or outputs for BUSY-ON
and BUSY-OFF. The data fragments are also called Chunks, these chunks consist of any number of
bytes and will later be packed in blocks by the ToHost Central Router (CRToHost) 8.11. The output
format of the Decoding block, and all it’s internal components is a 2D array of AXI-Stream 32b, the size
of the AXI-Stream 32b array is the number of optical links by the number of logical links (E-Links) on top
of the optical link. Data from 25G Interlaken links will be carried by 64-bit AXI4-Streams.

Every E-link on a GBT or IpGBT is encoded depending on the specification of the subdetector / frontend.
A firmware flavour (See section 3.1) may have a subset of on or more of the following options to decode
the E-links:

— 8B/10B decoding for E-links transferring 8B/10B coded data. Strip data streams contain event and
register data, splitting in software in the host PC. Extraction of BUSY-ON and BUSY-OFF control
symbols and forwarding to the Busy output of this block is done by the 8b10b decoder as well.

— HDLC decoding of the IC E-link data and configurable for other E-links

— Aurora decoding, single data stream via either 1, 2 or 4 lanes (1 lane per E-link), this single data
stream needs to be reconstructed, in the case of 4 lanes two lanes may be associated with two
E-links from another physical link than the two other lanes, mapping of lanes on E-links need to be
configurable. Register data and event data in same data stream. See also 8.3.12.

— Endevour decoding is included for the EC E-Link of the strips flavour.

— FULL Mode: 9.6Gb/s 8b10b encoded links can be decoded. FULL mode does not include E-Links
but the encoding happens directly on top of the physical link.

— Interlaken: The 25G Interlaken decoder will be included as a submodule of the decoding block.

A more detailed description of the Decoding block is given in 8.3

3.2

3.2

3.2

3. Global Description and Specification =wwrwwwws

4 AXIs MUX (TOHOST FANOUT SELECTOR)

Forwards data with associated flags signalling start and end of fragments and of error conditions, either
from E-Link Decoder, for FULL mode from Link Wrapper RX or from ToHost Emulator to ToHost Router

Control with configuration register

.5 CRFROMHOST: CENTRALROUTER IN FROMHOST DIRECTION

Inputs and buffers data packets that contain information on E-link and packet length in data streams
from FromHost FIFOs. Packets are buffered, complete packets are output to FromHost Multiplexer

.6 CRTOHOST: CENTRALROUTER IN TOHOST DIRECTION

Inputs fragments with associated flags signalling start and end and error conditions

Inputs fragments from virtual TTC E-Link and from virtual E-Link for BUSY XON/XOFF monitoring (if
implemented)

Forms blocks with headers and filled with chunks or subchunks with appropriate trailers on the basis of
the data and the flags received

Outputs blocks to the FIFO of the ToHost FIFOs with which the block is associated.

Page 8 of 138

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

/.\TZ |_ As FELIX Phase-ll firmware specifications: 3.2 Top level May 7, 2021 - Version 0.87

ssssssss

The number of output FIFOs is determined by the number of parallel ToHost DMA paths supported by
Wupper (see 8.13).

3.2.7 TOHOST EMULATOR

Forward either event data, DCS or R3 data to ToHost Switch
For each E-link there is a separate data stream
Event data have an embedded L1ID, which is incremented for each fragment

Event data can be generated on the basis of LO or of L1 accepts, as received via TTC P2P, or as
generated by the TTC emulator

Random fragment sizes on the basis of arbitrary probability distribution.

R3 Data can be generated on the basis of LO accepts as received via TTC P2P, or as generated by the
TTC emulator

3.2.8 WUPPER

FromHost FIFOs
— One FIFO in FromHost direction
ToHost FIFOs

— One FIFO per ToHost DMA channel
— Generates Busy if FIFO(s) becomes too FULL
— Generates Busy if server PC memory becomes too FULL

Register map

— All registers with updates synchronised with BC clock
— Can generate Busy under software control
— Can generate XON or XOFF for individual links under software control

Wupper Core

DMA engine
PCle interfacing

Interrupt generation and control

Register map I/0

Generates Busy if output circular buffer(s) in host memory are too full

Control and Monitoring

Dead Time Monitoring

— Input of all Busy signals

— Input of all Xon/XOFF statuses

— Status available in registers

— Output of Busy to Busy Output, configurable which Busy inputs contribute

— Optional virtual E-link output of time stamped messages indicating Busy-On, Busy-Off, XON or
XOFF and the E-link or link associated with the condition if relevant

/.\Z-|-|_E A!S 3. Global Description and Specification CCCCe—Tl Page 9 of 138

zzzzzzzzzz

707

708

709

710

7M1

712

713

714

715

716

7

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

FELIX Phase-ll firmware specifications: 3.2 Top level May 7, 2021 - Version 0.87

Monitoring

— Temperatures

Fan Speed

Optical input levels

Voltages

Housekeeping: i2c control
Clock Manager

— Receives clock synchronous with BC frequency from TTC or PON, if present, and jitter cleaning of
this clock

— Can also generate clock without presence of TTC or PON

TTC / Busy out

TTC P2P Input

— Input of TTC data patterns from the original TTC system or TTC P2P.
— Output to E-Link Encoder and ToHost Emulator via TTC Multiplexer

TTC/TTC P2P Emulator

— Generation of TTC data patterns and trigger tags as received either from the original TTC system
or via PON

— Output to E-Link Encoder and ToHost Emulator via TTC Multiplexer

Busy output: receives Busy signal from Dead Time Moritoring and outputs this via LEMO output or via
PON

3.2.9 NUMBER INSTANCES PER FPGA

TTC /Busy out: 1

Control and Monitoring: 1

Link Protocol Wrapper: 1

CRToHost: 1 per Wupper

CRFromHost: 1 per Wupper

Encoding: 1 per Wupper

Decoding: 1 per Wupper

Wupper: typically 2, each servicing an 8 lane PCle interface

RDMA: typically 2, each servicing one 100Gb Ethernet link

3. Global Description and Specification =wwrwmwws Page 10 of 138

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

EXTERNAL INTERFACES (I/O)
[| | | | | | | | |]

This section describes the hardware interfaces (I/O) provided by the cards. The FLX-712 card provides up to
24 or 48 bi-directional optical links via the 12-channel 14-Gbps MiniPOD modules. The supported protocols
are listed in Section4.1. The detailed format are described in Section8.5. The timing mezzanine card can
provide interfaces for TTC and BUSY, which can be connected to the existing ATLAS TTC system. With
different assembly, it can also be configured to with an SFP module [4], to interface different types of timing
system, for instance TTC-PON or White Rabbit.

For Phase-Il card, the optical module will be the Samtec FireFly module, which can support a link speed
of up to 28 Gbps. More details will be shown in the hardware documents. The VCU128 used for firmware
demonstration provides 4x QSFP28 module, with in total 16x 28 Gbps links, which can be used to verify the
proposed 25 Gbps Interlaken and also 100 Gbps Ethernet connection.

4.1 FRONTEND LINKS

The protocols supported by FELIX firmware are listed in Table 4.1. For different protocol, FELIX firmware will
configure the on-board jitter cleaner to output clocks with low phase noise for Xilinx transceivers.

Figure 4.1: The timing mezzanine for FLX-712, with different configuration.

/.\-rZ LA!S 4. External Interfaces (I/0) 22222000 Page 11 of 138

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

!

FELIX Phase-ll firmware specifications: 4.2 PCle May 7, 2021 - Version 0.87

Protocol FELIX Front-end

GBT TX:4.8G, RX:4.8G TX:4.8G, RX:4.8G
FULL TX: 4.8G, RX: 9.6G TX:9.6G, RX: 4.8G
IpGBT TX:2.56.8G, RX:10.24G TX: 10.24G, RX: 2.56G
25G link TBD TBD

Table 4.1: Protocols supported by FELIX.

4.2 PCIE

The FELIX Phase Il firmware will interface with the FELIX server through a PCle Gen4x16 interface. This
interface will consist of 2 Gen4x8 interfaces in the FELIX FPGA, combined with a PCle Gen4 bridge on the
FELIX card.

During the development phase, FELIX is also built for the Phase | hardware platform - FLX712, which has
a PCle Gen3x16 interface. The firmware will support both Gen3 and Gen4 PCle interfaces, depending on the
hardware platform the link speed will be chosen.

4.3 TTC INTERFACE

The left photo in Figure 4.1 shows the timing mezzanine on FLX-712 card, with the TTC optical receiver and
CDR ASIC on it. For Phase-2, the TTC interface with LTI is still under discussion.

4.4 BUSY

The Phase | hardware platform has a dedicated LEMO-00 output (Open drain / pull down) to report BUSY,
shown in Figure 4.1. In Phase Il the BUSY condition will be communicated to the LTI over the TTC-P2P link.

4.5 100GB/S ETHERNET

The hardware platform that is used to evaluate Phase Il link speeds up to 25 Gb/s, will also be equipped with
one or more 100 Gb/s links. The FLX128 (Xilinx VCU128) is equipped with 4 QSFP28 transceivers for this
purpose. The 100Gb/s Ethernet interface can be used for the RDMA link (see section 8.14) which is currently
under investigation as a possible alternative / addition to PCle DMA.

4. External Interfaces (I/0) =wrrrrrwen Page 12 of 138

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

ATLAs FELIX Phase-Il firmware specifications

zzzzzzzzzzz

May 7, 2021 - Version 0.87

TARGET FPGA (I

Remark 5.1: Instructions for this chapter

Indicate the target FPGA (vendor, part number with speed grade) and reference the data sheet. List
the main features (number of pins, fabric speed).

Table 5.1 is part of the instructions.

Extend the table accordingly (e.g. embedded processor, etc.).

The FELIX Phase | prototype card, also called FLX712 FELIX Phase | PCle card (BNL712) with FELIX
firmwares has been used for developing the FELIX firmware for Phase |. Most of the components if the FELIX
Phase Il firmware will be based on their Phase | counterparts, even though some interfaces will change and
some components have to be redesigned while others will have to be created from the start.

The primary development platform for the FELIX Phase Il firmware PDR will the FLX712, and all the
features that can be demonstrated on that platform will be implemented.

There are some features that are planned for the Phase Il upgrade that can not be demonstrated with the
FLX712 hardware. These features are:

e PCle Gen4
o 25 Gb/s links
e 100Gb/s RDMA

In order to demonstrate these features, a second development platform will be used, the Xilinx VCU128,
incorporating a XCVU37P-L2FSVH2892EES9837 FPGA. The VCU128 may also be referred to as Xilinx
VCU128 / VU37P Development kit with FELIX firmware, meaning a VCU128 running FELIX firmware.

Resource Availability (FLX712) | Availability (VCU128) | Estimated usage
Logic elements 1451 2852K 0%

Block ram 75.9 Mb 70.9 Mb 0 %

UltraRAM - 270 Mb 0%

HBM DRAM - 8 GB 0 %
Transceivers (< 25 Gbps) | 64 - 0%

Transceivers (> 25Gbps) | - 96 81 %

Table 5.1: Estimated resource usage of the FELIX Phase Il firmware.

ATLAS 5. Target FPGA CCEEEEEER

zzzzzzzzzz

Page 13 of 138

FELIX Phase-ll firmware specifications

Phase-I Phase-Il
FPGA XCKU115 | XCVU9P
CLB LUTs 663,360 | 1,182,000
CLB Flip-Flops 1,326,720 | 2,364,000
Block RAM [Mb] 75.9 75.9
UltraRAM [Mb] - 270

Table 5.2: Available FPGA resources [5, 6]..

May 7, 2021 - Version 0.87

LUTs =80.6
FIFOs =59.5
BlockRAM = 59.3

EELIX Top BNL 711 (XCKU115)

GBT Wrapper (x1) Others
LUTs =78 LUTs =53
FIFOs =19 FIFOs =6.8

BlockRAM = 2.2

BlockRAM = 11.1

Central Router (x2)

LUTs =33.7 (67.5)
FIFOs =25.4(50.8)
BlockRAM = 23.0 (46.0)

Data Manager (x12)

LUTs
FIFOs

=2.8(67.0)
=2.1(50.2)

BlockRAM = 1.9 (45.6)

Blocl

LUTs =
FIFOs =

1.8 (42.2)
1(27.8)
9 (20.6)

1.
kRAM = 0.

To-Host Stream

e-Group (x5)

LUTs =~0.3(38.2)
FIFOs =~0.2(24.5)
BlockRAM = ~0.1 (14.6)

4-bit 8b/10b eLink (x2)

LUTs
FIFOs
BlockRAM

Path FIFO Driver EProc In Enable Epath FIFO Enable

0.03 (5.76)
0.02 (3.84)

0.0

0.03 (5.76)
0.01(1.92)

0.02 (3.84)
0.01 (1.92)
0.02 (3.84)

From-Host Stream

LUTs =1(25.0)
FIFOs =1(22.3)
BlockRAM =1 (25.0)

e-Group (x5)

LUTs =~0.2(20.6)
FIFOs =~0.2(19.4)
BlockRAM = ~0.2 (19.4)

Figure 5.1: The Phase-I FELIX resource utilization in percentage (rounded up) for XCKU115 FPGA. Only the
components which consume the most resources are shown. The numbers in each block are part of the num-
bers in their immediate outer block. For example, of the 81% LUTs utilization, each central router contributes
about 34%. The rest of the 13% (not shown) come from other sources. The numbers in parenthesis are the
total value. .

5. Target FPGA

Page 14 of 138

790

791

792

793

794

795

796

797

798

799

800

/.\Tz LAs FELIX Phase-ll frmware specifications May 7, 2021 - Version 0.87

POWER AND COOLINGC . 1

Remark 6.1: Instructions for this chapter

List all the voltage and current sources supplied to the FPGA. For each power rail, list the maximum
current budgeted and estimated current draw with present firmware design, usually provided by the
power estimate tool from FPGA vendor. Cooling scheme applied to FPGA and board which is used to
derive the power budget could be described. Some items like current draw may not be known at the
time of the first specification review but a good estimate should be included by the time of PDR & FDR
with final numbers for PRR.

This section is usually provided by the hardware design team, which will provide important boundary
condition for the firmware development. An early interaction between firmware and hardware design
teams is crucial.

Table 6.4 is part of the instructions.

For the FLX-712, the power rails are listed in Table 6.2. The maximum current of each power rail and the
esitimated (measured) current with Phase-| firmware are also contained in the Table.

(to do: Verify Maximum current for Phase-I cases can be measured, for phase-2, estimation can be got by
Xilinx XPE, however this section really relies on the hardware, not sure whether this should be put in firmware,
especially for Phase 2.)

Name of Voltage Rails | Max | budgeted for Voltage Rail | Estimated | budgeted for Voltage Rail
SYS5: 5V 18A very low, only for the TTC receiver module
VCCINT: 0.95V 18A typical: 6A

PEXOP9V: 0.9V 18A typical: 6A

MGTAVCC: 1.0V 18A typical: 8A

MGTAVTT: 1.2V 18A <4.5A

SYS18: 1.8V 18A <1.5A

SYS25: 2.5V 18A <1.5A

SYS33: 3.3V 18A typical: 3.5A for 48-channel card

Table 6.2: Power Requirements.

The fansink used on FLX-712 is 30-18828-04 shown in Figure 6.1. There are three pins for the fan, which
are the 12V power, ground and the pin for tachometer. The fan speed is around 8500 RPM. The mean time
to failure (MTTF) at 40 Celsius degree is about 36 years, while after 10 years, 10% of fans are estimated to

/.\Z-|-|_E A!S 6. Power and Cooling CCC— il Page 15 of 138

May 7, 2021 - Version 0.87

FELIX Phase-ll firmware specifications

1 | 2 € | S | | L | 8
slz-61-2 | 1401 $0-8281-0¢ . s [20 | owe | wez | o0 [ew | 866 | & | waweows
NAVAT 3190 IS RIENIN_ 13vd Y400 03/66/2002 L TR R T L R Y e —
0 - 3NON +0-8281-0E a8 03O | o o oo | Guvs | cuve [wuov | e fovivesa | cauv
A3y 10| a3 sno| T awos| ameon sniavan wvaoo LNVITdWOD S.en [0522 | 1055y | 20016 [€00281| 166/52] 011 UILVAILSI
N 0006 ‘A1 ‘NIS NV —--1 A8 OOIH) SHOY 9296L| €S26S1| 90S8IE | TI0LESLR0V LT 6ELT08T(41 IW QILYWILST
3WYN | N3EWNN L3Vd ¥3W0LSND . 2 r 8 R 2€ Secy T
GECHE VO LNOKI GATE NIAS KA LL19% fa— 3NOA
v vYSN Nv400 % cEHN oNIAVSL dEW0LSN [a1v | e ‘N Josu0s 307 oL 09 s | ov 0g S2 | duar v
133HS WOd ouyod . eboyeA 3 0006 NIV VR 3 GBS N N0 W3 X1 D)
"3 0 oo e o, on X6
Ao | AZ§| <eaunN 3uod uordiudsag 3uod uay] _ou Bl AL e v
1 % 0€TT-02 [az|pouy »o01g ¥ UIS30aH @
1 | 10 [2£-g21Ho0t-4 8x0rX0y ‘Nv4 30| (@ 23 (3FdvL |_<_>_wm_1+
vy 120 0901-09 Sxan ‘M3a3s| (©) | ONIANTIONI LON) dIV 3344 NI M/2.09°I
1 10 110E-04 A1dONDE LSIND9O¥3E ‘3avi] (&) X0dddV ‘FIONVLSISIY TIVINITHL [
€6
q q
8y 20%0'GE
nmm.on_
3 o}
(A3Y ¥3d S3SIND T HOVL) MOTI3A
— Yovia a3y ||
"AIND3 ¥0 XXxx-8S00S WNINAIL XITOW XE
"AIN®3 ¥0 00E0-T201S ONISNOH XITOW XT .) .
$94/6 G2 :LHOIIM SS0Y9 Lyvd ‘9
‘HSINI4 378¥217ddV 3aNTINI OL SNOISNIWIQ TV 'S
03/56/2002 ‘34NLV3S ¥O NOISNIWIA ONIMVHA OL L¥0d3d NOILOISNI 40 JONIFI4TY SSOND
INVITdWOD 404 d3sN 38 0L SI ITONVIML NI ONIMIGWNN “LNIOd NOILDIASNI TWIILIMD SI Y 7
Hoy '$3903 dHVHS 1TV MvIdg ANV ¥dng3a ‘¢
a S —— HSINI4 [Z |q
--== FIVIH3LVWLI
S3LON
8102-61-2 N3& - N3E NV4 3ONVHD ONV 3dvli 0av 0
l0a-te-d N3T . N3C ENTR]) CONL _NVA0O WO ONLLINA NI O3NIVIED 38 LSON
2102-S1-9 N3€ - N3§& N/d Nv4 3ONVHD ‘3dvi LSINDON3E OL 3ONVHO 20
_ 3iva AAddY T HHY NANT NOILINOS3Q A
| ANOISIH NOISIARY
1 2 € |4 S 9

Figure 6.1

Page 16 of 138

6. Power and Cooling

801

802

803

804

805

ATLAs FELIX Phase-Il firmware specifications

zzzzzz

fansink.

May 7, 2021 - Version 0.87

malfunction. The heatsink is stuck on the FPGA. During the production, it was found for some heatsink, it has
bad contact with the FPGA. For Phase 2 cards, the maxiGRIP fansink will be used. Phase change thermal
interface material (TIM) will be used to attach the heatsink to the FPGA. Screws will be used to assemble the

Phase-2: to be added by Hongbin: fan selection, control and monitoring. And power estimation.

Name of Voltage Rails

Max | budgeted for Volt-
age Rail

Estimated | budgeted for
Voltage Ralil

Other Requirements

1

2

3

4

Table 6.4: Power Requirements.

ATLAS 6. Power and Cooling CCEmEm

ssssssss

Page 17 of 138

806

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

7

. INPUT/OQUTPUT L

808

Remark 7.1: Instructions for this chapter

The table should match what is planned to be implemented in the hardware design, between firmware
port name and hardware pin number. It can be filled out once the hardware design is available by
PDR. Eventually this will evolve into a constraint file for the firmware build by PDR/FDR/PRR.

Table 7.1 is part of the instructions.

Name Direction Type Description

BUSY_OUT out LVCMOS18 | std_logic, Busy output (to LEMO) 1 = BUSY

CLK_TTC_N in LVDS std_logic, 160 MHz clock from TTC

CLK_TTC_P in LVDS std_logic, 160 MHz clock from TTC

DATA_TTC_N in LVDS std_logic, Recovered data from TTC

DATA_TTC_P in LVDS std_logic, Recovered data from TTC

I2C_SMB out LVCMOS18 | std_logic, PEX I2C Enable

I2C_SMBUS_CFG_nEN out LVCMOS18 | std logic, PEX SMBus CFG Enable

I2C_nRESET_PCIe out LVCMOS18 | std logic, PEX active low reset

LOL_ADN in LVCMOS18 | std_logic, ADN2814 LOL input

LOS_ADN in LVCMOS18 | std_logic, ADN2814 LOS input

MGMT_PORT_EN out LVCMOS18 | std_logic, PEX management port enable

NT_PORTSEL out LVCMOS18 | std logic_vector(2 downto 0), PEX port select

PCIE_PERSTnl out LVCMOS18 | std logic, PEX PERST

PCIE_PERSTn2 out LVCMOS18 | std logic, PEX PERST

PEX_PERSTn out LVCMOS18 | std logic, PEX PERST

PEX_SCL out LVCMOS18 | std_logic, PEX I12C

PEX_SDA inout LVCMOS18 | std_logic, PEX 12C

PORT_GOOD in LVCMOS18 | std logic_vector(7 downto 0), PEX port good
indicator

Perstnl_open in LVCMOS18 | std_logic, input pin, leave open

Perstn2_open in LVCMOS18 | std_logic, input pin, leave open

GTREFCLK_N_IN in LVDS std_logic_vector(5 downto 0), Reference
clocks for transceivers

GTREFCLK_P_IN in LVDS std_logic_vector(5 downto 0), Reference
clocks for transceivers

RX_N in LVDS std_logic_vector(23 downto 0), To and from
Minipods

7. Input/Output s

Table 7.1: 10 pins (continued...)

Page 18 of 138

ATLASs FELIX Phase-ll firmware specifications

EXPERTN MENT

May 7, 2021 - Version 0.87

Name Direction Type Description

RX_P in LVDS std_logic_vector(23 downto 0), To and from
Minipods

TX_N out LVDS std_logic_vector(23 downto 0), To and from
Minipods

TX_P out LVDS std_logic_vector(23 downto 0), To and from
Minipods

SCL inout LVCMOS18 | std_logic, Global board 12C bus

SDA inout LVCMOS18 | std_logic, Global board 12C bus

SHPC_INT out LVCMOS18 | std_logic, output, tie to constant '1’

SI5345_A out LVCMOS18 | std_logic_vector(1 downto 0), Si5345 jitter
cleaner configuration

SI5345_INSEL out LVCMOS18 | std_logic_vector(1 downto 0), Si5345 jitter
cleaner configuration

SI5345_0E out LVCMOS18 | std_logic, Si5345 jitter cleaner configuration

SI5345_RSTN out LVCMOS18 | std_logic, Si5345 jitter cleaner configuration

SI5345_SEL out LVCMOS18 | std_logic, Si5345 jitter cleaner configuration

SI5345_nLOL in LVCMOS18 | std_logic, Si5345 jitter cleaner configuration

STNO_PORTCFG out LVCMOS18 | std logic_vector(1 downto 0), Constant
output, tie to "0Z"

STN1_PORTCFG out LVCMOS18 | std logic_vector(1 downto 0), Constant
output, tie to "01"

SmaOut_x3 out LVCMOS18 | std logic, Optional debug output

SmaOut_x4 out LVCMOS18 | std_logic, Optional debug output

SmaOut_x5 out LVCMOS18 | std logic, Optional debug output

SmaOut_x6 out LVCMOS18 | std_logic, Optional debug output

TACH in LVCMOS18 | std_logic, Fan tachometer input

TESTMODE out LVCMOS18 | std logic_vector(2 downto 0), Constant
output, tie to "000"

UPSTREAM_PORTSEL out LVCMOS18 | std logic_vector(2 downto 0), Constant
output, tie to "000"

app_clk_in n in LVDS std_logic, 200 MHz board crystal

app_clk_in_p in LVDS std_logic, 200 MHz board crystal

clk40_ttc_ref_out_n out LVDS std_logic, BC clock Towards Si5345 CLKIN

clk40_ttc_ref out_p out LVDS std_logic, BC clock Towards Si5345 CLKIN

clk_ttcfx_refl in n in LVDS std_logic, 240.474 MHz from Si5345

clk_ttcfx_refl in_p in LVDS std_logic, 240.474 MHz from Si5345

emcclk in LVCMOS18 | std_logic, High speed JTAG clock

i2cmux_rst out LVCMOS18 | std logic, Reset 12C mux

leds out LVCMOS18 | std logic_vector(7 downto 0), Board GPIO
leds

flash_SEL out LVCMOS18 | std_logic, Boot flash pins

flash_a out LVCMOS18 | std_logic_vector(24 downto 0), Boot flash
pins

flash_a_msb inout LVCMOS18 | std_logic_vector(1 downto 0), Boot flash pins

flash_adv out LVCMOS18 | std logic, Boot flash pins

flash_cclk out LVCMOS18 | std logic, Boot flash pins

flash_ce out LVCMOS18 | std logic, Boot flash pins

flash_d inout LVCMOS18 | std logic_vector(15 downto 0), Boot flash
pins

flash_re out LVCMOS18 | std logic, Boot flash pins

flash_we out LVCMOS18 | std logic, Boot flash pins

opto_inhibit out LVCMOS18 | std logic_vector(OPTO_TRX-1 downto 0),

Minipod / FireFly enable / reset

ATLAS 7. Input/Output CCCC

;;;;;;;;;;

Table 7.1: IO pins (continued...)

Page 19 of 138

FELIX Phase-ll firmware specifications

May 7, 2021 - Version 0.87

Name Direction Type Description

pcie_rxn in LVDS std_logic_vector(15 downto 0), PCle link
lanes

pcie_rxp in LVDS std_logic_vector(15 downto 0), PCle link
lanes

pcie_txn out LVDS std_logic_vector(15 downto 0), PCle link
lanes

pcie_txp out LVDS std_logic_vector(15 downto 0), PCle link
lanes

sys_clk_n in LVDS std_logic_vector(ENDPOINTS-1 downto 0),
100MHz PCle reference clock

sys_clk_p in LVDS std_logic_vector(ENDPOINTS-1 downto 0),
100MHz PCle reference clock

sys_reset_n in LVCMOS18 | std_logic, Active-low system reset from PCle
interface

uC_reset_N out LVCMOS18 | std_logic, Active-low reset for the AtMega uC

Table 7.1: 1O pins.

7. Input/Output

Page 20 of 138

809

8

0

®

1

812

®

3

*

4

8

5

8

6

817

8

8

819

820

821

822

823

824

825

826

827

828

829

830

831

ATLAs FELIX Phase-Il firmware specifications

ssssssss

May 7, 2021 - Version 0.87

DETAILED FUNCTIONAL DESCRIPTION AND

SPECIFICATION

8.1 INTRODUCTION

The FELIX toplevel design instantiates all the components / blocks that are described in the sections in this
chapter. The detailed schematic of the toplevel design can be found in Figure 8.1.

The toplevel design (felix_top.vhd) is designed to work for all firmware flavours (GBT, FULL, Strip, Pixel,
IpGBT) as well as all hardware platforms (FLX709, FLX712, FLX128, FLX180).

8.2 COMPATIBILITY

FELIX had been tested on the following platforms and tools:

1. Operating systems:

e Scientific Linux CERN 6, kernel 2.6
e Scientific Linux 7, kernel 3.10

2. Xilinx Vivado:

e 2020.1: migrated 11-2020
e 2018.1: migrated 05-2019
e 2015.4: migrated 02-2016
e 2014.4: initial version

3. Xilinx FPGA:
e Virtex-7 690T
e Kintex Ultrascale XCKU115

e Virtex Ultrascale+ VU9P, VU37P
e \ersal Prime VM1802

ATLAS 8. Detailed Functional Description and Specification

zzzzzzzz

Page 21 of 138

o
O
]
1
g
=
%
m
=
E]
o
=3
o
=
o
=)
]
]
o
=
S
=
5]
E)
)
>
o
(2}
-]
o
o
E.i
)
o
=
5]
E)

8¢l 10 gg abed

k160
i LOL_ADN
MMCM_OscSelect_in SDA SDA n k240
P IpGBTICdata X LOS_ADN clk_ttc_40 i
515345_nLOL 5I5345_LOL.] et vt st b app_clk in_p ckaso i

> BUSY_IN P clk_ttc. clka0_xtal J SUrclka0_xtal
LMK LD K g P cli_ttch ref1_in_n clk_adn_160_out_n clk_adn_160_out_n
PORT_GOOD clkttch_ref1 in_p clk_adn_160_out p

clk
clk

and_reset

P register_map_control 'MMCM_Locked_out

ezt OB sys_reset n T dkioxtal

register_map_control “ANY_BUSY_REQ_OUT GBTdataEmulat Py
TTC_BUSY_mon_array i rapper

housekeeping_module:

clk_adn_160 clkd0

TTC_BUSY_mon_array

axTTCc P
CLKITCN
clkad

clk_adn_160_out_p
40_ttc_ref_out_n

clkd0_ttc_ref_out_p

EMU_lpGBTICDatain
RFromHostAXis
GBTDataln

0_xtal nir B clk10_xtal Flash_we Flash_we Y
0_xtal A P clkao_xtal % ¥ 1pGBT_DOWNLINK_EC_DATA fhaxis_aclk
clkaonr P clkao led: leds IpGBTICDataln 1pGBT_DOWNLINK_IC_DATA register_map_control
PP RXUSRCLK IN i TTCin
register_map_control aresetn in txp
register_map_encoding_monitor register_map_control_sync.
toHostFi register_map_control_appreg_clk

aresetn ster_map_gen_board
register_map_crtohost_monitor
clkao register_map_crfromhost_monitor

FullMode

register_map_control fanout_sel_axis

register_map_control_appreg_clk \axis_tready Fanout_sel_axis_tready

register_map_gbtemu_monitor m_axis_prog_empty emus fanout_sel_axis_prog_empty
jecoding_ax

suonesyioads asemwuy [-aseyd X134

aresetn

reset_soft_appreg_clk =]
appreg_clk IO reqister_map_control ‘tohost_busy_out N
clk240
adk adk o)
~ (=)
o
o
0PTO_LOS =
™!
s g
R =
-
<

GBTdataEmulator GBT_fanout_selector
EMU_GBTDatain GBTData ‘GBT_UPLINK_USER_DATA
EMU_lpGBTDataToHostin

R X

EMU_(pGBTICDatain JICT

EMU_GBTlinkValidin inkaligned m_axis_aix,trea @-Do-bslsm_mem
"

1
BUSY_ouT

GBTDataln L <_USER
IpGBTDataToHostin TTCToHostData ack
IpGBTECDatain i

TIC
register_map_control
register_map_decoding_monitor

aresetn

Figure 8.1: The FELIX firmware top level detailed schematic..

/8°0 UOISIBA - 1202 ‘L AeN

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

)

Ex

PE

RT

MENT

FELIX Phase-Il firmware specifications: 8.2 Compatibility

May 7, 2021 - Version 0.87

8.3 DEcopiIn @™

8.3.1

INTRODUCTION

Decoding is the block in the FELIX firmware which instantiates the subdetector specific, but also Atlas wide
protocol handling in the ToHost direction (Upstream).

8.3.2

8.3.2.1

FULL_UPLINK_USER_DATA

GBT_UPLINK_USER_DATA

IpGBT_UPLINK_USER_DATA

[pGBT_UPLINK_EC_DATA

|pGBT_UPLINK_IC_DATA

LinkAligned

register_map_control

aresetn

RXUSERCLK
clk250

clka0

INTERFACES

txrx33b_type(GBT_NUM-1 downto 0)
Full mode data input
txrx120b_type(GBT_NUM-1 downto 0)
GBT data input

txrx230b_type(GBT_NUM-1 downto 0)
IpGBT data input

txrx2b_type(GBT_NUM-1 downto 0)
IpGBT EC data input
txrx2b_type(GBT_NUM-1 downto 0)
IpGBT IC data input
std_logic_vector(GBT_NUM-1 downto 0)
Transceiver aligned
register_map_control_type

Settings (From Wupper)

std_logic

Active low reset

std_logic_vector(GBT_NUM-1 downto 0)
Data clock for FULL mode

std_logic

Used for driving aclk and internal processing
std_logic

LHCBC Clock

decoding
std_logic
Driven by decoding
axis_32_2d_array_type(GBT_NUM-1 downto 0, STREAMS_TOHOST-1 downto 0)
Towards CRToHost
axis_tready_2d_array_type(GBT_NUM-1 downto 0, STREAMS_TOHOST-1 downto 0)
From CRToHost
register_map_decoding_monitor_type "

Monitoring signals (To Wupper)

aclk
m_axis
m_axis_tready

P register_map_decoding_monitor

GBT_NUM integer:=4
Number of transceiver links
FIRMWARE_MODE : integer := 1

STREAMS_TOHOST : integer := 1
Number of E-links (1 for FULL mode)

Figure 8.2: The decoding block, instantiating all decoder entities based on FIRMWARE_MODE [7].

OVERVIEW

The decoder for GBT mode FELIX in phase 2 was derived from the CentralRouter Egroup in phase 1 FELIX.
The functionality is the same, but the design will be more modular, and the entities will be more unified among
different E-Path / EPROC widths.
Instead of defining a separate entity for every E-link width, as done in phase 1, a configurable and generic
gearbox was introduced (see 8.3.9). This gearbox can be configured to support all E-link widths in GBT and
IpGBT mode, and output widths for the different protocols (HDLC, 8b10b, Aurora).

The HDLC and 8b10b decoder are very similar to the phase 1 design and can be taken with only slight
modification. Finally the GBT mode epath should output the axi stream32 protocol. Therefore the ByteToAx-
iStream entity was introduced which will take care of the conversion, but also contain the axi stream E-Path

FIFO.

Exp

™

EN

TLAS 8. Detailed Functional Description and Specification

R

Page 23 of 138

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

8.3.2.1.

FELIX Phase-ll firmware specifications: 8.3 Decoding =

1 GBT MODE, 88108, HDLC

DecodingGearBox

ELinkData

Elinkwidth

DataOut J§
DataOutValid

10,

Dataln
D: lid

Decoder8b10b
DataOut |}

DataOutValid

May 7, 2021 - Version 0.87

L

P reset

P clkdo

.

BitSlip BitSlip EOP |} > ByteToAxiStream
MsbFirst b Ali Puls ingError & Dataln m_axis JE—2
Outputwidth ElinkBusy J§ D i m_axis_tready 94
[reset> reset DecoderAligned EOP m_axis_aresetn 4
[resetPp Reset FramingError m_axis_aclk 4
Elk40> clk4o ElinkBusy
> clk40 _ Truncateln
(.

DecoderHDLC

Dataln

DataOutValid J§
EOP)
TruncateHDLC

reset

clkao

Figure 8.3: Block diagram of a single E-Path decoder in GBT mode.

The E-Path as described in Figure 8.3 can be configured to support 8, 4 and 2 bit E-links, and handle different
protocols; 8b10b, HDLC and direct mode (the latter is mainly meant for development purposes, the protocol
decoder will be skipped if this mode is selected. There is also no bit alignment)

E-Paths are grouped in an E-group. In phase 2 GBT mode, an e-group has 8 E-paths. This is similar to
the behaviour of phase 1, however phase 1 FELIX had 15 E-procs that were fixed in width. Because 4 of the
8 E-paths in phase 2 GBT mode will have a selectable with (2/4/8 or 2/4) only 8 E-paths are needed. The
concept of E-proc will be removed in phase 2, only E-path will be used.

Figure 8.4 shows how 8 E-paths are grouped in an E-group, inputting 16 bits of the GBT E-group data.
The resulting output data is in the form of an array of AXI Stream 32 buses. Per GBT link this array will have
a fixed size of 40 from the Egroups. Additionally 2 AXI stream buses will be added per link for the IC and EC
E-link, plus 2 AXI stream buses for the virtual E-links (BUSY/XOFF and TTCToHost). In GBT mode the total
number of AXI streams per GBT link will be set to 44.

The GBT mode decoding block will finally handle the data of all the 24 GBT links, outputting a 2 dimen-
sional array of AXI stream 32 buses (24 x 44).

8. Detailed Functional Description and Specification

Page 24 of 138

)

EXPERTMENT

FELIX Phase-ll firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

DecodingEpathGBT

15:14 ElinkData m_axis B
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk

m_axis_aresetn
reset

clk40

DecodingEpathGBT

15:12 =7 ElinkData m_axis W
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk

m_axis_aresetn
reset

clk4o

DecodingEpathGBT

11:10 % ElinkData m_axis B
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk
2 m_axis_aresetn
reset

clk40

DecodingEpathGBT

15:8 & ElinkData m_axis B
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk

m_axis_aresetn
reset

clk4o

DecodingEpathGBT

7:6 % ElinkData

m_axis

ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk
2 m_axis_aresetn

reset

clk40

DecodingEpathGBT
ElinkData m_axis B
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk
m_axis_aresetn

7:4 4
#

reset

clk4o

DecodingEpathGBT
ElinkData

m_axis

ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk
2 m_axis_aresetn

reset

clk40

DecodingEpathGBT
ElinkData m_axis B
ElinkAligned m_axis_tready
AlignmentPulse m_axis_aclk

8 m_axis_aresetn
reset

clk4o

Figure 8.4: Block diagram of an E-Group decoder in GBT mode.

TLAS 8. Detailed Functional Description and Specification Page 25 of 138

EXPERTMENT

FELIX Phase-Il firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

w 8.3.2.1.2 LPGBT MODE, 8810B

| 10, 10,

- DecodingGearBo 0 . Decoder8b10b ByteToAxiStream
P ELinkData DataOut b Dataln0 Dataout Pp— 99 Datain DataOut % 5—Pp Datain
ElinkAligned i o DatalnoValid DataOutvalid Datalnvalid 0 Datalnvalid
b Elinkwidth Bitsip 4 1% pataint ¥ sitslip EOP EOP m_axi 1
3 i z 3 i
Outputwidth e b ostanvald fgnmentPusSH AlignmentPulse b et _axis_aclk
[resetPp Reset Dataln2valid [Fesep reset.
> sel
[ckaoyp cikao [EKaoW clkao
[ckaopp clkao
N
DecodingGearBo 0 Decoder8b10b ByteToAxiStream
e 19— ElinkData DataOut 4o 19— Dataind DataOut 199 Datain DataOut & 19— Datain m_axis
ElinkAligned = Datain0valid Dataoutvalid Datalnvalid P Datainvalid m_axis_tready 44
P Elinkwidth Bitslip 44 N1 Dataint o sitslip EoP EOP ‘m_axis_aresetn <4
b Outputwidth Dataln1Valid P AlignmentPulse m_axis_aclk
> sel
[reseE I Reset [FeseW reset
(KGO clkdo
[CkaO clkao [ckao W cikao
\ J \ J
DecodingGearBo 0 Decoder8b10b ByteToAxiStrea
e —Pp ELinkData DataOut 2 Datain0 DataOut 1995 Datain DataOut L S Datain m_axis
ElinkAligned i T DatalnoValid DataOutvalid DatalnValid 0 Datalnvalid m_axis_tready
P Elinkwidth sitslip 4 19— Datain1 Bitslip EOP EoP m_axis_aresetn
b Outputwidth Dataln1Valid P AlignmentPulse ‘m_axis_aclk
> sel esethp reset
[Fesetdp Reset FEsEi reset
b clkao A0 clkd0
D, Ik k
[ckacH clkao (ki clkao
J \ J
DecodingGearBo Decoder8b10b " ByteToAxiStream
> 34— PP ElinkData Dataout Ip—4- e 199 Datain Dataout 23— Oatain m_is
> ElinkAligned i Datalnvalid 0 Datalnvalid m_axis_tready 44
b Elinkwidth Bitslip Bitsi EOP 9 £OP m_axis_aresetn 4
P Outputwidth [AlignmentPulseiie AlignmentPulse m_axis_aclk
Fesethp reset
[Fesetpp Reset FeseDpp reset
clkao
[CkaOW clkao (kIR cikao

Figure 8.5: Block diagram of an E-Group decoder in IpGBT/8b10b mode.

s 8.3.2.1.3 LPGBT MODE, PIXEL

AuroraDecoder

DecodingGearBox rd53b_dataprocessor

ELinkData DataOut Dataln aurora_header aurora_header m_axis_event_aclk
ElinkAligned DataOutValid DatalnValid aurora_frame ¥ aurora_frame m_axis_event_aresetn
Elinkwidth BitSlip BitSlip aurora_valid aurora_valid m_axis_event
OutputWidth aurora_rden aurora_rden m_axis_event_tready

reset m_axis_service_aclk
st m_axis_service_aresetn
m_axis_service

clk m_axis_service_tready
event_tag
event_tag_valid

Reset

clk4o
clk

Figure 8.6: Block diagram of a single E-Path decoder in IpGBT / Pixel (RD53b) mode.

ws 8.3.2.2 INTERFACE TO CRTOHOST

aclk N
tdata[31:0] 74 P0 »<c PO X P1 X P2 X7k P4 X P5 X P6XP7T X/
/
tvalid \ /] / \
E vall /
2 tlast P / [\
= / |
theep(3:0] %% % BE K002 7\ BE }
]
tuser[2:0] 7\ Busy, ChunkError, CRC X///////1}///////////X Busy, ChunkError, CRC X/
/
L aresetn / //
[
g[tready / a Ib' //

Figure 8.7: Example waveform of a typical AXI stream 32b transfer. [8].

8. Detailed Functional Description and Specification Page 26 of 138

866

867

868

869

870

871

872

873

874

875

876

877

878

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18

zzzzzzzzzzz

May 7, 2021 - Version 0.87

Name Direction Type Remark

clk250 in std_logic Used for driving aclk and internal
processing

aclk out std_logic Driven by decoding

aresetn in std_logic Active low reset

m_axis out axis_32_2d_array_type Towards CRToHost

m_axis_tready in axis_tready_2d_array_type From CRToHost

m_axis_prog_empty out axis_tready_2d_array_type Towards CRToHost, indicating that 1
block of data is available in the FIFO

Table 8.1: Ports to/from CRToHost..

8.3.2.3

INTERFACE TO LINK WRAPPER

Name

Direction

Type

Remark

FULL_UPLINK_USER_DATA | in
GBT_UPLINK_USER_DATA | in
IpGBT_UPLINK_USER_DATA | in
IpGBT_UPLINK_EC_DATA in

txrx33b_type
txrx120b_type
txrx230b_type
txrx2b_type

Full mode data input
GBT data input
IpGBT data input
IpGBT EC data input

IpGBT_UPLINK_IC_DATA in txrx2b_type IpGBT IC data input
LinkAligned in std_logic_vector | Transceiver aligned
RXUSERCLK in std_logic_vector | Data clock for FULL mode
clk40 in std_logic LHC BC Clock
Table 8.2: Ports to/from Link Wrapper..
8.3.2.4 INTERFACE TO WUPPER
Name Direction | Type Remark
register_map_control in register_map_control_type Settings
register_map_decoding_monitor | out register_map_decoding_monitor_type | Monitoring signals

Table 8.3: Ports to/from Wupper..

8.3.3 FUNCTIONAL DESCRIPTION

The decoding block contains no functional logic, it is only used to instantiate the different decoding blocks,
depending on the generic FIRMWARE_MODE. Therefore the decoding block contains a set of if/generate and
for/generate statements in which the functional protocol decoders are instantiated. Additionally the arrays of
buses (AXI stream 32 array, GBT, IpGBT and FULL mode data array) are indexed and routed towards and
from the correct decoder.

8.3.4 CONFIGURATION

The Wupper registermap will be routed towards the different protocol decoders and virtual E-links. Decoding
has no configuration settings itself.

8.3.5 STATUS INDICATORS

Status indicators from the various protocol decoders are described in their specific sections.

ATLAS 8. Detailed Functional Description and Specification

zzzzzzzzzz

Page 27 of 138

879

880

881

882

FELIX Phase-Il firmware specifications: 8.3 Decoding

8.3.6 LATENCY

Latency of the various protocol decoders is described in their specific sections.

8.3.7 ERROR HANDLING

8.3.8 ESTIMATED RESOURCE USAGE

Resource E-Group | GBT link | 24 GBT links | % (XKCU115)
LUTs 1348 6740 161760 24.38%
Flip-Flops 1592 7960 191040 14.40%
Block RAM | 4 20 480 22.22%

Table 8.4: Resource consumption in GBT mode, fully configurable.

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 28 of 138

= 8.3.9 DECODING GEARBOX B

s« 8.3.9.1 INTRODUCTION

s for IDGBT and GBT based firmware flavours, the data arrives at E-Link level with for GBT mode 2, 4 or 8 bits
ss per BC clock cycle. for IpGBT mode the data arrives with 8, 16 or 32 bits per BC clock cycle.

887 The different protocol decoders require different data widths per BC clock cycle, the Decoding Gearbox
ss Will deliver these different data widths by means of shift registers to the different decoder blocks. The available
a0 widths on in- and output of the gearbox will be partly configurable at runtime and partly at build time.

0 8.3.9.2 INTERFACES
o1 8.3.9.2.1 OVERVIEW

DecodingGearBox
std_logic_vector(MAX_INPUT-1 downto 0) std_logic_vector(MAX_OUTPUT-1 downto 0)

ELinkData Aligned output with set number of bits. DataOut
: : std_logic std_logic :
ElinkAligned DataOut valid indicator DataOutValid
std_logic_vector(2 downto 0) std_logic

Elinkwidth runtime configuration: 0:2, 1:4, 2:8, 3:16, 4:32 Triggered by the protocol decoder to shift one bit BIl‘.SlID

std_logic_vector(2 downto 0)
runtime configuration: 0:8, 1:10, 2:20, 3:40, 4:66

Outputwidth

std_logic
Reset ' Active high reset

std_logic
clkd0 } BC clock

MAX_INPUT : integer := 32

MAX_OUTPUT : integer := 66

SUPPORT_INPUT : std_logic_vector(4 downto 0)
32,16,8,4,2

SUPPORT_OUTPUT : std_logic_vector(4 downto 0)
66, 4x10, 2x10, 10, 8

Figure 8.8: The Decoding GearBox entity.

clk40

reset .\
BitSlip [U/ \
ElinkAligned /
ElinkData [7:01 /77
DataOut [9:0] 000 1cl 305
DataOutValid / / / / A
ElinkWidth 2
OutputWidth 1

Figure 8.9: DecodingGearBox running with 8 bit input, 10 bit output. The data is constant 0x305 (k28.5+).
[8l.
s 8.3.9.2.2 INTERFACE TO GBT OR LPGBT WRAPPER

ss Data from an E-link (IpGBT mode or GBT mode) will be connected to ELinkData. Depending on the maximum
s required speed of the E-link and also the position of the DecodingGearBox in the E-Group, MAX_INPUT will

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 29 of 138

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

933

934

935

936

937

FELIX Phase-ll firmware specifications: 8.3 Decod | er———" May 7, 2021 - Version 0.87

be set. For instance, a GBT mode E-Group will contain 2 Gearboxes with MAX_INPUT set to 8, 2 Gearboxes
with MAX_INPUT set to 4 and 4 Gearboxes with MAX_INPUT set to 2. This way a total of 8 streams of
variable bandwidth (80, 160 or 320 Mb/s) can be created.

Apart from ElinkData there is one other connection to the GBT or IpGBT wrapper: ElinkAligned, which will
be connected to the GBT or IpGBT aligned flag of the (Ip)GBT wrapper.

8.3.9.2.3 INTERFACE TO DECODERS

3 ports are connected to the different protocol decoders: DataOut, DataOutValid and BitSlip.

DataOut

The input bandwidth / number of bits (MAX_INPUT) should not exceed MAX_OUTPUT. For a 16 bit E-link
in 8b10b mode, the OutputWidth has to be set to 20 bits("010"), this way every clock cycle carries 2 8b10b
words on DataOut if DataOutValid = '1’. For a 1.28Gb/s E-link in 8b10b the number of 8b10b decoders per
DecodingGearBox will be 4.

DataOutValid

DataOutValid indicates that enough bits were shifted into the gearbox, and the correct number of bits were
loaded on DataOut. Correct alignment of the 8, 10, 20, 40 or 66 bit word is not guaranteed or indicated in any
way. It is the responsibility of the protocol decoder to detect alignment.

BitSlip If the protocol decoder detects a misalignment of DataOut, a pulse of 1 clockcycle can be given
on BitSlip. This will shift DataOut by 1 bit.

8.3.9.3 FUNCTIONAL DESCRIPTION

Depending on the configuration, the DecodingGearBox will shift a number of bits of ElinkData (2, 4, 8, 16
or 32) into a shift register every clockcycle. The number of bits in the shift register are counted. Depending
on the configured OutputWidth (8, 10, 20, 40 or 66) the data will be loaded on DataOut and the number of
output bits will be subtracted from the internal bit counter. When data is available on DataOut, DataOutValid
indicates that the data can be loaded into the decoder for further handling.

A pulse one BitSlip will decrement the internal counter by 1, resulting in a bitshift on the output. This can
be used for alignment of the data that goes into the decoder.

8.3.9.4 CONFIGURATION

Buildtime configuration 4 generics of the DecoderGearBox define its functionality.
e MAX_INPUT: Defines the maximum number of bits that is supported at ElinkData
e MAX_OUPUT: Defines the maximum number of bits that is supported at DataOut

e SUPPORT_INPUT: a 5 bit vector of which every bit configures a supported input width to be configured

0: 2 bit / 80 Mb/s E-Link is supported

1: 4 bit/ 160 Mb/s E-Link is supported
2: 8 bit/ 320 Mb/s E-Link is supported
3: 16 bit / 640 Mb/s E-Link is supported
4: 32 bit / 1280 Mb/s E-Link is supported

e SUPPORT_OUTPUT: a 5 bit vector of which every bit configures a supported output width to be con-
figured

— 0: 8 bit output is supported

1: 10 bit output is supported

2: 20 bit (2 x 10 bit) output is supported
3: 40 bit (4 x 10 bit) output is supported
4: 66 bit output (Aurora) is supported

8. Detailed Functional Description and Specificati Page 30 of 138

938

939

9

2

0

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

zzzzzzzzzzz

Runtime configuration

May 7, 2021 - Version 0.87

The DecodingGearBox can also be configured at runtime, if the option was supported at build time. Two
input ports are provided for this purpose:

e ElinkWidth[2:0] can be connected to a register of the Wupper register map to configure the width of the
E-Link to be decoded. Possible values are:

0: 2 bit / 80Mb/s Elink connected to ElinkData[1:0]
1: 4 bit / 160Mb/s Elink connected to ElinkData[3:0]
2: 8 bit / 320Mb/s Elink connected to ElinkData[7:0]
3: 16 bit / 640Mb/s Elink connected to ElinkData[15:0]
4: 32 bit / 1280Mb/s Elink connected to ElinkData[31:0]

e OutputWidth[2:0] can be connected to a register of the Wupper register map to configure the width of
the path to the decoder. Possible values are:

8.3.9.5 STATUS INDICATORS

0: 8 bit for HDLC or no decoding
1: 10 bit for 8b10b decoding
2: 20 bit for 8b10b decoding (2 decoders)
3: 40 bit for 8b10b decoding (4 decoders)
4: 66 bit for Aurora 64b66b decoding

DecodingGearBox has no status indicators. Status of the protocol decoder has to be provided by the decoder

itself.

8.3.9.6 LATENCY

The Decoding Gearbox has a latency for all configurations of 1 clockcycle (40,079 Mhz, 25 ns), that means
the output data will be valid 1 clockcycle after the last bits of the E-link data were delivered.

8.3.9.7 ERROR HANDLING

DecodingGearBox has no internal error checking. The user / software must make sure that the configuration
ports are set up correctly, the protocol decoder should be able to detect and handle protocol errors on the

E-link.

8.3.9.8 ESTIMATED RESOURCE USAGE

| In2 | Ind4d | In8 | In16 | In32 | Out8 | Out10 | Out20 | Out40 | Oute6 | LUT | FF Remark
11V v 33 23 HDLC

2|V v v 44 29 HDLC, 8b10b
3|V Vv N4 Vv 65 37 HDLC, 8b10b
4 | v/ v4 v v Vv 93 40 HDLC, 8b10b
5 v v 66 37 8b10b

6 v v v v 137 | 71 8b10b

7 v v v v v v 400 | 153 | 8b10b

8 v Vv 332 | 207 | Aurora

Table 8.5: Estimated resource consumption for Decoding Gearbox..

Page 31 of 138

ATLAS 8. Detailed Functional Description and Specification

zzzzzzzzzz

966

967

968

969

970

971

972

973

974

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

In GBT mode firmware we can implement maximum 8 2-bit E-links per E-group, 4 4-bit E-links and 2 8-bit
E-links. Assuming a fully configurable 24-channel GBT mode firmware that supports 8b10b, the resources
add up as follows for the XKCU115 (Phase | prototype card).

LUT FF LUT(% XKCU115) | FF(% XKCU115)
Egroup 492 270 0.07% 0.02%
Link 2460 | 1350 | 0.37% 0.11%
Card (24) | 59040 | 32400 | 8.90% 2.74%

Table 8.6: Estimated resource consumption for Decoding Gearbox in GBT mode..

The necessary configurations for IpDGBT mode are not fully defined yet. It is not clear whether there will
for instance be a use case for 8b10b encoding on a 1.28Gb (32 bit) E-link.
Assuming that all the possible 8b10b configurations in IpGBT mode will be implemented, the resources of

the XKCU115 (Phase | prototype card) will be as follows.

LUT FF LUT(% XKCU115) | FF(% XKCU115)
Egroup 669 298 0.10% 0.03%
Link 4014 1788 | 0.61% 0.15%
Card (24) | 96336 | 42912 | 14.52% 3.63%

Table 8.7: Estimated resource consumption for Decoding Gearbox in IpGBT mode (8b10b)..

In the pixel (RD53b) mode, only Aurora encoding will be used on 32 bit E-links. This will give the following
figure on the XKCU115 (Phase | prototype card)

LUT | FF LUT(% XKCU115) | FF(% XKCU115)
Egroup | 332 | 207 | 0.05% 0.02%
Link 1992 | 1242 | 0.30% 0.11%
Card (24) | 47808 | 29808 | 7.21% 2.52%

Table 8.8: Estimated resource consumption for Decoding Gearbox in IpGBT mode (Aurora)..

8. Detailed Functional Description and Specification

Page 32 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding

8.3.10 STRIPDECODERC™@™ 7B

May 7, 2021 - Version 0.87

Trickle conguration:

each link needs a separate queue so that it can be
filled with different conguration and potentially
interleaved with dierent LOAs. This allows LOAs to be
merged from different sources (eg. calibration), with
regular register conguration data.

FELIX

N
>

Legend

975
o 8.3.10.1 INTRODUCTION
ATLAS-TDR-025 Table 5.1 pg 95
136 Staves - Inner Barrel - Short Stri| (256 Staves - Outer Barrel - Long Sti (384 Petals - Endcap
2 sides 2 sides 2 sides
2 IpGBT/side *** 1 IpGBT/side 1 IpGBT/side
14 modules/side 14 modules/side 9 modules/side
2 hybrids/modules 1 hybrids/module 1-2 hybrids/module
2 From-Host links/hybrid 2 From-Host links/hybrid 2 From-Host links/hybrids
1 To-Host link/hybrid 1 To-Host link/hybrid 1 To-Host link./hybrid
-From-Host links of only one IpGBT is used
-To-Host link of both IpGBTs are used
-To-Host link clock is slaved to the second
160 Mbps (4 BC)16 bits4 LOAs
-any resets are based on
the alignment of this 4BC
frame
-other cmds, in absence of
any LOs.
framing control codes (KO, K1, K2, K3)
Nx160 Mb/s 256 Gb
6b/8b 3 S
Encoding FEC12* EC 80Mb/s
Nx640Mb/s or 320Mb/s IpGBT
max 8.96 Gb/s user data P 5.12/10.24 Gb/s.C + EC 80Mb/s
: * Encoding FEC5/FEC12
direct or 8b/10b
*if 8b10, LSB is sent first
and vice versa
40 MHz
refClk
Figure 8.10: The Phase-Il ITk Strip data flow and specification..
o7 The decoder for ITk Strips will be the same decoder as described in section 8.3.14. Special K-characters are
as defined for the strips at build time, but the behaviour is the same.

EXPERTMENT

TLAS 8. Detailed Functional Description and Specification

Page 33 of 138

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

8.3.11 ENDEAVOUR DECODERC /77D

8.3.11.1 INTRODUCTION

In the IpGBT based firmware flavours there are two blocks designed to communicate with the AMAC ASIC
chips: the endeavour decoder and the endeavour encoder. The AMAC is designed to serve monitoring
and Low Voltage and High Voltage control functions on the ATLAS ITk strips modules, where it sits on the
module power board. The Endeavour is a serial "morse code" protocol used to communicate with the chips
and it tolerates +50% variation with respect to the nominal 40 MHz AMAC ring-oscillator frequency. The
Endeavour Decoder is used to decode the information arriving from the AMAC chips. In the following table
the bit sequences of the AMAC chip’s reply to the commands READ, WRITE and SETID are shown.

Command | Sequence Length
READ [amac ID (5b)][Seq num (3b)][Data (32b)] | 40 bit
WRITE [amac ID (5b)][Seq num (3b)] 8 bit
SETID [amac ID (5b)][Seq num (3b)] 8 bit

Table 8.9: AMAC / Endeavour commands.
"Seq num" is a number that increments by 1 for each valid serial-bus command received by the AMAC.

8.3.11.2 INTERFACES

EndeavourDeglitcher

std_logic_vector(1 downto 0

datain Connect to ELINK bits

std_logic

aresetn

Active low reset

std_logic
clkao (Ip)GBT BC clock

Figure 8.11: The Endeavour deglitcher entity.

EndeavourDecoder

amac_signal m_axis

Output to CRToHost

: . std_logic std_logic :
LinkAligned (Ip)GBT link aligned from CRToHost m_axis_tready

std_logic

aresetn
Active low reset

std_logic
clkdo (Ip)GBT BC clock

std_logic
clk2so CRToHost Clock

Figure 8.12: The Endeavour decoder entity.

8.3.11.2.1 OVERVIEW

The Endeavour Decoder will take input from an E-link (usually the EC e-link of the IpGBT frame) and send its
output towards the ToHost Central Router (CRToHost) by means of axi stream 32. Besides the data input and
output, there are 2 clock inputs; clk40 which is used for the decoding logic, and m_axis_aclk which serves as
a readout clock for the axis fifo. The input port m_axis_aresetn serves as an active-low reset for the decoder
and the FIFO. Finally there are two input ports: LinkAligned and Enable; LinkAligned indicates that the IpGBT
link is aligned and Enable will come from the Wupper register map. Both signals are a condition for the module
to be enabled.

8. Detailed Functional Description and Specification Page 34 of 138

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

ATLAs FELIX Phase-ll firmware specifications: 8.3 Decoding CC——————"1 May 7, 2021 - Version 0.87

zzzzzzzzzzz

8.3.11.2.2 INTERFACE FROM E-LINK

The Endeavour Decoder will decode the data coming from an EC E-link, connected to the AMAC chip. From
the IpGBT wrapper, 2 bits will arrive from the EC E-link on a clock speed of 40 MHz. Since the bandwidth of
the serial Endeavour signal is much lower than 40 Mbit/s, and there is a large tolerance on the datarate, both
bits will carry the same bit value, unless a transition of the signal just occurred. It is therefore not important
which bits will be used from the E-link, in the most simple case, only the LSB of the E-link will be read out
in the decoder. Between the EC E-link and the Decoder a block, the Endeavour Deglitcher, takes care of
the deglitching of the signal coming from the IpGBT and of the serialization of the 2 bit. In the Endeavour
Deglitcher a std logic vector counter increases by 1 whenever the AMAC signal is 1 and decreases by 1
whenver the signal is 0 (the 2 bit of the input line are checked alternately). If the counter reaches 6 the single
bit line is set to 1, when the counteres reach 0 the bit line is set to 0. A fifo is used in the Endeavour Deglitcher
to absorb the processing time of the deglitcher.

8.3.11.2.3 INTERFACE TO CRTOHOST
The output data is in the form of AXI Stream 32 bus. The Decoding entity will map the output into the right
element of the axis_32_2d_array_type, containing axi streams of other E-links.

8.3.11.3 FUNCTIONAL DESCRIPTION

The Endeavour Decoder consists just of a block that decodes the serial information in an 8 or 40 bit word like
shown in Table 8.9. The words are decoded using the following protocol.

e The serial line coming from the AMAC chips rests LOW when idle.

e To send a ZERQO, the transmitter causes the serial line to go HIGH for 6 < n < 22 clocks.
e To send a ONE, the transmitter causes the serial line to go HIGH for 29 < n < 124 clocks.
e A low signal longer than 75 clocks indicates the end of the word.

The words are then sent to an AXI Stream fifo of 32 bit, the 40 bit READ reply is divided in a 32 bit word
and an 8 bit word.

Enable / // // //
LinkAligned / // // //
amac_signal am/zrm— intragap: 75 > n clks jﬁf<—mo 22> ncks>6 Fa\<— end0: gapncks > 75 ——B-e

m_axis_aresetn //
wata 77) 7777777777 7 7 2 s
[

” tvalid / /o
S tlast // / o\
theep 2272727277277 77777 K

wser O Y
m_axis_tready J //

Figure 8.13: example of waveform.

8.3.11.4 CONFIGURATION

The Endeavour Decoder can be enabled with an active high Enable input. Also the LinkAligned input has to
be 1 in order to enable the Endeavour Decoder.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 35 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

s 8.3.11.5 STATUS INDICATORS

w26 Other than the error signals in the tuser section of the axi stream signal, the Endeavour Decoder does not
w2z indicate any status signals.

ws 8.3.11.6 LATENCY

we 8.3.11.7 ERROR HANDLING

w30 The chunk error in the tuser word of the axi stream is risen if arrive a sequence of bits that doesn’t respect
w31 the codification.

w2 8.3.11.8 ESTIMATED RESOURCE USAGE

Resource IpGBT link | 24 GBT links | % (XKCU115)
LUTs 237 5688 0.8%
Flip-Flops 177 4248 0.3%
Block RAM | 0.5 12 0.5%

Table 8.10: Resource consumption of Endeavour Decoder module.

8. Detailed Functional Description and Specification Page 36 of 138

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

ATLAs FELIX Phase-ll firmware specifications: 8.3 Decoding CC——————"1 May 7, 2021 - Version 0.87

[[[[[[[[[

8.3.12 AURORA DECODER FOR RD53 C e

8.3.12.1 INTRODUCTION

8.3.12.2 PIXEL AURORA DECODER

Figure 8.14 shows the block diagram for the ITk Pixel To-Host decoder. The encoding used is Aurora 64b/66b.
The 32-bit input utilized 1280 Mb/s e-link. The decoder takes care of aligning and unscrambles the incoming
data frames. FIFO is responsible for lane bonding as well as clock domain crossing, hence a 4x clock speed
is needed for each FIFO. The output processors filter frames and insert SOP or EOP into each data packet.
Four lanes are grouped into one EProc. Three modes are needed, i.e 1x4 lanes, 2x2 lanes and 4x1 lane
mode. The number of e-links that are needed depend on each mode.

PCle Gen4 x16 has a bandwidth in the order of 250 Gb/s. Having 1,28 Gb/s per elink would mean
something like 192 elinks per FELIX card should be possible when only taking bandwidth into account. In
case of using the IpGBT, ITk Pixel will most probably use 6 elinks per optical fiber, resulting in a maximum of
32 uplink fibers per FELIX card.

In the former case, 48 ITk Pixel EProcs are needed, each serve 4 elinks. We will need 192 Aurora
decoders, 192 input FIFOs and up to 192 interfaces between EProcs and Central Router. The 192 input
FIFOs can be built out of 192 RAMB36E2 blocks (out of 1080) or 1920 SLICEM. The distributed RAM solution
(the SLICEM) will result in a minimal depth of 32 whereas the block RAM has a minimum of 512 words.
Therefore, it is proposed to use distributed RAM for the input FIFOs. Those can also be used for CDC.

A single Aurora decoder occupies 430 LUTs and 413 FFs (Table 8.11), which would result in 83k LUTs
and 80k FFs for all Aurora Decoders. This is roughly 7% of the LUTs and 3.4% of the FFs in the VU9P. As
this is only for the Aurora decoders, it might be too much to include this into a general version of the FELIX
FW, but should be fine in case of a ITK Pixel only version.

Remark 8.1: Update Needed

The numbers in this estimation cover the Aurora decoder only and are probably out of date, additionally
they don’t include the RD53B dataprocessor.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 37 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

Aurora_EProc_4x1Lanes_Decoder

» Aurora »| INPUT J 4 Lanes > Output | 5
32 bits | Decoding FIFO pu— Decoder Processing
—>
> Aurora INPUT 2 Lanes Output
32 bits| Decoding FIFO Processing
2 Lanes
Decoder
R Aurora 5] INPUT) Output
32 bits Decoding FIFO Processing
) Aul’OIta »| INPUT 1 Lane Outpu_t
32 bits| Decoding FIFO Decoder Processing

Aurora_EProc_1x1Lanes_Decoder

»| Aurora 5| INPUT 4 Lanes 5] Output |
32 bits | Decoding FIFO Decoder Processing
) Aurora INPUT 2 Lanes Output >
4| Decoding "I FIFO Processing
32 bits
2 Lanes
Decoder
, Aurora S| INPUT Output 5
32 bits| Decoding FIFO L h Processing
C >
.
Aurora INPUT _j—) 1 Lane Output
—> A > —_—> "
32 bits Decoding FIFO Decoder Processing

Figure 8.14: The block diagram for the ITk Pixel Aurora To-Host decoder. Two use cases are shown, i.e the
4x1 and the 1x4 lanes. .

8. Detailed Functional Description and Specification Page 38 of 138

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

8.3.12.3 INTERFACES

8.3.12.3.1 OVERVIEW

8.3.12.3.2 INTERFACE TO COMPONENT 2
8.3.12.4 FUNCTIONAL DESCRIPTION
8.3.12.5 (CONFIGURATION

8.3.12.6 STATUS INDICATORS

8.3.12.7 LATENCY

8.3.12.8 ERROR HANDLING

8.3.12.9 ESTIMATED RESOURCE USAGE
8.3.12.9.1 AURORA DECODER

Num. of Aurora Decoder | 1 192
LUTs 430 | 82560
Flip-Flops 413 | 79296
Block RAM [kb] TBD | TBD

Table 8.11: Estimated resource consumption for Pixel Aurora decoder in Phase-II..

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

8.3.13 RD53B DEcoper C NN

8.3.13.1 INTRODUCTION

The RD53B Decoder is responsible for preprocessing the compressed and encoded data from the ITk Pixel
front-end chip. It processes the Aurora-decoded and channel-bonded raw data from the Aurora Decoder (see
Section 8.3.12) and splits off event data and service data. The event data is also split into single events
and the hit information will be decompressed. Both data streams are sent through the AXI-Stream interface
towards the ToHost Central Router (see Section 8.11).

8.3.13.2 INTERFACES

rd53b_dataprocessor
std_logic_vector(1 downto 0) axis_32_type
64b66b header from Aurora decoder event AXlIstream output
std_logic_vector(63 downto 0) std_logic
64b66b payload from Aurora decoder event AXlIstream ready input
std_logic axis_32_type
valid flag from Aurora decoder event AXlstream output
std_logic std_logic
configuration multichip enabled or disabled event AXlIstream ready input
std_logic ('1")
binary tree enabled or disabled
std_logic ('1")
ToT field enabled or disabled
std_logic ('0")
drop ToT at decoder output

aurora_header event_axis

aurora_frame event_axis_tready

aurora_valid service_axis

enable_multichip service_axis_tready

enable_binarytree
enable_tot

drop_tot

std_logic

reset synchronous to clk
std_logic

async. reset for event AXlIstream
std_logic

async. reset for event AXIstream

reset
event_axis_aresetn

service_axis_aresetn

clk std_logic
clock input used for Aurora input

event_axis_aclk std_lpglc)
- - clock input for event AXIstream interface
service_axis_aclk std_logic

clock input for event AXistream interface
NUM_STREAMDECODERS_PER_FRONTEND : integerrange 1to 8 :=1
stream decoders per frontend chip to be implemented

NUM_FRONTENDS : integerrange 1to 4 :=1

max. frontend chips connected to Aurora link

Figure 8.15: The RD53b Dataprocessor entity.

8.3.13.2.1 OVERVIEW

The RD53B Decoder has four main interfaces. The incomoing data is passed through a simple data bus with
data valid signal and no backpressure. All outgoing data is sent through AXI-Stream interfaces to the ToHost
Central Router. Additional to the data interfaces, there is also a configuration interface to change settings in
the decoder. Figure 8.15 shows the entity of the RD53B Decoder.

8.3.13.2.2 INTERFACE TO THE AURORA DECODER

The interface to the Aurora decoder is kept as simple as possible. It consists of a 64-bit data bus, taking the
data bits of a full Aurora frame. Additional to that a 2-bit data bus carries the header bits of the Aurora frame
to be able to distinguish between event and service frames. A data valid bit indicates that both data busses
are valid during that clock cycle.

8. Detailed Functional Description and Specification Page 40 of 138

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

111

1112

1113

1114

1115

1116

117

1118

1119

1120

1121

ATLAs FELIX Phase-ll firmware specifications: 8.3 Decoding CC——————"1 May 7, 2021 - Version 0.87

[[[[[[[[[[

8.3.13.2.3 INTERFACE TO THE TOHOST CENTRAL ROUTER

The data outputs for service and event data to the ToHost Central Router are both AXI-Stream 32b busses.
An example waveform of the AXI-Stream 32b bus is given in Figure 8.7.

Remark 8.2: ToDo

Describe internal data structure of the AXI interface!

8.3.13.3 FUNCTIONAL DESCRIPTION
8.3.13.3.1 INPUT STAGE

The input stage will distribute the Aurora frames to the different sub-decoders. First it will distinguish service
data from event data by looking at the Aurora header. All frames with header 10 are identified as service
frames. If these service frames contain register data (Aurora codes 0xB4, 0x55, 0x99, 0xD2) they are put into
the service data FIFO. Frames with header 01 contain event data. They are split by front-ends (if multi-chip
readout is enabled) and streams and put into FIFOs in front of every stream decoder. Frames with an invalid
Aurora header (00 or 11) are dropped.

8.3.13.3.2 STREAM DECODER

The stream decoders are the central part of the RD53B Decoder. Each stream decoder will process a single
event stream from an RD53B front-end chip. Internally, it contains a finite state machine which controls the
splitting of the different fields in the event stream. The fields are then re-assembled into an AXI-Stream 32b
bus. If a stream contains multiple events, they are split into packets.

8.3.13.3.3 OUTPUT MULTIPLEXER

The output multiplexer is responsible for merging the event streams from multiple stream decoders into a
single AXI-Stream 32b bus. First, all events are collected into packet FIFOs. If a packet is completed it will be
forwarded to the output in one piece. The arbitration of this merging is round-robin.

8.3.13.4 CONFIGURATION

The configuration of the RD53B Decoder is split into two parts. There is a static synthesis-time configuration,
and a dynamic run-time configuration.
The static configuration options are passed as a generic:

e NUM_STREAMDECODERS_PER_FRONTEND: integer between 1 and 8, will define the maximum number of
streams which can be processed in parallel. As each stream decoder has a limited throughput this

number should be at least [str;fm“t;;”c‘éggm"r”ﬁtgpm]

e NUM_FRONTENDS: integer between 1 and 4, will define the number of front-end chips sharing a single
Aurora link. Each front-end requires its own stream decoder.

The dynamic configuration is passed through four configuration bits in the port of the RD53B Decoder.
These bits can be changed at run-time and have to match the configuration of the front-end chip, otherwise
the decoding will not work as expected and produce garbage. Following configuration bits are available:

e enable_multichip: a logic-1 on this port enables the multi-chip readout mode in the decoder. If the
multi-chip mode is enabled, each Aurora frame has to start with a 2-bit chip ID followed by the data for
this particular front-end chip. If the multi-chip mode is disabled, all data bits of the Aurora frame will
be decoded. Note: The front-end chip usually powers-up in the multi-chip mode, even if only a single
front-end chip is connected to the Aurora link.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 41 of 138

1122

1123

1124

1125

1126

127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

FELIX Phase-ll firmware specifications: 8.3 Decodi May 7, 2021 - Version 0.87

e enable_binarytree: a logic-1 on this port configures the decoder to uncompress the binary tree into
the uncompressed 16-bit hitmap. For debugging purposes the binary tree can be disabled in the front-
end chip. Then the decoder has to be configured accordingly.

e enable_tot: If ToT fields in the data stream are present this bit has to be set to logic-1.

e drop_tot: To reduce the output bandwidth of the RD53B Decoder the ToT fields can be dropped in the
decoder.

8.3.13.5 STATUS INDICATORS

Currently, there are no status indicators foreseen. The RD53B protocol does not contain enough redundancy
for proper error checking. Also the stream-based encoding allows to recover from decoding errors at the
beginning of a new stream.

8.3.13.6 LATENCY

Latency studies have been made with a data set from the ATLAS simulation group for a specific region in
the outer part of the ITk Pixel detector. Under the assumption of a 50 % link occupancy and with five stream
decoders per front-end chip, the latency between input and output of the decoder has been measured using a
behavioral simulation. In this simulation the latency is defined as the difference between two timestamp. The
first timestamp is set, when the event header is provided at the input of the decoder. A second timestamp is
created when the event appears in the AXI stream at the output of the decoder. Figure 8.16 shows the latency
distributions of all simulated events for different number of events per data stream.

Also the impact of the binary-tree encoding in the event data has been analyzed with respect to latency.
Therefore, an example data set with the uncompressed raw 16-bit hitmap has been generated. Figure 8.17
shows the latency distributions for the same number of events per stream as before, but with disabled binary
tree.

8.3.13.7 ESTIMATED RESOURCE USAGE

For the resource usage the total number of stream decoders is important:
NUM_STREAMDECODERS_TOTAL = NUM_STREAMDECODERS_PER_FRONTEND x NUM_FRONTENDS
It is now possible to estimate the resource usage for each type of FPGA element:

e LUTs = 3200 x NUM_STREAMDECODERS_TOTAL
e Flipflops = 720 x NUM_STREAMDECODERS_TOTAL + 264
e BRAMs = 2 x NUM_STREAMDECODERS_TOTAL + 1

All numbers have been derived from synthesis results of the pure RD53B Decoder.

8. Detailed Functional Description and Specificatio Page 42 of 138

z FELIX Phase-ll firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

Latency for Nevent=1 Latency for Nevent=2

5000 5000
9.380 93.618
m 4.0326 n m 4.662 n
4000 4000 -
3000 3000 -
= -
= c
=] >
o o
o o
2000 2000 -
1000 1000
o o -
1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500
Latency (ns) Latency (ns)
(@) Nevent =1 (b) Nevent =2
Latency for Nevent=5 Latency for Nevent=20
5000 T T T T T T 5000 T T T T T T
4 3 0 9
m 94.0062 n m 6 n
4000 - 4000 -
3000 3000 -
€ <
3 3
o o
[¢] o
2000 2000 [~
1000 1000 B
0 | —_ . . . 0 JIIIIIIIIIIIIIM
0 500 1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500
Latency (ns) Latency (ns)
(€) Nevent =5 (d) Nevent =20

Figure 8.16: RD53B Decoder latency for different number of events per stream (Nyn;) With @ binary-tree
encoded hitmap.

TLAS 8. Detailed Functional Description and Specification Page 43 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding

5000

4000 -

3000

Count

2000

1000

5000

4000

3000 [-

Count

2000 |-

1000 -

Latency for Nevent=1

500

1000 1500 2000 2500 3000 3500
Latency (ns)

(@) Nevent =1

Latency for Nevent=5

m 94479

500

1000 1500 2000 2500 3000 3500
Latency (ns)

(€) Nevent =5

Count

Count

5000

4000

3000 -

2000 -

1000

5000

May 7, 2021 - Version 0.87

Latency for Nevent=2

0
m 0.14 n

1000 1500 2000 2500 3000
Latency (ns)

(b) Novent =2

Latency for Nevent=20

3500

4000 -

3000 [~

2000

1000

500

1000 1500 2000 2500 3000
Latency (ns)

(d) Nevent =20

3500

Figure 8.17: RD53B Decoder latency for different number of events per stream (Ngen;) With uncompressed

hitmap..

8. Detailed Functional Description and Specification

Page 44 of 138

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

17

172

173

8.3.14 8B10B E-LINK DECODERC "7

8.3.14.1 INTRODUCTION

The 8b10b Decoder has been extensively used in phase 1 FELIX in GBT mode. In Phase II, the 8b10b
decoder has been decoupled from the E-proc, and retains in the generic E-Path in GBT and IpGBT mode
firmware flavours.

The tasks for the 8b10b decoder are:

e Alignment of the 8b10b words using K28.5 / BitSlip

Decode the 8b10b stream to 8-bits + CharlskK

Detect Framing Errors

Detect E-link BUSY assertion

Deframing: Convert Decoded byte + CharlsK into DataOut, DataOutValid and EOP

8.3.14.2 INTERFACES

Decoder8b10b
std_logic_vector(9 downto 0) std_logic_vector(7 downto 0)
Dataln 10b Data from GearBox Towards ByteToAxiStream DataOut
. std_logic std_logic .
DatalnValid Data validated by GearBox Towards ByteToAxiStream DataOutvalid
Bitslip 4 std_logic std_logic pll £op

For GearBox alignment End of chunk indicator
std_logic std_logic

AlignmentPulse FramingError

2 pulses to realign if no K28.5 found Indicator for faulty input stream

std_logic .
Elink has sent SOB, indicating busy. ElinkBusy
std_logic

reset Acitve high reset

std_logic
clk40 BC clock for Dataln

Figure 8.18: The 8b10b Decoder entity.

8.3.14.2.1 INTERFACE TO DECODINGGEARBOX

The 8b10b decoder receives Dataln[9:0] and DatalnValid from the DecodingGearBox. If the 10 bit word is
misaligned, a pulse can be generated on BitSlip in order to skip one bit in the gearbox.

8.3.14.2.2 INTERFACE TO BYTETOAXISTREAM

All the outputports of the 8b10b decoder will be connected to ByteToAxiStream.
e DataOut[7:0] : Contains payload data. Comma characters are stripped from the data stream
e DataOutValid : Indicates that DataOut contains payload data

e EOP : End of packet (chunk) indicator

FramingError : EOP or SOP character was missing from the input stream.

ElinkBusy : FrontEnd has asserted busy (Using SOP K-character.)

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 45 of 138

1174

1175

1176

177

1178

179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

FELIX Phase-ll firmware specifications: 8.3 Decod | er———" May 7, 2021 - Version 0.87

8.3.14.3 FUNCTIONAL DESCRIPTION
8.3.14.3.1 ALIGNMENT

The 8b10b encoder must perform an alignment sequence on the 10b word on Dataln. When 2 consecutive
Idle Comma characters are received (K28.5 in GBT mode, K28.1 in Strip or FEI4 mode), the Decoder is in
an aligned state. Only in the aligned state, DataOutValid will be asserted. A timer external to the 8b10b
decoder generates pulses at a given adjustable interval. The decoder should count 2 pulses. Detection of 2
consecutive Idle comma characters causes the counter to reset to 0. If the counter arrives at the value of 2,
the alignment state of the decoder will be deasserted and a pulse will be given on BitSlip. BitSlip will cause
the DecodingGearBox to skip one bit and the decoder cat retry the alignment sequence.

8.3.14.3.2 8B10B DECODING

Comma characters:

Function | GBT mode | Strip/LCB | FEI4 | Meaning

Comma | K28.5 K28.1 K28.1 | Idle character

SOP K28.1 K28.7 K28.7 | Start of chunk / packet
EOP K28.6 K28.5 K28.5 | End of chunk / packet
SOB K28.2 N/A N/A Start of busy

EOB K28.3 N/A N/A End of busy

Table 8.12: Comma characters with a special meaning in different firmware flavours.

The functional description of the 8b10b decoder itself, converting a 10b word into 8 bit + CharlsK is well
defined in other literature, and the code has been implemented in phase 1 FELIX.

8.3.14.3.3 FRAMING ERROR DETECTION

A chunk or packet of data coming from the FrontEnd electronics over an E-link should be encapsulated in
SOP and EOP characters (see table 8.12). A framing error is asserted if any of the following conditions is
violated:

e A payload data byte that is not encapsulated within SOP / EOP
e An SOP occurring before a chunk was ended with EOP
e An EOP occurring without an SOP.

Note that SOB and EOB (Start and End of BUSY) may occur at any moment within or outside a chunk.
Also IDLE comma characters may be inserted in the middle of a chunk without assertion of FramingError.

8.3.14.3.4 E-LINK BUSY ASSERTION

An FrontEnd may assert BUSY by sending an SOB (Start Of BUSY) character (K28.2, see 8.12) EOB (K28.3)
will deassert BUSY. Whether the BUSY LEMO connector will actually be raised on E-link busy can be config-
ured through the register map, see also section ??

8.3.14.3.5 DEFRAMING

DataOut will contain only the payload data (CharlsK = '0’) that is decoded from the 8b10b stream. The last
byte of a chunk / packet will be indicated with EOP. For this mechanism an extra pipeline stage after the 8b10b
decoder is needed to store the payload data, until the next byte is validated. If the next byte is an EOP comma
character, the EOP signal will be asserted with the last payload byte. SOP, Idle, SOB and EOB characters will
simply be ignored by the deframer.

8. Detailed Functional Description and Specificati Page 46 of 138

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

8.3.14.4 CONFIGURATION

The meaning of the different comma characters in table 8.12 can be configured based on the FIRMWARE_-
MODE generic at build time. It is not foreseen at the moment to make a runtime configurable option for the
8b10b decoder.

8.3.14.5 STATUS INDICATORS

The 8b10b decoder will output ElinkAligned into the Wupper registermap. Framing errors and busy will be
reported through the datastream and will end up in chunk trailers.

8.3.14.6 LATENCY

The 8b10b decoder has a latency of 1 clock cycle (25 ns). The deframer adds another clock. This will bring
the total latency of the 8b10b Decoding block to 2 BC clocks or 50 ns.

8.3.14.7 ERROR HANDLING

Misalignment of the 8b10b encoded E-link is reported through the Wupper registermap. Framing error and
ElinkBusy will be reported through the data stream.

8.3.14.8 ESTIMATED RESOURCE USAGE

The resource usage will be estimated for the complete GBT Egroup and the complete decoding block per
firmware mode.

/.\1-Z LA!S 8. Detailed Functional Description and Specification Page 47 of 138

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

8.3.15 HDLC E-LINK DECODER O™}

8.3.15.1 INTRODUCTION

The HDLC Protocol [9] is used by the GBTx chip, to configure the chip itself through the Internal Control (IC)
E-link, and to communicate with the GBT Slow Control Adaptor (GBT-SCA) over the External Control (EC)
E-Link or any other 80 Mb/s E-link of the GBT or IpGBT.

The HDLC decoder used in Phase |l FELIX was based on the GBT-sc module for FPGA by Julian Mendez
[10]. Only the deserializer was used to decode the bytes. All higher level decoding that is covered in the orig-
inal GBT-sc module was left out in FELIX and instead handled by software, in order to save FPGA resources.
Additionally the deserializer was modified to fit FELIX requirements with the following modifications:

e The interface was modified to fit Byte ToAxiStream
e A truncation mechanism was added

e The deserializer for IC and EC were merged into a single file.

8.3.15.2 INTERFACES

DecoderHDLC
ena B S o enabe std_logic_vector((g_ WORD_SIZE 1) downto D))t paraout
Dataln ?)tacti;lggiitg?:loenfE:ggocrj\/l%mgljii?(2 Control & status! Write request to the exizgl_all(;%g: DataOutValid
EnableTruncation :E::E}:tgri(r:\cation mechanism > 12 bytes Delimiter de?et?tgcljofglgc EOP
stdilogic TruncateHDLC

High when messageis > 12 byte:

reset P std_logic

active high reset

std_logic
clk40 ’ BC clock

g_WORD_SIZE :integer:= 8

Size of the words to be stored into the external FIFO
g_DELIMITER:std_logic_vector(7 downto 0):="01111110"
Delimiter pattern

g_IDLE :std_logic_vector(7 downto 0):="01111111"

IDLE pattern, "11111111" forIC, "01111111" for EC

Figure 8.19: The HDLC decoder entity.

8.3.15.2.1 GENERICS
e g WORD_SIZE: This generic should be set to 8 to be compatible with the FELIX operation.
e g DELIMITER: The standard delimiter or FLAG is by default set to 0x7E, and should be unchanged.
e g_IDLE: The IDLE pattern, or ERROR FLAG in the HDLC specification is defined differently by the
GBTx chip (IC link) and the GBT-SCA (EC link), therefore it can be set to 0xFF for IC and ox7F for EC.
8.3.15.2.2 ELINK INTERFACE

The HDLC decoder does not connect to the DecodingGearbox, since it only connects to 2-bit (80 Mb/s)
E-Links. Instead it connects directly to the 2 bits of the E-Link data.

8. Detailed Functional Description and Specification Page 48 of 138

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

zzzzzzzzzzz

8.3.15.2.3 INTERFACE TO BYTETOAXISTREAM

The HDLC decoder is combined with other decoders (8b10b, direct) in one DecodingEpath, and therefore
shares its output with these other decoders. The output port consists of:

e DataOut: 8-bit output data

e DataOutValid: Indication that DataOut should be registered this clock cycle

e EOP: End of packet indication

e TruncateHDLC: Indication that the current packet consists of more than 12 bytes, if EnableTruncation is

set.

8.3.15.3 FUNCTIONAL DESCRIPTION

Dataln({..0]

req[7..0]

DataOut[7..0]

DataOutValid

EOP /

Figure 8.20: The HDLC decoder waveform.

The HDLC decoder is a shift register that shifts in 2 bits at a time. Data arrives LSB first, for the E-Link bits
(Dataln) the LSB arrives at bit 1, bit 0 is the second bit. The deserializer process has a bitstuffing detection, if
5 consecutive ones are detected, the next ‘0’ is removed. If this is not the case, a FLAG or IDLE message is
marked.

A second process buffers the deserialized byte, and if a FLAG is decoded after the data byte, the byte is
marked as EOP (end of packet).

Additionally, a truncation mechanism can be enabled. For this mechanism, a counter counts the number
of bytes before a FLAG, if this number exceeds 12, the TruncateHDLC output will be asserted.

8.3.15.4 CONFIGURATION
The HDLC decoder has two configuration inputs:
e ena: To enable the decoder. Setting this input to '0’ will keep DataOutValid low.

e EnableTruncation: This input enables the truncation mechanism which limits the chunk size to 12 bytes.

8.3.15.5 STATUS INDICATORS

The outputs will be handled by the tuser bits of the AXI Stream, and marked as flags in the trailer bits of the
chunk trailer by CRToHost.

8.3.15.6 LATENCY

One byte arrives 2 bit per BC clock cycle and therefore takes 4 clockcycles to clock into Dataln. Once the last
bits of the data have arrived, the byte is available in the internal shift register of the decoder called "reg" (see
Figure 8.20). In order to make the decoder compatible with AXI Stream, the last byte has to be synchronized
with the end of packet indication, therefore the data must be buffered to see if the next byte is a "Flag" to
indicate the end of a frame. This mechanism takes a total latency of 5 clock cycles, but 1 additional clock
needs to be accounted for if 2’0’ is stuffed in the data, as described in the HDLC protocol [9]

,1.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 49 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

e 8.3.15.7 ERROR HANDLING

1275 The HDLC Decoder has a truncation mechanism that limits the bandwidth in case of a faulty E-Link which
1276 generates random data. It limits the chunk to 12 bytes, any data after that will be ignored by CRToHost.

w7 8.3.15.8 ESTIMATED RESOURCE USAGE

1278 The resource usage of the complete GBT E-group, including the HDLC decoder is shown in Table 8.4.

8. Detailed Functional Description and Specification Page 50 of 138

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

[[[[[[[[[[

8.3.16 FULLMODEDECODERC 7@

8.3.16.1 INTRODUCTION

In Phase | FELIX, two types of link protocols were supported; GBT (4.8Gb/s, divided into E-links) and FULL
(9.6Gb/s 8b10b). The FULL mode protocol will be implemented in the Phase Il firmware without functional
modification.

The protocol specified in this section, called “FULL mode” (The name originates from FULL bandwidth).
Full mode is intended for high bandwidth (i.e. 9.6 Gb/s) connections from FPGAs, as opposed to links from
the GBTx ASIC[11]. Data is streamed to FELIX without any handshaking.

At this time, the need for Full mode links only in the ToHost direction has been expressed. The opposite,
from-FELIX, direction would use standard GBTx protocol. The rest of this section will therefore focus on
the ToHost Full mode direction only. Should the need for Full mode in the FromHost direction be needed in
future, it can be implemented in a similar manner. Figure 8.21 shows a block diagram of both the FrontEnd
and FELIX ends of a Full mode link in the to-FELIX direction. The number of channels supported by single
FELIX FPGA is not yet determined. As an upper limit estimation, six channels, each with a maximum payload
throughput of 7.68 Gb/s (9.6 Gb/s reduced by 8b/10b encoding) could be transferred within the PCle Gen3
8-lane bandwidth (maximum 64 Gb/s). FELIX based on the FLX712 FPGA platform has two such PCle
interfaces which may be combined to a single 16-lane interface. A standard FLX712 FULL mode build in the
FELIX release has 24 channels, however we recommend to connect only 12 out of the 24 channels, unless
the transceiver bandwidth is limited by means of the XOFF mechanism, see also 8.3.16.3.1.

Front End firmware FELIX firmware
User toFLXFM ToHost
pata | | _L e @) —BIFullMode|| axisz2_« |Central
Source to FELIX | transmitter decoder “"|Router
Logic 9.6Gb/s per link CRToHost
Full Mode 8b/10b encoding
max data rate 7.68Gb/s xN

Figure 8.21: Block diagram of both the FrontEnd and FELIX ends of a Full mode link in the ToHost direction.

In summary, the main features of Full mode are:

e Channel line transmission rate of 9.6 Gb/s

e Maximum user payload of 7.68 Gb/s

e 8b/10b encoding

e Logical packets: packets are multiples of 32-bit words, no maximum packet size is specified.

e Option to include a stream id per packet for transmitting different logical data streams on the same
physical link. Streams may be routed by FELIX to different network endpoints. When the E-link is
configured to have stream ids, they are included as the low byte of the first word of every packet of user
data.

e Support for forwarding BUSY from the Front End to the Central Trigger. Policies for asserting BUSY are
not determined by FELIX.

e Possibility of flow control with XON, XOFF symbols sent from FELIX on a GBT normal mode E-link.

A user example design with a FIFO-like interface has been provided.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 51 of 138

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

w1 8.3.16.2 INTERFACES

FMdin std_logic_vector(32 downto 0) axis_32_type m_axis

LinkAligned std_logic std_logic m_axis_tready
path_ena std_logic
aresetn std_logic
clk240 std_logic
aclk std_logic

Figure 8.22: The FULL mode decoder entity.

we 8.3.16.2.1 INTERFACE FROM LINKWRAPPER
13 The FULL Mode decoder has two ports that connect to the LinkWrapper in FULL mode:
1314 e FMdin: This 33-bit signal carries the 32 data bits (bits [31..0]). The MSB, bit 32 indicates that bits 31..24

1315 carry a K-character (ldle, SoP, EoP, SoB, EoB).
1316 e LinkAligned: This input indicates that the transceiver is properly aligned and able to receive data from
1317 the Front End.

we 8.3.16.2.2 INTERFACE TO CRTOHOST

1319 The interface to the Central Router ToHost (CRToHost) is the same as for other decoders: axi stream 32. In

1220 de decoding block the axis32_type outputs from the FullModeDecoder will be combined into a 2D array of

1321 axis32_2d_array_type with the first dimension the number of links (GBT_NUM) and the second dimension is

1322 Set 1o 1, because every link has only one logical link. In summary, each Full mode connection is essentially a

1323 high bandwidth 8b/10b E-link.

1324 The axis32_type is defined in axi_stream_package.vhd. The individual record fields are described in Table
8.13

Table 8.13: 32 bit axi stream interface.

Field Bits Description

tdata [31..0] Payload data

tvalid 0 Indicates that a data chunk is active

tlast O Indicates the last 32 bits of a chunk

tkeep [3..0] Byte enable, always "1111" for Full Mode

tuser 3 Truncation, indicates that data was received while a FIFO was full, a part of the chunk was discarded.

tuser 2 Link Busy, Asserted when SOB is received, deasserted when EOB is received
1
0

tuser Chunk error, Asserted when data is not correctly embedded within SoP/EoP
tuser CRC20 error, Asserted when the CRC20 calculation over the payload does not match the CRC20 field in tt

1325

ws 8.3.16.3 FUNCTIONAL DESCRIPTION

132z The FULL Mode Decoder (FullToAxis) interprets the K-characters as cescribed in section 8.14, and translates
1228 the stream of data into the industry standard AXlI4 stream bus, which can be handled by the CRToHost entity.

8. Detailed Functional Description and Specification Page 52 of 138

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

[[[[[[[[[

Table 8.14: K-characters used in FULL Mode.

K-character 8-bit value Use

K28.1 0x3c Start-of-Packet, SOP
K28.6 Oxdc End-of-Packet, EOP
K28.5 0Oxbc idle

K28.2 0x5c BUSY-ON

K28.3 0x7c BUSY-OFF

The idle K-character is the comma character defined for the serializer core that forces 32-bit alignment.
The format of the data transmission between the serializer and deserializer of the Full mode wrapper is shown
in Figure 8.23. See Section 8.3.16.3.2 for details on the CRC.

Structure of data passed to GTH transmitter to transmitter

28:317]
— 24:31 24:31 24:31 24:31 24:31 24:31 24:31
'24:27 -
16:23 - 16:23 16:23 16:23 16:23 16:23 16:23 16:23
815 - 8:15 8:15 8:15 8:15 8:15 8:15 8:15
0:7 07 0:7 0:7 0:7
EOP 0:7 0:7 : 0:7 sop IDLE IDLE
Oxdc 0x3c Oxbc Oxbc
TXCHARISK[0] high <€ > TXCHARISK[O] high ~ TXCHARISK[O] high TXCHARISK[O] high
Chunk data N . L
Only if thereis no
SOP: K28.1 data to be sent
EOP:K28.6 ——720.bit busy-on/off , _ ,
IDLE: K285 | |checksum reserved[3] Arbitrary data, will be discarded

JV_data_format_V03

Figure 8.23: The format of the data transmitted between the serializer and deserializer of the Full mode
wrapper.

8.3.16.3.1 FLOW CONTROL

If a Front-end requires FELIX to assert BUSY to CTP it will transmit BUSY-ON K-character via the stream
controller interface (defined as rising edge of BUSY line). On receipt of this, FELIX asserts BUSY for a
minimum of two 40 MHz clock cycles. While in BUSY state FELIX will fill its input buffers and send out data
to host flagged with a BUSY symbol. Once the buffers are full FELIX will reject all subsequent data until
BUSY-OFF is received.

Once the condition is cleared the front-end should send a BUSY-OFF K-character (falling edge of busy
line), causing FELIX to de-assert BUSY to CTP. Caveat: users should account for one extra word of data
being added by FELIX for insertion of BUSY symbol, otherwise buffers will overflow. The K-characters used
for BUSY signalling will not appear in the FELIX data stream (but can be flagged to processing code or used
to generate interrupts as needed) The EOP word for each packet should contain BUSY state, to allow for
recovery if signal on busy line not received.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 53 of 138

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

FELIX Phase-ll firmware specifications: 8.3 Decod | er———" May 7, 2021 - Version 0.87

If the data rate of the 24 FULL mode links exceeds the PCle bandwidth towards the host server, the XOFF
flow control system can be used.

The Xoff signal can be sent through a 2-bit (8b10b configured) GBT E-link on the FromHost link. The
e-link used to send out Xoff is Elink 0 / Egroup 0 of every FromHost GBT link.

To assert flow control, FELIX sends an XOFF (K28.2) K-character on this link when firmware detects an
internal FIFOs reaching the almost full state (or if it receives a direct software signal). Upon receipt of XOFF,
the front-end should halt data transmission and wait for new signal before resuming transfers.

When the condition is cleared (defined as internal FELIX FIFOs reaching almost empty state, or direct
software signal), a XON (K28.3) K-character sent by FELIX to front-end, resuming flow of data.

8.3.16.3.2 CRC

The 32-bit EoP word will contain a 20-bit CRC field for the packet / chunk. The CRC will not be part of the
payload transmitted over the PCle bus to the FELIX server. When a CRC error is detected by the Central
Router, a flag will be set in the packet trailer sent to the FELIX server.

During the transmission of a K-character, 24 bits are normally unused, except for the EOP (End of Pack-
age) K-Char (K28.6). In Figure 8.47 has been defined that bits 27:8 carry a 20-bit CRC checksum. The TX
Stream controller (included in the Full Mode example design provided to the Felix users) calculates this 20-bit
CRC checksum and adds it to the EOP field. The FELIX Full mode implementation checks the CRC using the
same algorithm and reports a CRC error to the software, by setting the CRC error bit in the trailer.

The CRC module has a data width of 32 bit and a checksum width of 20 bits. The polynomal and initial
value have been set to the values below.

e Polynomal: 0xC1ACF (alternative notation)

e Polynomial: 0x8359F (different endianness, see https://its.cern.ch/jira/browse/FLXUSERS-149 for de-
tails)

o Initial value: OxFFFFF

The polynomal has been chosen based on research by Philip Koopman https://users.ece.cmu.edu/ koop-
man/crc/. With this polynomal a Hamming distance of four can be achieved with a maximum message length
of 524267 bits.

The VHDL module to calculate the checksum can be found in the FELIX firmware repository, as well as a
C example to calculate the same checksum.

The C module can be found here: crc.c

A highly optimized and generated VHDL version of the CRC20 module which is currently used in the
FELIX firmware can be found here: crc.vhd

For future reference, a more descriptive module with the same behavior as crc.vhd, but depending on the
vendor / version of the synthesis tool with a wors performance can be found here. crc20.vhd

8.3.16.4 CONFIGURATION

The only configuration bit of the FullToAxis entity is the "path_ena" input port, which will be connected to the
register DECODING_EGROUP_CTRL[LINK][0].EPATH_ENA[O]. This is the same register that would enable
Egroup 0/ Epath 0 on a GBT or IpGBT link.

8.3.16.5 STATUS INDICATORS

The status indicators for FullToAxis are only the tuser bits in the axi stream interface. The BUSY / Xoff status
bits are reflected in dedicated registers, see also section ??.

8.3.16.6 LATENCY
TBD

8. Detailed Functional Description and Specificati Page 54 of 138

https://its.cern.ch/jira/browse/FLXUSERS-149
https://users.ece.cmu.edu/~koopman/crc/
https://users.ece.cmu.edu/~koopman/crc/
https://users.ece.cmu.edu/~koopman/crc/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc.c
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc20.vhd

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

[[[[[[[[[[

8.3.16.7 ERROR HANDLING

Data errors in the FullToAxis module (Framing error, CRC error, Truncation/FIFO full error, as well as the
BUSY status) are reflected by the tuser bits in the AXl4 stream interface. The bits will be interpreted by the
CRToHost entity and will then be reflected in the FELIX data format before sent to the host PC. The BUSY
bits can also be found in the register map.

8.3.16.8 ESTIMATED RESOURCE USAGE

A single FullToAxis entity (including the axi stream FIFO) is reflected in the table below. The numbers are for
a single channel.

Resource Count | % (XKCU115)
LUTs 248 0.037%
Flip-Flops 286 0.021%

Block RAM | 3 0.13%

Table 8.15: Resource consumption for the FullToAxis entity.

8.3.16.9 USER EXAMPLE DESIGN

The user example design transmits data via the so-called “Full mode stream controller” module, which hides
the details of the protocol between the user and FELIX FPGAs, as described below. Figure 8.24 shows a
block diagram with the user’s data source connected to the to-FELIX Full mode stream controller provided
by the FELIX project. The transmission channel line rate is 9.6 Gb/s, whereas user data (payload) has a
maximum net rate of 7.68 Gb/s as a result of 8b/10b encoding. The effective bandwidth will be further reduced,
depending on the packet lengths, by 4-byte packet headers and trailers, as described in Section 8.3.16.3.

User data source logic to-FELIX Full mode stream controller
240MHz > 240MHz
link_ready0 <€ link_ready0O
welko —> rclko channel state machine serializer
toFLXFM wed ——x = re0 (pauses data read and of the
CHO data0 — FIFO 7 : ?atag transmission for ™ Full mode
: data_type0 > type wrapper
interface fifo_fullo < > empty0 SoP, EoP, Idle, BUSY) pp
busy0 > busy0
% N channels X N channels Fefirmware_V03

Figure 8.24: block diagram with the user’s data source and to-FELIX Full mode stream controller.

In the “to-FELIX Full mode” each link has its independent interface. Each channel in the Full mode stream
controller reads data from a dual clock FIFO provided by the user. This allows the user’s logic to run with a
clock speed different from the 240 MHz required by the transmit logic. The FIFO data width is 32 bits (4 bytes)
plus two additional bits (data_type) which qualify the four bytes written. The FIFO implementation (LUT or
Block RAM) and depth are chosen by the user. Table 8.16 describes the stream controller’s input and output
signals.

The first and last word data-type flags result in a word containing a Start-of-Packet (SoP) or End-of-Packet
(EoP) K-character to be inserted into the data stream. Refer to section 8.3.16.3 for the K-characters inserted
by the stream controller. The FIFO write port is in the user’s clock domain, i.e. the write-clock is the user’s
design clock. Once the channel state machine asserts link_ready, users can directly send data to the FIFOs.
Data is written when the WE signal is asserted. For a 240 MHz user clock, if data is written on every clock
without pausing between packets, the FIFO will eventually overflow. The user should use the FIFO full signal
to prevent this.

The to-FELIX Full mode stream controller will be provided by the FELIX team and integrated into the user’s
firmware. It is a closed module with the interface described in Table 8.16. The module will be implemented by:

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 55 of 138

FELIX Phase-ll firmware specifications: 8.3 Decoding =

May 7, 2021 - Version 0.87

Table 8.16: Description of the stream controller input and output signals.

Signal Direction Description

240MHz clock from user clock for the Tx logic; this clock MUST be derived from the
BC clock and also used as the GTH reference clock

link_ready to user active when link detected and locked
rclk to user read clock to read from user’s FIFO
re to user read enable

data[32] from user 32-bit wide payload data

data_type[2] from user 2-bit qualifier for data:
0b01: The word is the first word of a packet.
0b10: The word is the last word of the current packet.
0b00: The word is an intermediate word of the current packet.
Ob11: The word is ignored.

fifo_empty from user user’s FIFO is empty

busy from user a level indicating that the user wants FELIX to assert BUSY to
the Central Trigger. Minimum duration is two 240 MHz clocks

1417 e aread interface to the user’s FIFO running at 240 MHz, reading with maximal data rate of 7.68 Gb/s.
1418 e the serializer part of the Full mode wrapper

1419 e control logic, i.e. a state machine, that inserts defined packet boundary K-characters and busy K-
1420 characters into the data stream.

8. Detailed Functional Description and Specification Page 56 of 138

w 8.3.17 DIRECT MODE E-LINK DECODERC 771

w2 8.3.17.1 INTRODUCTION

12s Direct decoding is implemented by omitting the decoder. This is done by connecting ByteToAxiStream directly
12« 1o the DecodingGearBox, as shown in figure 8.3

Remark 8.3: Direct mode

Direct decoding (no decoding) should not be used by any front-end, and is only included for debugging
purposes. If no encoding technique is used on top of an E-Link, there is no way for the decoder to
distinguish the byte boundary, and where a frame (chunk) starts or ends.

1425

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 57 of 138

1426

1427

1428
1429

1430

1431

1432

1433

1434

1435

1436
1437
1438

1439

1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452

1338

FELIX Phase-ll firmware specifications: 8.3 Decoding = May 7, 2021 - Version 0.87

8.3.18 TTCTOHOST VIRTUAL E-LINk O

8.3.18.1 INTRODUCTION

The TTC ToHost Virtual E-Link generates a data stream uplon L1A events. This data stream can be sub-
scribed to just like any other E-Link. The data is meant to inform the subscriber about TTC related events and
counters, so the event data can be matched to TTC information.

8.3.18.2 INTERFACES

TTCToHostVirtualElink

TTC—TOHOSt—Data—in -Cr:-nct;:Eos ITI|"(I?CS ‘i:;g)?rizﬁiﬁpe AXI4 Stream Towardasx IC%I’?)&ERIE& m—aXiS
Enable \S/EgJalloeglul'li enable. Towards CR?'E)dI-I_olsczg:Jf(m_axis_prog_empty
AX14 Stream handshake from CRSth:jI-I_J?tgalucx m_axis_tready
aresetn Ztg;i?fv\i/creset AXI4 sfrigalﬁgif m_axis_aclk

std_logic
clk40 ’ 40 MHz BC clock

BLOCKSIZE :integer
Determines the m_axis_prog_empty threshold

\.

Figure 8.25: The TTC ToHost Virtual E-Link entity.

8.3.18.2.1 GENERICS

e BLOCKSIZE: Used to set the threshold for m_axis_prog_empty to go low if there is at least a block of
data in the AXls FIFO.

8.3.18.2.2 INTERFACE FROM TTC WRAPPER

The TTC Wrapper generates data for the various TTC related signals. On every L1A, the data record as
described in Listing 8.1 is generated, and a single pulse on data_rdy is asserted. This record is used by
the TTCToHost Virtual E-Link in order to generate a message, to notify a subscriber of the L1A and the
corresponding fields.

type TTC_ToHost_data type is record

FMT std_logic_vector(7 downto 0); ——byte0

LEN : std_logic_vector(7 downto 0); —-bytef
reserved0 : std_logic_vector (3 downto 0); —-byte2

BCID : std_logic_vector(11 downto 0); ——byte2,3

XL1ID : std_logic_vector(7 downto 0); ——byte4

L1ID : std_logic_vector(23 downto 0); ——byte 5,6,7
orbit : std_logic_vector(31 downto 0); ——byte 8,9,10,11
trigger_type : std_logic_vector(15 downto 0); ——byte 12,13
reservedi : std_logic_vector(15 downto 0); ——byte 14,15
LOID : std_logic_vector(31 downto 0); —byte 16,17,18,19
data_rdy : std_logic;

end record;

Listing 8.1: The TTC_ToHost_data_type as declared in centralRouter_package.vhd.

8. Detailed Functional Description and Specification Page 58 of 138

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

[[[[[[[[[

8.3.18.2.3 CLOCK, RESET AND ENABLE

e clk: 40 Mhz bunch crossing clock. It is assumed that all non AXls related inputs are registered on this
clock.

e m_axis_aclk: Clock on which the AXI4 Stream bus is operated towards the CRToHost.
e aresetn: Active low reset.

e Enable: To enable the virtual E-Link. Connected to the Wupper register map.

8.3.18.2.4 INTERFACE TO CENTRAL ROUTER TOHOST

The AXI4 Stream interface consisting of m_axis, m_axis_prog_empty, m_axis_tready and m_axis_aclk holds
the data towards CRToHost. CRToHost has a secondary input called s_axis_aux, which will have equal
functionality with respect to the regular AXI4 Stream input s_axis, however the dimension is different (Always
an array of 2) to connect to the two Virtual E-Links (BusyVirtualElink and TTCToHostVirtualElink).

8.3.18.3 FUNCTIONAL DESCRIPTION

The TTC ToHost Virtual E-Link will be triggered by the data_rdy signal in TTC_ToHost_Data_in input. Upon
this trigger, it will create a message containing all the data fields from the input. The last 6 bytes contain a so
called L1A counter. This L1A counter will not be reset after an ECR, and can be used as a measure to verify
whether any event was lost. Before an ECR, it should hold the same value as L1ID.

The message / chunk is described in Appendix B.2.3.

The length of the message is 26 bytes. When the TTC ToHost virtual e-link is triggered, it immediately
constructs the complete message and writes this into a FIFO. This FIFO is read out and the output is converted
into AXI4 stream (32b). This dual FIFO mechanism allows the virtual E-Link to be triggered every clock cycle,
until the first FIFO is full (Depth=16 messages) without dead time.

8.3.18.4 CONFIGURATION

The TTC ToHost virtual E-Link can only be Enabled using the Enable input. No other configuration possibilities
are implemented.

8.3.18.5 STATUS INDICATORS

This virtual sends data towards CRToHost. No additional status indication is available.

8.3.18.6 LATENCY

From the first data_rdy input to the end of transmission of the 26-byte AXI4 Stream packet it was measured to
take 157 ns. The latency may increase if multiple L1A events are fired shortly after each other and the internal
FIFOs fill up.

8.3.18.7 ERROR HANDLING

If the FIFOs are full while more busy events occur, the truncation flag in the TUSER bits of the AXI4 stream
bus will be asserted.

8.3.18.8 ESTIMATED RESOURCE USAGE

Resource Count | % (XKCU115)
LUTs 329 0.05%
Flip-Flops | 651 0.05%

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 59 of 138

FELIX Phase-Il firmware specifications: 8.3 Decoding May 7, 2021 - Version 0.87

| Block RAM | 1 | 0.05%
Table 8.17: TTC ToHost Virtual E-Link Resource utilization.

8. Detailed Functional Description and Specification Page 60 of 138

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

8.3.19 BUSY VIRTUAL E-LINk O

8.3.19.1

INTRODUCTION

The FELIX system knows 4 sources of BUSY:

e E-Link BUSY (BUSY-ON/BUSY-OFF from FrontEnd electronics over E-Links)

e Soft BUSY (Assertion of a register in the register map)

e FIFO busy (The ToHost FIFO in Wupper passed a certain threshold)

o DMA busy (The circular buffer in the server memory is filled beyond a certain threshold)

8.3.19.2

Orbit

BCID
ElinkBusyIn
SoftBusyIn
DmaBusyln
FifoBusyln
BusySumIn

Enable

INTERFACES

BusyVirtualElink

std_logic_vector(31 downto 0) axis_32_type - xis

Orbit counter for timestamp AXI4 Stream Towards CRToHost aux -
std_logic_vector(11 downto 0 std_logic o

Bunch Cgros;ing coun(ter for timestam)p Towards CRToH_ost%ux m_axis_prog_empty
busyOut_array_type(0 to GBT_NUM-1) std_logic m_axis_tready
SOB/EOB received through Elinks AXI4 Stream handshake from CRToHost aux - -
std_logic std_logic :

Trigaeregd by register map AXI4 Strea% clgck m—aXIS—adk
std_logic

Host memory occupation

std_logic

Wupper ToHostFifo prog_full

std_logic

Status of the board LEMO output

std_logic

Virtual elink enable.

aresetn . std_logic

Active low reset

clk B std_logic

8.3.19.2.1

40 MHz BC clock

GBT_NUM :integer
Number of links, for size of ElinkBusyIn

BLOCKSIZE :integer

Determines the m_axis_prog_empty threshold

\.

Figure 8.26: The Busy Virtual E-Link entity.

GENERICS

e GBT_NUM: Specifies the number of GBT links, to determine the size of the ElinkBusyIn input

e BLOCKSIZE: Used to set the threshold for m_axis_prog_empty to go low if there is at least a block of
data in the AXIs FIFO.

8.3.19.2.2

INTERFACE FROM VARIOUS BUSY SOURCES

e ElinkBusyln: A 2-D array of std_logic, each bit representing the BUSY state of the E-Link. The Fron-
tEnd can set this BUSY state by issuing a BUSY-ON/SOB command, and clear it by issuing a BUSY-
OFF/EOB command.

e SoftBusyln: BUSY state triggered by a write to a register

zzzzzzzz

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 61 of 138

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

FELIX Phase-ll firmware specifications: 8.3 Decodi May 7, 2021 - Version 0.87

e DmaBusyln: BUSY asserted because the PC memory (ToHost) was occupied beyond a certain thresh-
old

e FifoBusyln: FIFO busy asserted, the Wupper ToHost FIFO was occupied beyond a certain threshold

8.3.19.2.3 TIMESTAMP INPUTS
e Orbit: Orbit counter input from TTC system / Emulator, used as a timestamp in the message.

e BCID: Bunch Crossing counter input from TTC system / Emulator, used as a timestamp in the message.

8.3.19.2.4 CLOCK, RESET AND ENABLE

e clk: 40 Mhz bunch crossing clock. It is assumed that all non AXls related inputs are registered on this
clock.

e m_axis_aclk: Clock on which the AXI4 Stream bus is operated towards the CRToHost.
e aresetn: Active low reset.

e Enable: To enable the virtual E-Link. Connected to the Wupper register map.

8.3.19.2.5 INTERFACE TO CENTRAL ROUTER TOHOST

The AXI4 Stream interface consisting of m_axis, m_axis_prog_empty, m_axis_tready and m_axis_aclk holds
the data towards CRToHost. CRToHost has a secondary input called s_axis_aux, which will have equal
functionality with respect to the regular AXI4 Stream input s_axis, however the dimension is different (Always
an array of 2) to connect to the two Virtual E-Links (BusyVirtualElink and TTCToHostVirtualElink).

8.3.19.3 FUNCTIONAL DESCRIPTION

The BUSY Virtual E-Link monitors the status of the 4 sources of busy explained in 8.3.19. Together with the
current timestamp (Orbit/BCID) a message will be constructed containing the state of all BUSY sources. This
message will be created if BUSY is asserted, but also when it is negated. The message / chunk is described
in Appendix B.2.4.

The length of the message is 64 bit. When the BUSY virtual e-link is triggered, it immediately constructs
the complete message and writes this into a FIFO. This FIFO is read out and the output is converted into AXI4
stream (32b). This dual FIFO mechanism allows the virtual E-Link to be triggered every clock cycle, until the
first FIFO is full (Depth=16 messages) without dead time.

8.3.19.4 CONFIGURATION

The BUSY virtual E-Link can only be Enabled using the Enable input. No other configuration possibilities are
implemented.

8.3.19.5 STATUS INDICATORS

This virtual E-Link is in fact a status indicator of the BUSY system. No additional status indication is available.

8.3.19.6 LATENCY

From the first busy input to the end of transmission of the 64-bit AXI4 Stream packet it was measured to take
144 ns. The latency may increase if multiple BUSY events are fired shortly after each other and the internal
FIFOs fill up.

8. Detailed Functional Description and Specificatio Page 62 of 138

w1 8.3.19.7 ERROR HANDLING

12 If the FIFOs are full while more busy events occur, the truncation flag in the TUSER bits of the AX14 stream
1.2 bus will be asserted.

wa 8.3.19.8 ESTIMATED RESOURCE USAGE

Resource Count | % (XKCU115)
LUTs 313 0.05%
Flip-Flops | 436 0.03%
Block RAM | 1 0.05%

Table 8.18: Busy Virtual E-Link Resource utilization.

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

FELIX Phase-Il firmware specifications: 8.3 Decoding

8.3.20 25GBLINKSDECODER NN

8.3.20.1 INTRODUCTION

8.3.20.2 INTERFACES

8.3.20.2.1 OVERVIEW

8.3.20.2.2 INTERFACE TO COMPONENT 2
8.3.20.3 FUNCTIONAL DESCRIPTION
8.3.20.4 CONFIGURATION

8.3.20.5 STATUS INDICATORS

8.3.20.6 LATENCY

8.3.20.7 ERROR HANDLING

8.3.20.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 64 of 138

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

ATLAS FELIX Phase-Il firmware specifications: 8.3 Decoding C————"18 May 7, 2021 - Version 0.87

ssssssss

8.4 ENcODINGOIB

8.4.1 INTRODUCTION

Encoding is the block in the FELIX firmware which instantiates the subdetector specific, but also Atlas wide
protocol handling in the FromHost direction (Downstream).

8.4.2 INTERFACES

encoding

s axis axis_8_2d_array_type(GBT_NUM-1 downto 0, STREAMS_FROMHOST-1 downto 0)

register_map_encoding_monitor_type register_map_encoding_monitor

From CRFromHost Status signals (to Wupper)
s_axis_tready taoxiCsR_FtrL?na:Io)&Zd_array_l:ype(GBT_NUM-1 downto 0, STREAMS_FROMHOST-1 downto 0) txrx120b_type(GBT_NUM-1 dO\gQTtga?g GBT_DOWNLINK_USER_DATA
register_map_control Eiggfﬁiﬁiﬂ?ﬁﬁﬁﬂi‘ﬂﬁ\pﬁupper) txrx32b_type(GBT_NUM-1 dﬁ}g’é‘fjﬂ‘t’g |pGBT_DOWNLINK_USER_DATA
Linkalgned Bp SHLlogc vectr(CBT_NUM1 downto) 1225 type(GBT_NUN dounto O) I a1 poWNLINK C_DATA
terZb—type(GBT—NUM'1\:G"B"‘T’?Ct:a?g |pGBT_DOWNLINK_IC_DATA
std_logic

aresetn Active low reset

TXUSERCLK std_logic_vector(GBT_NUM-1 downto 0)

std_logic
clkd0 B> B cock
std_logic
aclk W 1 cock s selected by encoding
GBT_NUM :integer:= 4
Number of links
FIRMWARE_MODE : integer := 1

STREAMS_FROMHOST : integer := 1
Number of Elinks per (Ip)GBT link

Figure 8.27: The encoding block, instantiating all encoder entities based on FIRMWARE_MODE.

8.4.2.1 OVERVIEW

The encoder entity itself does not contain any protocol specific logic, but rather instantiates the protocol
specific encoders inside its hierarchy.

The encoder for GBT mode FELIX in phase 2 for instance was derived from the CentralRouter Egroup in
phase 1 FELIX. The functionality is the same, but the design will be more modular, and the entities will be
more unified among different E-Path / EPROC widths.

Instead of defining a separate entity for every E-link width, as done in phase 1, a configurable and generic
gearbox was introduced (see 8.4.9). This gearbox can be configured to support all E-link widths in GBT and
IpGBT mode, and output widths for the different protocols (8b10b, direct mode, 6b8b).

The HDLC and 8b10b decoder are very similar to the phase 1 design and can be taken with only slight
modification. Finally the GBT mode epath should input the axi stream8 protocol. Therefore the AxiStream-
ToByte entity was introduced which will take care of the conversion, but also contain the axi stream E-Path
FIFO.

8.4.2.2 INTERFACE FROM CRFROMHOST

All the protocol encoders that take data from CRFromHost will be equipped with an AXI Stream (8-bit) inter-
face. The encoding entity has an input for a 2-dimensional array of AXI Stream ports, each of them represents
a single E-Link. An exception will be made for the 25Gb/s Interlaken links. These Interlaken encoders will
need a higher bandwidth which can’t be delivered with 8-bit AXI Stream, therefore a 64-bit AXI Stream inter-
face will be used.

8.4.2.3 INTERFACE TO LINKWRAPPER
The outputs towards the optical links are arrays of std_logic_vector, depending on the protocol.

e GBT: GBT_NUM * 120b

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 65 of 138

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

FELIX Phase-Il firmware specifications: 8.4 Encoding May 7, 2021 - Version 0.87

e IpGBT: GBT_NUM * (32b(E-Links) + 2b(EC) + 2b(IC))
e Interlaken: GBT_NUM * 76b

8.4.3 FUNCTIONAL DESCRIPTION

Encoding does not contain any functional logic, protocol specific logic is implemented in the instantiated
encoders. Depending on the firmware flavour and other generics, a series of if- and for-generate statements
determine the content of the encoding block.

8.4.4 (CONFIGURATION

Configuration registers in register_map_control are routed through encoding into the instantiated encoders.

8.4.5 STATUS INDICATORS

Status of the different encoders can be monitored in register_map_encoding_monitor.

8.4.6 LATENCY
N/A

8.4.7 ERROR HANDLING
N/A

8.4.8 ESTIMATED RESOURCE USAGE
TBD

8. Detailed Functional Description and Specification Page 66 of 138

s 8.4.9 ENCODING GEARBOX NN

wo 8.4.9.1 INTRODUCTION

w1 8.4.9.2 INTERFACES

we 8.4.9.2.1 OVERVIEW

ws 8.4.9.2.2 INTERFACE TO COMPONENT 2
ws 8.4.9.3 FUNCTIONAL DESCRIPTION

ws 8.4.9.4 CONFIGURATION

ws 8.4.9.5 STATUS INDICATORS

w7 8.4.9.6 LATENCY

we 8.4.9.7 ERROR HANDLING

we 8.4.9.8 ESTIMATED RESOURCE USAGE

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

FELIX Phase-ll firmware specifications: 8.4 Encoding = May 7, 2021 - Version 0.87

8.4.10 ENDEAVOUR ENCODERC 7B

8.4.10.1 INTRODUCTION

The Endeavour Encoder is used to encode the commands to send to the AMAC chips: READ register, READ-
NEXT register, WRITE register or SETID command (to set the AMAC chip ID). The registers are 32 bit wide
and are addressed with an 8 bit number. In the following table are shown the commands bit sequence.

Command Sequence Length

READ "101"[amac ID (5b)][Reg Add (8b)] 16 bit

READNEXT | "100"[amac ID (5b)] 8 bit

WRITE "111"[amac ID (5b)][Reg Add (8b)][Data (32b)][CRC (8b)] 56 bit

SETID "110"11111111"[new AMAC ID (5b)]"1111"[efuse ID (20b)]"111"[ID pads | 56 bit
(5b)][CRC (8b)]

Table 8.20: AMAC commands towards AMAC chip (Encoder).

8.4.10.2 INTERFACES

EndeavourEncoder

axis_8_type std_logic_vector(1 downto 0)
8b axi stream Output to EC elink
std_logic
AXI stream handshake

. . std_logic
LinkAligned IpGBT aligned
std_logic

Encoder enable setting

s_axis amac_signal

s_axis_tready

Enable

std_logic

s_axis_aresetn Active low reset

std_logic
clkao 40 MHz BC clock

std_logic
AXI4 stream clock

s_axis_aclk

Figure 8.28: The Endeavour encoder entity.

8.4.10.2.1 OVERVIEW

The Endeavour Encoder will take input from the FromHost Central Router (CRFromHost) using axi stream 8,
and send it's output to an E-Link of the IpGBT frame, usually the EC E-link. Besides the data input and output,
there are 2 clock inputs; clk40 which is used for the encoding logic, and s_axis_aclk which serves as a write
clock for the axis fifo. The input port s_axis_aresetn serves as an active-low reset for the decoder and the
FIFO. Finally there are two input ports: LinkAligned and Enable; LinkAligned indicates that the IpGBT link is
aligned and Enable will come from the Wupper register map. Both signals are a condition for the module to
be enabled.

8.4.10.2.2 INTERFACE TO LPGBT

The two bits of amac_signal are connected to the EC E-link of the IpGBT frame and carry the Endeavour
signal. Both bits have the same value.

8.4.10.2.3 INTERFACE TO CRFROMHOST

The input arrive from an AXI Stream 8 bus.

8. Detailed Functional Description and Specification Page 68 of 138

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

ATLASs FELIX Phase-ll firmware specifications: 8.4 Encoding C————""18 May 7, 2021 - Version 0.87

ssssssss

8.4.10.3 FUNCTIONAL DESCRIPTION

The Endeavour Encoder consists of a block that encodes the commands arriving from an AXI Stream fifo of
8 bit using the serial endeavour protocol. The command words are converted using the Endeavour in a serial
slow sequence, where the output line is maintained HIGH for a different number of clocks to send 0 or 1 (see
table 8.21), sent to a line connected with the AMAC chips. Instead between every bit and after a command the
line is maintained LOW. In the following table the number of clocks used for encoding of the words is shown.

Bit Description
bit 0 N clock HIGH 14
bit 1 N clock HIGH 77

Intra-word bit gap | N clock LOW 43
End of word gap | N clock LOW 100

Table 8.21: Endeavour protocol.

During the encoding it rise up a busy line to prevent the Endeavour Decoder to start the decoding.

s_axis_tready \ W,_
[e 7220008772777 WWW
5‘ tvalid / \ I
tlast a’\ // // // //

triggered by 5_axis.tlast

I \b bit 1: 77 clocks F\ ¢ ———— intragap 43 clocks hd bi0: 14clocks. —f—b-e end 100 clocks —/F»/\
x [S S S v ;)

Figure 8.29: example of waveform.

8.4.10.4 CONFIGURATION

The Endeavour Encoder can be enabled by setting the Enable input port to '1’. The Encoder will also be
disabled if the signal LinkEnabled is low.

8.4.10.5 STATUS INDICATORS

There are currently no planned status indicators in the EndeavourEncoder.

8.4.10.6 LATENCY
8.4.10.7 ERROR HANDLING

No errors are implemented.

8.4.10.8 ESTIMATED RESOURCE USAGE

Resource IpGBT link | 24 GBT links | % (XKCU115)
LUTs 65 1560 0.2%
Flip-Flops | 37 888 0.07%

Block RAM | 0.5 12 0.5%

Table 8.22: Resource consumption of Endeavour Encoder module.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 69 of 138

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

FELIX Phase-Il firmware specifications: 8.4 Encoding

8.4.11

8.4.11.1
8.4.11.2

8.4.11.2.1
8.4.11.2.2

8.4.11.3
8.4.11.4
8.4.11.5
8.4.11.6
8.4.11.7
8.4.11.8

RD53 ENCODER (NN

INTRODUCTION
INTERFACES

std_logic std_logic_vector(3 downto 0),

trigger dataout

std_logic_vector(7 downto 0) std_logic

command_in readyout

command_rdy pp Std-logic

rst PP std_logic

clkao pp std_logic

PCIE_ENDPOINT :integer:= 0
MT

LINK:integer:=0

EGROUP:integer:=0

EPATH:integer:=0

\.

Figure 8.30: The RD53A/B encoder entity.

OVERVIEW

INTERFACE TO COMPONENT 2
FUNCTIONAL DESCRIPTION
CONFIGURATION
STATUS INDICATORS
LATENCY
ERROR HANDLING
ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 70 of 138

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

8.4.12 |ITK STRIPS LCB ENCODER

8.4.12.1 INTRODUCTION

Strips LCB encoder facilitates control of LCB link of ITk Strips modules. It provides independent control for
each Strips link, as well as independent trickle configuration memory storage. The commands are accepted
in two formats: compact encoding for efficient storage of trickle configuration, and raw 6b8b user-encoded
frames for testing. The LCB encoder merges commands from TTC system, trickle configuration memory and
LCB Command elink. Commands originated from TTC system are prioritized and have fixed latency. Strips
LCB encoder may be configured to send low-priority commands only within a configurable BC interval, for
example during a beam gap.

The functional diagram of LCB encoder module is presented on Figure 8.31. The blocks shown in red are
data inputs. The corresponding FromHost elink IDs are listed in Table 8.23).

The LCB encoder inputs data from the TTC system and three FELIX FromHost elinks. The LCB Config-
uration elink is used to configure the LCB encoder. The data sent to the Trickle Configuration elink is written
into the trickle configuration memory. Finally, the Command elink sends commands to the LCB input of a
Strips module (shown in green).

/.\1-z LA!S 8. Detailed Functional Description and Specification Page 71 of 138

FELIX Phase-Il firmware specifications: 8.4 Encoding May 7, 2021 - Version 0.87

| Elink hex | Elink dec | Strips Encoder |

00 0 LCB#0 configuration
01 1 LCB#0 command
02 2 LCB#0 trickle

03 3 R3L1#0 configuration
04 4 R3L1#0 command
05 5 LCB#1 configuration
06 6 LCB#1 command
07 7 LCB#1 trickle

08 8 R3L1#1 config

09 9 R3L1#1 command
Oa 10 LCB#2 config

Ob 11 LCB#2 command
Oc 12 LCB#2 trickle

od 13 R3L1#2 config

Oe 14 R3L1#2 command
of 15 LCB#3 configuration
10 16 LCB#3 command

11 17 LCB#3 trickle

12 18 R3L1#3 config

13 19 R3L1#3 command
14 20 EC (AMAC out)

15 21 IC

Table 8.23: Strips ToHost eliink mapping. In this table, elink mapping of IpGBT optical link 0 is listed. To find
elink IDs for encoders of another optical link, add 0x40 * (IpGBT link ID) to the elink IDs listed in the table..

8. Detailed Functional Description and Specification Page 72 of 138

uoneosiioads pue uonduossq [euonound pajieiaq '8 S

o)
Q0

Q
[}
~
w
2
—t
)
©

FromHost elink

Configuration storage

LCB configuration

—>

FromHost elink

FIFO in (commands)

LCB configuration

LCB command

ENCODING_ENABLE

Configuration:

FromHost elink

Trickle configuration memory

Trickle configuration

FIFOin

FIFO out (commands)

Configuration:

TRICKLE_TRIGGER_PULSE
TRICKLE_TRIGGER_RUN
TRICKLE_DATA_START
TRICKLE_DATA_END
TRICKLE_WRITE_ADDR
TRICKLE_SET_WRITE_ADDR_PULSE

TTC Phase Il LCB frame generator
LoID LoID
LO_trigger »{ LO trigger
BCR » BCR

LCB frame start pulse
TTC LOA frame

LCB scheduler

Configuration:

TTC_BCR_DELAY
LOA_FRAME_PHASE

A

Trickle trigger generator

BCR

trickle_bc_gating

Configuration:

GATING_BC_START
GATING_BC_STOP
GATING_TTC_ENABLE

A

Bypass frame
aggregator

Command decoder

» FIFO 8 bitin

FIFO 16 bit out —

LCB frame FIFO

FIFO in (commands, high priority)

FIFO in (commands, low priority)
LCB command + data

LCB encoder ready

LCB sequence encoder

LCB frame sequence

LCB command + data

LCB encoder ready

>

FIFO out
FIFOin

LCB frame start pulse
TTC LOA frame
trickle_bc_gating

elink frame in
Low-priority LCB frame

LCB frame out

Configuration:

GATING_TTC_ENABLE
TTC_LOA_ENABLE
LOA_FRAME_DELAY

Configuration:

HCC_MASK
ABC_MASK_0..F

All modules are synchronous to 40MHz BC clk

Fiaure 8.31: Functional diaaram of ITk Strins LCB Encoder module.

Buipooux g :suoneoyioads aremwill ||-eseyd X134

=
0
<
~
N
=}
(]
—
'
5y
=
@,
o
3
©
©
]

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

FELIX Phase-ll firmware specifications: 8.4 Ence¢ | er———" May 7, 2021 - Version 0.87

Byte\Bit | 7 | 6 | 5 | 4 | 3] 2] 1] o0
0 0x10

1 Data [15:8]

2 Data [7:0]

3 Register address

Figure 8.32: LCB link configuration command format.

8.4.12.2 CONFIGURATION STORAGE SUBMODULE

This submodule stores and updates the LCB link configuration registers. Please note that these registers are
separate and independent from the FELIX register map. In the default configuration after FELIX power-on all
registers are set to zero. The module can be returned to the default configuration at any time by disabling and
re-enabling the LCB configuration elink. The configuration registers can be updated by issuing the “configure”
command via the LCB configuration elink. This is the only valid command for the configuration elink.

8.4.12.2.1 CONFIGURATION COMMAND. Configuration commands update LCB configuration registers given
the data and the register address. (Fig. 8.32). The configuration registers of the LCB encoder are listed in
the Table 8.24. Please note that although the data width in the “configure” command is always 16 bits, many
configuration registers only use a few least significant bits (indicated by the #bits column in Table 8.24).

Whenever a configuration register is mentioned in this section, it refers to the local LCB encoder configu-
ration storage register, unless explicitly specified as a FELIX register.

8.4.12.3 LCB FRAME GENERATOR SUBMODULE

This submodule determines the phase of LCB frame and generates LOA frames in response to the signals
from the TTC module. The exact contents of LOA frame depend on configurable LCB frame phase and the
timing of LO triggers.

The phase of LCB frame with respect to BCR signal is configurable via LOA_FRAME_PHASE register. The
frame phase is locked to TTC BCR signal in order to facilitate synchronization of all ITk Strips links. Inde-
pendently of the frame phase, the module can also add configurable delay to the BCR signal via adjusting
TTC_BCR_DELAY register. This setting only affects LOA frame generation, and does not influence other func-
tions dependent on BCR signal, such as frame phase or trickle triggering. BCR delay must always be smaller
than BCR period for the module to function correctly.

Remark 8.4: Adjusting LCB frame phase

Adjusting LCB frame phase while the link is active will result in data corruption and decoding errors on
the front-end side. LCB frame phase should not be adjusted during active data taking and command
transmission.

8.4.12.4 BYPASS FRAME AGGREGATOR SUBMODULE

Bypass frame aggregator forms 16-bit LCB frames from Command elink data and forwards them to frame
scheduler when ENCODING_ENABLE=0 (default). Since bypass frames are not processed by the encoder logic,
it is user’s responsibility to ensure that the frame sequence is complete and encoded in 6b8b. The odd-count
elink bytes becomes MSB, and even-count bytes become LSB of the LCB frames. Bypass frames are treated
as low-priority frames by the frame scheduler.

8. Detailed Functional Description and Specificai Page 74 of 138

[[[[[[[[[[

May 7, 2021 - Version 0.87

Address Name

Description

0x00 LOA_FRAME_PHASE

Determines LCB frame phase with respect to
the TTC BCR signal

0x01 LOA_FRAME_DELAY

Determines the overall delay of LOA frame in
BC units. Only LOA frames originated from
TTC system are delayed. Will affect LCB frame
phase when it's not a multiple of 4.

0x02 TTC_LOA_ENABLE

Enables generation of LOA frames in response
to the TTC signals

0x03 TTC_BCR_DELAY

12

Delay BCR signal from TTC system by this
many BC units before issuing LOA

0x04 GATING_TTC_ENABLE

When set to 1, the low-priority frames are only
allowed during the interval between GATING_-
BC_START and GATING_BC_STOP (counted from
non-delayed TTC BCR signal)

0x05 GATING_BC_START

12

Start of BC gating interval

0x06 GATING_BC_END

12

End of BC gating interval

0x07 TRICKLE_TRIGGER_PULSE

Write 1 to issue a single trickle trigger

0x08 TRICKLE_TRIGGER_RUN

Write 1 to issue trickle trigger continuously

0x09 TRICKLE_DATA_START

16

Address of the first valid byte in the trickle con-
figuration memory

0x0A TRICKLE_DATA_END

16

Address of the last valid byte in the trickle con-
figuration memory

0x0B TRICKLE_WRITE_ADDR

16

Trickle configuration memory write pointer

0x0C TRICKLE_SET_WR_ADDR_PULSE

Write 1 to move the trickle configuration write
pointer to the address in TRICKLE_WRITE_ADDR

0x0D ENCODING_ENABLE

When 0, the data sent into LCB command elink
is forwarded to LCB line without processing. It
is the user’s responsibility to ensure the com-
mands are formed correctly and encoded in
6b8b. When 1, the commands are interpreted
as described in Section 8.4.12.6.

Ox0E HCC_MASK

16

HCC* command mask. When a bit is set to 1,
commands to this HCC* chip (and all connected
ABC* chips) will be ignored. Will match broad-
casts. LSB corresponds to HCC* address 0,
MSB corresponds to HCC* address 0xF.

0xOF ABC_MASK_0

16

ABC* command mask for chips connected to
HCC* with address 0. LSB corresponds to
ABC* address 0, MSB corresponds to ABC* ad-
dress OxF. When a bit is set to 1, commands
to this ABC* chip will be ignored. Will match
broadcasts.

0x10 ABC_MASK 1

16

ABC* command mask for chips connected to
HCC* with address 1.

Ox1E ABC_MASK_F

16

ABC* command mask for chips connected to
HCC* with address OxF.

Table 8.24: LCB link configuration registers.

ATLAS 8. Detailed Functional Description and Specification

;;;;;;;;;;

Page 75 of 138

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

FELIX Phase-ll firmware specifications: 8.4 Ence¢ | er———" May 7, 2021 - Version 0.87

Byte\Bit | 7 | 6 | 5 | 4 | 3 | 2] 1] o
0 0x00

Figure 8.33: No operation command format.

Remark 8.5: Zero bytes

Bypass frame aggregator removes all zero bytes from the data stream.

8.4.12.5 TRICKLE CONFIGURATION MEMORY

Each LCB link has an independent memory storage for trickle configuration. The memory is byte-addressable
and has the total size of 64 kB per LCB encoder. Other data, such as calibration sequence, may also be
stored in trickle configuration memory.

Trickle configuration memory can store multiple sequences provided there is sufficient space. The se-
quence selected for readout is determined by memory pointers defined in the configuration registers TRICKLE_-
DATA_START and TRICKLE_DATA_END.

Trickle configuration memory can be triggered from software. To issue a single software trickle trigger,
write ’1’ to register TRICKLE_TRIG_PULSE. To send trickle configuration continuously, write ’1’ to TRICKLE_-
TRIG_RUN. If synchronization between multiple LCB links is required, software trickle trigger pulse can be
issued simultaneously for all links by writing 1’ to FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_-
PULSE.

Trickle configuration memory can only be written when trickle configuration readout is inactive. This re-
quires that TRICKLE_TRIG_RUN is set to '0’, and any preceding trickle configuration readout has completed.
Before updating the memory, set TRICKLE_WRITE_ADDR to the memory address where the configuration is to
be stored and write 1’ to TRICKLE_SET_WRITE_ADDR_PULSE to move the write pointer there. Send the data
into the Trickle Configuration elink to write it into the trickle configuration memory. As the data is written into
the elink, the memory write pointer will automatically advance. The trickle configuration commands must be
in the format compatible with the command decoder (see Section 8.4.12.6 below). No bypass frames may be
stored in trickle configuration memory.

For the data taking with hardware triggering, the LCB link can be configured to only send trickle configu-
ration during a beam gap. See the description of Trickle Trigger Generator and LCB Scheduler modules for
more detail, and see Section 8.4.12.11 for the setup procedure.

Remark 8.6: Time-critical command sequences read out from trickle memory

For certain command sequences, such as LOA followed immediately by fast command, command
decoder might be unable to encode the LCB frames in time, and IDLE frames are inserted in between.
This disrupts calibration sequences that require predictable timing between command frames. The
workaround for sending time-critical command sequences is provided in section 8.4.12.11.

8.4.12.6 COMMAND DECODER

This module decodes commands originating from the trickle configuration memory and LCB Command elink
(only when ENCODING_ENABLE=1). The commands from the two sources are merged into a single low-priority
frame queue. Command decoder always processes LCB Command elink commands first when both sources
have data. Below is the list of valid commands and their format.

8.4.12.6.1 NO OPERATION. This command is ignored by the command decoder. It is added for compat-
ibility with phase1 firmware and to prevent frame generation from uninitialized trickle configuration memory.
The format of no operation command is shown on Fig. 8.33.

8. Detailed Functional Description and Specificai Page 76 of 138

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

ATLAs FELIX Phase-Il firmware specifications: 8.4 Encoding CC————B May 7, 2021 - Version 0.87

[[[[[[[[[

Byte\Bit | 7 | 6 | 5 | 4 | 3| 2 | 1] o0

0 0x80

Byte\Bit | 7 | 6 | 5 | 4 | 3| 2] 1] o0
0 0x82

1 0 0 0 BCR mask

Figure 8.35: LOA command format.

8.4.12.6.2 IDLE cOMMAND. Places a single IDLE frame into the LCB link queue (Fig. 8.34). IDLE can be
written into trickle configuration memory as a part of the calibration sequence to add 100 ns delay between
commands.

8.4.12.6.3 LOA COMMAND. This issues a user-defined LOA frame to the front-end (Fig. 8.35). At least a
single bit in mask or BCR must be set to "1’ for the command to be valid. Invalid LOA commands are ignored
by the command decoder.

8.4.12.6.4 FAST COMMAND. Fastcommand sends a user-defined fast command to the front-end (Fig. 8.36).

8.4.12.6.5 REGISTER COMMANDS. Register commands issue a read (Fig. 8.37) or write (Fig. 8.38) frame
sequence for HCC* or ABC* register.

8.4.12.7 LCB SEQUENCE ENCODER

This module generates single or multiple low-priority LCB frames as requested by the command decoder.
Generating register commands addressed to certain chips may be blocked by this module using HCC ID and
ABC ID masking. This is achieved by writing configuration registers HCC_MASK and ABC_MASK_X. When a bit
in the mask is set to ’1’, register commands for the corresponding chip will be ignored by the module. This can
be used to quickly disable configuration for selected chips without overwriting trickle configuration memory.

8.4.12.8 LCB FRAME FIFO

This FIFO stores contents of low-priority LCB frames, originated from elink or trickle configuration memory.
Default FIFO depth is 64 frames.

8.4.12.9 TRICKLE TRIGGER GENERATOR

This module controls timing of sending trickle configuration commands to the front-end during the data taking.
When enabled by setting GATING_TTC_ENABLE to '1’, low-priority frames are only allowed during BC gating

Byte\Bit | 7 | 6 | 5 | 4 | 3| 2] 1] o0
0 0x81

1 0 0 BC select Command ID

Figure 8.36: Fast command format.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 77 of 138

1754

1755

1756

1757

1758

1759

1760

1761

1762

FELIX Phase-ll firmware specifications: 8.4 Encod | er———" May 7, 2021 - Version 0.87

Byte\Bit | 7 | 6 | 5 | 4 | 3| 2 | 1] o0
0 0xAO (ABC*) or OxA1 (HCC*)

1 Register address

2 HCCID ABCID

Figure 8.37: Register read command format.

Byte\Bit | 7 | 6 | 5 | 4 | 3| 2 | 1] o0
0 OxA2 (ABC*) or OxA3 (HCC*)

1 Data [31:24]

2 Data [23:16]

3 Data [15:8]

4 Data [7:0]

5 Register address

b HCCID ABCID

Figure 8.38: Register write command format.

interval between GATING_BC_START and GATING_BC_STOP. Low-priority frames are defined as frames that did
not originate from the TTC system. Please note that trickle configuration readout must be enabled by setting
TRICKLE_TRIG_RUN to ’1’ in addition to setting GATING_TTC_ENABLE to '1’.

This module also defines the guard interval for register commands, which begins 64 BC periods before
GATING_BC_STOP. This ensures that register commands are transmitted completely before the BC gating
interval ends. During the guard interval any active register command is allowed to complete, but no new
register commands are allowed to begin.

Remark 8.7: BC gating and stuck elinks

Please note that when the BC gating is enabled the encoder module may not process LCB Command
elink commands unless it receives periodic BCR signal from the TTC system and BC gating interval
is correctly configured. BC gating signal will not be generated if BC_START=BC_STOP. BC gating signal
will be generated incorrectly if BC_START>BC_STOP.

Remark 8.8: BC gating and the guard interval

Please note that BC gating interval duration must be at least equal to the guard interval size + 5 (69
BC) for the module to function correctly. When this condition is violated, register commands may be
either transmitted partially, or not transmitted at all.

8. Detailed Functional Description and Specificati Page 78 of 138

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

ATLASs FELIX Phase-ll firmware specifications: 8.4 Encoding C————""18 May 7, 2021 - Version 0.87

[[[[[[[[[[

8.4.12.10 LCB SCHEDULER

This module prioritized LCB commands according to their source, merges them into a single data stream, and
sends them to the front end. The module encodes LCB frames in 6b8b as needed, and may be configured to
add a variable overall time delay to the LCB frame, as defined by LOA_FRAME_DELAY in BC period units.

Remark 8.9: Adjusting LCB frame delay

Adjusting the overall frame delay will result in loss or corruption of LCB frames and decoding errors on
the front-end side. LCB frame delay should not be adjusted during active data taking and command
transmission. Adding a delay will change the phase of the LCB frame, meaning that frame phases on
different links may not match if they are configured with the same phase, but different frame delays.

Overview of the scheduling algorithm:
1. Send TTC LOA frame if available
Else send bypass frame if available and no register command from LCB frame FIFO is in progress

Else send next frame from LCB frame FIFO

A @D

Else send an IDLE frame

If BC gating is enabled (GATING_TTC_EN is set to 1), low-priority frames will only be sent during the BC
gating interval. TTC LOA frames are always sent regardless of the BC gating configuration, provided TTC_-
LOA_ENABLE=1.

8.4.12.11 EXAMPLES

8.4.12.11.1 SENDING BASIC LCB cOMMANDS VIA LCB COMMAND ELINK AND COMMAND
DECODER (ENCODING_ENABLE=1)

Fast command example (command=6, BC=3): 0x81 0x36

e LOA command example (BCR=1, mask=0x3, tag=0x53): 0x82 0x13 0x53

e ABC* register read example (register 0x12, HCC ID=0xA, ABC ID=F): 0xA0 0x12 0xAF
e HCC* register read example (register 0x42, HCC ID=0x7, ABC 1D=0): 0xA1 0x42 0x70

e ABC* register write example (write OXDEADBEEF to register 0x12, HCC ID=0xA, ABC ID=0xF): 0xA2
0xDE 0xAD 0xBE OxEF 0x12 OxAF

e HCC* register write example (write OXBABEABBA to register 0x42, HCC ID=7, ABC ID=0): 0xA3 0xBA
0xBE 0xAB 0xBA 0x42 0x70

8.4.12.11.2 SENDING BASIC LCB cCOMMANDS VIA LCB COMMAND ELINK AND BYPASS
FRAME AGGREGATOR (ENCODING_ENABLE=0)

To send the commands directly to Strips LCB input, send commands to the Bypass elink. The bypass com-
mands are not verified or processed in any way. Register commands send through bypass elink are not
filtered based on HCC_MASK or ABC_MASK_X. The bypass register commands can be merged correctly with
trickle configuration commands, as long as complete register commands arrive in a single chunk to the By-
pass elink.

e Fast command example (command=0xB, BC=3): 0x6A 0x5A

e LOA command example (BCR=1, mask=0xD, tag=0x38): 0x3A 0xB8

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 79 of 138

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

FELIX Phase-ll firmware specifications: 8.4 Encoding =wwwwwwws | May 7, 2021 - Version 0.87

e ABC* register read example (register 0x38, HCC ID=0xC, ABC ID=0xD) 0x47 0x3C 0x71 0xB4 0x71
0x74 0x47 0xAC

e HCC* register read example (register 0xD6, HCC ID=0x5, ABC ID=0xB): 0x47 0x95 0x71 0x6C 0x59
O0xAC 0x47 0xC5

e ABC* register write example register write example (write 0x1021ABD2 to register 0x5E, HCC ID=0x5,
ABC ID=0xC): 0x47 0x35 0x59 0xB1 0x59 0x3C 0x59 0x71 0x59 0x71 0x59 0xC6 0x71 0x17 0x71 0xD2
0x47 0xA5

e HCC* register write example (write 0x8A37DF3C to register 0x2B, HCC ID=0xF, ABC ID=0xB): 0x47
0x5C 0x59 0xAC 0x71 0x96 0x59 0x69 0x71 0xD1 0x71 0x5C 0x59 0x4E 0x59 0x3C 0x47 0x4B
8.4.12.11.3 WRITING TRICKLE CONFIGURATION
1. Set TRICKLE_WRITE_ADDR=0
2. Set TRICKLE_SET_WRITE_ADDR_PULSE=1

3. Set TRICKLE_DATA_START=0, and set TRICKLE_DATA_END equal to the length of the trickle configuration
in bytes

4. Write trickle configuration to the Trickle Configuration elink. All commands must be in the format de-
scribed in Section 8.4.12.6
8.4.12.11.4 |ISSUING SOFTWARE-GENERATED TRICKLE TRIGGER

8.4.12.11.1 SINGLE LCB ELINK. Issue trickle trigger to a single elink by writing ’1’ to TRICKLE_TRIGGER_-
PULSE configuration register.

8.4.12.11.2 CONTINUOUS TRICKLE CONFIGURATION. Send trickle configuration continuously by writing ’1’
to TRICKLE_TRIGGER_RUN configuration register.

8.4.12.11.3 ALL LCB ELINKS SIMULTANEOUSLY. Issue trickle trigger to LCB encoder elink by writing '1’ to
FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_PULSE.

8.4.12.11.4 ALL LCB ELINKS SIMULTANEOUSLY WITH PRE-BUFFERING.

1. Write 0 to GATING_BC_START and GATING_BC_STOP of each elink to be triggered
Write ’1’ to FELIX register GLOBAL_STRIPS_CONFIG.TTC_GENERATE_GATING_ENABLE
Write ’1’ to FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_PULSE

Wait a few milliseconds for the encoded frames to buffer

a &> w0 D

Write '0’ to FELIX register GLOBAL_STRIPS_CONFIG.TTC_GENERATE_GATING_ENABLE to issue the com-
mands

8.4.12.11.5 TRICKLE TRIGGER DURING SPECIFIED BC INTERVAL

1. Write the first BCID of the allowed interval into GATING_BC_START

2.
3.
4.

Write the last BCID of the allowed interval into GATING_BC_STOP
Write '1’ to GATING_TTC_ENABLE to enable BC gating

Write ’1’ to TRICKLE_TRIGGER_RUN to start trickle configuration

8. Detailed Functional Description and Specification Page 80 of 138

w1 8.4.12.12 LATENCY
1832 e TTC: Fixed 10 BC latency

1833 e Bypass: Fixed TBD BC latency (when not pre-empted by TTC)
1834 e Elink decoder: Variable 16—20 BC latency (when not pre-empted)

1835 o Trickle: ~36 BC after readout enabled (empty LCB frame buffer, GATING_TTC_ENABLE=0)

ws 8.4.12.13 ESTIMATED RESOURCE USAGE

Resource E-Group | IpGBT link | 24 IpGBT links | % (XKCU115)
LUTs 475 1900 45600 7%

Flip-Flops | 837 3348 80352 6%

Block RAM | 17.5 70 1680 78%

Table 8.25: Resource consumption of LCB encoder module.

FELIX Phase-ll firmware specifications: 8.4 Encoding May 7, 2021 - Version 0.87

e 8.4.13 |ITK STRIPS R3L1 ENCODER T THB

we 8.4.13.1 INTRODUCTION

1830 Strips R3L1 encoder facilitates control of R3L1 link of ITk Strips modules. The module processes R3 and L1
10 hardware triggers, and inserts user-encoded R3L1 frames into the data stream.
1841 The functional diagram of R3L1 encoder module is presented on Figure 8.39.

8. Detailed Functional Description and Specification Page 82 of 138

uoneosiioads pue uonduossq [euonound pajieiaq '8 S

8¢l Jo £8 abed

Frame synchronizer

BCRin

R3L1 frame start pulse

Configuration registers:

FRAME_PHASE

L1 Frame FIFO

R3_L1 scheduler

TTC Phase Il

BCR L1 Frame generator

L1A trigger Trigger in

LO tag LO tag
FIFO out
Configuration registers:
L1_ENABLE

RolE R3 Frame generator

R3 trigger Trigger in

Module mask Module mask in

LO tag LO tag

FIFO out

» FIFO in —>
FIFO out _|—>
>

Width = 7 bits
Depth = 8 frames —>

R3L1 frame start pulse
L1 frame in

R3 frame in

elink frame in

Encoded R3L1 frame

R3L1 link

data out

R3 Frame FIFO

Configuration registers:

R3_ENABLE

Bypass frame
aggregator

FromHost elink

R3L1 command

FIFO in

A\ 4

FIFO out

Width = 12 bits
Depth = 8 frames

6b8b software-encoded
R3L1 frames

FIFO 16 bit out

» FIFO 8 bit in

All modules are synchronous to 40 MHz BC clk

FromHost elink

Configuration storage

R3L1 configuration

Figure 8.39: Functional diagram of ITk Strips R3L1 Encoder module.

Y

FIFO in (commands)

LCB configuration

Buipooux g :suoneoyioads aremwill ||-eseyd X134

=
o
<
~
N}
(=]
N
—
.
&
X
@,
5
3
o
©
~N

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

FELIX Phase-ll firmware specifications: 8.4 Encodi May 7, 2021 - Version 0.87

Byte\Bit | 7 | 6 | 5 | 4 | 3] 2] 1] o0
0 0x10

1 Data [15:8]

2 Data [7:0]

3 Register address

Figure 8.40: R3L1 link configuration command format.

Address Name #bits | Description

0x00 FRAME_PHASE 2 Determines R3L1 frame phase with respect to
the TTC BCR signal

0x01 L1_ENABLE 1 Allows processing of L1 signals from the TTC
system

0x02 R3_ENABLE 1 Allows processing of R3 signals from the TTC
system

Table 8.26: R3L1 link configuration registers.

8.4.13.2 CONFIGURATION STORAGE SUBMODULE

This submodule stores and updates the R3L1 link configuration registers. Please note that these registers
are separate and independent from the FELIX register map. In the default configuration after FELIX power-on
all registers are set to zero. The module can be returned to the default configuration at any time by disabling
and re-enabling the R3L1 configuration elink. The configuration registers can be updated by issuing the
“configure” command via the R3L1 configuration elink. This is the only valid command for the configuration
elink.

8.4.13.2.1 CONFIGURATION COMMAND. Configuration commands update R3L1 configuration registers
given the data and the register address. (Fig. 8.40). The corresponding FromHost elink IDs are listed in
Table 8.23). The configuration registers of the R3L1 encoder are listed in the Table 8.26. Please note that
although the data width in the “configure” command is always 16 bits, many configuration registers only use
a few least significant bits (indicated by the #bits column in Table 8.26).

Whenever a configuration register is mentioned in this section, it refers to the local R3L1 encoder config-
uration storage register, unless explicitly specified as a FELIX register.

8.4.13.3 FRAME SYNCHRONIZER

This submodule determines the phase of R3L1 frame, which is configurable via FRAME_PHASE register. The
frame phase is locked to TTC BCR signal in order to facilitate synchronization of all ITk Strips links.

8.4.13.4 R3 AND L1 FRAME GENERATORS

R3 and L1 Frame modules generate R3 and L1 frames in response to the corresponding hardware signals.
Generation of either frame must be enabled by setting registers L1_ENABLE or R3_ENABLE to '1’.

8.4.13.5 R3 AND L1 FRAME FIFOs

These FIFOs stores contents or either R3 or L1 frames. Default FIFO depth is 16 frames.

8. Detailed Functional Description and Specificatio Page 84 of 138

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

May 7, 2021 - Version 0.87

zzzzzzzzzzz

8.4.13.6 BYPASS FRAME AGGREGATOR

Bypass frame aggregator forms 16-bit R3L1 frames from 8-bit elink data and forwards them to frame sched-
uler. Since bypass frames are not processed by the encoder logic, it is user’s responsibility to ensure that
the frames are valid 6b8b encoded data. The odd-count elink bytes becomes MSB, and even-count bytes be-
come LSB of R3L1 frames. For the purpose of backwards compatibility with phase1 firmware, bypass frame
aggregator removes zero bytes from the data stream.

Remark 8.10: Zero bytes

Bypass frame aggregator removes all zero bytes from the data stream.

8.4.13.7 R3L1 SCHEDULER

This module prioritized R3L1 commands according to their source, merges them into a single data stream,
and sends them to the front end. The module encodes R3L1 frames into 6b8b as needed.
Overview of the scheduling algorithm:

1. Send R3 frame if available
Else send L1 frame if available

Else send bypass frame

A @D

Else send an IDLE frame

8.4.13.8 LATENCY
e R3: fixed 13 BC latency
e L1: fixed 13 BC latency (when not pre-empted by R3)
e Bypass: Fixed 10 BC latency (when not pre-empted by R3 or L1)

8.4.13.9 ESTIMATED RESOURCE USAGE

Resource | E-Group | IpGBT link | 24 GBT links | % (XKCU115)
LUTs | 141 564 13536 2%
Flip-Flops | 261 1044 25056 2%
Block RAM | 1 4 96 4%

Table 8.27: Resource consumption of R3L1 encoder module.

ATLAS 8. Detailed Functional Description and Specification

zzzzzzzzzz

Page 85 of 138

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

FELIX Phase-ll firmware specifications: 8.4 Encoding = May 7, 2021 - Version 0.87

8.4.14 8B10B ENCODERC7771)

8.4.14.1 INTRODUCTION

he 8b10b Encoder has been extensively used in phase 1 FELIX in GBT mode. In Phase Il, the 8b10b encoder
has been decoupled from the E-proc, and retains in the generic E-Path in GBT and IpGBT mode firmware
flavours.

The tasks for the 8b10b encoder are:

e Encode the 8b10b stream to 8-bits + CharlskK
o Assertion of E-link BUSY in case of Xoff

e Framing: Convert Dataln, DatalnValid and EOP into Encoded byte + CharlsK

8.4.14.2 INTERFACES

Decoder8b10b
std_logic_vector(9 downto 0) std_logic_vector(7 downto 0)
Dataln 10b Data from GearBox Towards ByteToAxiStream DataOut
: std_logic std_logic .
DatalnValid Data validated by GearBox Towards ByteToAxiStream DataOutvalid
Bitslip std_logic std_logic EOP

For GearBox alignment End of chunk indicator
std_logic std_logic
2 pulses to realign if no K28.5 found Indicator for faulty input stream
std_logic

Elink has sent SOB, indicating busy.

AlignmentPulse FramingError

ElinkBusy

std_logic
Acitve high reset

reset

std_logic
clk40 BC clock for Dataln

Figure 8.41: The 8b10b Encoder entity.

8.4.14.2.1 INTERFACE TO AXISTREAMTOBYTE
The 8b10b encoder receives from the AxiStreamToByte:
e Dataln[7:0]: payload data;
e DatalnValid: indicates that payload data are valid;
e EOP_in: End Of Packet indicator.
The encoder sends towards the AxiStreamToByte:
e readyOut: flag signaling that the encoder is ready to accept new data; it corresponds to the m_axis
tready flag of the AxiStreamToByte.
8.4.14.2.2 INTERFACE TO ENCODINGGEARBOX
The 8b10b encoder receives from the EncodingGearBox:
e readyln : indicates that the GearBox is ready to accept new data from the encoder

The encoder sends towards the EncodingGearBox

e DataOut[9:0] : 8b/10b encoded data (always valid)

8. Detailed Functional Description and Specification Page 86 of 138

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

ATLASs FELIX Phase-ll firmware specifications: 8.4 Encoding C————""18 May 7, 2021 - Version 0.87

zzzzzzzzzzz

8.4.14.3 FUNCTIONAL DESCRIPTION
8.4.14.3.1 OVERVIEW

The 8b/10b encoder encodes idles/payload data into 8b/10b protocol. Payload data are transmitted through
packets; each packet starts with a SOP (Start of Packet) comma character and ends with a EOP (End of
Packet) comma character (refer to table 8.28). A minimum of two idle comma characters is sent after EOP.

In case of Xoff rising edge, the encoder transmits a SOB (Start of Busy) comma, and a EOB (End Of Busy)
comma is sent in case of Xoff falling edge. When special comma characters, such as SOP, EOP, or during
Xoff, the encoder stops the AxiStram fifo from sending payload data by asserting a low readyOut signal.

8.4.14.3.2 8B10B ENCODING

Comma characters:

Function | GBT mode | Strip/LCB | FEI4 | Meaning

Comma | K28.5 K28.1 K28.1 | Idle character

SOP K28.1 K28.7 K28.7 | Start of chunk / packet
EOP K28.6 K28.5 K28.5 | End of chunk / packet
SOB K28.2 N/A N/A Start of busy

EOB K28.3 N/A N/A End of busy

Table 8.28: Comma characters with a special meaning in different firmware flavours.

The functional description of the 8b10b encoder itself, converting a 10b word into 8 bit + CharlsK is well
defined in other literature, and the code has been implemented in phase 1 FELIX.

8.4.14.4 CONFIGURATION

The meaning of the different comma characters in table 8.28 can be configured based on the FIRMWARE_-
MODE generic at build time. It is not foreseen at the moment to make a runtime configurable option for the
8b10b encoder.

8.4.14.5 LATENCY

The 8b10b encoder has a latency of 1 or 2 clock cycles (25 ns). However, it must be taken into considera-
tion that the readyl/n signal from the GearBox plays a crucial role into determining the actual latency of the
encoding block.

8.4.14.6 ERROR HANDLING

There is no error handling within the 8b/10b Encoder block. All payload data from the AxiStreamToByte are
considered valid.

8.4.14.7 ESTIMATED RESOURCE USAGE

The resource usage will be estimated for the complete GBT Egroup and the complete encoding block per
firmware mode.

,1.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 87 of 138

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

FELIX Phase-ll firmware specifications: 8.4 Encoding = May 7, 2021 - Version 0.87

8.4.15 HDLC ENCODER O™

8.4.15.1 INTRODUCTION

The HDLC Protocol [9] is used by the GBTx chip, to configure the chip itself through the Internal Control (IC)
E-link, and to communicate with the GBT Slow Control Adaptor (GBT-SCA) over the External Control (EC)
E-Link or any other 80 Mb/s E-link of the GBT or IpGBT.

8.4.15.2 INTERFACES

EncoderHDLC
std_logic std_logic_vector(1 downto 0)
Enableln Enable encoder Towards ELink DataOut
Dataln std_logic_vector(7 downto 0)

8b Data from AxiStreamtoByte

: std_logic
DatalnValid Data validated by AxiStreamtoByte

- std_logic
EOP_in End of Packet from AxiStreamtoByte
std_logic

m_axis_tready toward AxiStreamToByte

readyOut
rst P std_logic

std_logic
clk40 ’ BC clock

HDLC_IDLE_STATE :std_logic_vector(7 downto 0) := (others=>"1")
for EC: OX7F, for IC: OXFF

.

Figure 8.42: The HDLC encoder entity.

8.4.15.2.1 GENERICS
e HDLC_IDLE_STATE: The byte that is clocked out on IDLE, for IC E-Links this is set to OxFF, for EC
(GBT-SCA) E-Links this should be set to 0x7F.
8.4.15.2.2 INTERFACE FROM AXISTREAMTOBYTE

The signals that connect the HDLCEncoder to AxiStreamToByte directly translate to AXI Stream signals,
however multiple encoders (8b10b, direct) are implemented within one E-Path, so there may be connection
logic in between ByteToAxiStream and EncoderHDLC.

e Dataln: Carries a data byte. Equivalent to s_axis_tdata.
e DatalnValid: Marks that Dataln is valid. Equivalent to s_axis_tvalid.
e EOP_in: Marks the last data byte of a chunk. Equivalent to s_axis_tlast.

e readyOut: Encoder is ready to accept the next data byte. Equivalent to s_axis_tready.

8.4.15.2.3 INTERFACE TO GBT/LPGBT E-LINK

The 2-bit port DataOut can be directly connected to the 2 bits of an EC or IC E-Link of the GBT or IpGBT
frame, it bypasses the EncodingGearBox because only 2-bit E-Links are supported for HDLC. The Encoding
Epath may contain additional multiplexing logic depending on the configuration.

8. Detailed Functional Description and Specification Page 88 of 138

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

8.4.15.3 FUNCTIONAL DESCRIPTION

patain(7-0] 70 [X o1 X 02 X 03 V7777777777777 777777777777
DatalnValid / \
readyOut [\ [\ [\ [\

€or_in 7000\ 7727777727777 7777

(RTIR Y, S0 63 G0 €1 6B &1 63 £ 3 G5 A1 €3 §5 5 @0 G0 G5 ED EE G0 &1 G0 ED IS G0 &N ED FD E D G0 € 7/
Figure 8.43: The HDLC encoder waveform.

The HDLC decoder is a shift register that shifts out 2 bits at a time. Data is sent out LSB first, for the E-Link

bits (DataOut) the LSB is transmitted at bit 1, bit 0 is the second bit. The serializer process has a bitstuffing

functionality, if 5 consecutive ones are detected, a '0’ inserted into the output data. Before and after a data

frame, a FLAG is inserted. On IDLE, the ERROR flag is sent out.

Transmitting the first byte takes two times the time of the next bytes, because the FLAG needs to be sent
out first before readyOut can be asserted. See for the timing diagram Figure 8.43.

8.4.15.4 CONFIGURATION

The only configuration possible is to enable the entity by setting Enableln.

8.4.15.5 STATUS INDICATORS

The HDLC Encoder has no status indicators.

8.4.15.6 LATENCY

A byte takes 4 clockcycles to send out. The first FLAG is shipped out the clock cycle after DatalnValid is
asserted, however it will take 8 clock cycles to clock out this first byte.

8.4.15.7 ERROR HANDLING
There is no error handling built into the HDLC Encoder.

8.4.15.8 ESTIMATED RESOURCE USAGE

The resource usage of the complete Encoding Epath for GBT will be covered in section 8.4.

/.\1-Z LA!S 8. Detailed Functional Description and Specification Page 89 of 138

1972

1973

1974

1975

1976

FELIX Phase-ll firmware specifications: 8.4 Encoding = May 7, 2021 - Version 0.87

8.4.16 DIRECT MODE E-LINK ENCODERC 7771}

8.4.16.1 INTRODUCTION

Direct encoding is implemented by omitting the encoder. This is done by connecting AxiStreamToByte directly
to the EncodingGearBox.

Remark 8.11: Direct mode

Direct decoding (no encoding) should not be used by any front-end, and is only included for debugging
purposes. If no encoding technique is used on top of an E-Link, there is no way for the decoder to
distinguish the byte boundary, and where a frame (chunk) starts or ends.

8. Detailed Functional Description and Specification

Page 90 of 138

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

ATLASs FELIX Phase-ll firmware specifications: 8.4 Encoding C————""18 May 7, 2021 - Version 0.87

zzzzzzzzzzz

84.17 TTC ENCODERCX™™™ 710

Remark 8.12: TTC for phase I

TTC-PON has been mentioned as the replacement for TTC in Phase Il. The protocol is not yet final
and no functional TTC-PON systems are currently available. Therefore the TTC system as defined in
Phase | FELIX will be described in this section.

8.4.17.1 INTRODUCTION

For Phase 1, the standard encoded LHC TTC [12] signal will arrive to FELIX via a standard TTC fiber (multi-
mode, ST connector) and will be decoded by FPGA firmware that receives the separated clock and data from
the TTC FMC card on the FLX-709 (the Mini-FELIX), or by equivalent circuitry on the FLX-711/FLX-712 FPGA
card. For Phase 2, the Phase 1 functionality will be implemented as well on IpGBT E-links and extended where
needed. TTC data will be stuffed, on each BC clock, with fixed latency, directly into all output E-links to the
Front End with the “TTC” attribute.

8.4.17.2 INTERFACES

TTCIn std_logic_vector(10 downto 0) std_logic_vector(MAX_OUTPUT-1 downto 0)
From TTC wrapper, through TTC Delay wrapper + ExtendedTestPulse Connect to MUX towards Elink
: std_logic_vector(2 downto 0)
'I‘I'COptlon Selects the TTCoption to be encoded on the Elink

ELinkOut

std_logic

Encoder enable setting

Enable

std_logic
clka0 40 MHz BC clock

LMAX_OUTPUT: integer := 8

Maximum ELink width supported by this encoder

Figure 8.44: The TTC Encoder entity.

Unlike other encoders, the TTC encoder will not have an AXI4-stream interface, and also contains no FIFO. A
strict requirement for TTC distribution is that the latency will be fixed. The data to be encoded does not arrive
from the usual path as in other encoders, the data encoded arrives on TTCIn and the bits are described in
Table 8.29.

8.4.17.3 FUNCTIONAL DESCRIPTION

Each E-link can be configured to choose bits from the possible bits shown in Table 8.29, where Brcst[7:2] are
the TTC user-defined broadcast command bits. The number of bits chosen, two, four or eight, must match
the width of the TTC E-link.

Table 8.29: Below is the list of bits decoded from the TTC system that can be chosen to be sent on an E-link
defined as a TTC E-link..

Brc_t2[1] Brc_t2[0] Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR B-chan L1A

8.4.17.3.1 TTC DELAY AND EXTENDED TESTPULSE

Inside the Encoding block, at link scope, an optional delay of 0 to 15 BC clocks can be added to the TTC
system, before the bits are distributed to the TTCEncoder entity. Additionally one signal is added to the bits to

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 91 of 138

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

FELIX Phase-ll firmware specifications: 8.4 Encod | er———" May 7, 2021 - Version 0.87

choose from; the Extended testpulse (TP). The Extended testpulse is a copy of Brc_d4[0] which is stretched
from 32 40 MHz BC clock cycles.

The result is a delayed version of the bits in Table 8.29 with one extra bit added for the test pulse. The
delayed bits are described in Table 8.30

Table 8.30: Below is a copy of the bits found in 8.29 but extended with the external testpulse (TP), and with
an adjustable delay (0-15 BC).

TP Brc_t2[1] Brc_t2[0] Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR B-chan L1A

8.4.17.3.2 TTC OPTIONS

Table 8.31 shows the implemented TTC data formats for Front ends. TTC option 5 was a special option im-
plemented in Phase | LTDB mode only, where a BCR would be delayed by 0.5 BC (12.5 ns). This functionality
will be implemented as a configuration in Phase II.

Table 8.31: Possible TTC options (Brc_d4[3:0] and Brc_t2[1:0] are the TTC user defined broadcast command
bits. Bit0 is the first bit transmitted out..

E-link option bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 2 bits B-chan L1A

1 4 bits B-chan ECR BCR L1A

2 8 bits B-chan Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR L1A

3 8 bits L1A Brc_d4[1] TP ECR OCR* LOA* Brc_d4[3] Brc_d4[2]
4 4 bits BCR BCR BCR BCR

5 (LTDB) 2 bits BCR BCRd*

In Table 8.31, 3 bit fields are listed (marked with *) that are not directly input to the TTC Encoder:
e OCR: This bit is set 1 BC clock after BCR, and stretched for a second clock when brc_t2[1] is set.
e LOA: In phase 1 TTC there is no bit for LOA, therefore a copy of L1A is used instead.

e BCRd: A 1 BC clock delayed version of BCR, to allow a 12.5ns shift in time of the BCR distribution (for
LAr LTDB mode only)

For Options 0, 1 & 2, the destination must decode the B-channel, one bit per 40 MHz clock. Firmware is
available. It may be that 4 or 8 bits of TTC data need to be sent when, due to E-group contraints, only 2 or
4-bit E-links are available. In this case, 2 or 4-bit options it could be defined to send particular TTC bits, so as
to build 4 or 8-bit wide data from multiple 2 or 4-bit E-links. Note that:

e The E-link clock can be 40 MHz, but, for example, the 4-bit field can be transferred at 160 Mb/s if the
receiver generates a x4 multiple of the 40 MHz E-link clock.

o Typically, the reverse direction of the event data E-link can be used for TTC.

e Unlike 8b/10b encoding, the TTC options above are not DC-balanced; TTC E-links must not be AC-
coupled.

e Transparent upgrade to the Phase2 TTC system will be possible by changing the mezzanine board on
the FELIX FPGA PCle card

e The case of a FELIX with only TTC input and only TTC output, i.e. a TTC distributor, is needed by the
LAr LTDB.

8. Detailed Functional Description and Specificati Page 92 of 138

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

ATLAs FELIX Phase-Il firmware specifications: 8.4 Encoding CC————B May 7, 2021 - Version 0.87

[[[[[[[[[[

As an example, the TTC formats required by the New Small Wheel are described. The first line of Table 8.32
shows the format of the TTC words sent to the NSW Readout Controller on every bunch crossing. It provides
8 bits and requires a 320 Mb/s E-link. NSW uses Option3 in Table 8.31 and assigns the meanings to the
various broadcast bits as shown in Table 8.32. The second line shows the format sent to the NSW ART
trigger ASIC on a 160 Mb/s E-link. Only BCR is required; it is repeated four times so that it is present for one
complete BC clock.

Table 8.32: Line1: Format of the 8-bit TTC word sent to the NSW Readout Controller on every bunch
crossing. “OCR” is the Orbit Count Reset, “ECOR” is the reset for the Level-0 ID and “reset” is a Readout
Controller soft reset. Note that bits 7 and6 are delivered by the GBTx to the E-link in the bunch crossing
following the other six bits. See Figure 11 of[11]. ECOR and LOA, are reserved for Phase 2; for Phase 1,
FELIX sends ECR and L1A for ECOR and LOA.

Line 2: Format sent to the NSW ART trigger ASIC..

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Use: ECOR SCA reset LOA BCR+OCR ECR TestPulse SoftReset L1A
BCR BCR BCR BCR

Note that, to save bits, OCR is encoded on the BCR line: width of 1 BC = BCR, width of 2BC = OCR.
Because BCR does not reset the BCID counter, but rather loads a configurable offset, OCR means reset
the orbit counter on the next rollover of the BC counter. The double width BCR implies that a BCR is also
performed, on the first BC of the pair. A double-width BCR is scheduled by sending Brcst7, otherwise unused
by NSW, to indicate that the next BCR should be double-width. Note that ECOR is not needed in a single level
trigger scheme. The SCA_reset, bit 6 of the TTC word, allows resetting the SCA via the TTC path.

Compatibility with the legacy TTCrx ASIC: For the TTCrx ASIC, broadcast bits Brcst[1:0] (BCR and
ECR) were strobes with one BC duration, whereas Brcst[7:2] were latched until a subsequent broadcast reset
them. For FELIX, all broadcast bits are strobes. FELIX will be updated to provide a strobe versus latch option
for Brest[7:2].

8.4.17.4 CONFIGURATION

The TTC Encoder has two configuration inputs:
e TTCOption[2:0] which directly translates to the TTC encoding option described in Table 8.31

e Enable to enable the TTC Encoder entity.

8.4.17.5 STATUS INDICATORS

The TTC Encoder has no status indicators.

8.4.17.6 LATENCY

The Latency from TTCIn to ElinkOut is typically 1 BC clock (25ns). OCR and BCRd have one extra BC delay
by design. At E-Group level, the E-Path multiplexer adds one additional BC clock of latency.

8.4.17.7 ERROR HANDLING

The TTC Encoder has no error handling.

8.4.17.8 ESTIMATED RESOURCE USAGE

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 93 of 138

FELIX Phase-ll firmware specifications: 8.4 Encoding May 7, 2021 - Version 0.87

»z 8.4.18 ENCODER FOR 25 GB/S LINKS EEEENNNNN

s 8.4.18.1 [INTRODUCTION

s 8.4.18.2 INTERFACES

w5 8.4.18.2.1 OVERVIEW

ws 8.4.18.2.2 INTERFACE TO COMPONENT 2
w7 8.4.18.3 FUNCTIONAL DESCRIPTION

ws 8.4.18.4 CONFIGURATION

wss 8.4.18.5 STATUS INDICATORS

w0 8.4.18.6 LATENCY

w1 8.4.18.7 ERROR HANDLING

xez 8.4.18.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification Page 94 of 138

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

[[[[[[[[[[

FELIX Phase-ll firmware specifications: 8.4 Encoding CC————"18 May 7, 2021 - Version 0.87

8.5 LINK WRAPPERCL i}

8.5.

1 INTRODUCTION

As shown in Figure 8.1, the Link Wrapper instantiates the high speed transceivers (Xilinx GTH/GTY) and
interfaces with their high speed serial links and reference clocks on one side.

The basic link encoding and decoding is also performed inside the Link Wrapper. The basic protocols that
are encoded and decoded inside the link wrapper are:

8.5.

GBT: This protocol will be encoded and decoded, data will be (de)scrambled and forward error correc-
tion will be performed. Delivered to the the Encoding / Decoding blocks are ready to use Elinks with all
their bits clocked at 40 MHz BC Frequency.

IpGBT: This protocol will be encoded and decoded, data will be (de)scrambled and forward error cor-
rection will be performed. Delivered to the the Encoding / Decoding blocks are ready to use Elinks with
all their bits clocked at 40 MHz BC Frequency.

FULL: 9.6Gb/s 8b10b encoded data will be decoded as 32b + CharisK indication.

25Gb/s links: Several subdetectors have expressed their interest to interface FELIX with 25Gb/s links.
The protocol for this type of link has not been defined yet, but candidates are Aurora and Interlaken.
Encoding and Decoding of this link will not happen inside the link wrapper, the link wrapper will deliver
either 64b66b or 64b67b encoded frames to the Encoding / Decoding blocks.

10Gb/s links: The L1Track group has expressed their interest in 10Gb/s links. The protocol for this link
has not yet been defined.

2 INTERFACES

This first two tables should not be in this section (8.6), one tables to be added for GBT mode.

8.5.2.1 OVERVIEW

User Data IC EC
Bandwidth [Mb/s] 80 160 320 80 80
Maximum number 16 8 4 1 1
HDLC TBD TBD TBD v v
8b/10b TBD TBD TBD | TBD TBD
6b/8b TBD v TBD | TBD TBD
TTC Trickle merge TBD TBD TBD | TBD TBD
Endeavor (Strip) TBD TBD TBD | TBD v
Pixel custom protocol | TBD v TBD | TBD TBD

Table 8.33: From-host eLink Groups..

Bandwidth [Gbps] 5.12 10.24

FEC coding FEC5 FEC12 FEC5 FEC12

Bandwidth [Mbps] | 160 | 320 | 640 | 160 | 320 | 640 | 320 | 640 | 1280 | 320 | 640 | 1280
Maximum number 28 14 7 24 12 6 28 14 7 24 12 6

HDLC TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD
8b/10b TBD | TBD | TBD | TBD | TBD | TBD | TBD v TBD | TBD | TBD | TBD
Aurora TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD | TBD v

Table 8.34: To-host eLink Groups..

ATLAS

;;;;;;;;;;

Z , 8. Detailed Functional Description and Specification Page 95 of 138

FELIX Phase-Il firmware specifications: 8.5 Link Wrapper May 7, 2021 - Version 0.87

From-host
Data Rate [Gb/s] 2.56
Frame [bits] 64
Header [bits] 4
Coded header Yes
User field [bits] 36
FEC [bits] 24
User Bandwidth [GHZ] 1.44
Num. of eLinks groups [8 bit] | 4
eLinks bandwidth [MHz] 80/160/320
Num. of eLinks 16/8/4
EC bandwidth [MHZz] 80
IC bandwidth [MHZz] 80
Corrected [bits] 12
Efficiency (#data/#frame) 56%

Table 8.35: IpGBT From-host specification [13]..

8. Detailed Functional Description and Specification Page 96 of 138

To-host
Correction Scheme FEC5 FEC12
Data Rate [Gb/s] 5.12 10.24 5.12 10.24
Frame [bits] 128 2x128 128 2x128
Header [bits] 2 2+2 2 2+2
Coded header no no no no
User field [bits] 116 232 102 204
Code [bits] 10 20 24 48
User Bandwidth [GHZz] 4.64 9.28 4.08 8.16
Num. of eLinks groups [16 bit] 7 7 6 6
eLinks bandwidth [MHz] 160/320/640 | 320/640/1280 | 160/320/640 | 320/640/1280
Num. of eLinks 28/14/7 28/14/7 24/12/6 24/12/6
EC bandwidth [MHz] 80 80/160 80 80/160
IC bandwidth [MHZz] 80 80/160 80 80/160
Unassigned bits 0 4 2 8
Corrected [bits] 5 2x5 12 2x12
Efficiency 91% 91% 80% 80%

Table 8.36: IpGBT To-host specification for FEC5 and FEC12 decoding scheme [13]..

xs 8.5.3 FUNCTIONAL DESCRIPTION
oss 8.5.3.1

267 A wrapper shown in Figure 8.45 is provided to include the Xilinx transceiver and the GBT encoding and
2008 decoding modules.

GBT MODE WRAPPER

TxFrameCIki
TxWordCIk !

Ctrl

Enable

TxFrameClk i TxWordClk ! TxOutClk

RxFrameClk | RxWordClk

; RxOutClk
Figure 8.45: Block diagram for the GBT module in the link wrapper.
2089 The transceiver is configured as 4.8 Gbps for both directions. The GTH transceivers can be configured

2000 iN unit of one channel, which uses the CPLL in the transceiver, or be configured to in unit of one quad of
201 four channels, which uses the high quality QPLL in transceiver. The GBT encoding and decoding module are
202 based on the code from the CERN GBT group. It has the forward error correction (FEC) capability. Data is

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

FELIX Phase-ll firmware specifications: 8.5 Link Wrapper == May 7, 2021 - Version 0.87

scrambler before the FEC encoding in transmiter direction. In the receiver path, data is descrambled after the
FEC decoding. Some modifications [14] are done to reduce the latency, and to support the online GBT mode
switching between normal mode and wide-bus mode. The interface between GBT wrapper and the Central
Router will be 120-bit GBT data frame in the 40 MHz system clock which is recovered from TTC system.

8.5.3.2 LPGBT MODE WRAPPER

A wrapper is provided to include the Xilinx transceiver and the IpGBT encoding and decoding modules. The
IpGBT encoding and decoding modules [13], and the IpGBT emulator for the ASIC in front-end side are pro-
vided by the CERN GBT group. The PRBS test with 24-ch bidirectional IpGBT links between 2 FLX-712
cards are carried out with different line rates and FEC coding in Table 8.34. The Phase-Il firmware with IpGBT
wrapper has also been built for FLX-712, and been verified in the system integration between FLX-712 and
the ATLAS Phase-2 strip stave 8.46.

Figure 8.46: Integartion test between FLX-712 and ATLAS Phase-II Strip Stave.

8.5.3.3 FULL MODE WRAPPER

A wrapper for the Xilinx GTH serializer and deserializer cores is provided. Such a wrapper for Altera would
have to be provided by someone familiar with Altera FPGAs. The Xilinx GTH transmitter and receiver are
configured to operate at a line rate of 9.6 Gb/s. Either QPLLs or CPLLs may be used. For Full mode, the GTH
will be operated in simplex mode, i.e. transmission (Tx) or reception (Rx). The GTH reference guide [15] gives
details about the serializer for Xilinx 7 series FPGA devices. As shown in Figure 8.47, the GTH transmitter and
receiver will be operated at 240 MHz x 32-bits. The IDLE symbol (K28.5) is defined as the comma character,
i.e. the symbol that defines the 32-bit alignment in FELIX MGT receiver. The packet is assembled by the
stream controller in multiples of 32-bit words. To insert a K-character (SoP, EoP, Idle, BUSY-ON, BUSY-OFF)
in the stream, the low byte is set to the K-character 8-bit code and the lowest of the four Kchar_flag bits is
set to 1 (See Figure 8.47). The receiver re-assembles the 32-bit words and flags the K-characters. On the
receiver side, at start-up and if alignment is lost, the SoP will be pushed later in the output stream so that it
becomes the low byte in the next 32-bit word.

8. Detailed Functional Description and Specification Page 98 of 138

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

TxDATA: RxDATA:

240MHz 240MHz
x32 bit x32 bit

GTH _ GTH

Transmitter Receiver

(Tx 8b10b (Rx 8b10b

szg‘h}’ﬁgag‘ enabled) enabled)
x4 bit

/ KC_FM_GTH_CFG_V1

Figure 8.47: Block diagram for the serializer and deserializer modules for Full mode.

8.5.4 CONFIGURATION

A unified firmware block Link Wrapper is put in the top level HDL file. For different firmware modes, the
building script will configure the Link Wrapper before synthesis. Meanwhile various of reset ports of the Xikinx
transceivers and the protocol encoding, decoding modules are connected to FELIX control registers. After
the firmware loading, the software can do the online reset and configuration to the Link Wrapper.

8.5.5 STATUS INDICATORS

Some status registers from the link wrapper are connected to the FELIX monitoring registers. For example,
the TX, RX reset done signals, the PLL, CDR lock status, 8b10b flags of the transceivers, and the link locking
flag, error flag and other status signals from the GBT, IpGBT modules. Via the FELIX registers, software
will be able to monitor the status of Link Wrapper. The software will be able to monitor the status, reset
or reconfigure the Link Wrapper. Meanwhile finite state machine (FSM) inside the Link Wrapper will keep
checking the link status and carry out the automatic reset or bit-slip procedures, until the link is locked. There
will be two registers for GBT and IpGBT link status. One for the short-term status monitoring, one for the
long-term status monitoring. The locking status read out by FELIX software and the FSM. For the latter, once
unlock status occurs, the lost of lock bit will be asserted, until manually clearance via software.

8.5.6 LATENCY

For GBT mode, some optimization was carried out for the GBT encoder. The Link Wrapper contributes about
60-81 ns, or less than 3.25 Bunch Crossings for the toFrontend (downlink) direction. A full chain latency
measurement was carried for Phase-I review in the past. For IpGBT mode, the CERN code will be used
directly, the latency mainly depends on the IpGBT protocol itself. A full chain latency test will need to be
carried out from the fiber from LTI, to the output elink of GBT ASic and IpGBT ASIC.

8.5.7 ESTIMATED RESOURCE USAGE

This may be removed form this section, since the resource usage of link wrapper should be much much less
than the elink handling in Central Router. A resource usage should be estimated from the top level.

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

FELIX Phase-ll firmware specifications: 8.5 Link Wrapper

8.6 ToOHOST DATA EMULATOR NN

8.6.0.1 INTRODUCTION

8.6.0.2 INTERFACES

8.6.0.2.1 OVERVIEW

8.6.0.2.2 INTERFACE TO COMPONENT 2
8.6.0.3 FUNCTIONAL DESCRIPTION
8.6.0.4 CONFIGURATION

8.6.0.5 STATUS INDICATORS

8.6.0.6 LATENCY

8.6.0.7 ERROR HANDLING

8.6.0.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 100 of 138

. 8.7 TTGC EMULATOR NN

2 8.7.1 INTRODUCTION
» 8.7.2 |INTERFACES

s 8.7.2.1 OVERVIEW

25 8.7.2.2 INTERFACE TO COMPONENT 2

»s 8.7.3 FUNCTIONAL DESCRIPTION

»% 8.7.4 CONFIGURATION

x» 8.7.5 STATUS INDICATORS

x0 8.7.6 LATENCY

xs 8.7.7 ERROR HANDLING

x 8.7.8 ESTIMATED RESOURCE USAGE

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

FELIX Phase-ll firmware specifications: 8.7 TTC Emulator

8.8 LEGAcY TTC WRAPPER NS

8.8.1 INTRODUCTION
TODO: Describe TTC BUSY wrapper

8.8.2 INTERFACES

8.8.2.1 OVERVIEW
8.8.2.2 INTERFACE TO COMPONENT 2

8.8.3 FUNCTIONAL DESCRIPTION
8.8.4 (CONFIGURATION

8.8.5 STATUS INDICATORS

8.8.6 LATENCY

8.8.7 ERROR HANDLING

8.8.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 102 of 138

. 8.9 LTI/TTC INTERFACEIEENNNNEED

ae 8.9.1 INTRODUCTION
277 TODO: Describe LTI TTC_P2P, see also p30, Table 2.2 of [16] interface

a 8.9.2 INTERFACES

2 8.9.2.1 OVERVIEW
20 8.9.2.2 INTERFACE TO COMPONENT 2

zo 8.9.3 FUNCTIONAL DESCRIPTION

ze 8.9.4 CONFIGURATION

x 8.9.5 STATUS INDICATORS

a 8.9.6 LATENCY

xs 8.9.7 ERROR HANDLING

x 8.9.8 ESTIMATED RESOURCE USAGE

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

FELIX Phase-ll firmware specifications: 8.9 LTI/TTC Interface

8.10 BUSY SELECTION IS

8.10.1 INTRODUCTION
TODO: Describe BUSY or / selector

8.10.2 INTERFACES

8.10.2.1 OVERVIEW
8.10.2.2 INTERFACE TO COMPONENT 2

8.10.3 FUNCTIONAL DESCRIPTION
8.10.4 CONFIGURATION

8.10.5 STATUS INDICATORS

8.10.6 LATENCY

8.10.7 ERROR HANDLING

8.10.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

May 7, 2021 - Version 0.87

Page 104 of 138

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

Z FELIX Phase-Il firmware specifications: 8.10 BUSY Selection May 7, 2021 - Version 0.87

8.11 CRToHoSsT: TOHOST OR UPSTREAM CENTRAL ROUTER
. .

8.11.1 INTRODUCTION

CRToHost, or the Upstream / ToHost Central Router is the block that takes AXI stream (axis32) data from
the several decoders. This data is formatted into blocks, see Section B.2.1. The AXI stream data enters the
CRToHost entity in the form of a two dimensional array of which the first dimension is the number of optical
links, the second dimension is the number of streams per link. This is usually the number of E-links on a GBT
or IpGBT link. For FULL mode the size of the second dimension is 1.

The data is demultiplexed, buffered and formatted into a 256b or 512b FIFO interface that is acceptable
for the Wupper ToHost DMA interface.

8.11.2 INTERFACES

8.11.2.1 OVERVIEW

axis_32_2d_array_type(0 to GBT_NUM-1,0 to STREAMS_TOHOST-1) std_logic_vector(NUMBER_OF_INTERRUPTS-1 downto 4);
2D array of AXI4Stream from Decoding Drives Wupper MSIX interrupts
axis_tready_2d_array_type(0 to GBT_NUM-1,0 to STREAMS_TOHOST-1) slv_array(0 to NUMBER_OF_DESCRIPTORS-2)
AXI4Stream handshake Connects to Wupper FIFO input
axis_tready_2d_array_type(0 to GBT_NUM-1,0 to STREAMS_TOHOST-1) std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)
Indicates that at least 1 block is in the FIFO FIFO programmable FULL
axis_32_array_type(0to 1) std_logic
Additional AXI4Stream (1D array) for TTC ToHost and BUSY ToHost Wwrite clock for Wupper FIFO (250 MHz)
axis_tready_array_type(0to 1) std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)
Handshaking FIFO write enable
axis_tready_array_type(0to 1) std_logic
Indicates that at least 1 block is in the FIFO FIFO reset
register_map_control_type

configuration registers

register_map_xoff_monitor_type

Monitor registers for XOFF

register_map_crtohost_monitor_type

Monitor registers for CRToHost

s_axis interrupt_call

s_axis_tready toHostFifo_din

s_axis_prog_empty toHostFifo_prog_Ffull

s_axis_aux toHostFifo_wr_clk

s_axis_aux_tready toHostFifo_wr_en

s_axis_aux_prog_empty toHostFifo_rst

register_map_control
register_map_xoff_monitor:

register_map_crtohost_monito

b, std_logic

aresetn l Active low reset

b, std_logic
clkao B 30 clock, for interrupts,

std_logic
clkaso b 50500 clock, for output FIFO interface
std_logic
aclk_tohost B> 20508 1 errace getermined by decoding
NUMBER_OF_DESCRIPTORS :integer =3
Determines number of output FIFOs
NUMBER_OF_INTERRUPTS :integer:= 8
Size of interrupt_call
GBT_NUM :integer:=1
First dimension of s_axis
toHostTimeoutBitn :integer:= 16
Determines maximum duration of timeout.
STREAMS_TOHOST :integer:= 1
Second dimension of s_axis
BLOCKSIZE :integer:= 1024
Size of a block in ToHost memory
CHUNK_TRAILER_32B:boolean := true
Use 32b data format
DATA_WIDTH :integer:= 256
Data width of FIFO towards Wupper. 512 for PCle Gend.

\.

Figure 8.48: CRToHost interface symbol.

8.11.2.2 INTERFACE FROM DECODING

The interface s_axis of the type axis_32_2d_array_type (a 2D array of axis_32_type), see listing 8.2. The input
s_axis and the handshake lines s_axis_tready are used to take data from the different protocol decoders.
Additionally, s_axis_prog_empty is required. This is a 2D array if std_logic with the same dimensions. It
should be connected to the prog_empty outputs of the axis fifo instances in the decoders, to indicate that at
least a full block of data is available inside the FIFO. This is used for the selection of the AXls mux, to assure
that a complete block can be sent out at once without stalling the MUX for other AXI stream inputs. The
size of s_axis and the corresponding handshake signals is (0 to GBT_NUM-1, 0 to STREAMS_TOHOST-1).

Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 105 of 138

2219

2220

2221

2222

2223

2224

2225

2226
2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241
2242

2243

2244

2245

2246

2247

2248

2249

2250

FELIX Phase-ll firmware specifications: 8.11 CRToHo:! C——TWMay7) 2021 - Version 0.87

GBT_NUM is the number of optical links connected to the the Decoder in the endpoint. If the FELIX firmware
has two PCle endpoints, this size will be half the total number of optical links available. The second number
STREAMS_TOHOST is the number of E-Links per optical link. This depends on the firmware flavour and is
defined at build time.

An additional input channel with a different dimension, but otherwise the same functionality is available
as s_axis_aux. This link is internally added to the array of s_axis, but is connected to the virtual E-Links:
TTCToHost 8.3.18 and BUSYXOFF ??.

type axis_32_type is record

tdata : std_logic_vector (31 downto 0); ——/ Data bus

tvalid : std_logic; — ! Valid data when tready is ’'1’
tlast : std_logic; —— 1 Last cycle of a chunk

tkeep : std_logic_vector(3 downto 0); ——1 Serves as byte enable

tuser : std_logic_vector(3 downto 0); ——1 Meaning of tuser bits:

-1 3: Truncation/FIFO full
—1 2: FrontEnd BUSY
—1 1: Chunk error
— 1 0: CRC error
end record;

type axis_32_array_type is array (natural range <>) of axis_32_ type;
type axis_32_2d_array_type is array (natural range <>, natural range <>)
of axis_32_type;

Listing 8.2: A snippet from axi_stream_package.vhd showing the 32b axi stream type.

8.11.2.3 INTERFACE TO WUPPER

The data output of CRToHost is an interface to the input of one or multiple FIFO’s. The data width of the
interface (256 or 512 bits) is determined by the generic DATA_WIDTH. The number of FIFO interfaces is de-
termined by the generic NUMBER_OF_DESCRIPTORS-1, One is subtracted, because the last of descriptor
in Wupper (see also section 8.13) is used for communication in FromHost direction, towards CRFromHost
(see 8.12)). The FIFO interface consists of toHostFifo_din, toHostFifo_prog_full, toHostFifo_wr_clk, toHost-
Fifo_wr_en and toHostFifo_rst. The signal names can be connected to the corresponding interface ports of
Wupper. Apart from the FIFO interface, CRToHost can also generate MSIX interrupts using interrupt_call.

8. Detailed Functional Description and Specification Page 106 of 138

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

8.11.3 FUNCTIONAL DESCRIPTION

CRToHost

CRToHostdm

12x42XAXIs32

s_axis

s_axis_tready ToHostAxiStreamController
s_axis_prog_empty a2 L] | 256b /512b
%87 toBlock oHost Data
A
1
stream timeout
select
s_axis_aux ——r— CRToHost
s_axis_aux_tready e |XOFFI PCIeManae

S_axis_aux_prog_empty
aclk_tohost > %

aresetn ——3 | CRResetManager
clk4d0 —+>>
clk250 toHostFifo_wr_clk
\

Figure 8.49: CRToHost Block Schematic.

8.11.3.1 CRToHoOSTDM

For every item in the first dimension of s_axis (GBT_NUM), usually the number of optical links, one CRTo-
Hostdm is instantiated. This is a wrapper for the ToHostAxiStreamController, the Channel FIFO and the XOFF
mechanism.

8.11.3.1.1 ToHOSTAXISTREAMCONTROLLER

The ToHostAxiStreamController Consists of the 4 following processes, that work together to convert AXI
streams into the FELIX block format see Appendix B.2.1.

e Stream Select looks at the s_axis_prog_empty bits which show whether enough data resides in one
of the AXI stream FIFOs, inside the decoders. As a second priority, a stream can be selected that has
_tvalid set to ’1’, after a timeout occurs. This way a partial block can be read out.

e AXI Stream MUX is a clocked mux that multiplexes the array of axis_32_type records into a single AXI
stream, selected by Stream Select.

e To Block takes the seleced AXI stream record and converts this into the FELIX block format (see
Appendix B.2.1), 32 bit at a time. It generates a 32b data output, a FIFO write enable and responds
to the FIFO full handshake line to pause the operation. Exactly on the beginning of every block, a 32
bit block header will be generated, and at the end of a chunk (s_axis.tlast = ’1’) a chunk trailer will be
added to the data stream. If a chunk is still in the process of being moved out towards the channel FIFO,
but the block is at it's end, an intermediate subchunk trailer will be added, indicating the length of the
partial chunk and a flag that the chunk is partial. At the end of a block, the AXI mux may select another
AXI stream, so the end subchunk will be sent out later, when the corresponding AXI stream is selected
again.

/.\1-z |_ A!S 8. Detailed Functional Description and Specification Page 107 of 138

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

FELIX Phase-ll firmware specifications: 8.11 CRTCc C——TWMay7) 2021 - Version 0.87

e Timeout Mechanism Counts up to the value of the register TIMEOUT_CTRL.TIMEOUT and incre-
ments a 2-bit counter for every AXI stream if the corresponding tvalid is '1’, but prog_empty is also
1’ indicating a partial block. A counter value of 2 means that the corresponding AXI stream may be
selected by Stream Select and the data copied into the channel FIFO.

8.11.3.1.2 CHANNEL FIFO

The channel FIFO is an assymetric FIFO, matching the 32 bit output of ToHostAxiStreamController to the
width of the Wupper input FIFO (256 bit for PCle Gen3x8, 512 bit for PCle Gen4x8). The depth of the FIFO
in bytes is set to fit exactly to blocks.

8.11.3.1.3 XOFF MECHANISM
8.11.3.2 CRToHosT PCIEMANAGER

There is one CRToHost PCleManager generated for every ToHost FIFO / descriptor in Wupper, as well as
one CRToHost MUX. The CRToHost PCle Manager reads the programmable empty flags from the channel
FIFOs to determine whether at least one block of data is available inside the FIFO, and whether the Wupper
FIFO has empty space to store that block. If these conditions are met, the select signal for the CRToHost
MUX is set and the read enable for the channel FIFO, as well as the write enable for the Wupper FIFO will be
asserted for exactly the number of cycles needed for one block.

8.11.3.3 CRToHoOsT MUX
The CRToHost MUX is selected by the CRToHost PClemanager and multiplexes the number of input channels
(GBT_NUM+1 for the AUX channel) into a single FIFO data port towards Wupper.

8.11.3.4 CRRESETMANAGER

The CRResetManager synchronizes the incoming reset to clk40 with two extended reset pulses:

e Logic reset: This reset holds for 15 clocks after the release of the incoming reset (aresetn), this reset is
used to reset all logic in the ToHostAxiStreamController, XOFF, CRToHostMUX and CRResetManager.

e FIFO reset: This reset holds for 8 clocks after the release of aresetn, and is used to reset the channel
FIFO as well as the Wupper FIFO of which the reset is generated from within the CRToHost port. This
reset clears earlier, because the FIFOs take a few clock cycles to become active after a reset.

8.11.4 CONFIGURATION

CRToHost does not have many runtime configuration options. It assumes that the decoders, feeding data to
the AXI stream interfaces can be enabled / disabled through configuration registers. What is left to configure
is:

e XOFF_FM_CH_FIFO_THRESH_LOW: The deassertion watermark level of the channel FIFO for which
XOFF will be released

e XOFF_FM_CH_FIFO_THRESH_HIGH: The ssertion watermark level of the channel FIFO for which
XOFF will be asserted

e TIMEOUT_CTRL.TIMEOUT: Number of BC clock cycles after which a timeout will occur in case a partial
block resides in an E-Path FIFO.

e TIMEOUT_CTRL.ENABLE: Enable the timeout mechanism.

8. Detailed Functional Description and Specificati Page 108 of 138

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

8.11.5 STATUS INDICATORS

The status of the FIFO can be read through the CRTOHOST_FIFO_STATUS.FULL and CRTOHOST_FIFO_-
STATUS.FULL_LATCHED registers in the register map. The XOFF signals are generated from the same
FIFO but with a different threshold (see Configuration). The XOFF status can be read through the reg-
isters XOFF_FM_HIGH_THRESH.CROSS_LATCHED, XOFF_FM_HIGH_THRESH.CROSSED and XOFF_-
FM_LOW_THRESH_CROSSED.

8.11.6 LATENCY

The latency of CRToHost strongly depends of the number of AXI streams per link. If only one of them contains
data, the beginning of a block can start 8 clock cycles after prog_empty goes low. This latency can be
neglected as it is much smaller than:

e The time it takes to fill the Decoder FIFO with one block of data
e The PCle transfer latency towards the host server

e The time it takes to select the AXI mux and / or the CRToHost MUX if other AXI Streams or other
channels are in the process of transferring data.

8.11.7 ERROR HANDLING

Errors can be generated inside the axi stream in the tuser bits. These bits will be reflected in the (sub)chunk
trailers. Also internal data format errors as well as timeout and truncation (caused by a FULL FIFO while data
was transferred, so a loss of data) will be reflected in the (sub)chunk trailers.

8.11.8 ESTIMATED RESOURCE USAGE

LUT FF BRAM
KCU115/FLX712 | 10406 | 1.56% | 11713 | 0.88% | 52 | 2.4%
VU37P / FLX128 7453 | 0.57% | 7643 | 0.29% | 104 | 5.15%

Table 8.37: CRToHost Resource utilization.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 109 of 138

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

FELIX Phase-ll firmware specifications: 8.11 CRToHost: C——TMay7) 2021 - Version 0.87

8.12 CRFROMHOST: FROMHOST OR DOWNSTREAM CEN-
TRAL ROUTER I B

8.12.1 INTRODUCTION

The FromHost or Downstream Central Router (CRFromHost) is the main interface between the Wupper and
the encoders towards the detector. It is used to fanout the data from the PCle interface to the link encoders.

8.12.2 INTERFACES

CRFromHostAxis
std_logic_vector(DATA_WIDTH-1 downto 0) std_logic
fromHostFifo data port 3

fromHostFifo read enable pulse
std_logic axis_8_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_PER_LINK_FROMHOST-1)

fromHostFifo_dout fromHostFifo_rd_en

fromHostFifo_empty fhAXxis

fromHostFifo empty status AXI stream output
axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_PER_LINK_FROMHOST-1) bitfield_crfromhost_fifo_status_r_type
AXI stream ready input link FIFO monitoring registers
register_map_control_type

control registers.

fhAxis_tready fifo_monitoring

register_map_control

aresetn B Std_logic
£

std_logic

ffDmHOS(FIfDJ’St fromHostFifo reset

fromHostFifo_clk

fhAxis_aclk

GBT_NUM : integer range 1to 32 := 1

number of GBT links

STREAMS_PER_LINK_FROMHOST : integer range 1 to 64 := 1

number of AXI stream master interfaces per GBT link

GROUP_CONFIG : IntArray(0 to MAX_GROUPS_PER_STREAM_FROMHOST-1) := (0 => 1, others => 0)
linkinternal grouping of streams

DATA_WIDTH : integer := 256

input data width from Wupper FIFO

NEW_DATA_FORMAT : boolean := false

boolean to enable new dataformat proposed in FLX1355

Figure 8.50: The FromHost or Downstream Central Router entity.

8.12.2.1 INTERFACE TO WUPPER

The interface to Wupper is a 256-bit (for PCle 3.0) or 512-bit wide (for PCle 4.0) FIFO interface which can
be connected to a standard FIFO. Whenever there is data available (empty = ’0’) and the internal data
forwarding is not stalled, a read-enable pulse is generated. The data has to be valid in the following read-
clock-cycle. A separate reset signal can be used to clear the FIFO in case of a reset or flush of the Central
Router. Figure 8.51 shows an example waveform of input signals for the CRFromHost.

fromHostFifo_dout % DO‘X D1 X DZ‘W ‘

fromHostFifo_empty : ‘ ‘ \ ‘ ‘ /—__

fromHostFifo_rd_en / \ /
fromHostFifo_rst _\

Figure 8.51: Example waveform of a typical FromHost Central Router transfer with its FIFO interface. [8].

Each 256-bit block at the input of the CRFromHost represents a packet. In case of a 512-bit FIFO interface,
two packets are sent simultaneously. Each packet consists of a 16 bit header followed by 240 bits of payload.
Table B.4 shows how the bits are assigned in that packet. Details of the data format can be found in B.2.2.

8. Detailed Functional Description and Specification Page 110 of 138

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

/.\Tz L A!S FELIX Phase-Il firmware specifications: 8.12 CRFromHost: FromHost or D May=7p2024- Version 0.87

8.12.2.2 INTERFACE TO THE ENCODERS

All encoders are connected to the FromHost Central Router as AXI stream 8b slaves. Therefore, the CR-
FromHost provides a number of AXI stream 8b master interfaces. Each interface is connected to a single
encoding instance. The masters are split into two groups. First all masters are grouped by the corresponding
IpGBT or GBTx link they belong to. Inside each IpGBT/GBTx link there is an additional grouping to ease
throughput of the Central Router. All AXI stream master of a group have a total maximum bandwidth which
cannot be exceeded. An example waveform of a typical AXI stream 8b transfer is shown in Figure 8.52.

tdata[7:0] 77X Po < Po X P1 X P2 X1/ P4 X P5 X P6 X PT X/
tvalid / / \ /| / -
, [\ J [\

L aresetn # //
[tready [a\/ b J/

Figure 8.52: Example waveform of a typical AXI stream 8b transfer. [8].

Master

tlast

Slave

8.12.3 FUNCTIONAL DESCRIPTION

8.12.3.1 CRFROMHOST TOP-LEVEL

The top-level module provides the instantiation of all sub-modules in the CRFromHost together with logic to
monitor the internal status of the CRFromHost and the first distribution level.

The distribution logic first only distributes packets to the different link FIFOs, where each GBT or [pGBT
link has its own FIFO. The link ID field in the packet header is used as a address to which link the packet
should go. If all bits in the link ID field are set, the packet is treated as a broadcast packet to all links and
therefore written to all link FIFOs in parallel.

All link FIFOs are constantly monitored. If a link FIFO is full this is reported through the register bank.
A latched version of the full flag is also available in the register bank. Both flags can be found in the
CRFROMHOST_FIFO_STATUS register.

8.12.3.2 CRFROMHOST DATA MANAGER

The data manager contains the next distribution stage in the CRFromHost. Due to bandwidth reasons the
streams of a GBT or IpGBT link are split into groups, where each group has a certain maximum bandwidth.
This also represents the scheme of e-groups in the GBT chip. The data manager processes the stream ID
field in the packet and forwards the packet to the transfer manager handling the group the stream belongs to.
If all bits in the stream ID field are set the packet is considered to be a broadcast packet. This broadcast is
sent to all group FIFOs in parallel.

8.12.3.3 CRFROMHOST TRANSFER MANAGER

The transfer manager is the last stage of distribution and handles all streams in a group. Based on the stream
ID field it decides which stream will be used to transmit the packet. For this stream a AXI stream transmission
is initiated.

8.12.4 CONFIGURATION
8.12.4.1 GENERICS

The configuration of the CRFromHost is mainly accomplished through various generics, which are evaluated
during synthesis time of the firmware.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 111 of 138

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

FELIX Phase-ll firmware specifications: 8.12 CRFrom MayZ2uZmmersion 0.87

GBT_NUM: This generic defines the total number of GBT or IpGBT links handled by the CRFromHost. It is
an integer number between 1 and 31. For each link one data manager is instantiated.

STREAM_PER_LINK_FROMHOST: defines the total number of streams in each GBT or IpGBT link. It is an
integer number between 1 and 63.

GROUP_CONFIG: is an array of integers with up to MAX_GROUPS_PER_STREAM_FROMHOST (usually 8) entries.
The number of non-zero entries defines the number of groups, while each entry corresponds to the number
of streams inside a group. The sum of all entries has to match STREAM_PER_LINK_FROMHOST.

DATA_WIDTH: input width from the PCle FIFO. Allowed values are 256 for PCle 3.0 links and 512 for PCle
4.0 links.

8.12.4.2 RUN-TIME CONFIGURATION

The run-time configuration of the CRFromHost is performed through the register map of FELIX. During run-
time the only configurable part is the enabling or disabling of streams for broadcast transmissions. The
BROADCAST_ENABLE_00 to BROADCAST_ENABLE_23 registers allow to include the stream of a specific GBT or
IpGBT link to be included in broadcast transmissions.

8.12.5 STATUS INDICATORS

The full flag of the link FIFOs is available through the CRFROMHOST_FIFO_STATUS register. Also the latched
full flag can be read out there.

8.12.6 LATENCY

The maximum latency of the CRFromHost depends strongly on the data it has to process. Therefore, no value
is given.
The minimal latency was measured in a simulation to be 9 clock cycles of the CRFromHost clock.

8.12.7 ERROR HANDLING
8.12.8 ESTIMATED RESOURCE USAGE

LUT FF BRAM
KCU115/FLX712 | 34113 | 5.14% | 63516 | 4.78% | 48 | 2.22%
VU37P/FLX128 49736 | 3.82% | 63864 | 2.45% | 48 | 2.38%

Table 8.38: CRFromHost Resource utilization.

8. Detailed Functional Description and Specification Page 112 of 138

/.\Tz L A!S FELIX Phase-II firmware specifications: 8.12 CRFromHost: FromHost or [May=7#20242- Version 0.87

« 8.13 WUPPER: PCIE DMA CORE AND REGISTER MAP Tl

0 8.13.1 INTRODUCTION

e Wupper' is designed for the ATLAS / FELIX project [17], to provide a simple Direct Memory Access (DMA)
2003 interface for the Xilinx Virtex-7 PCle Gen3 hard block and has later been ported to the Kintex Ultrascale, Virtex
2004 Ultrascale+ and Versal Prime series. The core is not meant to be flexible among different architectures, but
205 especially designed for the 256 and 512 bit wide AXI4-Stream interface [18] of the Xilinx Virtex-7 and Ultra-
206 Scale FPGA Gen3 Integrated Block for PCI Express, and the Ultrascale+ and Versal Prime Gen4 Integrated
207 Block for PCI Express (PCle) [19, 20, 21, 22].

2408 The purpose of Wupper is therefore to provide an interface to a standard FIFO. This FIFO has the same
2000 Width as the Xilinx AXI4-Stream interface (256 or 512 bits) and runs at 250 MHz. The user application side
a0 Of the FPGA design can simply read or write to the FIFO; Wupper will handle the transfer into Host PC mem-
2a11 Ory, according to the addresses specified in the DMA descriptors. Several descriptors can be queued, up
a2 10 @ maximum of 8, and they will be processed sequentially one after the other. The number of descriptors
213 (NUMBER_OF_DESCRIPTORS generic) plays an important role, it determines the total number of descrip-
an1s tors, but also the number of FIFO interfaces in the ToHost direction. The last descriptor is always dedicated
205 for FromHost (DMA memory read from the server) transactions, all other descriptors are dedicated for ToHost
206 transfers (Memory writes from the FPGA into the server memory).

2417 Another functionality of Wupper is to manage a set of DMA descriptors, with an address, a read/write flag,
ans the trans fersize (number of 32 bit words) and an enable line. These descriptors are mapped as normal PCle
a9 memory or 10 registers. Besides the descriptors and the enable line (one per descriptor), a status register for
220 €very descriptor is provided in the register map.

2421 For synthesis and implementation of the Xilinx specific IP cores, it is recommend to use the latest Xilinx
222 Vivado release as listed in section 8.2. The cores (FIFO, clock wizard and PCle) are provided in the Xilinx .xci
a3 format, as well as the constraints file (.xdc) is in the Vivado Format.

2424 For portability reasons, no Xilinx project files will be supplied with the core, but a bundle of TCL scripts
225 has been supplied to create a project and import all necessary files, as well as to do the synthesis and
226 implementation. These scripts will be described later in this document.

"The person performing the act of bongelwuppen, the Gronings version of the famous Frisian sport of the Fierljeppen (canal pole
vaulting) https://nds-nl.wikipedia.org/wiki/Nedersaksische_sp%C3%B61llegies#Bongelwuppen

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 113 of 138

https://nds-nl.wikipedia.org/wiki/Nedersaksische_sp%C3%B6llegies#Bongelwuppen

FELIX Phase-ll firmware specifications: 8.13 Wupper: PCle DMA co

8.13.2

2427

fromHostFifo_dout

fromHostFifo_empty

fromHostFifo_rd_clk

fromHostFifo_rd_en
fromHostFifo_rst

toHostFifo_din

toHostFifo_prog_full

toHostFifo_wr_clk

toHostFifo_wr_en

toHostFifo_rst

interrupt_call

master_busy_in

reset_hw_in

sys_reset_n

sync_clk

sys_clk_n

sys_clk_p

8.13.2.1

2428

INTERFACES

std_logic_vector(DATA_WIDTH-1 downto 0)
FIFO interface

std_logic

FIFO interface

std_logic

FIFO interface

std_logic

FIFO interface

std_logic

FIFO interface

slv_array(0 to NUMBER_OF_DESCRIPTORS-2)

FIFO interface (array)
std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)
FIFO interface (array)

std_logic

FIFO interface (array)
std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)
FIFO interface (array)

std_logic

FIFO interface (array)
std_logic_vector(NUMBER_OF_INTERRUPTS-1 downto 4)
First 4 interrupts are handled by Wupper

std_logic

BUSY input for interrupt

std_logic

External hard reset for synchronizer
std_logic

PCle PERSTn port.

std_logic

Clock to synchronize the registermap to
std_logic

PCle clock (100 MHz)

std_logic

PCle clock (100 MHz)

Indicates that any of the ToHost FIFOs FULL beyond the BUSY watermark

std_logic_vector(PCIE_LANES-1 downto 0),
std_logic_vector(PCIE_LANES-1 downto 0),
std_logic_vector(PCIE_LANES-1 downto 0),
std_logic_vector(PCIE_LANES-1 downto 0);
register_map_control_type,

regmap R/W registers (synced)
register_map_control_type

regmap R/W registers (unsynced)
register_map_gen_board_info_type,
register_map_crtohost_monitor_type,
register_map_crfromhost_monitor_typ:
register_map_decoding_monitor_typ
register_map_encoding_monitor_typ
register_map_gbtemu_monitor_typ
register_map_link_monitor_type,
register_map_ttc_monitor_type,
register_map_xoff_monitor_type,

register_map_hk_monitor_type,

Original clock of unsynchronized regmaj

C=———""Way 7, 2021 - Version 0.87

std_logic toHostFifo_busy_out

std_logic
PClelink up indication

Ink_up

PClelanes | PCIe-"xN

PCle lanes pcie_rxp

PCle lanes pcie_txn

PCle lanes pcie_txp

register_map_control_sync

register_map_control_appreg_clk

g RTSists register_map_gen_board_info

- register_map_crtohost_monitor
regmap R registers

register_map_crfromhost_monitor
regmap R registers =P -

register_map_decoding_monitor

regmap R registers

regmap R reaisters ¥ register_map_encoding_monitor

regmap R registers ¥ r€gister_map_gbtemu_monitor

Pt register_map_link_monitor

T register_map_ttc_monitor

remap R registers register_map_xoff_monitor

regmap R registers register_map_hk_monitor

std_logic

appreg_clk

std_logic
Synchronized soft reset PR reset_soft
std_logic
Unsychronized soft reset: reset_soft_appreg_clk

std_logic

DMA busy output. tohost_busy_out

NUMBER_OF_INTERRUPTS :integer:=8

Size of interrupt vector

NUMBER_OF_DESCRIPTORS :integer:= 5

Last one s FromHost

BUILD_DATETIME :std_logic_vector(39 downto 0) := x"0000FE71CE"
Date / time of build

CARD_TYPE :integer:=712

Integer of PCle card, 709,710, 711,712,800, 801, 128, 180

GIT_HASH :std_logic_vector(159 downto 0) := x"00"
Git commit

COMMIT_DATETIME :std_logic_vector(39 downto 0) := x"0000FE71CE"
Date of git commit

GIT_TAG :std_logic_vector(127 downto 0) := x"00000000000000000000000000000000"
First 16 bytes of git tag "string"

GIT_COMMIT_NUMBER:integer:=0

Number of commits after the tag

GBT_GENERATE_ALL_REGS:boolean := false

Implement GBT mode registers in regmap

EMU_GENERATE_REGS :boolean := false

Implement FELIG/FMEMU registers in regmap
MROD_GENERATE_REGS : boolean := false

Ipmlement FELIX_MROD registers in regmap

GBT_NUM :integer:=0

Number of optical FE channels

FIRMWARE_MODE :integer:=0

0: GBT, 1: FULL, etc.

PCIE_ENDPOINT :integer:=0

0or 1, endpoint index.

PCIE_LANES:integer

Number of PCle lanes per endpoint. Usually 8.

DATA_WIDTH :integer

256 (Gen3x8) or 512 (Gen4x8 or Gen3x16)

SIMULATION :boolean := false

True to enable simulation model of endpoint

BLOCKSIZE :integer := 1024

Figure 8.53: Wupper interface symbol.

GENERICS

DESCRIPTORS

Generic Type Default value Description

NUMBER_OF_INTERRUPTS integer 8 Number of individual interrupts supported by Wupper. See
Section 8.13.6

NUMBER_OF_- integer 5 Total number of DMA descriptors for From- and ToHost. See

8.13.4

BUILD_DATETIME

std_logic_vector(39 downto 0) x"0000FE71CE"

Date / time of build shown as BCD/HEX in the form of
YYMMDDhhmm

CARD_TYPE

712

integer

8. Detailed Functional Description and Specification

Integer representation of the hardware platform:

Page 114 of 138

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

709 : VC709

710 : HTG710

711 : BNL711v1.5
712 : BNL712

800 : Xupp3r VU9P
801 : BNL801 VU9P
128 : VCU128

180 : VMK180

GIT_HASH

std_logic_vector(159 downto
0)

(others =>'0")

Git commit

COMMIT_DATETIME

std_logic_vector(39 downto 0)

x"0000FE71CE"

Date of git commit in the same form as BUILD_DATETIME

GIT_TAG std_logic_vector(127 downto (ohters =>'0") First 16 bytes of git tag "string"

0)
GIT_COMMIT_NUMBER integer 0 Number of commits after the tag
GBT_GENERATE_ALL - boolean false Implement GBT mode registers in regmap
REGS
EMU_GENERATE_REGS boolean false Implement FELIG/FMEMU registers in regmap
MROD_GENERATE_REGS boolean false Ipmlement FELIX_MROD registers in regmap
GBT_NUM integer 0 Number of optical FE channels
FIRMWARE_MODE integer 0 0: GBT, 1: FULL, etc.
PCIE_ENDPOINT integer 0 0 or 1, endpoint index.
PCIE_LANES integer Number of PCle lanes per endpoint. Usually 8
DATA_WIDTH integer 256 (Gen3x8) or 512 (Gen4x8 or Gen3x16)
SIMULATION boolean false True to enable simulation model of endpoint
BLOCKSIZE integer 1024 FELIX block size to calculate FIFO thresholds

Table 8.39: Wupper Generics.

8.13.2.2 FROMHOSTFIFO

The FromHostFifo interface connects the output of the DMA FIFO in FromHost (Server => FPGA) direction.
The FIFO ports are what you would expect from a standard FIFO interface, with a width of 256 bit or 512 bit,
depending on the PCle configuration (Gen3x8 or Gen4x8). In FELIX, the fromHostFifo interface is connected
to the FromHost Central Router.

o fromHostFifo_dout : 256 or 512 bit data output of the DMA FromHost FIFO

fromHostFifo_empty : Asserted if the fifo has no data available

o fromHostFifo_rd_clk : Clock to register fromHostFifo_dout with. Should be close or equal to 250MHz to
support the nominal PCle bandwidth.

clock cycle.

8.13.2.3 TOHOSTFIFO

The ToHostFifo interface connects the ToHostFifos input ports (The number of FIFOs is determined by NUM-
BER_OF_DESCRIPTORS-1, see section 8.13.4) to the ToHost Central Router. Because there are multiple

FIFO’s in ToHost direction, the ToHostFifo port is also an array.

fromHostFifo_rst : Assert to reset / flush the FIFO.

fromHostFifo_rd_en : Assert to read from the FIFO. fromHostFifo_dout will be registered on the next

e toHostFifo_din : Array of 256 or 512 bit data inputs for the DMA ToHost FIFO.

e toHostFifo_prog_full : Programmable FULL indicator, 1 bit per FIFO. The threshold can be programmed
through the TOHOST_FULL_THRESH register in BARO which has two bitfields named THRESHOLD _-
ASSERT and THRESHOLD_NEGATE. See also Table B.1

ATLAS 8. Detailed Functional Description and Specification

zzzzzzzzzz

Page 115 of 138

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

FELIX Phase-ll firmware specifications: 8.13 Wupper: CC————"WMlay 7, 2021 - Version 0.87

e toHostFifo_wr_clk : Clock on which toHostFifo_din is registered. Should be close or equal to 250MHz
to support the nominal PCle bandwidth.

o toHostFifo_wr_en : Assert to write into one of the FIFOs. One bit per ToHost FIFO.

o toHostFifo_rst : Assert to reset / flush the FIFO.

8.13.2.4 INTERRUPT_CALL

The input interrupt_call has the size of NUMBER_OF_INTERRUPTS - 4, because the first 4 interrupts are
used by Wupper internally. Any of the other bits can be asserted to raise an MSI-X interrupt, see section
8.13.6

8.13.2.5 CLOCKS AND RESETS

e reset_hw_in : this input is used to reset the synchronizer for the register map.

e sys_reset_n : This is input should be connected to the hard reset on the PCle edge connector (PER-
STn).

e reset_soft : This output is a reset that can be triggered using a register, it is synchronized to sync_clk.
e reset_soft_appreg_clk : An unsynchronized version of reset_soft (registered at appreg_clk, 25MHz).
e sync_clk : Clock to synchronize the register map to. In FELIX this is connected to the 40 MHz BC clock.

e appreg_clk : Output of the 25 MHz PCle slow clock on which the unsynchronized register map is
running.

e sys clk_n/sys_clk_p: 100 MHz PCle reference clock from the PCle edge connector.

8.13.2.6 BUSY

e master_busy in: Used in the interrupt controller, see section 8.13.6

e tohost_busy out : Used in circular DMA mode, the software pointer is compared to the current_address
in the descriptors. If any of them is beyond a set threshold, this BUSY output is raised.

o toHostFifo_busy_out : This busy output is raised when one of the ToHost FIFOs is beyond a set pro-
grammable full threshold.

8.13.2.7 PCIE

e pcie_rxn / pcie_rxp : High speed PCle receiver lanes

pcie_txn / pcie_txp : High speed PCle transmitter lanes

sys_reset_n : This is input should be connected to the hard reset on the PCle edge connector (PER-
STn).

sys_clk_n/sys_clk_p : 100 MHz PCle reference clock from the PCle edge connector.

Ink_up : Status indication that the PCle link is aligned.

8. Detailed Functional Description and Specification Page 116 of 138

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

/.\Tz LAs FELIX Phase-ll firmware specifications: 8.13 Wupper: PCle DMA core anc wwwwwsiiay 7, 2021 - Version 0.87

8.13.2.8 REGISTER MAP

Wupper has an internal register map that is generated from a .yaml file. The complete set of registers is
available in Appendix B. There are records called register_map_control* that contain all writable registers and
self clearing trigger registers. The read only registers are gathered in register_map_monitor which is divided
into sub-records of the different monitor sections, so that it is easy to drive each section from an individual
functional block in the firmware.

e register_map_control_sync : Synchronized version to sync_clk of the writable/trigger registers in BAR2
of the register map, see Table B.3

e register_map_control_appreg_clk : Unsynchronized version (registered on appreg_clk, 25 MHz) with
the same functionality as register_map_control_sync.

e register_map_*_monitor : Input record of the monitor registers as defined by the different monitor sec-
tions in Table B.3

8.13.3 FUNCTIONAL DESCRIPTION

Xilinx has introduced the AXI4-Stream interface [18] for the PCle EndPoint core: a simplified version of the
ARM AMBA AXI bus[23]. This interface does not contain any address lines, instead the address and other
information are supplied in the header of each PCle Transaction Layer Packet (TLP). Figure 8.54 shows the
structure of the Wupper_core design. The Wupper_core is divided in two parts:

1. DMA Control:
This is the entity in which the Descriptors are parsed and fed to the engine, and where the Status
register of every descriptor can be read back through PCle. Depending on the address range of the
descriptor, the pointer of the current address is handled by DMA Control and incremented every time a
TLP completes. DMA Control also handles the circular buffer DMA if this is requested by the descriptor
(See 8.13.5).

DMA control contains a register map, with addresses to the descriptors, status registers and external
registers for the user space register map.

2. DMA Read Write:
This entity contains two processes:

e ToHost/Add Header: In the first process the descriptors are read and a header according to the
descriptor is created. If the descriptor is a ToHost descriptor, the payload data is read from the
FIFO and added after the header. This process also takes care of switching to the next active DMA
descriptor, which is leading for selecting the MUX on the output ports of the ToHostFifo’s.

e fFromHost/ Strip Header: In the second process the header of the received data is removed and
the length is checked; then the payload is shifted into the FIFO.

Both processes can fire an MSI-X type interrupt by means of the interrupt controller when finished.

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 117 of 138

FELIX Phase-Il firmware specifications: 8.13 Wuppe C—————"Way 7, 2021 - Version 0.87
wupper

erFifos wupper_core pcie_ep_wrap
256b /512b toHostFifo dma_read_write
ToHost Data
) Add axis_rq <
256b/512b Read / Write =
FromHost Data header
fifo clock A Xilinx
’Iﬂ-omHOStFIFo Strip axis_rq PCle
e Header IP Core <%
register_map
control dma_COﬂl’.I'Ol 4
register Completion axfs_rq >
— axis_rq
register_map P map process - PCle EP
monitor u Sim Model
=P (Register map
sync_clk __F, read / write T

250 MHz

y

25 MHz

request
\
Figure 8.54: Structure of the Felix PCle Engine.
2514 Figure 8.54 shows a synchronization stage for the IO and external registers, The user space registers

2515 are stored and processed in the 25 MHz clock domain in order to relax timing closure of the design. The
16 Synchronization stage synchronizes the register map again to the clock used in the application design (sync_-
2517 C|k)

2518 The DMA Control process always responds to a request with a certain reqg_type from the server. It re-
2519 sponds only to 10 and Memory reads and writes; for all other request types it will send an unknown request
=20 reply. If the data in the payload contains more than 128 bits, the process will send a “completion abort” reply
=21 and go back to idle state. The maximum register size has been set to 128 bits because this is a useful max-
22 iIMUM register size; it is also the maximum payload that fits in one 250 MHz clock cycle of the AXI4-Stream
2523 interface.

2524 The add_header process selects the descriptor and sets the ToHostFifo MUX accordingly. Based on the
=25 descriptor content, it requests a read or write to/from the server memory. If the descriptor is set to ToHost,
as26 it @lso initiates a FIFO read and adds the data into the payload of the PCle TLP (Transaction Layer Packet).
sz When the descriptor is set to FromHost this process only creates a header TLP with no payload, to request a
=28 certain amount of data from the server memory that fits in one TLP.

2529 The DMA FromHost process checks the size of the payload against the size in the TLP header, the data
=30 Will be pushed into the FromHost FIFO.

= 8.13.4 DMA DESCRIPTORS

sz Each transfer To and From Host is achieved by means of setting up descriptors on the server side, which are
=3 then processed by Wupper. The descriptors are set in the BARO section of the register map (see Appendix B).
=54 An extract of the descriptors and their registers is shown in Table 8.40 below. The register map in BARO has
25 space for a maximum of 8 DMA descriptors, but the actual number of descriptors that are implemented is
2s3s determined by the generic NUMBER_OF_DESCRIPTORS. The last active descriptor is always implemented
=7 with READ_WRITE set to 1 (read only) and the descriptors 0 to NUMBER_OF_DESCRIPTORS-2 are im-
=3 plemented as ToHost descriptors. The number of ToHost FIFOs is automatically determined by the same
39 generic, as well as the ToHost FIFO depth. Setting NUMBER_OF_DESCRIPTORS to 5 (default in phase 2
00 FELIX) will result in 4 ToHost descriptors and FIFOs (descriptor 0..3) and a single FromHost descriptor / FIFO
2se1 (descriptor 4).

| Address | Name/Field | Bits | Type | Description |

8. Detailed Functional Description and Specification Page 118 of 138

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

ATLAs FELIX Phase-Il firmware specifications: 8.13 Wupper: PCle DMA core and re wwwwwsiay 7, 2021 - Version 0.87

EXPERTN MENT

0x0000 DMA_DESC 0
END_ADDRESS 127:64 W End Address
START_ADDRESS 63:0 W Start Address
0x0010 DMA_DESC_0a
RD_POINTER 127:64 W server Read Pointer
WRAP_AROUND 12 w Wrap around
READ_WRITE 11 R 1: FromHost/ 0: ToHost
NUM_WORDS 10:0 w Number of 32 bit words
0x0200 DMA_DESC_STATUS_0
EVEN_PC 66 R Even address cycle server
EVEN_DMA 65 R Even address cycle DMA
DESC_DONE 64 R Descriptor Done
CURRENT_ADDRESS 63:0 R Current Address
0x0400 DMA_DESC_ENABLE 7:0 W Enable descriptors 7:0. One
bit per descriptor. Cleared
when Descriptor is handled.

Table 8.40: DMA descriptors types.

Every descriptor has a set of registers, with the following specific functions:

e DMA_DESC: the register containing the start (start_address) and the end (end_address) memory ad-
dresses of a DMA transfer; both handled by the server (software API).

e DMA_DESC_a: integrates the information above by adding (i) the status of the read pointer on the
server side (rd_pointer), (ii) the wrap around functionality enabling (wrap_around, see Section8.13.5
below), (iii) the FromHost (“1”) and ToHost (“0”) transfer direction bit (read_write), and (iv) the number
of 32 bits words to be transferred (num_words)

e DMA_DESC_STATUS: status of a specific descriptor including (i) wrap around information bits (even_pc
and even_dmay), (ii) completion bit (desc_done, (iii) DMA pointer current address (current_address)

e DMA_DESC_ENABLE: the descriptors enable register (dma_desc_enable), one bit per descriptor

8.13.5 ENDLESS DMA WITH A CIRCULAR BUFFER AND WRAP AROUND

In single shot transfer, the DMA ToHost process continues sending data TLPs (Transaction Layer Packets)
until the end address (end_address) is reached. The server can check the status of a certain DMA transaction
by looking at the desc_done flag and the current_address. Another possible operation mode is the so- called
endless DMA: the DMA continues its action and starts over (wrap-around) at start address (start_address)
whenever the end address (end_address) is reached. The second mode is enabled by asserting the wrap-
around (wrap_around) bit. In this mode the server has to provide another address named server pointer
(PC_read_pointer): indicating where it has last read out the memory. After wrapping around the DMA core
will transfer To Host memory until the PC_read_pointer is reached. The server read pointer should be updated
more often than the wrap-around time of the DMA, however it should not be read too often as that would take
up all the bandwidth, limiting the speed of the DMA transfer in progress. A typical rule of thumb to determine
what "too often" means is that software should not update the pointer every clock cycle, but rather after
processing a block of a few kB of data.

In order to determine whether Wupper is processing an address behind or in front of the server, Wupper
keeps track of the number of wrap around occurrences. In the DMA status registers the even_cycle bits
displays the status of the wrap-around cycle. In every even cycle (starting from 0), the bits are 0, and every
wrap around the status bits will toggle. The even_pc bit flags a PC_read_pointer wrap-around, the even_dma
a Wupper wrap-around. By looking at the wrap-around flags the server can also keep track of its own wrap-
arounds. Note that while in the endless DMA mode (wrap_around bit set), the PC_read_pointer has to be
maintained by the server (software API) and kept within the start and end address range for Wupper to function

/.\1-Z |_ A!S 8. Detailed Functional Description and Specification Page 119 of 138

FELIX Phase-Il firmware specifications: 8.13 Wupper: PCle DMA core and reg CC—————""Wlay 7, 2021 - Version 0.87

22 correctly. Figure 8.55 below shows a diagram of the two pointers racing each other, and the different scenarios
273 in which they can be found with respect to each other.

8. Detailed Functional Description and Specification Page 120 of 138

2574

2575

2576

2577

2578

2579

2580

D

FELIX Phase-Il firmware specifications: 8.13 Wupper: PCle May 7, 2021 - Version 0.87

+ Endless DMA ToHost mode

|

=i

even_pc == even_dma
Empty space

even_pc == even_dma

BB procsssed ot /ﬂ* Not yet processed

Empty space ®

1

Y

Rt d By e Z Not yet processed = even e I= even dma
7 Empty space | RAM filled by DMA pe= -
\ <
KN T otessed P e Not yet processed > even oc 1= even dma
REN et by DA RAM filled by DMA pe = even
>+ Legend: " Wrap

Initial condition: pc_pointer == current_address
First round: pc_pointer < current_address pc_pointer
Second round: pc_pointer > current_address (dma wrapped) current_addr
Corner case: pc_pointer == current_address (memory full — stop DMA transfer) end_address
start_address

single

) @ @ @ ®
|

Figure 8.55: Endless DMA buffer and pointers representation diagram in ToHost mode.

Looking at Figure 8.55 above, the following scenarios can be described:

A : start condition, both the server and the DMA have not started their operation.

B : normal condition, the PC_read_pointer stays behind the DMA’s current_address

C : normal condition, the DMA’s current_address has wrapped around and has to stay behind the
PC_read_pointer

e D : the server is reading too slow, the DMA is stalled because the server read pointer is not advancing
fast enough, the DMA current_address has to stay behind.

TLAS 8. Detailed Functional Description and Specification Page 121 of 138

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

FELIX Phase-ll firmware specifications: 8.13 Wupper: PCle DM CC———Mlay 7, 2021 - Version 0.87

If the DMA descriptor is set to FromHost, the comparison of the even bits is inverted, as the server has to
fill the buffer before it is processed in the same cycle. In this mode the pc_read pointer is also maintained
by the software API, however it is indicating the address up to where the server has filled the memory. In the
first cycle the DMA has to stay behind the read pointer, when the server has wrapped around, the DMA can
process memory up to end_address until it also wraps around.

+ Endless DMA FromHost mode

Second round: pc_pointer < current_address (dma wrapped) current_addr
Corner case: pc_pointer == current_address (memory empty — stop DMA transfer) end_address

start_address

E
‘ mpty space even_pc == even_dma
+ <“W\\‘\
y
. Emnmsc;mu 4 %l Empty space even_pc == even_dma
; E AM fi P
mpty space | RAM filled by PC even_pc 1= even_dma
Z Not yet processed =
A O
' Mm’m{”mm/y,am Empty space even_pc == even_dma
i .) Legend < Wrap
Initial condition: pc_pointer == current_address single
First round: pc_pointer > current_address pc_pointer

Figure 8.56: Endless DMA buffer and pointers representation diagram in FromHost mode.

Looking at Figure 8.56 above, the following scenarios can be described:
e A : start condition, both the server and the DMA have not started their operation.
e B :normal condition, the DMA’s current_address stays behind the PC_read_pointer

e C : normal condition, the PC_read_pointer has wrapped around and has to stay behind the DMA’s
current_address

e D : the server is writing too slow, the DMA is stalled because the server read pointer is not advancing
fast enough, the DMA current_address has to stay behind.

8. Detailed Functional Description and Specification Page 122 of 138

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

/.\Tz LAs FELIX Phase-ll firmware specifications: 8.13 Wupper: PCle DMA core and wwwwwsiay 7, 2021 - Version 0.87

8.13.6 INTERRUPT CONTROLLER

Waupper is equipped with an interrupt controller supporting the MSI-X (Message Signaled Interrupt eXtended)
as described in “Chapter 17: Interrupt Support” page 812 and onwards of [PCle_technology]. In particular
the chapter and tables in “MSI-X Capability Structure”.

The MSI-X Interrupt table contains eight interrupts; this number can be extended by a generic parameter in
the firmware. All interrupts are mapped to the data_available interrupt of the corresponding ToHost descriptor,
formerly known as interrupt number 2. All the other interrupt sources have been removed since multiple
ToHost descriptors were introduced. The interrupts are detailed in Table 8.41.

Table 8.41: PCle interrupts.

Interrupt Name Description

0 ToHost 0 Available Fired when data becomes available in the ToHost FIFO 0
(falling edge of ToHostFifoProgEmpty)

1 ToHost 1 Available Fired when data becomes available in the ToHost FIFO 1
(falling edge of ToHostFifoProgEmpty)

1 ToHost 2 Available Fired when data becomes available in the ToHost FIFO 2
(falling edge of ToHostFifoProgEmpty)

3 ToHost 3 Available Fired when data becomes available in the ToHost FIFO 3
(falling edge of ToHostFifoProgEmpty)

4 reserved

5 crDownXoff ToHost combined full flags (CR xoff)

6 BUSY change Fired when the busy LEMO signal changes

7 ToHost Full Fired when the ToHost FIFO becomes full

All Interrupts are fired when enough data has arrived in the ToHost fifo to fill at least one TLP of data. Once
an interrupt has fired, it will not produce an additional interrupt until the SW_POINTER has been updated by
the software.

All the interrupts can also be fired from the register INT_TEST, by setting the bitfield IRQ to the desired
interrupt number. This write action will fire a single interrupt.

8.13.7 XILINX PCIE ENDPOINT CORE

Wupper was built around the interface of the Virtex-7 FPGA Geng3 Integrated Block for PCI Express v4.3 [19],
and was later ported to other Xilinx PCle hard blocks:

e Virtex-7 FPGA Gen3 Integrated Block for PCI Express [19]. Wupper was tested on Virtex7 with the
VC709 (FLX709) board and the HTG710 (FLX710) boards using the XC7VX690T FPGA. (PCle Gen3x8)

e UltraScale Devices Gen3 Integrated Block for PCI Express [20]. Wupper was tested with the BNL711
(FLX711) and BNL712 (FLX712) boards, using the KU115 FPGA. (2x PCle Gen3x8 with a PCle x16
switch)

e UltraScale+ Devices Integrated Block for PCl Express [21]. Wupper was tested with the VCU128-
es1 (FLX128) (VU37P FPGA), the XUPP3R (VU9P FPGA) (FLX800) and the BNL801 board (FLX801)
(VU9P FPGA) 2x PCle Gen4x8 bifurcated. 2

e Versal ACAP Integrated Block for PCI Express [22]. Wupper was tested on the VMK180 board (VM1802
ACAP), PCle Gen4x8

This core is using a PCle hard block in the Virtex-7 FPGA. The hard block is equipped with an AXI4-Stream
interface.

2For the VU9P FPGA, PCle Gen4 is not officially supported, but it was demonstrated to work. It can be enabled only on Vivado 2018.1
using a tcl command or by editing the .xci file

/.\Z-|-|_E A!S 8. Detailed Functional Description and Specification Page 123 of 138

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

FELIX Phase-ll firmware specifications: 8.13 Wuppe CC————"WMlay 7, 2021 - Version 0.87

8.13.7.1 XILINX AXI4-STREAM INTERFACE

The interface has the advantage that it has two separate bidirectional AXI4-Stream interfaces. The two in-
terfaces are the requester interface, with which the FPGA issues the requests and the PC replies, and the
completer interface where the PC takes initiative.

bus Description Direction
axis_rq | Requester reQuest. This interface is used for DMA, the FPGA takes the initia- | FPGA — PC
tive to write to this AXI4-Stream interface and the PC has to answer.
axis_rc | Requester Completer. This interface is used for DMA reads (from PC memory | PC — FPGA
to FPGA), this interface also receives a reply message from the PC after a
DMA write.

axis_cq | Completer reQuest. This interface is used to write the DMA descriptors as well | PC — FPGA
as some other registers.
axis_cc | Completer Completer. This interface is used as a reply inteface for register | FPGA — PC
reads, as well as a reply header for a register write.
Table 8.43: AXI4-Stream streams.

8.13.7.2 CONFIGURATION OF THE CORE

The Xilinx PCle EndPoint core is configured as a PCl express Gen3 (8.0GT/s) or Gen4 (16.0GT/s) End Point
with 8 lanes and the Physical Function (PFO) max payload size is set to 1024 bytes. AXI-ST Frame Straddle
is disabled and the client tag is enabled. All other options are set to default, the reference clock frequency is
100MHz and the only option for the AXI4-Stream interface is 256 (512 for Gen4) bit at 250MHz.

8.13.8 STATUS INDICATORS

Apart from the Ink_up indicator, indicating that the link is up, all status indicators are described in the register
map in B.3

8.13.9 LATENCY

It is difficult to give a single figure for the latency of the Wupper core, because the DMA latency involves the
PCle operation and is highly dependent on the type of server used.

8.13.10 ERROR HANDLING

Error handling is performed through the PCle standard error messages, as well as status registers in the
registermap, see B.3.

8.13.11 ESTIMATED RESOURCE USAGE

The estimated resource usage of Wupper, including register map 5.0 can be found in Table 8.44. For cards
with two endpoints, the resource count must be multiplied by 2, this applies to both the FLX712 and the
FLX128 cards.

KCU115 / FLX712 VU37P / FLX128

LUT FF BRAM LUT | FF BRAM
Wupper 30094 | 4.54% | 59706 | 4.50% | 47 | 2.18% % % %
WupperFifos 3007 | 0.45% | 2275 | 0.17% | 34 | 1.57% % % %
dma_read_write 1068 | 0.16% | 1788 | 0.13% | 4 | 0.19% % % %
dma_control 9864 1.49% | 27026 | 2.04% | 0 | 0.00% % % %

8. Detailed Functional Description and Specificatio Page 124 of 138

2640

2641
2642
2643
2644
2645

2646

2647
2648

5883

2651

2652

pcie_ep_wrap 1606 | 0.24% | 5056 | 0.38% | 9 | 0.42% % % %
register_map_sync | 14221 | 2.14% | 22631 | 1.71% | O 0.00% % % %
intr_ctrl 319 0.05% | 893 0.07% | 0 | 0.00% % % %

Table 8.44: Wupper Resource utilization.

8.13.12 SIMULATION

The directory firmware/simulation/Wupper contains all necessary testbenches (wupper_tb.vhd, pcie_ep_-
sim_model.vhd) to run the simulation in Mentor Graphics Modelsim or Questasim [questasim].

The directory simulation/UVVMExample contains a file modelsim.ini with some standard information, there
is also a script "ci.sh" wich will execute the UVVM based simulation. It assumes that questasim 2019.1 is
installed, the Xilinx libraries are compiled in simulation/xilinx_lib and the UVVM library is compiled in simula-
tion/lUVVM. The wupper simulation can be started by executing

Listing 8.3: Run the simulation.

cd FELIX/firmware/simulation/UVVMExample
./ci.sh Wupper

By default the simulation starts in command line mode. If GUI mode is desired (e.g. to view waveforms),
the ci.sh script can be edited, and the "-c" parameter from the vsim command can be removed.

/.\1-z LA!S 8. Detailed Functional Description and Specification Page 125 of 138

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

FELIX Phase-Il firmware specifications: 8.13 Wupper: PCle DMA core

8.14 RDMA EIENSSNEN

8.14.1 INTRODUCTION

8.14.2 INTERFACES

8.14.2.1 OVERVIEW
8.14.2.2 INTERFACE TO COMPONENT 2

8.14.3 FUNCTIONAL DESCRIPTION
8.14.4 CONFIGURATION

8.14.5 STATUS INDICATORS

8.14.6 LATENCY

8.14.7 ERROR HANDLING

8.14.8 ESTIMATED RESOURCE USAGE

8. Detailed Functional Description and Specification

C=———""Way 7, 2021 - Version 0.87

Page 126 of 138

-~ 8.15 HOUSEKEEPING HEEENENED

= 8.15.1 INTRODUCTION
= 8.15.2 |INTERFACES

w7 8.15.2.1 OVERVIEW

we 8.15.2.2 |INTERFACE TO COMPONENT 2

= 8.15.83 FUNCTIONAL DESCRIPTION

=0 8.15.4 CONFIGURATION

= 8.15.5 STATUS INDICATORS

== 8.15.6 LATENCY

= 8.15.7 ERROR HANDLING

= 8.15.8 ESTIMATED RESOURCE USAGE

2675

2676

2677

2678

2679

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

RADIATION TOLERANCE GENNNNNN

Remark 9.1: Instructions for this chapter

If some level of radiation tolerance is required, state the minimum total ionizing dose (TID) and non-
ionizing fluence after which the component must remain functional and meet all other specifications.
Also, describe the allowable single event upset (SEU) rate, possibly by sections of the component if
the allowable rate is not the same across the whole component. If there are other special requirements
beyond those covered in other sections describe them here. Technique used in firmware to mitigate
SEU, e.g. triple mode redundancy or soft error mitigation etc., should be described. If there are no
radiation tolerance or other special requirements, then state "Not Applicable" for this section.

Not Applicable

9. Radiation Tolerance Page 128 of 138

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

/.\Tz L As FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

10

TESTING, VALIDATION AND
COMMISSIONINGC 7 B

Firmware is tested in 3 ways within the FELIX project:
e Simulation (In Gitlab CI)
e Automated build (In Gitlab Cl)

e On FELIX hardware using nightly tests

10.1 SIMULATION

The FELIX firmware has many different flavours and configurations. It is unrealistic to create a single sim-
ulation testbench to cover the complete picture. There are also parts of the FELIX firmware that are very
difficult to simulate. The PCle interface for instance can be simulated using BFM (Bus Functional Models) if
they are available, but the complete behaviour of PCle operation including the software, PCle enumeration,
register reads / writes, DMA and interrupts would be nearly impossible to simulate. The Xilinx PCle IP core
was therefore modelled by a simulation model that emulates a realistic FELIX operation, indluding register
writes and DMA. The high speed interfaces are not modelled, but instead the model is directly emulating the
axi4 stream interfaces as documented in the Xilinx IP core documentation [19] [20] [21] [22]

The FELIX team is therefore not trying to simulate the individual blocks, as well chains of blocks exercis-
ing different scenarios in the operation of the FELIX firmware. Breaking down the firmware into blocks for
simulation sets some constraints on the firmware design:

e The blocks must have a well defined interface, and where possible, industry standard interfaces must
be used.

— For the interface between the different encoders, decoders and both directions of the Central
Routers, we have chosen to use AXI4 stream, which can be modeled using existing BFM entities.

— Between the Central Routers and Wupper (PCle DMA) a standard 256 or 512 bit wide FIFO inter-
face has been defined, depending on the PCle speed (Gen3 or Gen4).

— The interfaces between the Link Wrapper and Encoder / Decoder will be arrays of std_logic_-
vector, as these types are already used by the upstream GBT and LpGBT design, and by the
transceiver wrapper for FULL mode. An exception is the transceiver for 25G Interlaken, which will
communicate through AXI4 stream.

/.\Z-|-|_E A!S 10. Testing, Validation and Commissioning CC—————"—"1 Page 129 of 138

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

FELIX Phase-ll firmware specifications: 10.1 May 7, 2021 - Version 0.87

e Bus Functional Models (BFM) must be used to model the interfaces of the different blocks. Where
possible the BFM models from standard libraries should be used, but FELIX / ATLAS specific models
will have custom BFMs.

e The developer of a block is responsible for a complete coverage of the block by the testbench.

10.1.1 UVVM

Structural testbenches with good coverage are difficult to make. To ease the process, a simulation library can
be used. The FELIX team has studied several simulation libraries and as a result we have chosen UVVM.
[24]. The UVVM library can be used in different ways. In the most simple way, only the uvvm_utility library is
used, which gives access to a set of functions to verify signals, report errors and generated clocks and other
types of waveforms. A more advanced utilization of the UVVM library is to use the VVC library, which is a
structured and high level way to describe functional models. Both strategies have been used by the several
testbenches in the FELIX project, depending on the preferences of the developer of the block and what had
previously been implemented before UVVM was introduced in FELIX.

Independent of the used UVVM strategy, the result of the testbench for every block is a simple report that
summarizes the simulation results, counts the number of warnings and errors and gives a pass / fail result
which can be used in Gitlab Cl, see Figure 10.1

UVVM:

UVVM:

UVVM:

UVVM: REGARDED EXPECTED IGNORED Comment?
UVVM: g 0 ok

UVVM: TB_NOTE 5 ok

UVVM: WARNING 8 ok

UVVM: TB_WARNING g *** TB_WARNING **
UVVM: MANUAL CHECK : ok

UVVM: ERROR g ok

UVVM: TB_ERROR g ok

UVVM: FAILURE 8 ok

UVVM: TB_FAILURE ok

UVVM:

UVVM:

UVVM:

UVVM:

UVVM:

UVVM:

UVVM:

UVVM: 989.0 ns CRFromHostAxis tb SIMULATION COMPLETED
UVVM:

Figure 10.1: Results summary of a UVVM successful simulation.

Requirement 10.1: UVVM Testbenches

Every functional block inside the FELIX firmware that can be modelled must be covered by at least
one UVVM testbench.

10.2 GITLAB CI

The Gitlab Cl pipeline for the FELIX Phase Il firmware knows 2 stages: Simulation and Build. In the Simulation
stage, all the testbenches (UVVM) will be executed in parallel, the transcripts are available as an artefact.

In the Build stage, FPGA bitfiles for all the active firmware flavours will be produced for the FLX712
hardware platform. Currently the following bitfiles will be produced this way:

e FULL mode 24 channels for FLX712

10. Testing, Validation and Commissioning =ewrrmws Page 130 of 138

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

/.\Tz |_ As FELIX Phase-Il firmware specifications: 10.2 Gitlab Cl May 7, 2021 - Version 0.87

e GBT mode 8 channels for FLX712
e PIXEL/IpGBT mode 24 channels for FLX712

Other firmware flavours will soon be added to the Cl build as soon as build scripts are available.
A typical pipeline for phase2/firmware Cl is shown in Figure 10.2

Requirement 10.2: C/ Simulation

For every commit, the simulation testbenches as described in Section 10.1 will be executed by Gitlab
Cl.

Requirement 10.3: C/ Build

For merge requests and commits to master and phase2/master branches, every active firmware
flavour will be built by Gitlab CI to produce a bitfile. A finished CI pipeline is required before a branch
can be merged. Additionally an automated test on hardware will be executed as a requirement for a
merge request.

Sim Build_full Build_gbt Build_pixel
(©) sim:cRFromHos. (®) buitd:ful o (®) build:gbt fs) (®) build:pixel I}
(©) smFULLModeT.[

@ sim:GBTCrCoding &

(©) simeBTLinkTo..

@ sim:Wupper 9]

@ sim:crc20 ()

@ sim:decodingge...

@ sim:encodingep... 9]

@ sim:endeavour |

@ sim:strips c

@ sim:validate_8b...

Figure 10.2: Continuous Integration Pipelines as seen in the Gitlab interface.

10.3 NIGHTLY FIRMWARE TEST ON HARDWARE

Besides simulation and automated builds, a third way of testing is automatically performed: Nightly firmware
tests. The nightly tests are a set of tests that are performed automatically on a FELIX hardware platform
(FLX709 or FLX712), and the set of tests depends on the firmware flavour. The nightly firmware tests are
not triggered from Gitlab Cl, but rather run at night. This way the test system is available at daytime for other
developments. The nightly tests involve a frontend emulator, the FELIX PCle card, the FELIX server and will
be extended in the future with a data handler.

The set of tests is available in the following git repository:

https://gitlab.cern.ch/atlas-tdag-felix/flx-firmware-tester

ATLAS 10. Testing, Validation and Commissioning CCCC Page 131 of 138

zzzzzzzz

https://gitlab.cern.ch/atlas-tdaq-felix/flx-firmware-tester

FELIX Phase-Il firmware specifications: 10.3 Nightly firmware test on hardwa May 7, 2021 - Version 0.87

2747 The results of the nightly tests are published on the following web interface:
2748 https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/nightly/

10. Testing, Validation and Commissioning Page 132 of 138

https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/nightly/

/.\Tz LAs FELIX Phase-ll frmware specifications May 7, 2021 - Version 0.87

- 11

.. FIRMWARE MANAGEMENT AND
.. RELIABILITY MATTERS RN

= 11.1 FIRMWARE SOURCE MANAGEMENT AND RELEASE PLAN

Remark 11.1: /nstructions for this section

Describe the firmware source code management plan, track of issues and version control, e.g. git
repository etc. Describe the firmware release plan, as required by different end users, e.g. hardware
testing and system integration etc.

2753

2754

2755 START YOUR INPUT HERE. REMOVE THE ABOVE.

- 11.2 (CONSEQUENCES OF FAILURES

Remark 11.2: /nstructions for this section

Describe the consequences to the detector of a failure of one unit of this component, e.g. x% of
the sub-detector channels will be lost. The severity of the consequences will determine the level of
reliability required and the level to be validated. This section and following section ?? and section ??
mainly apply to the boards exposed to the radiation.

2757

2758

2759 START YOUR INPUT HERE. REMOVE THE ABOVE.

= 11.3 PRIOR KNOWLEDGE OF EXPECTED RELIABILITY

Remark 11.3: /nstructions for this section

Based upon industry experience, collaboration experience or personal experience, give an estimate
of the reliability of this firmware, e.g. cross section of the SEU rate and expected upset rate during
operation.

2761

ATLAs 11. Firmware Management and Reliability Matters s Page 133 of 138

;;;;;;;;;;

FELIX Phase-ll firmware specifications: 11.3 Prior Kno May 7, 2021 - Version 0.87

2762

2763 START YOUR INPUT HERE. REMOVE THE ABOVE.

= 11.4 MEASURES PROPOSED TO ENSURE RELIABILITY OF THE
FIRMWARE

Remark 11.4: Instructions for this section

Include such measures as conservative design techniques (give specific examples), redundancy and
possibilities to replace failed part. If failed part could be replaced, estimate the difficulty and time
involved for installing replacements.

2766

2767

2768 START YOUR INPUT HERE. REMOVE THE ABOVE.

11. Firmware Management and Reliability Matters Page 134 of 138

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

/.\Tz |_ As FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

12

ORGANIZATION OF FIRMWARE
DEVELOPMENT G

Remark 12.1: Instructions for this chapter

Include a list of development teams from different institutes if this applies, and responsibility of different
firmware development tasks described in chapter 8 for each team.

This section presents a rough but reasonable estimate of the duration for the first prototyping phase.
Again, this is subjected to change depending on available person power and other factors. The major works
expected for the first prototyping phase may include evolving the firmware to different hardware platforms,
restructuring firmware block, implementing new protocols and so on.

Porting Phase-| firmware to different hardware platforms necessarily involves working with some new
types of links (e.g PCle 3 to PCle 4). This requires some changes in the Wupper Core. Fortunately this has
been implemented for 99% now and it is being verified for the Xilinx VU9P FPGA (BNL DUNE card). For the
whole implementation of new protocols (IpGBT, Aurora, 6b/8b etc.) and especially the reorganization of the
block diagram, a longer time scale is needed, say about 1-2 years towards the first working firmware.

Table 12.1 shows a rough estimation on the different parts, with time and number of FTE needed.

,1.\Z-|-|_E A!S 12. Organization of Firmware Development === Page 135 of 138

FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

Table 12.1: The time and FTE estimation for the first firmware prototyping phase..

Task Time (months) | FTE
Adjusting minimal design to the new hardware 3 2
Fixing Wupper for new hardware 1 1
Implement IpGBT (current hardware) done done
Implement IpGBT (new hardware) 1 1
Implement new block diagram framework:
Toplevel and connections 2 2
Central router ToHost (routing, no decoding / encoding) 3 2
Central router ToHost (decoding):
Aurora 2 2
8b/10b 1 2
HDLC 1 2
Central router FromHost (routing) 3 2

Central router FromHost (encoding):
Trickle merge/high priority config.
8b/10b
6b/8b
HDLC
8b/10b
TTC 0.5
ITk Pixel custom protocol

TTC/PON

TTCC emulator

GBT/IpGBT/FW wrapper

Internal emulator

e \®]

_ N = N = = anN

NN =N

12. Organization of Firmware Development Page 136 of 138

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

ATLAS

zzzzzzzzzzz

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

REFERENCES

(1]
(2]
(3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

ATLAS

zzzzzzzzzz

Argonne National Lab. FELIG User Manual. URL: https://gitlab.cern.ch/atlas-tdaq-felix/
felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf (cit. on p. 4).

Nikhef, Radboud University Nijmegen. FMEMU, Documentation needed. URL: https://gitlab.cern.
ch/atlas-tdaqg-felix/firmware/ (cit. on p. 4).

Nikhef, Radboud University Nijmegen. FELIX_MROD, Documentation needed. URL: https://gitlab.
cern.ch/atlas-tdag-felix/firmware/ (cit. on p. 4).

K. Chen et al. “A Generic High Bandwidth Data Acquisition Card for Physics Experiments”. In: IEEE
Transactions on Instrumentation and Measurement 69.7 (2020), pp. 4569-4577. DOI: 10.1109/TIM.
2019.2947972 (cit. on p. 11).

Xilinx. UltraScale FPGA Product Tables and Product Selection Guide. URL: https://www.xilinx.
com/ support /documentation/selection- guides/ultrascale - fpga - product - selection -
guide.pdf (cit. on p. 14).

Xilinx. UltraScale+ FPGA Product Tables and Product Selection Guide. URL: https://www.xilinx.
com/ support /documentation/selection- guides /ultrascale - fpga- product - selection-
guide.pdf (cit. on p. 14).

Frans Schreuder. Tool to create block diagrams from VHDL entities. URL: https: //github . com/
fransschreuder/entity-block (cit. on p. 23).

Aliaksei Chapyzhenka. Tool to create waveforms. URL: https://wavedrom. com/ (cit. on pp. 26, 29,
110, 111).

Wikipedia. High-Level Data Link Control. URL: {https://en.wikipedia.org/wiki/High-Level\
_Data_Link_Control} (cit. on pp. 48, 49, 88).

Julian Maxime Mendez. GBT-SC module for FPGA. URL: {https://gitlab.cern.ch/gbtsc- fpga-
support/gbt-sc} (cit. on p. 48).

CERN GBT Project. “The GBTx Manual”. In: V0.14 (2016). URL: https://espace.cern.ch/GBT-
Project/GBTX/Manuals/gbtxManual.pdf (cit. on pp. 51, 93).

TTC group. “CERN TTC homepage”. In: (). URL: http://ttc.web.cern.ch/TTC (cit. on p. 91).
LpGBT-FPGA. 2018. URL: http://1lpgbt - fpga.web. cern.ch/doc/html /index . html (cit. on
pp. 96—98).

K. Chen et al. “Optimization on fixed low latency implementation of the GBT core in FPGA”. In: Journal

of Instrumentation 12.07 (2017), P07011-P07011. DOI: 10.1088/1748-0221/12/07 /p07011. URL:
https://doi.org/10.1088/1748-0221/12/07/p07011 (cit. on p. 98).

Xilinx. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476 v1.11.1). 2015. URL: http://www.
xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf (cit. on
p. 98).

P. Farthouat and D. Francis and F. Lanni and T. Pauly. ATLAS Trigger and DAQ Interfaces with Detector
Front-End Systems: Requirement Document for HL-LHC. URL: {https://edms.cern.ch/ui/file/
1563801/1/RequirementsPhaseII_v1.1.0.pdf} (cit. on p. 103).

The FELIX team. atlas-tdaq-felix website. URL: https://atlas-project-felix.web.cern.ch/
atlas-project-felix/ (cit. on p. 113).

Xilinx. UG761: Xilinx AXI Bus documentation. URL:http://www.xilinx.com/support/documentation/

ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf (cit. on
pp- 113, 117).

Xilinx. Virtex-7 FPGA Gen3 Integrated Block for PCl Express v4.3. URL: https://www.xilinx.com/
support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
(cit. on pp. 113, 123, 129).

Z , References References Page 137 of 138

https://gitlab.cern.ch/atlas-tdaq-felix/felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://doi.org/10.1109/TIM.2019.2947972
https://doi.org/10.1109/TIM.2019.2947972
https://doi.org/10.1109/TIM.2019.2947972
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-fpga-product-selection-guide.pdf
https://github.com/fransschreuder/entity-block
https://github.com/fransschreuder/entity-block
https://github.com/fransschreuder/entity-block
https://wavedrom.com/
{https://en.wikipedia.org/wiki/High-Level_Data_Link_Control}
{https://en.wikipedia.org/wiki/High-Level_Data_Link_Control}
{https://en.wikipedia.org/wiki/High-Level_Data_Link_Control}
{https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc}
{https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc}
{https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc}
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
http://ttc.web.cern.ch/TTC
http://lpgbt-fpga.web.cern.ch/doc/html/index.html
https://doi.org/10.1088/1748-0221/12/07/p07011
https://doi.org/10.1088/1748-0221/12/07/p07011
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
{https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf}
{https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf}
{https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf}
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf

FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

20 [20] Xilinx. UltraScale Devices Gen3 Integrated Block for PCl Express v4.4. URL: https://www.xilinx.

2831 com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pgl56-ultrascale-
2832 pcie-gen3.pdf (cit. on pp. 113, 123, 129).

ss [21] Xilinx. UltraScale+ Devices Integrated Block for PCl Express v1.3. URL: https://www.xilinx.com/
2634 support /documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcied-
2835 ultrascale-plus.pdf (cit. on pp. 113, 123, 129).

23 [22] Xilinx. Versal ACAP Integrated Block for PCI Express v1.0. URL: https://www.xilinx.com/support/
2837 documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf (cit. on
2838 pp. 113, 123, 129).

230 [23] ARM. “ARM AMBA AXI bus standard specification page”. In: (). URL: http : / /www . arm . com /
2840 products/system-ip/amba/amba-open-specifications.php (cit. on p. 117).

ssa1 [24] Ali Skaf. FELIX Standardized Firmware testbench with Gitlab Cl. URL: {https://indico.cern.ch/
2842 event /858260 /contributions/3613811/attachments/1930907/3198159/ASkaf_QT5rl.pdf}
2843 (cit. on p. 130).

assas [25] FELIX team. FELIX Data format. URL: {https://atlas-project-felix.web.cern.ch/atlas-
2845 project-felix/user/felix-user-manual /versions/Latest/C_datastructures.html#_13_
2846 _guide_to_felix_data_structures} (cit. on p. B.29).

References References Page 138 of 138

https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
{https://indico.cern.ch/event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
{https://indico.cern.ch/event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
{https://indico.cern.ch/event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}

/.\Tz |_ Aés FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

. Appendix A

.. CODE MANAGEMENT D

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

. Appendix B

- APPENDIX

- B.1 FELIX REGISTER MAP, VERSION 5.0

252 Starting from the offset address of BARO, BAR1 and BAR2. BARO only contains registers associated with
2853 DMA

Bar0
DMA _DESC
0x0000 0,1 DMA_DESC_o0
END_ADDRESS 127:64 | W | enoaddress
START_ADDRESS 63:0 | W | start Address
0x0010 0,1 DMA_DESC_0a
SW_POINTER 127:64 W Pointer controlled by the software, indicating read or write status for circular DMA
WRAP_AROUND 12 | W | weap around
FROMHOST 11 | R | 1 tromHost 0: toHost
NUM_WORDS 10:0 | W | numberof 32 bit words
0x00EO 0,1 DMA_DESC_7
END_ADDRESS 127:64 | W | &ndaddress
START_ADDRESS 63:0 | W | stataddress
0x00F0 0,1 DMA_DESC_7a
SW_POINTER 127:64 W Pointer controlled by the software, indicating read or write status for circular DMA
WRAP_AROUND 12 | W | weaparouna
FROMHOST 11 | R | 1: tromHost 0: toHost
NUM_WORDS 10:0 W Number of 32 bit words
DMA _DESC_STATUS
0x0200 0,1 DMA_DESC_STATUS_0
EVEN_PC 66 R Even address cycle PC
EVEN_DMA 65 R Even address cycle DMA
DESC_DONE 64 | R | pescriptor Done
FW_POINTER 63:0 R Pointer controlled by the firmwarre, indicating where the DMA is busy reading or writing
0x0270 0,1 DMA _DESC_STATUS 7
EVEN_PC 66 R Even address cycle PC
EVEN_DMA 65 R Even address cycle DMA
DESC_DONE 64 | R | pescriptor Done
FW_POINTER 63:0 R Pointer controlled by the firmwarre, indicating where the DMA is busy reading or writing

FELIX Phase-ll firmware specifications

May 7, 2021 - Version 0.87

0x0300 0,1 BARO_VALUE 31:0 R Copy of BARO offset reg.
0x0310 0,1| BAR1_VALUE 31:0 | R | copyofBaRT offset reg.
0x0320 0,1| BAR2_VALUE 31:0 | R | copyofBaRz offset reg.
0x0400 0, 1 DMA_DESC_ENABLE 7:0 W Enable descriptors 7:0. One bit per descriptor. Cleared when Descriptor is handled.
0x0420 0 , 1 DMA_RESET any T Reset Wupper Core (DMA Controller FSMs)
0x0430 0 , 1 SOFT_RESET any T Global Software Reset. Any write resets applications, e.g. the Central Router.
0x0440 0 , 1| REGISTE R_RESET any T Resets the register map to default values. Any write triggers this reset.
0x0450 0,1 FROMHOST_FULL_THRESH
THRESHOLD_ASSERT 22:16 | W | Assertvalue of the FromHost programmable fullflag
THRESHOLD_NEGATE 6:0 | W | nNegate vaive o the FromHost programmalve ullflag
0x0460 0,1 TOHOST_FULL_THRESH
THRESHOLD_ASSERT 2716 | W | assertvalue of the ToHost programmable full flag
THRESHOLD_NEGATE 11:0 | W | nNegate vaiue of the ToHost programmlbe full fiag
0x0470 0, 1 BUSY_THRESHOLD_ASSERT 63:0 w Tohost or Fromhost busy will be asserted in circular DMA mode when the server PC buffer
gets full (space below ASSERT threshold)..
0x0480 0 , 1 BUSY_THRESHOLD_NEGATE 63:0 W Tohost or Fromhost busy will be negated in circular DMA mode when the server PC buffer
gets less full (space above NEGATE threshold).
0x0490 0, 1 BUSY_STATUS 0 R A tohost descriptor passed BUSY_THRESHOLD_ASSERT, busy flag set
0x04A0 0,1| PC_PTR_GAP 63:0 | W | 1hisis the minimum value that the pc_pointer in a descriptor has to decrease in order to
flip the evencycle_pc bit

Table B.1: FELIX register map BARO.

Appendix B: Appendix

B.2

@Xs FELIX Phase-Il frmware specifications May 7, 2021 - Version 0.87

2852 BAR1 stores registers associated with the Interrupt vector.
Bar1
INT_VEC

0x0000 0,1 INT_VEC_ 0
INT_CTRL 127:96 | W | inerrupt Control
INT_DATA 95:64 | W | interuptData
INT_ADDRESS 64:0 | W | interrupt Address

0x00F0 0,1 INT_VEC_15
INT_CTRL 127:96 | W | intermupt Control
INT_DATA 95:64 | W | interuptpata
INT_ADDRESS 64:0 | W | interrupt Adaress

0x0100 0,1| INT_TAB_ENABLE 7:0 | W | interrupt Table enabie

Selectively enable Interrupts

Table B.2: FELIX register map BAR1.

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

2852 BAR2 stores registers for the control and monitor of HDL modules inside the FPGA other than Wupper. A
253 portion of this register map’s section is dedicated for control and monitor of devices outside the FPGA,; as for
25« example simple 12C devices.

Bar2
Generic Board Information
0x0000 0,1| REG_MAP_VERSION 15:0 | R | Register Map Version, 5.0 formatted as 0x0500
0x0010 0,1| BOARD_ID_TIMESTAMP 39:0 | R | Board ID Date / Time in BCD format YYMMDDhhmm
0x0030 0,1| GIT_COMMIT_TIME 39:0 | R | Board ID GIT Commit time of current revision, Date / Time in
BCD format YYMMDDhhmm
0x0040 0,1 GIT_TAG 63:0 R String containing the current GIT TAG
0x0050 0,1| GIT_COMMIT_NUMBER 31:0 | R | Number of GIT commits after current GIT_TAG
0x0060 0,1| GIT_HASH 31:0 | R | ShortGIT hash (32 bit)
0x0070 0,1| STATUS_LEDS 7:0 | W | Board GPIO Leds
0x0080 0,1 GENERIC_CONSTANTS
INTERRUPTS 15:8 | R | Number of Interrupts
DESCRIPTORS 7:0 R Number of Descriptors
0x0090 0,1| NUM_OF_CHANNELS 7:0 | R | Number of GBT or FULL mode Channels
0x00A0 0,1| CARD_TYPE 63:0 | R | card Type:
- 709 (0x2c5): FLX709, VC709
- 710 (0x2c6): FLX710, HTG710
- 711 (0x2c7): FLX711, BNL711
- 712 (0x2c8): FLX712, BNL712
- 128 (0x080): FLX128, VCU128
0x00CO0 0,1| GENERATE_GBT 0 | R | 1 when the GBT Wrapper is included in the design
0x00D0 0,1| OPTO_TRX_NUM 70 | R Number of optical transceivers in the design
0x00EO 0,1| GENERATE TTC_EMU 1 | R | 1when TTC emulator is generated
INCLUDE_EGROUPS
0x0100 0,1 INCLUDE_EGROUP_O0
FROMHOST_02 8 FromHost EPROC02 is included in this EGROUP

FROMHOST_04
FROMHOST_08
FROMHOST_HDLC

FromHost EPROCO04 is included in this EGROUP
FromHost EPROCS is included in this EGROUP
FromHost HDLC is included in this EGROUP

TOHOST_02 ToHost EPROCO2 is included in this EGROUP
TOHOST_04 ToHost EPROC04 is included in this EGROUP
TOHOST_08 ToHost EPROCO8 is included in this EGROUP
TOHOST_16 ToHost EPROC16 is included in this EGROUP

O =N WHAOOO N
0 XVIVWIOVIVIODIOTIOD

TOHOST_HDLC ToHost HDLC is included in this EGROUP

Z|:
ol-

OO - NDNWHrOoloN @
| v s v Jis v Jis o ks o lbs v s v Js v s |

0x0160 0,1 DE_EGROUP_6

FromHost EPROCO02 is included in this EGROUP
FromHost EPROCO04 is included in this EGROUP
FromHost EPROCS is included in this EGROUP

FromHost HDLC is included in this EGROUP

FROMHOST_02
FROMHOST_04
FROMHOST_08
FROMHOST_HDLC

TOHOST_02 ToHost EPROCO02 is included in this EGROUP
TOHOST_04 ToHost EPROCO04 is included in this EGROUP
TOHOST_08 ToHost EPROCO08 is included in this EGROUP
TOHOST_16 ToHost EPROC16 is included in this EGROUP

ToHost HDLC is included in this EGROUP
GBT is configured in Wide mode

TOHOST_HDLC
0x0170 0,1| WIDE_MODE

Appendix B: Appendix B.4

E

)

FELIX Phase-Il firmware specifications

XPERTMENT

May 7, 2021 - Version 0.87

0x0190 0,1| FIRMWARE_MODE 3:0 | R | 0:GBT mode
1: FULL mode
2: LTDB mode (GBT mode with only IC and TTC links)
3: FEI4 mode
4: ITK Pixel
5: ITK Strip
6: FELIG
7: FULL mode emulator
8: FELIX_MROD mode
9: IpGBT mode
0x01A0 0,1| GTREFCLK_SOURCE 1:0 | R | o: Transceiver reference Clock source from Si5345
1: Transceiver reference Clock source from Si5324
2: Transceiver reference Clock from internal BUFG (GREFCLK)
0x01B0 0,1 CR_GENERICS
XOFF_INCLUDED 2 R Xoff bits (usually full mode) can be generated by the FromHost
Central Router
DIRECT_MODE_INCLUDED 1 R Indicates that the Direct mode functionality was built in the
Central Router
FROM_HOST_INCLUDED 0 R Indicates that the From Host path of the Central router was
included in the design
0x01CO0 0,1| BLOCKSIZE 15:0 | R | Number of bytes in a block
0x01D0 0,1| PCIE_ENDPOINT 0 | R | Indicator of the PCle endpoint on BNL71x cards with two
endpoints. 0 or 1
0x01EO 0,1| CHUNK_TRAILER_32B 0 | R | Indicator that the chunk trailer is in the new 32-bit format
0x01FO0 0,1| PCIE_ENDPOINTS 1:0 | R | Numberof PCle endpoints on the card. The BNL71x cards have
2 endpoints
0x0200 0,1| SUPER_CHUNK_FACTOR 70 | R Number of full mode chunks glued together as one chunk
CR To Host Controls And Monitors
0x0800 0,1 TIMEOUT _CTRL
ENABLE 32 W 1 enables the timout trailer generation for ToHost mode
TIMEOUT 31.0 | W Number of 40 MHz clock cycles after which a timeout occurs.
0x0810 0,1| MAX_TIMEOUT 31:0 | R | Maximum allowed timeout value
0x0820 0,1 CRTOHOST_FIFO_STATUS
CLEAR any T Any write to this register clears the latched FULL flags
FULL 47:24 R Every bit represents the full flag of a channel FIFO
FULL_LATCHED 23:0 | R | like FULL but a latched state, clear by writing to this register
CR From Host Controls And Monitors
0x1000 0,1 CRFROMHOST_FIFO_STATUS
CLEAR any T Any write to this register clears the latched FULL flags
FULL 47:24 R Every bit represents the full flag of a channel FIFO
FULL_LATCHED 23:0 | R | like FULL but a latched state, clear by writing to this register
BROADCAST_ENABLE_GEN
0x1010 ‘ 0,1 ‘ BROADCAST_ENABLE_00 41:0 ‘ W ‘ Enable path to be included in a broadcast message.
0x1180 ‘ 0,1 ‘ BROADCAST_ENABLE_23 41:0 ‘ W ‘ Enable path to be included in a broadcast message.
Decoding Controls And Monitors
PATH_HAS_STREAM_ID
0x2000 0,1 LINK_00_HAS STREAM ID

EGROUP6
EGROUP5
EGROUP4
EGROUP3
EGROUP2
EGROUP1
EGROUPO

55:48
47:40
39:32
31:24
23:16
15:8
7:0

Essss=s:=

EPATH (Wide mode or IpGBT) is associated with a STREAM ID
EPATH (Wide mode or IpGBT) is associated with a STREAM ID
EPATH is associated with a STREAM ID
EPATH is associated with a STREAM ID
EPATH is associated with a STREAM ID
EPATH is associated with a STREAM ID

EPATH is associated with a STREAM ID, use only bit0 for FULL
mode.

£9)

ERTMEN

TLAS Appendix B: Appendix

Exp

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

0x2170 [0,1 LINK_23 HAS STREAM_ID
EGROUP6 55:48 | W | EPATH (Wide mode or IpGBT) is associated with a STREAM ID
EGROUP5 47:40 | W | EPATH (Wide mode or IpGBT) is associated with a STREAM ID
EGROUP4 39:32 | W | EPATH is associated with a STREAM ID
EGROUP3 31:24 | W | EPATH is associated with a STREAM ID
EGROUP2 23:16 | W | EPATH is associated with a STREAM ID
EGROUP1 15:8 | W | EPATH is associated with a STREAM ID
EGROUPO 70 | W EPATH is associated with a STREAM ID, use only bit0 for FULL
mode.
DECODING_LINK_STATUS ARR
0x2180 0,1 | DECODING_LINK_ALIGNED_00 57:0 | R | Every bit corresponds to an E-link on one (Ip)GBT or
FULL-mode frame. For FULL mode only bit 0 is used
0x22F0 0,1 | DECODING_LINK_ALIGNED_23 57:0 | R | Every bit corresponds to an E-link on one (Ip)GBT or

FULL-mode frame. For FULL mode only bit 0 is used

DECODING_EGROUP_CTRL_GEN

DECODING_EGROUP

0x2300 0,1 DECODING_LINK00_EGROUPO_CTRL

EPATH_ALMOST_FULL 58:51 | R | FIFO full indication
REVERSE_ELINKS 50:43 enables bit reversing for the elink in the given epath

w
PATH_ENCODING 42:11 | W | Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved

EPATH_WIDTH 10:8 | W | width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16,
4:32

EPATH_ENA 7:0 | W | Enable bits per EPROC

0x2360 0,1 DECODING_LINK0O0_EGROUP6_CTRL

EPATH_ALMOST_FULL 58:51 | R | FIFO full indication
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
W

PATH_ENCODING 42:11 Encoding for every EPATH, 4 bits per E-path
0: direct mode

1: 8b10b mode

2: HDLC mode

3: TTC

4: ITk Strips 8b10b
5: ITk Pixel

6: Endeavour
7-15: reserved

EPATH_WIDTH 108 | W Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16,
4:32

EPATH_ENA 7:0 | W | Enable bits per EPROC

DECODING_EGROUP

0x27D0 0,1 DECODING_LINK11_EGROUPO_CTRL
EPATH_ALMOST_FULL 58:51 | R | FIFO full indication
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath

Appendix B: Appendix B.6

E

)

FELIX Phase-Il firmware specifications

XPERTMENT

May 7, 2021 - Version 0.87

PATH_ENCODING 42:11 | W | Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved
EPATH_WIDTH 10:8 w Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16,
4:32
EPATH_ENA 7:0 | W | Enable bits per EPROC
0x2830 0,1 DECODING_LINK11_EGROUP6_CTRL
EPATH_ALMOST_FULL 58:51 | R | FIFO full indication
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
PATH_ENCODING 42:11 | W | Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3:TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved
EPATH_WIDTH 10:8 w Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16,
4:32
EPATH_ENA 7:0 | W | Enable bits per EPROC
MINI_EGROUP_TOHOST_GEN
0x2840 0,1 MINI_EGROUP_TOHOST_00
AUX_ALMOST_FULL 12 | R | Indicator that the AUX path FIFO is almost full
AUX_BIT_SWAPPING 11 | W | o: two input bits of IC e-link are as documented, 1: two input bits
are swapped
AUX_ENABLE 10 | W | Enables the AUX channel
IC_ALMOST_FULL 9 R Indicator that the IC path FIFO is almost full
IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits
are swapped
IC_ENABLE 7 w Enables the IC channel
EC_ALMOST_FULL 6 R Indicator that the EC path FIFO is almost full
EC_BIT_SWAPPING 5 W 0: two input bits of EC e-link are as documented, 1: two input
bits are swapped
EC_ENCODING 4:1 | W | configures encoding of the EC channel
EC_ENABLE W | Enables the EC channel
0x29B0 0,1 MINI_EGROUP_TOHOST_23
AUX_ALMOST_FULL 12 R Indicator that the AUX path FIFO is almost full
AUX_BIT_SWAPPING 11 | W | o: two input bits of IC e-link are as documented, 1: two input bits
are swapped
AUX_ENABLE 10 | W | Enables the AUX channel
IC_ALMOST_FULL 9 R Indicator that the IC path FIFO is almost full
IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits
are swapped
IC_ENABLE 7 | W | Enables the IC channel
EC_ALMOST_FULL 6 R Indicator that the EC path FIFO is almost full
EC_BIT_SWAPPING 5 W 0: two input bits of EC e-link are as documented, 1: two input
bits are swapped
EC_ENCODING 4:1 | W | configures encoding of the EC channel
EC_ENABLE 0 W Enables the EC channel
0x29C0 0,1| TTC_TOHOST_ENABLE 0 | W | Enables the ToHost Mini Egroup in TTC mode

£9)

ERTMEN

TLAS Appendix B: Appendix

Exp

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

0x29D0 0,1| DECODING_REVERSE_10B 0 | W | Reverse 10-bit word of elink data for 8010b E-links
1: Receive 10-bit word in ToHost E-Paths, MSB first
0: Receive 10-bit word in ToHost E-Paths, LSB first
RD53 B PROCESSOR_GEN
0x29E0 0,1 RD53B_PROCESSOR_00
ENABLE_MULTICHIP 3 | R | Decoding block
ENABLE_BINARYTREE 2 | R | Decoding block
ENABLE_TOT 1 | R | Decoding block
DROP_TOT 0 | R | Decoding block
0x2DDO0 0,1 RD53B_PROCESSOR 63
ENABLE_MULTICHIP 3 R Decoding block
ENABLE_BINARYTREE 2 | R | Decoding block
ENABLE_TOT 1 | R | Decoding block
DROP_TOT 0 R Decoding block
Encoding Controls And Monitors
0x3000 0,1| ENCODING_REVERSE_10B 0 | W | Reverse 10-bit word of elink data for 8010b E-links. 1 MSB first,
0 LSB first
ENCODING_EGROUP_CTRL_GEN
ENCODING_EGROUP
0x3010 0,1 ENCODING_LINKOO_EGROUPO_CTRL
TTC_OPTION 62:59 | W | Selects TTC bits sent to the E-link
EPATH_ALMOST_FULL 58:51 | R | Indiator that the EPATH FIFO is almost full
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
EPATH_WIDTH 42:40 | W | width of the Elinks in the egroup
0: 2 bit 80 Mbr/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s
PATH_ENCODING 39:8 | W | Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: |Tk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification
doc
EPATH_ENA 7:0 | W | Enable bits per E-PATH
0x3050 0,1 ENCODING_LINKOO_EGROUP4_CTRL
TTC_OPTION 62:59 | W | Selects TTC bits sent to the E-link
EPATH_ALMOST_FULL 58:51 | R | Indiator that the EPATH FIFO is almost full
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
EPATH_WIDTH 42:40 | W | width of the Elinks in the egroup
0: 2 bit 80 Mbr/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s
PATH_ENCODING 39:8 | W | Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: |Tk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification
doc

Appendix B: Appendix B.8

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

\ | EPATH_ENA \ 7:0 | W | Enable bits per E-PATH

ENCODING_EGROUP
0x3380 0,1 ENCODING_LINK11_EGROUPO_CTRL
TTC_OPTION 62:59 | W | Selects TTC bits sent to the E-link
EPATH_ALMOST_FULL 58:51 | R | Indiator that the EPATH FIFO is almost full
REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
w

EPATH_WIDTH 42:40 Width of the Elinks in the egroup
0: 2 bit 80 Mbr/s

1: 4 bit 160 Mb/s

2: 8 bit 320 Mb/s

PATH_ENCODING 39:8 | W | Encoding for every EPATH, 4 bits per E-Path
: No encoding

: 8b10b mode

: HDLC mode

1 ITk Strip LCB

: 1Tk Pixel

: Endeavour

: reserved

: reserved

greater than 7: TTC mode, see firmware Phase 2 specification
doc

NO aAWN = O

EPATH_ENA 7:0 | W | Enable bits per E-PATH

0x33C0 0,1 ENCODING_LINK11_EGROUP4_CTRL

TTC_OPTION 62:59 | W | Selects TTC bits sent to the E-link

EPATH_ALMOST_FULL 58:51 | R | Indiator that the EPATH FIFO is almost full

REVERSE_ELINKS 50:43 | W | enables bit reversing for the elink in the given epath
W

EPATH_WIDTH 42:40 Width of the Elinks in the egroup
0: 2 bit 80 Mbr/s

1: 4 bit 160 Mb/s

2: 8 bit 320 Mb/s

PATH_ENCODING 39:8 | W | Encoding for every EPATH, 4 bits per E-Path
: No encoding

: 8b10b mode

: HDLC mode

1 ITk Strip LCB

: 1Tk Pixel

: Endeavour

: reserved

: reserved

greater than 7: TTC mode, see firmware Phase 2 specification
doc

NO OAWN 2O

EPATH_ENA 7:0 | W | Enable bits per E-PATH
MINI_EGROUP_FROMHOST_GEN

0x33D0 0,1 MINI_EGROUP_FROMHOST_00

AUX_ALMOST_FULL 12 Indicator that the AUX Path FIFQ is almost full

AUX_BIT_SWAPPING 11 0: two input bits of AUX e-link are as documented, 1: two input
bits are swapped

Enables the AUX channel
Indicator that the IC Path FIFO is almost full

AUX_ENABLE 10
IC_ALMOST_FULL 9

IC_BIT_SWAPPING 0: two input bits of IC e-link are as documented, 1: two input bits

are swapped
IC_ENABLE

EC_ALMOST_FULL
EC_BIT_SWAPPING

Enables the IC channel
Indicator that the EC Path FIFO is almost full

0: two output bits of EC e-link are as documented, 1: two output
bits are swapped

oo N ®
= 2Pz 2Pz =T

EC_ENCODING 4:1
EC_ENABLE

Configures encoding of the EC channel

Configures the FromHost Mini egroup

0x3540 | 0,1] MINI_EGROUP_FROMHOST_23

FELIX Phase-Il firmware specifications

AUX_ALMOST_FULL
AUX_BIT_SWAPPING

AUX_ENABLE
IC_ALMOST_FULL
IC_BIT_SWAPPING

IC_ENABLE
EC_ALMOST_FULL
EC_BIT_SWAPPING

EC_ENCODING
EC_ENABLE

12
11

10

9
8
7
6
5

4:1
0

£ £z =Wz =7

May 7, 2021 - Version 0.87

Indicator that the AUX Path FIFO is almost full

0: two input bits of AUX e-link are as documented, 1: two input
bits are swapped

Enables the AUX channel
Indicator that the IC Path FIFO is almost full

0: two input bits of IC e-link are as documented, 1: two input bits
are swapped

Enables the IC channel
Indicator that the EC Path FIFO is almost full

0: two output bits of EC e-link are as documented, 1: two output
bits are swapped

Configures encoding of the EC channel

Configures the FromHost Mini egroup

ENCODING_EGROUP_CTRL_FEI4_GEN

ENCODING_EGROUP_FEI4

0x3550 0,1 ENCODING_LINKOO_EGROUPOQ_FEI4_CTRL
PHASE_DELAY1 11:9 | W | phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLE1 8 W enable manchester encoding
AUTOMATIC_MERGE_DISABLE1 7 | W | Disable automatic merging
TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled)
PHASE_DELAYO 53 | W phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLEO 2| W enable manchester encoding
AUTOMATIC_MERGE_DISABLEO 1 | W | Disable automatic merging
TTC_SELECTO 0 W TTC/FromHost select (if automatic merging is disabled)
0x3590 0,1 ENCODING_LINKOO_EGROUP4_FEI4_CTRL
PHASE_DELAY1 11:9 | W | phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLE1 8 | W enable manchester encoding
AUTOMATIC_MERGE_DISABLE1 7| W Disable automatic merging
TTC_SELECT1 6| W TTC/FromHost select (if automatic merging is disabled)
PHASE_DELAY0 5:3 | W | phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLEO 2| W enable manchester encoding
AUTOMATIC_MERGE_DISABLEO 1 W Disable automatic merging
TTC_SELECTO 0| W TTC/FromHost select (if automatic merging is disabled)
ENCODING_EGROUP_FEI4
0x38C0 0,1 ENCODING_LINK11_EGROUPO_FEI4_CTRL
PHASE_DELAY1 11:9 | W | phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLE1 8| W enable manchester encoding
AUTOMATIC_MERGE_DISABLE1 7 W Disable automatic merging
TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled)
PHASE_DELAY0 5:3 | W | phase delay of output data, with 320 Bb/s e-link 8 phases per BC
MANCHESTER_ENABLEOQ 2| W enable manchester encoding
AUTOMATIC_MERGE_DISABLEO 1 W Disable automatic merging
TTC_SELECTO 0| W TTC/FromHost select (if automatic merging is disabled)
0x3900 0,1 ENCODING_LINK11_EGROUP4_FEI4_CTRL

PHASE_DELAY1
MANCHESTER_ENABLE1
AUTOMATIC_MERGE_DISABLE1
TTC_SELECTH1

PHASE_DELAYO
MANCHESTER_ENABLEO
AUTOMATIC_MERGE_DISABLEO
TTC_SELECTO

11:9
8

A
o= Wo N

=Essss=s=s:=

phase delay of output data, with 320 Bb/s e-link 8 phases per BC
enable manchester encoding

Disable automatic merging

TTC/FromHost select (if automatic merging is disabled)

phase delay of output data, with 320 Bb/s e-link 8 phases per BC
enable manchester encoding

Disable automatic merging

TTC/FromHost select (if automatic merging is disabled)

Appendix B: Appendix

B.10

)

FELIX Phase-Il firmware specifications

EXPERTMENT

May 7, 2021 - Version 0.87

Frontend Emulator Controls And Monitors

0x4000 0, FE_EMU_ENA
1
EMU_TOFRONTEND 1 | W | Enable GBT dummy emulator ToFrontEnd
EMU_TOHOST 0 W Enable GBT dummy emulator ToHost
0x4010 0, FE_EMU_CONFIG
1
WE 54:47 | W | write enable array, every bit is one emulator RAM block
WRADDR 46:33 | W | write address bus
WRDATA 32:0 | W | write data bus
0x4020 0, FE_EMU_READ
1
SEL 3533 | W Select ramblock to read back
DATA 32:0 | R | Read back ramblock at FE_EMU_CONFIG.WRADDR
Link Wrapper Controls
0x5400 0 GBT_CHANNEL_DISABLE 47:0 | W | Disable selected IpGBT, GBT or FULL mode channel
0x5410 0 GBT_GENERAL_CTRL 63:0 | W | Alignment chk reset (not self clearing)
0x5420 0 GBT_MODE_CTRL
RX_ALIGN_TB_SW 2 | W | RX_ALIGN_TB_SW
RX_ALIGN_SW 1 | W | RX_ALIGN_SW
DESMUX_USE_SW 0 | W | DESMUX_USE_Sw
0x5480 0 GBT_RXSLIDE_SELECT 47:0 | W | RxSlide select [47:0]
0x5490 0 GBT_RXSLIDE_MANUAL 47:0 | W | RxSlide select [47:0]
0x54A0 0 GBT_TXUSRRDY 47:0 | W | TxusrRdy [47:0]
0x54B0 0 GBT_RXUSRRDY 47:0 | W | RxUsrRdy [47:0]
0x54C0 0 GBT_SOFT_RESET 47:0 | W | SOFT_RESET [47:0]
0x54D0 0 GBT_GTTX_RESET 47:0 | W | GTTX_RESET [47:0]
0x54E0 0 GBT_GTRX_RESET 47:0 | W | GTRX_RESET [47:0]
0x54F0 0 GBT_PLL_RESET
QPLL_RESET 59:48 | W | QPLL_RESET[11:0]
CPLL_RESET 47:0 | W | CPLL_RESET [47:0]
0x5500 0 GBT_SOFT_TX_RESET
RESET_ALL 59:48 | W | SOFT_TX_RESET_ALL[11:0]
RESET_GT 47:0 | W | SOFT_TX_RESET_GT [47:0]
0x5510 0 GBT_SOFT_RX_RESET
RESET_ALL 59:48 | W | SOFT_TX_RESET ALL[11:0]
RESET_GT 47:0 | W | SOFT_TX_RESET_GT [47:0]
0x5520 0 GBT_ODD_EVEN 47:0 | W | oddEven [47:0]
0x5530 0 GBT_TOPBOT 47:0 | W | TopBot [47:0]
0x5540 0 GBT_TX_TC_DLY_VALUE1 47:0 | W | TX_TC_DLY_VALUE [47:0]
0x5550 0 GBT_TX_TC_DLY_VALUE2 47:0 | W | TX_TC_DLY_VALUE [95:48]
0x5560 0 GBT_TX_TC_DLY_VALUE3 47:0 | W | TX_TC_DLY_VALUE [143:96]
0x5570 0 GBT_TX_TC_DLY_VALUE4 47:0 | W | TX_TC_DLY_VALUE [191:144]
0x5580 0 GBT_DATA_TXFORMAT1 47:0 | W | DATA_TXFORMAT [47:0]
0x5590 0 GBT_DATA_TXFORMAT2 47:0 | W | DATA_TXFORMAT [95:48]
0x55A0 0 GBT_DATA_RXFORMAT1 47:0 | W | DATA_RXFORMAT [47:0]
0x55B0 0 GBT_DATA_RXFORMAT2 47:0 | W | DATA_RXFORMAT [95:0]
0x55C0 0 GBT_TX_RESET 47:0 | W | TX Logic reset [47:0]
0x55D0 0 GBT_RX_RESET 47:0 | W | RX Logic reset [47:0]
0x55E0 0 GBT_TX_TC_METHOD 47:0 | W | TXtime domain crossing method [47:0]
0x55F0 0 GBT_OUTMUX_SEL 47:0 | W | Descrambler output MUX selection [47:0]
0x5600 0 GBT_TC_EDGE 470 | W Sampling edge selection for TX domain crossing [47:0]

ATLAS Appendix B: Appendix

zzzzzzzzzz

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

0x5610 0 GBT_TXPOLARITY 47:0 | W | o0: default polarity
1: reversed polarity for transmitter of GTH channels
0x5620 0 GBT_RXPOLARITY 47:0 | W | o0: default polarity
1: reversed polarity for the receiver of the GTH channels
0x5630 0 GTH_LOOPBACK_CONTROL 2:0 | W | controls loopback for loopback: read UG476 for the details.
NOTE: the TXBUFFER is disabled, near end PCS loopback is
not supported.
000: Normal operation
001: Near-End PCS Loopback
010: Near-End PMA Loopback
011: Reserved
100: Far-End PMA Loopback
101: Reserved
110: Far-End PCS Loopback
0x5700 0 GBT_TOHOST_FANOUT
LOCK 48 | W Locks this particular register. If set prevents software from
touching it.
SEL 47:0 | W | ToHost FanOut/Selector. Every bitfield is a channel:
1 : GBT_EMU, select GBT Emulator for a specific CentralRouter
channel
0 : GBT_WRARP, select real GBT link for a specific CentralRouter
channel
0x5710 0 GBT_TOFRONTEND_FANOUT
LOCK 48 | W | Locks this particular register. If set prevents software from
touching it.
SEL 47:0 | W | ToFrontEnd FanOut/Selector. Every bitfield is a channel:
1 : GBT_EMU, select GBT Emulator for a specific GBT link
0 : TTC_DEG, select CentralRouter data (including TTC) for a
specific GBT link
Link Wrapper Monitors
0x6600 0 GBT_VERSION
DATE 63:48 | R | Date
GBT_VERSION 47:32 | R | GBT Version
GTH_IP_VERSION 31:16 | R | GTHIP Version
RESERVED 15:3 | R | Reserved
GTHREFCLK_SEL 2 | R | GTHREFCLK SEL
RX_CLK_SEL 1 | R | RXCLKSEL
PLL SEL 0| R | PLLSEL
0x6680 0 GBT_TXRESET_DONE 47:0 | R | TXResetdone [47:0]
0x6690 0 GBT_RXRESET DONE 47:0 | R | RXResetdone[47:0]
0x66A0 0 GBT_TXFSMRESET_DONE 47:0 | R | TX FSM Reset done [47:0]
0x66B0 0 GBT_RXFSMRESET _DONE 47:0 | R | RXFSM Reset done [47:0]
0x66C0 0 GBT_CPLL_FBCLK_LOST 47:0 | R | CPLLFBCLK LOST [47:0]
0x66D0 0 GBT_PLL_LOCK
QPLL_LOCK 59:48 | R | QPLLLOCK[11:0]
CPLL_LOCK 47:0 | R | CPLLLOCK [47:0]
0x66E0 0 GBT_RXCDR_LOCK 47:0 | R | RXCDRLOCK [47:0]
0x66F0 0 GBT_CLK_SAMPLED 47:0 | R | clk sampled [47:0]
0x6700 0 GBT_RX_IS_HEADER 47:0 | R | RXISHEADER [47:0]
0x6710 0 GBT_RX_IS_DATA 47:0 | R | RXISDATA [47:0]
0x6720 0 GBT_RX_HEADER_FOUND 47:0 | R | RXHEADER FOUND [47:0]
0x6730 0 GBT_ALIGNMENT_DONE 47:0 | R | RXALIGNMENT DONE [47:0]
0x6740 0 GBT_OUT_MUX_STATUS 47:0 | R | GBT output mux status [47:0]
0x6750 0 GBT_ERROR 47:0 | R | Errorflags [47:0]
0x6760 0 GBT_GBT_TOPBOT_C 47:0 | R | TopBot c[47:0]
0x6800 0 GBT_FM_RX_DISP_ERROR1 47:0 | R | Rxdisparity error [47:0]

Appendix B: Appendix

B.12

E

)

X

FELIX Phase-Il firmware specifications

PERTMENT

May 7, 2021 - Version 0.87

0x6810 0 GBT_FM_RX_DISP_ERROR2 47:0 | R | Rxdisparity error [96:48]
0x6820 0 GBT_FM_RX_NOTINTABLE1 47:0 | R | Rxnotin table [47:0]
0x6830 0 GBT_FM_RX_NOTINTABLE2 47:0 | R | Rxnotin table [96:48]
TTCBUSY Controls And Monitors
TTC_DEC_CTRLMON
0x7000 0 TTC_DEC_CTRL
L1A_DELAY 30:27 | W | Number of BC to delay the L1A distribution to the frontends
BCID_ONBCR 26:15 | W | BCID s set to this value when BCR arrives
BUSY_OUTPUT_STATUS 14 | R | Actual status of the BUSY LEMO output signal
ECR_BCR_SWAP 13 | W | ECR and BCR signals are swapped at the output of the TTC
decoder (needed only for LAr TTC)
BUSY_OUTPUT_INHIBIT 12 | W | forces the Busy LEMO output to BUSY-OFF
TOHOST_RST 11 W reset toHost in ttc decoder
TT_BCH_EN 10 | W | trigger type enable / disable for TTC-ToHost
XL1ID_SW 9:2 | W | set XL1ID value, the value to be set by XL1ID_RST signal
XL1ID_RST 1 W giving a trigger signal to reset XL1ID value
MASTER_BUSY 0| W L1A trigger throttling
0x7010 0 TTC_DEC_MON
TH_FF_COUNT 15:5 | R | ToHostData Fifo counts
TH_FF_FULL 4 R ToHostData Fifo status 1:full 0:not full
TH_FF_EMPTY 3 R ToHostData Fifo status 1:empty 0:not empty
TTC_BIT_ERR 2:0 | R | double bit, single bit and comm error in TTC data
TTC_BUSY _ACCEPTED_G
0x7020 0,1| TTC_BUSY_ACCEPTEDOO 56:0 | R | busy has been asserted by the given ELINK. Reset by writing to
TTC_BUSY_CLEAR
0x7190 0,1 TTC_BUSY_ACCEPTED23 56:0 R busy has been asserted by the given ELINK. Reset by writing to
TTC_BUSY_CLEAR
0x71A0 0 TTC_EMU
FULL 2 R TTC Emulator memory full indication
SEL 1 w Select TTC data source 1 TTC Emu | 0 TTC Decoder
ENA 0| W Clear to load into the TTC emulatoraAZs memory the required
sequence, Set to run the TTC emulator sequence
TTC_DELAY
0x71B0 0 X TTC_DELAY_00 ‘ 3:0 ‘ W ‘ Controls the TTC Fanout delay values
0x74A0 0 TTC_DELAY_47 ' 3:0 ‘ W ‘ Controls the TTC Fanout delay values
0x74B0 0 TTC_BUSY_TIMING_CTRL
PRESCALE 51:32 | W | Prescales the 40MHz clock to create an internal slow clock
BUSY_WIDTH 31:16 | W | Minimum number of 40MHz clocks that the busy is asserted
LIMIT_TIME 15:0 | W | Number of prescaled clocks a given busy must be asserted
before it is recognized
0x74CO0 0 TTC_BUSY_CLEAR any | T clears the latching busy bits in TTC_BUSY_ACCEPTED
0x74D0 0 TTC_EMU_CONTROL
BROADCAST 3227 | W Broadcast data
ECR 26 w Event counter reset
BCR 25 W Bunch counter reset
L1A 24 | W | Level 1 Accept
0x74EQ 0 TTC_EMU_L1A_PERIOD 31:0 | W | L1A period in BC. 0 means manual L1A with
TTC_EMU_CONTROL.L1A
0x74FO0 0 TTC_EMU_ECR_PERIOD 31:0 | W | ECR period in BC. 0 means manual ECR with
TTC_EMU_CONTROL.ECR
0x7500 0 TTC_EMU_BCR_PERIOD 31:0 | W | BCR period in BC. 0 means manual BCR with
TTC_EMU_CONTROL.BCR
0x7510 0 TTC_EMU_LONG_CHANNEL _- 31:0 | W | Long channel data for the TTC emulator
DATA

£9)

ERTMEN

TLAS Appendix B: Appendix

Exp

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

0x7520 0 TTC_EMU_RESET any | T Any write to this register resets the TTC Emulator to the default
state.
0x7530 0 | TTC_L1ID_MONITOR 31:0 | R | Monitor L1ID and XL1ID.
0x7540 0 TTC_ECR_MONITOR
CLEAR any T Counts the number of ECRs received from the TTC system, any
write to this register clears the counter
VALUE 31:0 | R | Counts the number of ECRs received from the TTC system, any
write to this register clears the counter
0x7550 0 TTC_TTYPE_MONITOR
CLEAR any T Counts the number of TType received from the TTC system, any
write to this register clears the counter
VALUE 31.0 R Counts the number of TType received from the TTC system, any
write to this register clears the counter
0x7560 0 TTC_BCR_PERIODICITY_MONITOR
CLEAR any T Counts the number of times the BCR period does not match
3564, any write to this register clears the counter
VALUE 31:0 | R | Counts the number of times the BCR period does not match
3564, any write to this register clears the counter
XOFF_BUSY Controls And Monitors
0x8000 0, | XOFF_FM_CH_FIFO_THRESH_- 3:0 | W | Controls the low threshold of the channel fifo in FULL mode on
1 LOW which
an Xon will be asserted, bitfields control 4 MSB
0x8010 0, | XOFF_FM _CH_FIFO THRESH - 3:0 | W | controls the high threshold of the channel fifo in FULL mode on
1 HIGH which
an Xoff will be asserted, bitfields control 4 MSB - name:
XOFF_FM_LOW_THRESH_CROSSED
0x8020 0, | XOFF_FM_LOW_THRESH_- 23:0 | R | FIFO filled beyond the low threshold, 1 bit per channel
1 CROSSED
0x8030 0, XOFF_FM_HIGH_THRESH
1
CLEAR_LATCH any T Writing this register will clear all CROSS_LATCHED bits
CROSS_LATCHED 47:24 | R | FIFO filled beyond the high threshold, 1 latch bit per channel
CROSSED 23:0 | R | FIFO filled beyond the high threshold, 1 bit per channel
0x8040 0, | XOFF_FM_SOFT_XOFF 23:0 | W | setany bitin this register to assert XOFF for the given channel,
1 clearing bits will assert XON
0x8050 0, | XOFF_ENABLE 23:0 | W | Enable XOFF assertion (To Frontend) in case the FULL mode
1 CH FIFO gets beyond thresholds. One bit per channel
0x8060 0, DMA_BUSY_STATUS
1
CLEAR_LATCH any T Any write to this register clears TOHOST_BUSY_LATCHED
ENABLE 4 W Enable the DMA buffer on the server as a source of busy
TOHOST_BUSY_LATCHED 3 R A tohost descriptor has passed BUSY_THRESHOLD_ASSERT
in the past, busy flag was set
TOHOST_BUSY 0 R A tohost descriptor passed BUSY_THRESHOLD_ASSERT, busy
flag set
0x8070 0, FM_BUSY_CHANNEL_STATUS
1
CLEAR_LATCH any T Any write to this register will clear the BUSY_LATCHED bits
BUSY_LATCHED 47:24 | R | one Indicates that the given FULL mode channel has received
BUSY-ON
BUSY 230 | R one Indicates that the given FULL mode channel is currently in
BUSY state
0x8080 0, BUSY_MAIN_OUTPUT_FIFO_THRESH
1
BUSY_ENABLE 24 | W | Enable busy generation if thresholds are crossed
LOW 23:12 | W | Low, Negate threshold of busy generation from main output fifo
HIGH 11:.0 W High, Assert threshold of busy generation from main output fifo

Appendix B: Appendix

B.14

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

0x8090 0, BUSY_MAIN_OUTPUT_FIFO_STATUS
1
CLEAR_LATCHED any T Any write to this register will clear the
HIGH_THRESH_CROSSED_- 2 R Main output fifo has been full beyond HIGH THRESHOLD, write
LATCHED to clear
HIGH_THRESH_CROSSED 1 | R | Main output fifo is full beyond HIGH THRESHOLD
LOW_THRESH_CROSSED 0 | R | Main output fifo is full beyond LOW THRESHOLD
ELINK_BUSY_ENABLE
0x80A0 0 ELINK_BUSY_ENABLE00 56:0 | W | Perelink (and FULL mode link) enable of the busy signal
towards the LEMO output
0x8210 0 ELINK_BUSY_ENABLE23 56:0 | W | Perelink (and FULL mode link) enable of the busy signal

towards the LEMO output
XOFF_STATISTICS

0x8220 0,1 | XOFF_PEAK_DURATIONOO 63:0 | R | Maximum occurred duration of XOFF on the given channel in
25ns bins since reset
0x8230 0,1| XOFF_TOTAL_DURATIONOO 63:0 | R | Total occurred duration of XOFF on the given channel in 25ns
bins, divide by number of Xoffs to calculate the average since
reset
0x8240 0,1 XOFF_COUNTO00 63:0 R Total number of XOFF events per channel that occurred since a
reset.
0x8670 0,1| XOFF_PEAK_DURATION23 63:0 | R | Maximum occurred duration of XOFF on the given channel in
25ns bins since reset
0x8680 0,1 XOFF_TOTAL_DURATION23 63:0 R Total occurred duration of XOFF on the given channel in 25ns
bins, divide by number of Xoffs to calculate the average since
reset
0x8690 0,1| XOFF_COUNT23 63:0 R Total number of XOFF events per channel that occurred since a
reset.
House Keeping Controls And Monitors
0x9000 0 HK_CTRL_I2C
CONFIG_TRIG 1 | W | i2c_config_trig
CLKFREQ_SEL 0 W i2c_clkfreq_sel
0x9010 0 HK_CTRL_FMC
S15345_LOL 7 R Loss of lock pin, only connected on FLX711
S15345_INSEL 65 | W Selects the input clock source

0 : FPGA (FMC LAO1)
1: FMC OSC (40.079 MHz)
2: FPGA (FMC LA18)

SI5345_A 4:3 | W | si5345 12C address select 2 LSB (0x0:default, dev id 0x68)
S15345_OE 2 W Si5345 active low output enable (0:enable)
S15345_RSTN 1 W Si5345 active low output enable (0:reset)
S15345_SEL 0 W Si5345 programming mode
1: 12C mode (default)
0 : SPI mode
0x9020 0 HK_MON_FMC
S15345_LOL 1 W Si5345 Loss Of Lock pin
S15345_INTR 0O W Si5345 Interrupt flagging chip change of status
0x9300 0 MMCM_MAIN
LCLK_SEL 3| W | 1:Lck
0: TTC
MAIN_INPUT 2:1 | R | Main MMCM Oscillator Input
2: LCLK fixed
1: TTC fixed
0: selectable
PLL_LOCK 0 | R | Main MMCM PLL Lock Status

0x9310 0 LMK_LOCKED 0 | R | LMK ChiponBNL-711 locked

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

0x9320 0 FPGA_CORE_TEMP 11:0 | R | XADC temperature monitor for the FPGA CORE
for FLX709, FLX710
temp (C)= ((FPGA_CORE_TEMP* 503.975)/4096)-273.15
for FLX711
temp (C)= ((FPGA_CORE_TEMP* 502.9098)/4096)-273.8195
0x9330 0 FPGA_CORE_VCCINT 11:0 | R | XADC voltage measurement VCCINT = (FPGA_CORE_VCCINT
*3.0)/4096
0x9340 0 FPGA_CORE_VCCAUX 11:0 | R | XADC voltage measurement VCCAUX =
(FPGA_CORE_VCCAUX *3.0)/4096
0x9350 0 FPGA_CORE_VCCBRAM 11:0 | R | XADC voltage measurement VCCBRAM =
(FPGA_CORE_VCCBRAM *3.0)/4096
0x9360 0 FPGA_DNA 63:0 | R | Unique identifier of the FPGA
0x9420 0 12C_WR
12C_WREN any T Any write to this register triggers an 12C read or write sequence
12C_FULL 25 | R | 12cFIFOfull
WRITE_2BYTES 24 | W | write two bytes
DATA_BYTE2 23:16 | W | Databyte 2
DATA_BYTE1 15:8 | W | Databyte 1
SLAVE_ADDRESS 7:1 | W | Slave address
READ_NOT_WRITE 0 | W | READ/<0>WRITE</o>
0x9430 0 12C_RD
12C_RDEN any T Any write to this register pops the last I12C data from the FIFO
12C_EMPTY 8 | R | 12C FIFO Empty
12C_DOUT 7:0 | R | 12C READ Data
0x9800 0 INT_TEST
TRIGGER any T Fire a test MSIx interrupt set in IRQ
IRQ 30 | W Set this field to a value equal to the MSIX interrupt to be fired.
The write triggers the interrupt immediately.
0x9810 0 CONFIG_FLASH_WR
FAST_WRITE 57 | W Write command only. Only used for fast programming.
FAST_READ 56 | W | status reading without command writing. Only used for fast
programming.
PAR_CTRL 55 W Choose use FW or uC to select the Flash partition. 1 FW | 0 uC.
PAR_WR 54:53 | W | Choose Flash partition. Valid when PAR_CTRL is 1.
FLASH_SEL 52 | W | 1 takes control over flash, 0 gives JTAG control over flash
DO_INIT 51 W Untested feature, don't use it yet.
DO_READSTATUS 50 | W | Reads status from flash
DO_CLEARSTATUS 49 W Clears status reading from flash, back to normal flash operation
DO_ERASEBLOCK 48 W Erased the current block of the flash, this register has to be
cleared by software
DO_UNLOCK_BLOCK 47 W Unlock writes to the current block, this register has to be cleared
by software
DO_READ 46 W Reads the 16 bits from current address, this register has to be
cleared by software
DO_WRITE 45 W Writes the 16 bits to current address, this register has to be
cleared by software
DO_READDEVICEID 44 | W | DIN should return 0x0089, this register has to be cleared by
software
DO_RESET 43 W Can be used in the future, currently disconnected in firmware
ADDRESS 42:16 | W | Address for read and write operations (25 bits, upper 2 bits are
controlled by uC)
WRITE_DATA 15:0 | W | Value of data to write towards flash
0x9820 0 CONFIG_FLASH_RD
PAR_RD 19:18 | R | Show which Flash partition is selected.
FLASH_REQ_DONE 17 | R | Requestdone
FLASH_BUSY 16 | R | Flash operation busy
READ_DATA 15:0 | R | Value of data read from flash
0x9830 0 S15324 STATUS

Appendix B: Appendix

B.16

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

LOL 15:8 | R | Loss of Lock Si5324
LOS 8:0 | R | Loss of Signal Si5324
0x9840 0 TACH_CNT 19:.0 R Readout of the Fan tachometer speed of the BNL712 board
0x9850 0 RXUSRCLK_FREQ
VALID 38 R Indicates that the frequency measurement is valid
CHANNEL 37:32 w Select the Transceiver channel to measure the clock from.
VAL 31.0 R Frequency in Hz of the selected channel
Generators
0xA000 | O | FELIG_L1ID_RESET \ any | T | Anywrite to this register clears the FELIG L1ID
FELIG_DATA_GEN_CONFIG_ARR
0xA020 0 FELIG_DATA_GEN_CONFIG_00
USERDATA 63:48 | W | Sets static payload word. When PATTERN_SEL=1.
CHUNK_LENGTH 47:32 | W | FELIG data generator chunk-length in bytes.
RESET 19:15 | W | FELIG data generator reset. One bit per group, 0:normal
operation, 1:egroup emulation held in reset.
SW_BUSY 14:10 | W | FELIG elink bus state. One bit per group, 0:normal operation,
1:elink enter busy state.
DATA_FORMAT 9:5 | W | FELIG data generator format. 0:8b10b, 1:direct.
PATTERN_SEL 40 | W FELIG data payload type. One bit per group, 0:byte counter,
1:USERDATA
0xA190 0 FELIG_DATA_GEN_CONFIG_23
USERDATA 63:48 | W | Sets static payload word. When PATTERN_SEL=1.
CHUNK_LENGTH 47:32 | W | FELIG data generator chunk-length in bytes.
RESET 19:15 W FELIG data generator reset. One bit per group, 0:normal
operation, 1:egroup emulation held in reset.
SW_BUSY 14:10 W FELIG elink bus state. One bit per group, 0:normal operation,
1:elink enter busy state.
DATA_FORMAT 9:5 | W | FELIG data generator format. 0:8b10b, 1:direct.
PATTERN_SEL 4:0 | W | FELIG data payload type. One bit per group, 0:byte counter,
1:USERDATA
FELIG_ELINK_CONFIG_ARR
0xA1A0 0 FELIG_ELINK_CONFIG_00
ENDIAN_MOD 39:35 | W | FELIG elink data input endian control. One bit per egroup.
0:little-endian (8b10b), 1:big-endian.
INPUT_WIDTH 34:30 | W | FELIG elink data input width. One bit per egroup. 0:8-bit (direct),
1:10-bit (8b10b).
OUTPUT_WIDTH 9:0 | W | FELIG elink data output width.
0xA310 0 FELIG_ELINK_CONFIG_23
ENDIAN_MOD 39:35 | W | FELIG elink data input endian control. One bit per egroup.
0O:little-endian (8b10b), 1:big-endian.
INPUT_WIDTH 34:30 | W | FELIG elink data input width. One bit per egroup. 0:8-bit (direct),
1:10-bit (8b10b).
OUTPUT_WIDTH 9:0 | W | FELIG elink data output width.
FELIG_ELINK_ENABLE_ARR
0xA320 | O | FELIG_ELINK_ENABLE_00 \ 39:0 | W | FELIG elink enable. One bit per elink. O:disabled, 1:enabled.
0xA490 0 | FELIG_ELINK ENABLE 23 \ 39:0 | W | FELIG elink enable. One bit per elink. O:disabled, 1:enabled.
0xA4A0 0 FELIG_GLOBAL_CONTROL
FAKE_L1A_RATE 63:36 | W | Sets the internal fake L1 trigger rate. [25ns/LSB]
PICXO_OFFSET_PPM 35:14 | W | When OFFSET_EN is 1, this directly sets the output frequency,
within the given adjustment range.
TRACK_DATA 12:12 | W | FELIG GT core control. Must be set to enable normal operation.
RXUSERRDY 11:11 | W | FELIG GT core control. Must be set to enable normal operation.
TXUSERRDY 10:10 | W FELIG GT core control. Must be set to enable normal operation.
AUTO_RESET 9:9 W FELIG GT core control. If set the GT core automatically resets
on data error.

£9)

TLAS Appendix B: Appendix B.17

EXPERTMEN

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

Appendix B: Appendix

PICXO_RESET 8:8 | W | FELIG GT core control. Manual PICXO reset.
GTTX_RESET 7:7 | W | FELIG GT core control. Manual GT TX reset
CPLL_RESET 6:6 | W | FELIG GT core control. Manual CPLL reset.
X3_X4_OUTPUT_SELECT 5:0 | W | X3/X4 SMA output source select.
FELIG_LANE_CONFIG_ARR
0xA4B0 FELIG_LANE_CONFIG_00
B_CH_BIT_SEL 63:42 | W | When OFFSET_EN is 1. this directly sets the output frequency.
within the given adjustment range.
A_CH_BIT_SEL 41:35 | W | selects the bit from the received FELIX data from which to
extract the L1A.
LB_FIFO_DELAY 34:30 | W | When the GTH or GTB loopback is enabled, this controls the
loopback latency in clock cycles.
ELINK_SYNC 77 W When set, synchronizes the elink word boundaries. Must be set
back to 0 to resume normal operation.
PICXO_OFFEST_EN 66 | W FELIG TX frequency override. 0:frequency tracking enabled,
1:TX frequency set by PICXO_OFFSET_PPM.
Pl_HOLD 55| W FELIG phase-interpolator hold. 0:frequency tracking enabled,
1:freeze TX frequency.
GBT_LB_ENABLE 4:4 w FELIG GBT direct loopback enable. 0:disabled, 1:enabled.
GBH_LB_ENABLE 3:3 | W | FELIG GTH direct loopback enable. 0:disabled, 1:enabled.
L1A_SOURCE 2:2 W FELIG L1A data source select. 0:from local counter, 1:from
FELIX.
GBT_EMU_SOURCE 1:1 W FELIG emulation data source select. 0:state-machine emulator,
1:ram-based emulator.
FG_SOURCE 0:0 W FELIG link check data source selection control. 0:normal
operation, 1:PRBS link checker (not elink emulation data)
0xA620 FELIG_LANE_CONFIG_23
B_CH_BIT_SEL 63:42 | W | When OFFSET EN s 1. this directly sets the output frequency.
within the given adjustment range.
A_CH_BIT_SEL 41:35 | W | selects the bit from the received FELIX data from which to
extract the L1A.
LB_FIFO_DELAY 34:30 | W | When the GTH or GTB loopback is enabled, this controls the
loopback latency in clock cycles.
ELINK_SYNC 7:7 | W | When set, synchronizes the elink word boundaries. Must be set
back to 0 to resume normal operation.
PICXO_OFFEST_EN 6:6 | W | FELIG TX frequency override. 0:frequency tracking enabled,
1:TX frequency set by PICXO_OFFSET_PPM.
PI_HOLD 55 | W FELIG phase-interpolator hold. 0:frequency tracking enabled,
1:freeze TX frequency.
GBT_LB_ENABLE 4:4 | W | FELIG GBT direct loopback enable. 0:disabled, 1:enabled.
GBH_LB_ENABLE 3:3 | W | FELIG GTH direct loopback enable. 0:disabled, 1:enabled.
L1A_SOURCE 2:2 | W | FELIG L1A data source select. 0:from local counter, 1:from
FELIX.
GBT_EMU_SOURCE 1:1 W FELIG emulation data source select. 0:state-machine emulator,
1:ram-based emulator.
FG_SOURCE 0:0 W FELIG link check data source selection control. 0:normal
operation, 1:PRBS link checker (not elink emulation data)
FELIG_MON_TTC_0_ARR
0xA630 FELIG_MON_TTC_0_00
L1ID 63:40 | R | Live TTC data monitor.
XL1ID 39:32 | R | Live TTC data monitor.
BCID 31:20 R Live TTC data monitor.
RESERVEDO 19:16 | R | Live TTC data monitor.
LEN 15:8 | R | Live TTC data monitor.
FMT 7:0 | R | Live TTC data monitor.
0xA7A0 FELIG_MON_TTC_0_23
L1ID 63:40 | R | Live TTC data monitor.
XL1ID 39:32 | R | Live TTC data monitor.

B.18

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

BCID 31:20 | R | Live TTC data monitor.
RESERVEDO 19:16 | R | Live TTC data monitor.
LEN 15:8 | R | Live TTC data monitor.
FMT 7:0 | R | Live TTC data monitor.
FELIG_MON _TTC_1_ARR
0xA7B0 0 FELIG_MON_TTC_1_00
RESERVED1 63:48 | R | Live TTC data monitor.
TRIGGER_TYPE 47:32 | R | Live TTC data monitor.
ORBIT 31:0 | R | Live TTC data monitor.
0xA920 [0 FELIG_MON_TTC 1_23
RESERVED1 63:48 | R | Live TTC data monitor.
TRIGGER_TYPE 47:32 | R | Live TTC data monitor.
ORBIT 31:0 | R | Live TTC data monitor.
FELIG_MON_COUNTERS_ARR
0xA930 0 FELIG_MON_COUNTERS_00
SLIDE_COUNT 63:32 | R | Counts the number of rx slides commanded by the GBT logic.
Should be static once a link is established.
FC_ERROR_COUNT 31:0 | R | WnhenFG_DATA_SELECT is 1, this counter reports the number
of detected data errors.
OxAAAO0 | O FELIG_MON_COUNTERS_23
SLIDE_COUNT 63:32 | R | Counts the number of rx slides commanded by the GBT logic.
Should be static once a link is established.
FC_ERROR_COUNT 31:0 | R | When FG_DATA_SELECT is 1, this counter reports the number
of detected data errors.
FELIG_MON_FREQ_ARR
OxAABO | O FELIG_MON_FREQ_00
X 63:32 R FELIG regenerated TX clock frequency[Hz].
RX 31:0 R FELIG recovered RX clock frequency[Hz].
0xAC20 [0 FELIG_MON_FREQ_23
X 63:32 | R | FELIG regenerated TX clock frequency[Hz].
RX 31.0 R FELIG recovered RX clock frequency[Hz].
0xAC30 0 FELIG_MON_FREQ_GLOBAL
XTAL_100MHZ 63:32 | W | FELIG local oscillator frequency[Hz].
CLK_41_667MHZ 31:0 | W | FELIG PCIE MGTREFCLK frequency[Hz].
FELIG_MON L1 A ID_ARR
0xAC40 | 0 | FELIG_MON_L1A_ID_00 | 31:0 | R | FELIGsastLi ID.
0xADBO | 0 | FELIG_MON_L1A_ID_23 \ 31:0 | R | FELG'slastL1 ID.
FELIG_MON_PICXO_ARR
0xADCO 0 FELIG_MON_PICXO_00
VLOT 53:32 R Value indicates TX clock (recovered RX clock) to RX reference
clock frequency offset.
ERROR 20:0 | R | value indicates RX to TX frequency tracking error.
0xAF30 0 FELIG_MON_PICXO_23
VLOT 53:32 | R | Valueindicates TX clock (recovered RX clock) to RX reference
clock frequency offset.
ERROR 20:0 | R | valueindicates RX to TX frequency tracking error.
0xAF40 0 FELIG_RESET
LB_FIFO 63:48 | W One bit per lane. When set to 1, resets all loopback FIFOs.
FRAMEGEN 4724 | W lOng bit per lane. When set to 1, resets all FELIG link checking
ogic.
LANE 23.0 | W One bit per lane. When set to 1, resets all FELIG lane logic.

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

OxAF50 ‘ 0 ‘ FELIG_RX_SLIDE_RESET 23:0 ‘ W ‘ One bit per lane. When set to 1, resets the gbt rx slide counter.
FELIG_ITK_STRIPS_DATA_GEN_CONFIG_ARR
0xAF60 0 FELIG_ITK_STRIPS_DATA_GEN_CONFIG_00
ITKS_FIFO_CTL 19:17 | W | data fifo control 2:rst 1:rd O:wr.
ITKS_FIFO_DATA 16:0 | W | itks emu data 16:last word 15-0:data word
0xB0ODO 0 FELIG_ITK_STRIPS_DATA_GEN_CONFIG_23
ITKS_FIFO_CTL 19:17 | W | data fifo control 2:rst 1:rd O:wr.
ITKS_FIFO_DATA 16:0 | W | itks emu data 16:last word 15-0:data word
FELIG_MON_ITK_STRIPS_ARR
0xBOEO | O | FELIG_MON_ITK STRIPS 00 | 2:0 | R | datafifo status 2write done 1:full 0:empty.
0xB250 0 | FELIG_ MON_ITK STRIPS 23 \ 2:0 \ R \ data fifo status 2:write done 1:full 0:empty.
0xB800 0 FMEMU_EVENT_INFO
L1ID 63:32 | W | 32b field to show L1ID
BCID 31:0 | W | 32bfield to show BCID
0xB810 0 FMEMU_COUNTERS
WORD_CNT 63:48 W Number of 32b words in one chunk
IDLE_CNT 47:32 W Minimum number of idles between chunks
L1A_CNT 31:16 | W | Number of chunks to send if not in TTC mode
BUSY_TH_HIGH 15:8 | W | Assert BUSY-ON above this threshold
BUSY_TH_LOW 7:0 | W | De-assert BUSY-ON below this threshold
0xB820 0 FMEMU_CONTROL
L1A_BITNR 63:56 | W | Bitfield for L1A in TTC frame
XONXOFF_BITNR 55:48 | W | Bitfield for Xon/Xoff in TTC frame
EMU_START 47:47 | W | start emulator functionality
TTC_MODE 46:46 | W | Control the emulator by TTC input or by RegMap (1/0)
XONXOFF 45:45 | W | Debug Xon/Xoff functionality (1/0)
INLC_CRC32 44:44 | W | 0: No checksum
1: Append the data with a CRC32
BCR 43:43 | W | ResetBCID1t00
ECR 42:42 | W | ResetL1IDto0
DATA_SRC_SEL 41:41 | W | Data source select
0: Data input comes from EMURAM
1: Data input comes from PCle
INT_STATUS_EMU 40:32 | R | Read internal status emulator
FFU_FM_EMU_T 31:16 | W | For Future Use (trigger registers)
FFU_FM_EMU_W 15:0 | W | For Future Use (write registers)
0xB830 0 FMEMU_RANDOM_RAM_ADDR 9:0 | W | cControls the address of the ramblock for the random number
generator
0xB840 0 FMEMU_RANDOM_RAM
WE any T Any write to this register (DATA) triggers a write to the ramblock
CHANNEL_SELECT 39:16 | W | Enable write enable only for the selected channel
DATA 15:0 | W | DATA field to be written to FMEMU_RANDOM_RAM_ADDR
0xB850 0 FMEMU_RANDOM_CONTROL
SELECT_RANDOM 20 | W | 1 enables the random chunk length, 0 uses a constant chunk
length
SEED 19:10 | W | Seed for the random number generator, should not be 0
POLYNOMIAL 9:0 | W | POLYNOMIAL for the random number generator (10b LFSR)
Bit9 should always be 1
Wishbone
0xC000 0 WISHBONE_CONTROL
WRITE_NOT_READ 32 | W | wishbone write command wishbone read command
ADDRESS 31:0 W Slave address for Wishbone bus

Appendix B: Appendix

B.20

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

0xCO010 0 WISHBONE_WRITE
WRITE_ENABLE any T Any write to this register triggers a write to the Wupper to
Wishbone fifo
FULL 32 | R | wishbone
DATA 31:0 | W | wishbone
0xC020 0 WISHBONE_READ
READ_ENABLE any T Any write to this register triggers a read from the Wishbone to
Wupper fifo
EMPTY 32 | R | Indicates that the Wishbone to Wupper fifo is empty
DATA 31:0 | R | wishbone read data
0xC030 0 WISHBONE_STATUS
INT 4 R interrupt
RETRY 3 R Interface is not ready to accept data cycle should be retried
STALL 2 R When pipelined mode slave can't accept additional transactions
in its queue
ACKNOWLEDGE 1 R Indicates the termination of a normal bus cycle
ERROR 0 R Address not mapped by the crossbar
ITK_STRIPS_CTRL
0xD000 0,1 GLOBAL_STRIPS_CONFIG
TEST_MODULE_MASK 15:11 | W | (for tests only) contains R3 mask for the simulated trigger data
TEST_R3L1_TAG 10:4 W (for tests only) contains R3 or L1 tag for the simulated trigger
data
TTC_GENERATE_GATING_- 1 w Global control for gating signal generation. Enables generating
ENABLE trickle gating signal in response to TTC BCR.
TRICKLE_TRIG_RUN must also be enabled for the trickle
configuration to work. (See also BC_START, and BC_STOP
fields)
0xD010 0,1| GLOBAL_TRICKLE_TRIGGER any | T | writing to this register issues a single trickle trigger for every LCB
link connected to this FELIX device
ITK_STRIPS_GBT
ITK_STRIPS_LCB_LINKS
0xD020 | 0,1 CR_ITK_STRIPS_LCB_LINKS 00_LCB 0
LOA_BCR_DELAY 49:38 | W | TTC BCR signal will be delayed by this many BCs
LOA_FRAME_DELAY 37:34 | W | By how many BCs to delay an LOA frame. Updating this register
may result in brief loss of LCB lock,
and some TTC LOA frames may be lost. Don’t adjust this
parameter while taking data.
FRAME_PHASE 33:32 | W | phase of LCB frame with respect to TTC BCR signal
TRICKLE_BC_START 31:20 | W | Determines the start of the allowed BC interval for low-priority
LCB frames
TRICKLE_BC_STOP 19:8 | W | Determines the end of the allowed BC interval for low-priority
LCB frames
LCB_DESTINATION_MUX 5:4 w Determines where the elink data is sent to:
00: command decoder (use same command encoding format as
trickle configuration)
01: trickle memory (see phase2 documentation for command
encoding format)
10: directly to LCB link (expecting software-encoded HCC*/ABC*
frames)
11: (invalid, don’t use)
TRICKLE_TRIG_RUN 3 w if enabled, trickle configuration is sent out continuously to the
front-end
(use together with TTC_GENERATE_GATING_EN for sending
trickle configuration
continuously during a specified BC range. See also BC_START,
and BC_STOP fields.)
TTC_LOA_ENABLE 2| W enable generating LOA frames in response to TTC system
signals

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

TTC_GENERATE_GATING_- 0| W enables generating trickle gating signal in response to TTC BCR.
ENABLE TRICKLE_TRIG_RUN must also be enabled for the trickle
configuration to work.
(See also BC_START, and BC_STORP fields)
0xD030 0,1| CR_ITK_STRIPS_LCB_LINKS_- any | T writing to this register issues a single trickle trigger
00_TRICKLE_TRIGGER_0
0xD040 0,1 CR_ITK_STRIPS_LCB_LINKS_00_TRICKLE_MEMORY_CONFIG_0
MOVE_WRITE_PTR any T Writing to this register moves trickle configuration memory write
pointer to WRITE_PTR address
WRITE_PTR 47:32 | W Trickle configuration memory write pointer
VALID_DATA_START 31:16 | W | Start address of trickle configuration in trickle memory
VALID_DATA_END 15:0 | W | stop address of trickle configuration in trickle memory (last valid
byte)
0xD050 0,1 CR_ITK_STRIPS_LCB_LINKS_00_MODULE_MASK_F_C_0
HCC_MASK 63:48 | W | Hce* module mask
ABC_MASK_HCC_E 47:32 W Masks register commands with destination hcc_id = OxE
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_D 31:16 | W | Masks register commands with destination hce_id = 0xD
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_C 15:0 W Masks register commands with destination hcc_id = 0xC
mask(i) <=> (abc_id = i)
0xD060 0,1 CR_ITK_STRIPS_LCB_LINKS_00_ABC_MODULE_MASK_B 8 0
ABC_MASK_HCC_B 63:48 w Masks register commands with destination hcc_id = 0xB
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_A 47:32 | W | Masks register commands with destination hce_id = 0xA
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_9 31:16 | W | Masks register commands with destination hce_id = 0x9
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_8 15:0 W Masks register commands with destination hcc_id = 0x8
mask(i) <=> (abc_id = i)
0xD070 0,1 CR_ITK_STRIPS_LCB_LINKS 00_ABC_MODULE _MASK 7 4 0
ABC_MASK_HCC_7 63:48 | W | Masks register commands with destination hce_id = 0x7
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_6 47:32 w Masks register commands with destination hcc_id = 0x6
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_5 31:16 W Masks register commands with destination hcc_id = 0x5
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_4 15:0 | W | Masks register commands with destination hce_id = 0x4
mask(i) <=> (abc_id = i)
0xD080 0,1 CR_ITK_STRIPS_LCB_LINKS_00_ABC_MODULE_MASK_3 00
ABC_MASK_HCC_3 63:48 | W | Masks register commands with destination hcc_id = 0x3
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_2 47:32 W Masks register commands with destination hcc_id = 0x2
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_1 31:16 | W | Masks register commands with destination hec_id = 0x1
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_0 15:0 | W | Masks register commands with destination hce_id = 0x0
mask(i) <=> (abc_id = i)

Appendix B: Appendix

B.22

E

)

X

FELIX Phase-Il firmware specifications

PERTMENT

May 7, 2021 - Version 0.87

0xD170

0,1

CR_ITK_STRIPS_LCB_LINKS_ 00 LCB_3

LOA_BCR_DELAY
LOA_FRAME_DELAY

FRAME_PHASE
TRICKLE_BC_START

TRICKLE_BC_STOP

LCB_DESTINATION_MUX

TRICKLE_TRIG_RUN

TTC_LOA_ENABLE

TTC_GENERATE_GATING._-
ENABLE

49:38
37:34

33:32
31:20

19:8
54

W
W

= £ ==

=

TTC BCR signal will be delayed by this many BCs

By how many BCs to delay an LOA frame. Updating this register
may result in brief loss of LCB lock,

and some TTC LOA frames may be lost. Don’t adjust this
parameter while taking data.

phase of LCB frame with respect to TTC BCR signal

Determines the start of the allowed BC interval for low-priority
LCB frames

Determines the end of the allowed BC interval for low-priority
LCB frames

Determines where the elink data is sent to:

00: command decoder (use same command encoding format as
trickle configuration)

01: trickle memory (see phase2 documentation for command
encoding format)

10: directly to LCB link (expecting software-encoded HCC*/ABC*
frames)

11: (invalid, don'’t use)

if enabled, trickle configuration is sent out continuously to the
front-end

(use together with TTC_GENERATE_GATING_EN for sending
trickle configuration

continuously during a specified BC range. See also BC_START,
and BC_STOP fields.)

enable generating LOA frames in response to TTC system
signals

enables generating trickle gating signal in response to TTC BCR.
TRICKLE_TRIG_RUN must also be enabled for the trickle
configuration to work.

(See also BC_START, and BC_STORP fields)

0xD180

0,1

CR_ITK_STRIPS_LCB_LINKS -
00_TRICKLE_TRIGGER_3

any

T

writing to this register issues a single trickle trigger

0xD190

0,1

CR_ITK_STRIPS_LCB_L

INKS_00_TRICKLE_MEMORY_CONFIG_3

MOVE_WRITE_PTR

WRITE_PTR
VALID_DATA_START
VALID_DATA_END

any

47:32
31:16
15:.0

T

W
w
W

Writing to this register moves trickle configuration memory write
pointer to WRITE_PTR address

Trickle configuration memory write pointer
Start address of trickle configuration in trickle memory

Stop address of trickle configuration in trickle memory (last valid
byte)

0xD1A0

0,1

CR_ITK_STRIPS_LCB_LINKS_00 MODULE_MASK_F C 3

HCC_MASK

ABC_MASK_HCC_E

ABC_MASK_HCC_D

ABC_MASK_HCC_C

63:48
47:32

31:16

15:.0

W
W

W

HCC* module mask

Masks register commands with destination hcc_id = OxE
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0xD
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0xC
mask(i) <=> (abc_id = i)

0xD1BO

£9)

ERTMEN

0,1

CR_ITK_STRIPS_LCB_LINKS_00_ABC_MODULE_MASK_B_8 3

ABC_MASK_HCC_B

ABC_MASK_HCC_A

ABC_MASK_HCC_9

TLAS Appendix B: Appendix

Exp

63:48

47:32

31:16

W

W

Masks register commands with destination hcc_id = 0xB
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0xA
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0x9
mask(i) <=> (abc_id = i)

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

Appendix B: Appendix

ABC_MASK_HCC_8 15:0 W Masks register commands with destination hcc_id = 0x8
mask(i) <=> (abc_id = i)
0xD1CO 0,1 CR_ITK_STRIPS_LCB_LINKS 00_ABC_MODULE_MASK 7 4 3
ABC_MASK_HCC_7 63:48 | W | Masks register commands with destination hcc_id = 0x7
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_6 47:32 | W | Masks register commands with destination hcc_id = 0x6
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_5 31:16 W Masks register commands with destination hcc_id = 0x5
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_4 15:0 | W | Masks register commands with destination hce_id = 0x4
mask(i) <=> (abc_id = i)
0xD1DO 0,1 CR_ITK_STRIPS_LCB_LINKS_00_ABC_MODULE_MASK_3 0_3
ABC_MASK_HCC_3 63:48 | W | Masks register commands with destination hcc_id = 0x3
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_2 47:32 w Masks register commands with destination hcc_id = 0x2
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_1 31:16 | W | Masks register commands with destination hee_id = 0x1
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_0 15:0 | W | Masks register commands with destination hce_id = 0x0
mask(i) <=> (abc_id = i)
ITK_STRIPS_R3 L1_LINKS
0xD1EO 0,1 CR_ITK_R3L1_LINK_00_R3L1_0
FRAME_PHASE 3:2 | W | phase of R3L1 frame with respect to TTC BCR signal
L1_ENABLE 1 W enables sending TTC L1 signals to the front-end
R3_ENABLE 0 W enables sending Rol R3 signals to the front-end
0xD210 0,1 CR_ITK_R3L1_LINK_00_R3L1_3
FRAME_PHASE 32 | W phase of R3L1 frame with respect to TTC BCR signal
L1_ENABLE 1 w enables sending TTC L1 signals to the front-end
R3_ENABLE 0| W enables sending Rol R3 signals to the front-end
ITK_STRIPS_LCB_LINKS
0xD620 0,1 CR_ITK_STRIPS_LCB_LINKS_03_LCB_0
LOA_BCR_DELAY 49:38 | W | TTC BCR signal will be delayed by this many BCs
LOA_FRAME_DELAY 37:34 | W | By how many BCs to delay an LOA frame. Updating this register
may result in brief loss of LCB lock,
and some TTC LOA frames may be lost. Don’t adjust this
parameter while taking data.
FRAME_PHASE 33:32 | W | phase of LCB frame with respect to TTC BCR signal
TRICKLE_BC_START 31:20 | W | Determines the start of the allowed BC interval for low-priority
LCB frames
TRICKLE_BC_STOP 19:8 W Determines the end of the allowed BC interval for low-priority
LCB frames
LCB_DESTINATION_MUX 5:4 | W | Determines where the elink data is sent to:
00: command decoder (use same command encoding format as
trickle configuration)
01: trickle memory (see phase2 documentation for command
encoding format)
10: directly to LCB link (expecting software-encoded HCC*/ABC*
frames)
11: (invalid, don’t use)

B.24

Z FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

TRICKLE_TRIG_RUN 3 | W | if enabled, trickle configuration is sent out continuously to the
front-end
(use together with TTC_GENERATE_GATING_EN for sending
trickle configuration
continuously during a specified BC range. See also BC_START,
and BC_STORP fields.)
TTC_LOA_ENABLE 2 | W | enable generating LOA frames in response to TTC system
signals
TTC_GENERATE_GATING_- 0| W enables generating trickle gating signal in response to TTC BCR.
ENABLE TRICKLE_TRIG_RUN must also be enabled for the trickle
configuration to work.
(See also BC_START, and BC_STORP fields)
0xD630 0,1 CR_ITK_STRIPS_LCB_LINKS_- any T writing to this register issues a single trickle trigger
03_TRICKLE_TRIGGER_0
0xD640 0,1 CR_ITK_STRIPS_LCB_LINKS_03_TRICKLE_MEMORY_CONFIG_0
MOVE_WRITE_PTR any T Writing to this register moves trickle configuration memory write
pointer to WRITE_PTR address
WRITE_PTR 47:32 | W Trickle configuration memory write pointer
VALID_DATA_START 31:16 | W | Start address of trickle configuration in trickle memory
VALID_DATA_END 15:0 | W | stop address of trickle configuration in trickle memory (last valid
byte)
0xD650 0,1 CR_ITK_STRIPS_LCB_LINKS_03_MODULE_MASK_F_C_0
HCC_MASK 63:48 | W | Hcc* module mask
ABC_MASK_HCC_E 47:32 W Masks register commands with destination hcc_id = OxE
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_D 31:16 | W | Masks register commands with destination hce_id = 0xD
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_C 15:0 | W | Masks register commands with destination hce_id = 0xC
mask(i) <=> (abc_id = i)
0xD660 0,1 CR_ITK_STRIPS_LCB_LINKS_03_ABC_MODULE_MASK B_8 0
ABC_MASK_HCC_B 63:48 W Masks register commands with destination hcc_id = 0xB
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_A 47:32 | W | Masks register commands with destination hce_id = 0xA
mask(i) <=> (abc_id = i)
ABC_MASK_HCC 9 31:16 | W | Masks register commands with destination hcc_id = 0x9
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_8 15:0 W Masks register commands with destination hcc_id = 0x8
mask(i) <=> (abc_id = i)
0xD670 0,1 CR_ITK_STRIPS_LCB_LINKS 03 _ABC MODULE MASK 7 4 0
ABC_MASK_HCC_7 63:48 | W | Masks register commands with destination hcc_id = 0x7
mask(i) <=> (abc_id = i)
ABC_MASK_HCC 6 47:32 | W | Masks register commands with destination hcc_id = 0x6
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_5 31:16 W Masks register commands with destination hcc_id = 0x5
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_4 15:0 | W | Masks register commands with destination hce_id = 0x4
mask(i) <=> (abc_id = i)
0xD680 0,1 CR_ITK_STRIPS_LCB_LINKS_03_ABC_MODULE_MASK_3 00
ABC_MASK_HCC_3 63:48 W Masks register commands with destination hcc_id = 0x3
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_2 47:32 | W | Masks register commands with destination hce_id = 0x2
mask(i) <=> (abc_id = i)

ke Appendix By Appendix —

FELIX Phase-Il firmware specifications

ABC_MASK_HCC_1

ABC_MASK_HCC 0

31:16

15:0

May 7, 2021 - Version 0.87

Masks register commands with destination hcc_id = 0x1
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0x0
mask(i) <=> (abc_id = i)

0xD770

0,1

CR_ITK_STRIPS_LCB_LINKS_03_LCB_3

LOA_BCR_DELAY
LOA_FRAME_DELAY

FRAME_PHASE
TRICKLE_BC_START

TRICKLE_BC_STOP

LCB_DESTINATION_MUX

TRICKLE_TRIG_RUN

TTC_LOA ENABLE

TTC_GENERATE_GATING._ -
ENABLE

49:38
37:34

33:32
31:20

19:8
54

w
W

= = ==

=

TTC BCR signal will be delayed by this many BCs

By how many BCs to delay an LOA frame. Updating this register
may result in brief loss of LCB lock,

and some TTC LOA frames may be lost. Don’t adjust this
parameter while taking data.

phase of LCB frame with respect to TTC BCR signal

Determines the start of the allowed BC interval for low-priority
LCB frames

Determines the end of the allowed BC interval for low-priority
LCB frames

Determines where the elink data is sent to:

00: command decoder (use same command encoding format as
trickle configuration)

01: trickle memory (see phase2 documentation for command
encoding format)

10: directly to LCB link (expecting software-encoded HCC*/ABC*
frames)

11: (invalid, don’t use)

if enabled, trickle configuration is sent out continuously to the
front-end

(use together with TTC_GENERATE_GATING_EN for sending
trickle configuration

continuously during a specified BC range. See also BC_START,
and BC_STOP fields.)

enable generating LOA frames in response to TTC system
signals

enables generating trickle gating signal in response to TTC BCR.
TRICKLE_TRIG_RUN must also be enabled for the trickle
configuration to work.

(See also BC_START, and BC_STORP fields)

0xD780

0,1

CR_ITK_STRIPS_LCB_LINKS_-
03_TRICKLE_TRIGGER 3

any

T

writing to this register issues a single trickle trigger

0xD790

0,1

CR_ITK_STRIPS_LCB_L

INKS_03_TRICKLE_MEMORY_CONFIG_3

MOVE_WRITE_PTR

WRITE_PTR
VALID_DATA_START
VALID_DATA_END

any

47:32
31:16
15:0

T

w
W
W

Writing to this register moves trickle configuration memory write
pointer to WRITE_PTR address

Trickle configuration memory write pointer
Start address of trickle configuration in trickle memory

Stop address of trickle configuration in trickle memory (last valid
byte)

0xD7A0

0,1

CR_ITK_STRIPS_LCB_LINKS_03_MODULE_MASK_F C_3

HCC_MASK

ABC_MASK_HCC_E

ABC_MASK_HCC_D

ABC_MASK_HCC_C

63:48
47:32

31:16

15:0

W
W

W

HCC* module mask

Masks register commands with destination hcc_id = OXE
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0xD
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0xC
mask(i) <=> (abc_id = i)

0xD7B0

0,1

CR_ITK_STRIPS_LCB_LINKS_03_ABC_MODULE_MASK_B_8 3

ABC_MASK_HCC_B

63:48

Appendix B: Appendix

W

Masks register commands with destination hcc_id = 0xB
mask(i) <=> (abc_id = i)

B.26

E

)

FELIX Phase-Il firmware specifications

XPERTMENT

ABC_MASK_HCC_A

ABC_MASK_HCC_9

ABC_MASK_HCC_8

47:32

31:16

15:.0

W

May 7, 2021 - Version 0.87

Masks register commands with destination hcc_id = 0xA
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0x9
mask(i) <=> (abc_id = i)

Masks register commands with destination hcc_id = 0x8
mask(i) <=> (abc_id = i)

0xD7CO0 0,1 CR_ITK_STRIPS_LCB_LINKS_03_ABC_MODULE_MASK_7_4 3
ABC_MASK_HCC_7 63:48 W Masks register commands with destination hcc_id = 0x7
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_6 47:32 w Masks register commands with destination hcc_id = 0x6
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_5 31:16 | W | Masks register commands with destination hce_id = 0x5
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_4 15:0 | W | Masks register commands with destination hcc_id = 0x4
mask(i) <=> (abc_id = i)
0xD7DO0 0,1 CR_ITK_STRIPS_LCB_LINKS 03 _ABC_MODULE_MASK 3 0 3
ABC_MASK_HCC_3 63:48 W Masks register commands with destination hcc_id = 0x3
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_2 47:32 | W | Masks register commands with destination hce_id = 0x2
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_1 31:16 w Masks register commands with destination hcc_id = 0x1
mask(i) <=> (abc_id = i)
ABC_MASK_HCC_0 15:.0 w Masks register commands with destination hcc_id = 0x0
mask(i) <=> (abc_id = i)
ITK_STRIPS_R3 L1_LINKS
0xD7EO 0,1 CR_ITK_R3L1_LINK_03_R3L1_0
FRAME_PHASE 3:2 | W | phase of R3L1 frame with respect to TTC BCR signal
L1_ENABLE 1 W enables sending TTC L1 signals to the front-end
R3_ENABLE 0 | W | enables sending Rol R3 signals to the front-end
0xD810 0,1 CR_ITK R3L1_LINK 03 R3L1_3
FRAME_PHASE 3:2 | W | phase of R3L1 frame with respect to TTC BCR signal
L1_ENABLE 1 W enables sending TTC L1 signals to the front-end
R3_ENABLE 0| W enables sending Rol R3 signals to the front-end
0xD820 0,1| STRIPS_R3_TRIGGER any | T (for tests only) simulate R3 trigger (issues 4-5 sequential
triggers)
0xD830 0,1| STRIPS_L1_TRIGGER any | T (for tests only) simulate L1 trigger (issues 4-5 sequential triggers)
0xD840 0,1 STRIPS_R3L1_TRIGGER any T (for tests only) simulate simultaneous R3 and L1 trigger (issues
4-5 sequential triggers)
MRO Dregisters
0xF000 0 MROD_CTRL
OPTIONS 15:4 | W | Extra options for MROD
GOLTESTMODE 3:0 | W | GOL Test Mode (emulate CSM):
0: Run Data Emulator when 1; 0: stop, load emulator fifo
1: Enable Circulate when 1; 0: send fifo data only once
2: Enable Triggered Mode when 1; 0: run continueously (no
TTC)
3: Enable pattern generator when 1; 0: off
0xF010 0 MROD_EPO_CSMENABLE 23:0 | W | EPOCSM Data Enable channel 23-0
0xF020 0 MROD_EP0_EMPTYSUPPR 23:0 | W | EPO Set Empty Suppression channel 23-0
0xF030 0 MROD_EPO_HPTDCMODE 23:0 | W | EPO Set HPTDC Mode channel 23-0
0xF040 0 MROD_EPQ_CLRFIFOS 23:0 | W | EPO Clear FIFOs channel 23-0

£9)

ERTMEN

TLAS Appendix B: Appendix

Exp

B.27

FELIX Phase-Il firmware specifications

May 7, 2021 - Version 0.87

0xF050 0 MROD_EPO_EMULOADENA 23:0 | W | EPO Emulator Load Enable channel 23-0
0xF060 0 MROD_EPO_TRXLOOPBACK 23:0 | W | EPO Transceiver Loopback Enable channel 23-0
0xF070 0 MROD_EPQ_TXCVRRESET 23:0 | W | EPO Transceiver Reset all channel 23-0
0xF080 0 MROD_EPO_RXRESET 23:0 | W | EPO Receiver Reset channel 23-0
0xF090 0 MROD_EPO_TXRESET 23:0 | W | EPO Transmitter Reset channel 23-0
0xFOAO 0 MROD_EP1_CSMENABLE 23:0 | W | EP1CSM Data Enable channel 23-0
0xFOBO 0 MROD_EP1_EMPTYSUPPR 23:0 | W | EP1 Set Empty Suppression channel 23-0
0xFOCO 0 MROD_EP1_HPTDCMODE 23:0 | W | EP1 Set HPTDC Mode channel 23-0
0xFODO 0 MROD_EP1_CLRFIFOS 23:0 | W | EP1 Clear FIFOs channel 23-0
OxFOEO 0 MROD_EP1_EMULOADENA 23:0 | W | EP1 Emulator Load Enable channel 23-0
OxFOFO 0 MROD_EP1_TRXLOOPBACK 23:0 | W | EP1 Transceiver Loopback Enable channel 23-0
0xF100 0 MROD_EP1_TXCVRRESET 23:0 | W | EP1 Transceiver Reset all channel 23-0
0xF110 0 MROD_EP1_RXRESET 23:0 | W | EP1 Receiver Reset channel 23-0
0xF120 0 MROD_EP1_TXRESET 23:0 | W | EP1 Transmitter Reset channel 23-0
MROD Monitors
0xF800 0 MROD_EP0_CSMH_EMPTY 23:0 | R | cSM Handler FIFO Empty 23-0
0xF810 0 MROD_EPO_CSMH_FULL 23:0 | R | cSM Handler FIFO Full 23-0
0xF820 0 MROD_EPO_RXLOCKED 23:0 | R | EPO Receiver Locked monitor 23-0
0xF830 0 MROD_EPO_TXLOCKED 23:0 | R | EPO Transmitter Locked monitor 23-0
0xF840 0 MROD_EP1_CSMH_EMPTY 23:0 | R | cSM Handler FIFO Empty 23-0
0xF850 0 MROD_EP1_CSMH_FULL 23:0 | R | cSM Handler FIFO Full 23-0
0xF860 0 MROD_EP1_RXLOCKED 23:0 | R | EP1 Receiver Locked monitor 23-0
0xF870 0 MROD_EP1_TXLOCKED 23:0 | R | EP1 Transmitter Locked monitor 23-0

Table B.3: FELIX register map BAR2.

Appendix B: Appendix

B.28

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

B.2 DATA FORMATS

B.2.1 CRTOHOST BLOCK FORMAT

In Phase | FELIX, the ToHost Block format was defined in [25]. For Phase Il, the blocksize is variable, and a
multiple of 1024 bytes, and the chunk trailer is set to 32 bits. The block header format has changed to include
the block size, as well as an indication that the trailer is 32 bit. The blocks are transferred by Wupper over
DMA into a contiguous memory area, reserved by the cmem_rcc driver. Event fragments or other types of
data arriving via the FrontEnd links or virtual E-Links are referred to as "chunks" and can have an arbitrary
size.

Block header : 32 bits (Sub)chunk trailer : 32 bits

- Start of block symbol - Fragment type

- Block Size - First, Last, Complete, Middle, NULL, Timeout, OOB
- AXI-Stream ID - Flags

- Block sequence - Truncation, Error, CRC error, BUSY

- Reserved (9b)
- Subchunk length (16b)

N kB block J_ N kB block J_ N kB block J_ N kB block

chunk T chunk ’|::hunl:|‘ E-Link packet = chunk (may span multiple blocks) ’|
Figure B.1: FELIX ToHost Block format.

31 28 27 24 23 16 15 1 10 6 5 0

Block Size Block
0xC -1 OxCE Sequence

GBT ID AXls ID

Figure B.2: Block Header Format.

e 0xC 4b, Header identifier

e BlockSize - 1: 4b, Block size in kB-1, 0: 1kB, 3: 4kB etc.
e OxCE 8b, Header identifier

e Block Sequence 5b, Incremental number per E-Link

e GBT ID 5b, Link index starting at 0 for every PCle endpoint. For a 24 channel firmware with two PCle
endpoints, Link 12 will generate a GBT ID 0 in endpoint 1.

e AXis ID 6b, Index of the E-Link on the AXI-Stream array. For GBT and IpGBT this number is equal to
the Egroup * 8 + the Epath ID within the E-Group.

31 29 28 27 26 25 24 16 15 0

Type |T|E|C|B reserved (sub)chunk length in bytes

Figure B.3: Chunk Trailer Format.

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

e Type 3b:

- 0:

|
N OO O WO =

NULL Trailer, padding

: First part of a chunk consisting of more than one part

: Last part of a chunk consisting of more than one part

: Chunk consists of one part

: Middle part of a chunk, consisting of more than two parts
: Timeout trailer

: Reserved

: Out of band (OOB)

T Truncation flag, indicating that a decoder truncated the data to a maximum length, or because the

FIFO was full.

E Framing error, Front-End data does not comply with the specified data format. For instance a missing

SOP, EOP, or payload data not within SOP/EOP.

e C CRC error, if implemented by the decoder.

B E-Link BUSY indication
reserved 9b, reserved for future use.

Length 16b, Length in bytes of the chunk of subchunk. If the chunk spans multiple blocks, only the

sub-chunk length is given.

B.2.2 CRFROMHOST DATA FORMAT

Each 256-bit block at the input of the CRFromHost represents a packet. In case of a 512-bit FIFO interface,
two packets are sent simultaneously. Each packet consists of a 16 bit header followed by 240 bits of payload.
Table B.4 shows how the bits are assigned in that packet.

Table B.4: Overview of the CRFromHost input data format..

type header payload

bit number | 255:251 | 250:245 244:240 239:232 | ... 7:0
length 5 6 5 8 .. 8
name link ID | AXls ID | packet length | payload byte 0 | ... | payload byte 29

The fields in Table B.4 contain the following information:

e link ID:

Contains the index of the link number, starting at 0 in every endpoint. If a firmware is built with

24 optical links and two PCle endpoints, optical link 12 can be accessed through endpoint 1, link ID 0.

e AXis ID: Corresponds with the E-link number in on the GBT or IpGBT frame, multiplied by the e-group.
For GBT frames, the maximum number is 41, for IpGBT the maximum number is 17. If no E-links are
available on the link, the AXI-Stream ID should be 0.

e packet

length: The number of valid bytes in this 32-byte block. After the header, 30 payload byte

positions are available, when the packet is longer, the header is repeated. If the message is shorter
than 31 bytes, this field contains the length in bytes. If this block contains the beginning of a message
that will be extended in the next block, the packet length field contains the value 31 (Ox1F).

Appendix B: Appendix B.30

2900

2901

2902

2903

2904

2905

2906
2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924
2925

2926

2927

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

B.2.3 TTC TOHOST DATA FORMAT

Figure B.4 is a table version of the chunk format produced by the TTCToHost Virtual E-Link, containing
information about each Level-1 Accept. Like any other ToHost data, the TTCToHost data format is packed as
a chunk inside a block, see section B.2.1.

31 24 23 16 15 8 7 0

<Byte3= <Byte2= <Byte1 = <Byte 0=

0| reserved BCID Length (26) FMT (2)

1 XL1ID L1ID

2 Orbit

3 reserved Trigger Type

4 LoID

5 L1A Counter[31..0]

6 L1A Counter[47.32]

Figure B.4: TTC ToHost data format.

The contents of the packet can be described by a C/C++ struct type as a number of bitfields as shown
below. Such a 'TTC-to-host’ packet in memory can be cast directly to this type:

typedef struct {

unsigned int format 1 8;
unsigned int length 1 8;
unsigned int bcid 125
unsigned int reserved0 D4,
union {
unsigned int full_I1id : 32;
struct {
unsigned int |1id : 24;
unsigned int xl1id : 8;
}s
b
unsigned int orbit 1 32;
unsigned int trigger_type : 16;
unsigned int reserved1 : 16;
unsigned int 10id 1 32;
unsigned long I1a_counter : 48;

} __attribute__ ((packed)) TtcToHost_packet_t;

Listing B.1: TTC ToHost Data format as C struct.

B.2.4 BUSY TOHOST DATA FORMAT
The BUSY ToHost Virtual E-Link (see 8.3.19) produces a chunk of data on any change of BUSY.

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

31 24 28 16 15 8 7 0

< Byte 3= < Byte2 = < Byte1 = < Byte 0 =
© 4
0 BCID Trig Link Trig AXIs_ID |2 |reserved| 5|5 |S|2| 2
= | @alc|a
1 Orbit

Figure B.5: BUSY ToHost data format.

2928 Explanation of the bitfields:

2029 e BCID: The Bunch Crossing ID at which the virtual E-Link was triggered. This functions as a timestamp
2930 (together with the Orbit counter) to match the BUSY event, to other events.

2931 e Trig Link: Showing the physical link of the BUSY source, triggering this message.

2082 — If BUSY was triggered by an E-Link (BUSY-ON/BUSY-OFF) the physical link is inserted here.

2033 — If the source was different (soft, DMA or FIFO), these 5 bits will all be "11111", or decimal 31.

2034 e Trig Axis_ID: E-link identification of the BUSY source:

2035 — In case of an E-Link (BUSY-ON) source, this field (6-bits) identifies the E-Link in the GBT or IpGBT
2936 frame which triggered BUSY. If BUSY was issued by a FULL mode link, this field is 0.

2037 — In case of another source (soft, DMA or FIFO), this field identifies the source (with Trig Link is
2938 0x1F/31):

2939 +x 0: DMA busy was asserted or deasserted.

2040 x 1: FIFO busy was asserted or deasserted.

2041 x 2: Soft busy was asserted or negated.

2042 e Trig Val: Identify whether this message was triggered by assertion or negation of the BUSY source:

2043 — 0: BUSY was negated

2044 — 1: BUSY was asserted

2045 e E-Link: Indication of any E-Link currently in BUSY state.
2046 e Soft: Indication of SOFT busy assertion

2047 e DMA: Indication of DMA busy assertion.

2048 e FIFO: Indication of FIFO busy assertion.

2049 e BUSY: Indication of the output of the BUSY signal

2050 e Orbit: Orbit counter while this message was triggered. This functions as a timestamp (together with
2951 BCID) to match the BUSY event to other events in the data stream.

=z B.2.5 DEFAULT EMULATOR CHUNK PAYLOAD

2053 1he internal RAM based emulator on the FLX card can be filled with arbitrary chunk data. The format that can
25« e understood by low level tools (fcheck) for data verification can be used to check the decoder, CRToHost,
255 Wupper and the PCle link. The data format shown below represents the default payload as bytes, read from
256 the memory as uint8_t. This data format can be stored in the emulator ram by means of .COE files at build
2057 time, or at runtime by tools like elinkconfig and feconf.

Appendix B: Appendix B.32

ATLAs FELIX Phase-Il firmware specifications

zzzzzz

0

7

0

7

May 7, 2021 - Version 0.87

0

OxAA

Length (MSB)

Length (LSB)

L1ID counter

7

0

AXls ID

0xBB

OxAA

E-Link width (2, 4, 8, 16

or 32)

31

(Counter data specified in Length)

ATLAS Appendix B: Appendix

rrrrrrrr

Figure B.6: Default Emulator payload.

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

ATLAs FELIX Phase-Il firmware specifications

zzzzzzzzzzz

May 7, 2021 - Version 0.87

Appendix C

TERMS, DEFINITIONS AND GLOSSARY

LIST OF DEFINITIONS

0.1

Definitiontemplate L iii

LIST OF REQUIREMENTS

0.1

10.1
10.2
10.3

Requirementtemplate iii
UVVM Testbenches o 130
ClSimulation e 131
ClBuUild . . . 131

LIST OF RECOMMENDATIONS

0.1

Recommendationtemplate iii

LIST OF REMARKS

0.1
2.1
3.1
5.1
6.1
71
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

ATLAS Appendix C: Terms, Definitions and Glossary

zzzzzzzzzz

Remarktemplate e iii
Instructions for thischapter 2
Instructions for thischapter 3
Instructions for thischapter 13
Instructions forthischapter 15
Instructions forthischapter 18
Update Needed e 37
ToDO . . . e 41
Directmode e 57
Adjusting LCB frame phase 74
Zerobytes e 74
Time-critical command sequences read out from trickle memory 76
BC gatingand stuck elinks 78
BC gatingandthe guardinterval 78
Adjusting LCB framedelay 79

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

8.10
8.11
8.12
9.1

11.1
11.2
11.3
11.4
12.1

LIST

3.1
3.2

41

5.1
5.2

6.2
6.4

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.20
8.21
8.22
8.23

8.24
8.25
8.26
8.27
8.28

Zerobytes e e 85
Directmode L e 90
TTCforphase Il e 91
Instructions forthischapter 128
Instructions forthissection 133
Instructions for thissection 133
Instructions forthissection 133
Instructions forthissection 134
Instructions for thischapter 135
OF TABLES
Firmware Flavours and their configurations 4
E-Link configurations and AXIs IDs for the Firmware Flavours 5
Protocols supported by FELIX 12
Estimated resource usage of the FELIX Phase Il firmware 13
Available FPGA resources [5,6]. 14
Power Requirements e 15
Power Requirements e 17
IOPINS e e 20
Ports to/from CRToHost. e 27
Ports to/from Link Wrapper. o . e 27
Ports to/from Wupper. 27
Resource consumption in GBT mode, fully configurable 28
Estimated resource consumption for Decoding Gearbox. 31
Estimated resource consumption for Decoding Gearbox in GBT mode. 32
Estimated resource consumption for Decoding Gearbox in IpGBT mode (8b10b). 32
Estimated resource consumption for Decoding Gearbox in IpGBT mode (Aurora). 32
AMAC / Endeavour commandso e 34
Resource consumption of Endeavour Decodermodule 36
Estimated resource consumption for Pixel Aurora decoder in Phase-Il. 39
Comma characters with a special meaning in different firmware flavours 46
32bitaxi streaminterface L 52
K-charactersused in FULLMode 53
Resource consumption for the FullToAxisentity 55
Description of the stream controller input and output signals 56
TTC ToHost Virtual E-Link Resource utilization 60
Busy Virtual E-Link Resource utilization 63
AMAC commands towards AMAC chip (Encoder) L. 68
Endeavour protocol L 69
Resource consumption of Endeavour Encodermodule L. 69
Strips ToHost elilnk mapping. In this table, elink mapping of IpGBT optical link 0 is listed. To
find elink IDs for encoders of another optical link, add ®x40 * (IpGBT link ID) to the elink IDs
listedinthetable. 72
LCB link configuration registers 75
Resource consumption of LCB encodermodule L. 81
R3L1 link configurationregisters L 84
Resource consumption of R3L1 encodermodule 85
Comma characters with a special meaning in different firmware flavours 87

Appendix C: Terms, Definitions and Glossary C.2

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

ATLAs FELIX Phase-Il firmware specifications

EXPERTN MENT

8.29
8.30
8.31

8.32

8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.43
8.44

12.1

B.1
B.2
B.3
B.4

LIST

3.1
4.1

5.1

6.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

ATLAS Appendix C: Terms, Definitions and Glossary

;;;;;;;;;;

May 7, 2021 - Version 0.87

Below is the list of bits decoded from the TTC system that can be chosen to be sent on an
E-link definedasa TTCE-link. .. 91
Below is a copy of the bits found in 8.29 but extended with the external testpulse (TP), and with
an adjustable delay (0-15BC) e 92
Possible TTC options (Brc_d4[3:0] and Brc_t2[1:0] are the TTC user defined broadcast com-
mand bits. Bit0 is the first bit transmittedout.o o oL 92
Line 1: Format of the 8-bit TTC word sent to the NSW Readout Controller on every bunch

crossing. “OCR” is the Orbit Count Reset, “ECOR” is the reset for the Level-0 ID and “reset”
is a Readout Controller soft reset. Note that bits 7 and 6 are delivered by the GBTx to the E-
link in the bunch crossing following the other six bits. See Figure 11 of[11]. ECOR and LOA,
are reserved for Phase 2; for Phase 1, FELIX sends ECR and L1A for ECOR and LOA. Line 2:

Format sent to the NSW ART trigger ASIC. it 93
From-host eLink Groups. e 95
To-host eLink Groups. e 95
IpGBT From-host specification [13]. 96
IpGBT To-host specification for FEC5 and FEC12 decoding scheme [13]. 97
CRToHost Resource utilization e 109
CRFromHost Resource utilization 112
Wupper GENeriCs e e e 115
DMA descriptorstypes e e 119
PCleinterrupts 123
AXI4-Stream streams e e 124
Wupper Resource utilization 125
The time and FTE estimation for the first firmware prototypingphase. 136
FELIX registermap BARO B.2
FELIX registermap BAR1 e B.3
FELIX registermap BAR2 e B.28
Overview of the CRFromHost input data format. B.30
OF FIGURES

The FELIX firmware top level block diagrams. 6
The timing mezzanine for FLX-712, with different configuration 11

The Phase-| FELIX resource utilization in percentage (rounded up) for XCKU115 FPGA. Only
the components which consume the most resources are shown. The numbers in each block are
part of the numbers in their immediate outer block. For example, of the 81% LUTs utilization,
each central router contributes about 34%. The rest of the 13% (not shown) come from other

sources. The numbers in parenthesis are the totalvalue. 14
.. 16
The FELIX firmware top level detailed schematic. 22
The decoding block, instantiating all decoder entities based on FIRMWARE_MODE [7] 23
Block diagram of a single E-Path decoderinGBTmode 24
Block diagram of an E-Group decoderinGBTmode 25
Block diagram of an E-Group decoder in [pGBT/8b10bmode 26
Block diagram of a single E-Path decoder in IpGBT / Pixel (RD53b) mode 26
Example waveform of a typical AXI stream 32b transfer. [8] 26
The Decoding GearBox entity e 29

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

FELIX Phase-Il firmware specifications May 7, 2021 - Version 0.87

8.9

8.10
8.11
8.12
8.13
8.14

8.15
8.16

8.17

8.18
8.19
8.20
8.21
8.22
8.23

8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36
8.37
8.38
8.39
8.40
8.41
8.42
8.43
8.44
8.45
8.46
8.47
8.48
8.49
8.50
8.51
8.52
8.53
8.54
8.55
8.56

10.1

DecodingGearBox running with 8 bit input, 10 bit output. The data is constant 0x305 (k28.5+).

[B] - v e 29
The Phase-Il ITk Strip data flow and specification. 33
The Endeavour deglitcherentity 34
The Endeavour decoderentity L 34
example of waveform L 35
The block diagram for the ITk Pixel Aurora To-Host decoder. Two use cases are shown, i.e the

4x1andthe 1x4lanes. e 38
The RD53b Dataprocessorentity 40
RD53B Decoder latency for different number of events per stream (Ng.n) With @ binary-tree

encoded hitmap L e 43
RD53B Decoder latency for different number of events per stream (Ngyen;) With uncompressed

hitmap. . . . e 44
The 8b10b Decoderentity 45
The HDLC decoder entity o e 48
The HDLC decoder waveform 49
Block diagram of both the FrontEnd and FELIX ends of a Full mode link in the ToHost direction 51
The FULL mode decoderentity e 52
The format of the data transmitted between the serializer and deserializer of the Full mode

A>T o o= 53
block diagram with the user’s data source and to-FELIX Full mode stream controller 55
The TTC ToHost Virtual E-Linkentity 58
The Busy Virtual E-Link entity 61
The encoding block, instantiating all encoder entities based on FIRMWARE_MODE 65
The Endeavour encoderentity 68
example of waveform 69
The RD53A/B encoderentity 0 e 70
Functional diagram of ITk Strips LCB Encodermodule 73
LCB link configuration command format oL L. 74
No operation command format L 76
IDLE command format 77
LOAcommandformat L. 77
Fastcommandformat. 77
Register read command format 78
Register write command formato oL 78
Functional diagram of ITk Strips R3L1 Encodermodule 83
R3L1 link configuration command format 84
The 8b10b Encoder entity e 86
The HDLC encoder entity 88
The HDLC encoder waveform e 89
The TTC Encoderentity 91
Block diagram for the GBT module in the link wrapper 97
Integartion test between FLX-712 and ATLAS Phase-Il Strip Stave 98
Block diagram for the serializer and deserializer modules for Fullmode 99
CRToHost interface symbol 105
CRToHost Block Schematic e 107
The FromHost or Downstream Central Routerentity 110
Example waveform of a typical FromHost Central Router transfer with its FIFO interface. [8]. . 110
Example waveform of a typical AXl stream 8btransfer. [8] 111
Wupper interface symbol L 114
Structure of the Felix PCle Engine 118
Endless DMA buffer and pointers representation diagram in ToHost mode 121
Endless DMA buffer and pointers representation diagram in FromHost mode 122
Results summary of a UVVM successful simulation 130

Appendix C: Terms, Definitions and Glossary C.4

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

/.\TZ |_ As FELIX Phase-ll firmware specifications May 7, 2021 - Version 0.87

10.2 Continuous Integration Pipelines as seen in the Gitlab interface 131
B.1 FELIXToHostBlockformat e B.29
B.2 Block Header Format B.29
B.3 Chunk Trailer Format e B.29
B.4 TTC ToHostdataformat B.31
B.5 BUSY ToHostdataformat B.32
B.6 Default Emulatorpayload B.33

C.1 GLOSSARY

ATLAS A Toroidal LHC Apparatus. i

AXI Advanced eXtensible Interface, widely used on Xilinx IP. AXI4-Stream is widely used in the FELIX project
first. 24

BC Bunch Crossing, The CERN LHC bunch crossing clock frequency is 40.07897 MHz first. 71
Block Fixed section of memory with a specific formatting, headers and trailers first. B.29

BUSY A condition that can be raised from the FELIX system towards the central trigger processor in case
buffers fill up and data aquisition must be halted first. 102, 104

DMA Direct Memory Access first. 113

FELIX Front End LInk eXchange. i

FIFO First In First Out, a type of memory to store data, also used to cross clock domains first. 23, 65
FLX128 Xilinx VCU128 / VU37P Development kit with FELIX firmware. 13

FLX712 FELIX Phase | PCle card (BNL712) with FELIX firmware. 13

FromHost Direction of data communication, in ATLAS also referred to as Downlink. Data flows from the Host
PC towards the FPGA first. 110

GBT VersatileLink GigaBitTransceiver, a protocol and chip (GBTx) with 4.8Gb/s communication and logical
links (E-Links) first. 21

IPGBT low power GigaBitTransceiver, a successor of GBT with 9.6Gb/s Uplink, 2.56Gb/s Downlink and logi-
cal links (E-Links) first. 21

ToHost Direction of data communication, in ATLAS also referred to as Uplink. Data flows from the FPGA
towards the Host PC first. 105

TTC Timing, Trigger and Control, a protocol to distribute timing and trigger information first. 102

Wupper An implementation of a PCle DMA controller for Xilinx FPGAs first. 113

AR Appendix ’ Terms’ D Glossary

	0 Temporary organisational things
	0.1 Templates
	Revision History
	Table of Contents

	1 Conventions and Glossary
	2 Related Documents
	3 Global Description and Specification 0.9
	3.1 Firmware Flavours
	3.1.1 E-Path IDs/ AXIs IDs

	3.2 Top level
	3.2.1 Transceiver and link wrapper
	3.2.2 Encoding
	3.2.3 Decoding
	3.2.4 AXIs MUX (ToHost Fanout Selector)
	3.2.5 CRFromHost: CentralRouter in FromHost direction
	3.2.6 CRToHost: CentralRouter in ToHost direction
	3.2.7 ToHost Emulator
	3.2.8 Wupper
	3.2.9 Number instances per FPGA

	4 External Interfaces (I/O) 1
	4.1 FrontEnd links
	4.2 PCIe
	4.3 TTC Interface
	4.4 BUSY
	4.5 100Gb/s Ethernet

	5 Target FPGA 0.2
	6 Power and Cooling 0.75
	7 Input/Output 0.7
	8 Detailed Functional Description and Specification
	8.1 Introduction
	8.2 Compatibility
	8.3 Decoding 0.9
	8.3.1 Introduction
	8.3.2 Interfaces
	8.3.2.1 Overview

	8.3.2.1.1 GBT mode, 8b10b, HDLC
	8.3.2.1.2 lpGBT mode, 8b10b
	8.3.2.1.3 lpGBT mode, Pixel
	8.3.2.2 Interface to CRToHost
	8.3.2.3 Interface to Link Wrapper
	8.3.2.4 Interface to Wupper
	8.3.3 Functional Description
	8.3.4 Configuration
	8.3.5 Status Indicators
	8.3.6 Latency
	8.3.7 Error Handling
	8.3.8 Estimated Resource Usage
	8.3.9 Decoding Gearbox 0.9
	8.3.9.1 Introduction
	8.3.9.2 Interfaces

	8.3.9.2.1 Overview
	8.3.9.2.2 Interface to GBT or lpGBT wrapper
	8.3.9.2.3 Interface to Decoders
	8.3.9.3 Functional Description
	8.3.9.4 Configuration
	8.3.9.5 Status Indicators
	8.3.9.6 Latency
	8.3.9.7 Error Handling
	8.3.9.8 Estimated Resource Usage
	8.3.10 StripDecoder 0.9
	8.3.10.1 Introduction

	8.3.11 Endeavour Decoder 0.9
	8.3.11.1 Introduction
	8.3.11.2 Interfaces

	8.3.11.2.1 Overview
	8.3.11.2.2 Interface from E-Link
	8.3.11.2.3 Interface to CRToHost
	8.3.11.3 Functional Description
	8.3.11.4 Configuration
	8.3.11.5 Status Indicators
	8.3.11.6 Latency
	8.3.11.7 Error Handling
	8.3.11.8 Estimated Resource Usage
	8.3.12 Aurora Decoder for RD53 0.3
	8.3.12.1 Introduction
	8.3.12.2 Pixel Aurora Decoder
	8.3.12.3 Interfaces

	8.3.12.3.1 Overview
	8.3.12.3.2 Interface to component 2
	8.3.12.4 Functional Description
	8.3.12.5 Configuration
	8.3.12.6 Status Indicators
	8.3.12.7 Latency
	8.3.12.8 Error Handling
	8.3.12.9 Estimated Resource Usage

	8.3.12.9.1 Aurora decoder
	8.3.13 RD53B Decoder 0.75
	8.3.13.1 Introduction
	8.3.13.2 Interfaces

	8.3.13.2.1 Overview
	8.3.13.2.2 Interface to the Aurora Decoder
	8.3.13.2.3 Interface to the ToHost Central Router
	8.3.13.3 Functional Description

	8.3.13.3.1 Input stage
	8.3.13.3.2 Stream decoder
	8.3.13.3.3 Output multiplexer
	8.3.13.4 Configuration
	8.3.13.5 Status Indicators
	8.3.13.6 Latency
	8.3.13.7 Estimated Resource Usage
	8.3.14 8b10b E-Link decoder 0.9
	8.3.14.1 Introduction
	8.3.14.2 Interfaces

	8.3.14.2.1 Interface to DecodingGearBox
	8.3.14.2.2 Interface to ByteToAxiStream
	8.3.14.3 Functional Description

	8.3.14.3.1 Alignment
	8.3.14.3.2 8b10b decoding
	8.3.14.3.3 Framing error detection
	8.3.14.3.4 E-link busy assertion
	8.3.14.3.5 Deframing
	8.3.14.4 Configuration
	8.3.14.5 Status Indicators
	8.3.14.6 Latency
	8.3.14.7 Error Handling
	8.3.14.8 Estimated Resource Usage
	8.3.15 HDLC E-Link decoder 1.0
	8.3.15.1 Introduction
	8.3.15.2 Interfaces

	8.3.15.2.1 Generics
	8.3.15.2.2 Elink interface
	8.3.15.2.3 Interface to ByteToAxiStream
	8.3.15.3 Functional Description
	8.3.15.4 Configuration
	8.3.15.5 Status Indicators
	8.3.15.6 Latency
	8.3.15.7 Error Handling
	8.3.15.8 Estimated Resource Usage
	8.3.16 FULLModeDecoder 0.9
	8.3.16.1 Introduction
	8.3.16.2 Interfaces

	8.3.16.2.1 Interface from LinkWrapper
	8.3.16.2.2 Interface to CRToHost
	8.3.16.3 Functional Description

	8.3.16.3.1 Flow control
	8.3.16.3.2 CRC
	8.3.16.4 Configuration
	8.3.16.5 Status Indicators
	8.3.16.6 Latency
	8.3.16.7 Error Handling
	8.3.16.8 Estimated Resource Usage
	8.3.16.9 User Example design
	8.3.17 Direct mode E-Link Decoder 1.0
	8.3.17.1 Introduction

	8.3.18 TTCToHost virtual E-Link 1.0
	8.3.18.1 Introduction
	8.3.18.2 Interfaces

	8.3.18.2.1 Generics
	8.3.18.2.2 Interface from TTC Wrapper
	8.3.18.2.3 clock, reset and enable
	8.3.18.2.4 Interface to Central Router ToHost
	8.3.18.3 Functional Description
	8.3.18.4 Configuration
	8.3.18.5 Status Indicators
	8.3.18.6 Latency
	8.3.18.7 Error Handling
	8.3.18.8 Estimated Resource Usage
	8.3.19 BUSY virtual E-Link 1.0
	8.3.19.1 Introduction
	8.3.19.2 Interfaces

	8.3.19.2.1 Generics
	8.3.19.2.2 Interface from various BUSY sources
	8.3.19.2.3 Timestamp inputs
	8.3.19.2.4 clock, reset and enable
	8.3.19.2.5 Interface to Central Router ToHost
	8.3.19.3 Functional Description
	8.3.19.4 Configuration
	8.3.19.5 Status Indicators
	8.3.19.6 Latency
	8.3.19.7 Error Handling
	8.3.19.8 Estimated Resource Usage
	8.3.20 25GbLinksDecoder 0.0
	8.3.20.1 Introduction
	8.3.20.2 Interfaces

	8.3.20.2.1 Overview
	8.3.20.2.2 Interface to component 2
	8.3.20.3 Functional Description
	8.3.20.4 Configuration
	8.3.20.5 Status Indicators
	8.3.20.6 Latency
	8.3.20.7 Error Handling
	8.3.20.8 Estimated Resource Usage
	8.4 Encoding 0.9
	8.4.1 Introduction
	8.4.2 Interfaces
	8.4.2.1 Overview
	8.4.2.2 Interface from CRFromHost
	8.4.2.3 Interface to LinkWrapper

	8.4.3 Functional Description
	8.4.4 Configuration
	8.4.5 Status Indicators
	8.4.6 Latency
	8.4.7 Error Handling
	8.4.8 Estimated Resource Usage
	8.4.9 Encoding Gearbox 0.0
	8.4.9.1 Introduction
	8.4.9.2 Interfaces

	8.4.9.2.1 Overview
	8.4.9.2.2 Interface to component 2
	8.4.9.3 Functional Description
	8.4.9.4 Configuration
	8.4.9.5 Status Indicators
	8.4.9.6 Latency
	8.4.9.7 Error Handling
	8.4.9.8 Estimated Resource Usage
	8.4.10 Endeavour Encoder 0.9
	8.4.10.1 Introduction
	8.4.10.2 Interfaces

	8.4.10.2.1 Overview
	8.4.10.2.2 Interface to lpGBT
	8.4.10.2.3 Interface to CRFromHost
	8.4.10.3 Functional Description
	8.4.10.4 Configuration
	8.4.10.5 Status Indicators
	8.4.10.6 Latency
	8.4.10.7 Error Handling
	8.4.10.8 Estimated Resource Usage
	8.4.11 RD53 Encoder 0.1
	8.4.11.1 Introduction
	8.4.11.2 Interfaces

	8.4.11.2.1 Overview
	8.4.11.2.2 Interface to component 2
	8.4.11.3 Functional Description
	8.4.11.4 Configuration
	8.4.11.5 Status Indicators
	8.4.11.6 Latency
	8.4.11.7 Error Handling
	8.4.11.8 Estimated Resource Usage
	8.4.12 ITk Strips LCB Encoder 0.95
	8.4.12.1 Introduction
	8.4.12.2 Configuration storage submodule
	8.4.12.2.1 Configuration command.

	8.4.12.3 LCB frame generator submodule
	8.4.12.4 Bypass frame aggregator submodule
	8.4.12.5 Trickle configuration memory
	8.4.12.6 Command decoder
	8.4.12.6.1 No operation.
	8.4.12.6.2 IDLE command.
	8.4.12.6.3 L0A command.
	8.4.12.6.4 Fast command.
	8.4.12.6.5 Register commands.

	8.4.12.7 LCB sequence encoder
	8.4.12.8 LCB frame FIFO
	8.4.12.9 Trickle trigger generator
	8.4.12.10 LCB scheduler
	8.4.12.11 Examples

	8.4.12.11.1 Sending basic LCB commands via LCB Command elink and Command Decoder (ENCODING_ENABLE=1)
	8.4.12.11.2 Sending basic LCB commands via LCB Command elink and Bypass Frame Aggregator (ENCODING_ENABLE=0)
	8.4.12.11.3 Writing trickle configuration
	8.4.12.11.4 Issuing software-generated trickle trigger
	8.4.12.11.1 Single LCB elink.
	8.4.12.11.2 Continuous trickle configuration.
	8.4.12.11.3 All LCB elinks simultaneously.
	8.4.12.11.4 All LCB elinks simultaneously with pre-buffering.
	8.4.12.11.5 Trickle trigger during specified BC interval
	8.4.12.12 Latency
	8.4.12.13 Estimated Resource Usage
	8.4.13 ITk Strips R3L1 Encoder 0.85
	8.4.13.1 Introduction
	8.4.13.2 Configuration storage submodule
	8.4.13.2.1 Configuration command.

	8.4.13.3 Frame synchronizer
	8.4.13.4 R3 and L1 Frame generators
	8.4.13.5 R3 and L1 Frame FIFOs
	8.4.13.6 Bypass frame aggregator
	8.4.13.7 R3L1 Scheduler
	8.4.13.8 Latency
	8.4.13.9 Estimated Resource Usage

	8.4.14 8b10b Encoder 1.0
	8.4.14.1 Introduction
	8.4.14.2 Interfaces

	8.4.14.2.1 Interface to AxiStreamToByte
	8.4.14.2.2 Interface to EncodingGearBox
	8.4.14.3 Functional Description

	8.4.14.3.1 Overview
	8.4.14.3.2 8b10b encoding
	8.4.14.4 Configuration
	8.4.14.5 Latency
	8.4.14.6 Error Handling
	8.4.14.7 Estimated Resource Usage
	8.4.15 HDLC Encoder 1.0
	8.4.15.1 Introduction
	8.4.15.2 Interfaces

	8.4.15.2.1 Generics
	8.4.15.2.2 Interface from AxiStreamToByte
	8.4.15.2.3 Interface to GBT/lpGBT E-Link
	8.4.15.3 Functional Description
	8.4.15.4 Configuration
	8.4.15.5 Status Indicators
	8.4.15.6 Latency
	8.4.15.7 Error Handling
	8.4.15.8 Estimated Resource Usage
	8.4.16 Direct mode E-Link Encoder 1.0
	8.4.16.1 Introduction

	8.4.17 TTC Encoder 0.95
	8.4.17.1 Introduction
	8.4.17.2 Interfaces
	8.4.17.3 Functional Description

	8.4.17.3.1 TTC Delay and Extended testpulse
	8.4.17.3.2 TTC Options
	8.4.17.4 Configuration
	8.4.17.5 Status Indicators
	8.4.17.6 Latency
	8.4.17.7 Error Handling
	8.4.17.8 Estimated Resource Usage
	8.4.18 Encoder for 25 Gb/s links 0.0
	8.4.18.1 Introduction
	8.4.18.2 Interfaces

	8.4.18.2.1 Overview
	8.4.18.2.2 Interface to component 2
	8.4.18.3 Functional Description
	8.4.18.4 Configuration
	8.4.18.5 Status Indicators
	8.4.18.6 Latency
	8.4.18.7 Error Handling
	8.4.18.8 Estimated Resource Usage
	8.5 Link Wrapper 0.95
	8.5.1 Introduction
	8.5.2 Interfaces
	8.5.2.1 Overview

	8.5.3 Functional Description
	8.5.3.1 GBT mode wrapper
	8.5.3.2 lpGBT mode wrapper
	8.5.3.3 Full mode wrapper

	8.5.4 Configuration
	8.5.5 Status Indicators
	8.5.6 Latency
	8.5.7 Estimated Resource Usage

	8.6 ToHost Data Emulator 0.0
	8.6.0.1 Introduction
	8.6.0.2 Interfaces

	8.6.0.2.1 Overview
	8.6.0.2.2 Interface to component 2
	8.6.0.3 Functional Description
	8.6.0.4 Configuration
	8.6.0.5 Status Indicators
	8.6.0.6 Latency
	8.6.0.7 Error Handling
	8.6.0.8 Estimated Resource Usage
	8.7 TTC Emulator 0.0
	8.7.1 Introduction
	8.7.2 Interfaces
	8.7.2.1 Overview
	8.7.2.2 Interface to component 2

	8.7.3 Functional Description
	8.7.4 Configuration
	8.7.5 Status Indicators
	8.7.6 Latency
	8.7.7 Error Handling
	8.7.8 Estimated Resource Usage

	8.8 Legacy TTC Wrapper 0.0
	8.8.1 Introduction
	8.8.2 Interfaces
	8.8.2.1 Overview
	8.8.2.2 Interface to component 2

	8.8.3 Functional Description
	8.8.4 Configuration
	8.8.5 Status Indicators
	8.8.6 Latency
	8.8.7 Error Handling
	8.8.8 Estimated Resource Usage

	8.9 LTI/TTC Interface0.0
	8.9.1 Introduction
	8.9.2 Interfaces
	8.9.2.1 Overview
	8.9.2.2 Interface to component 2

	8.9.3 Functional Description
	8.9.4 Configuration
	8.9.5 Status Indicators
	8.9.6 Latency
	8.9.7 Error Handling
	8.9.8 Estimated Resource Usage

	8.10 BUSY Selection 0.0
	8.10.1 Introduction
	8.10.2 Interfaces
	8.10.2.1 Overview
	8.10.2.2 Interface to component 2

	8.10.3 Functional Description
	8.10.4 Configuration
	8.10.5 Status Indicators
	8.10.6 Latency
	8.10.7 Error Handling
	8.10.8 Estimated Resource Usage

	8.11 CRToHost: ToHost or Upstream Central Router 1.0
	8.11.1 Introduction
	8.11.2 Interfaces
	8.11.2.1 Overview
	8.11.2.2 Interface from decoding
	8.11.2.3 Interface to Wupper

	8.11.3 Functional Description
	8.11.3.1 CRToHostdm

	8.11.3.1.1 ToHostAxiStreamController
	8.11.3.1.2 Channel FIFO
	8.11.3.1.3 XOFF Mechanism
	8.11.3.2 CRToHost PCIeManager
	8.11.3.3 CRToHost MUX
	8.11.3.4 CRResetManager
	8.11.4 Configuration
	8.11.5 Status Indicators
	8.11.6 Latency
	8.11.7 Error Handling
	8.11.8 Estimated Resource Usage
	8.12 CRFromHost: FromHost or Downstream Central Router 0.7
	8.12.1 Introduction
	8.12.2 Interfaces
	8.12.2.1 Interface to Wupper
	8.12.2.2 Interface to the encoders

	8.12.3 Functional Description
	8.12.3.1 CRFromHost top-level
	8.12.3.2 CRFromHost data manager
	8.12.3.3 CRFromHost transfer manager

	8.12.4 Configuration
	8.12.4.1 Generics
	8.12.4.2 Run-time configuration

	8.12.5 Status Indicators
	8.12.6 Latency
	8.12.7 Error Handling
	8.12.8 Estimated Resource Usage

	8.13 Wupper: PCIe DMA core and register map 0.95
	8.13.1 Introduction
	8.13.2 Interfaces
	8.13.2.1 Generics
	8.13.2.2 fromHostFifo
	8.13.2.3 toHostFifo
	8.13.2.4 interrupt_call
	8.13.2.5 Clocks and Resets
	8.13.2.6 BUSY
	8.13.2.7 PCIe
	8.13.2.8 Register Map

	8.13.3 Functional Description
	8.13.4 DMA descriptors
	8.13.5 Endless DMA with a circular buffer and wrap around
	8.13.6 Interrupt controller
	8.13.7 Xilinx PCIe EndPoint Core
	8.13.7.1 Xilinx AXI4-Stream interface
	8.13.7.2 Configuration of the core

	8.13.8 Status Indicators
	8.13.9 Latency
	8.13.10 Error Handling
	8.13.11 Estimated Resource Usage
	8.13.12 Simulation

	8.14 RDMA 0.0
	8.14.1 Introduction
	8.14.2 Interfaces
	8.14.2.1 Overview
	8.14.2.2 Interface to component 2

	8.14.3 Functional Description
	8.14.4 Configuration
	8.14.5 Status Indicators
	8.14.6 Latency
	8.14.7 Error Handling
	8.14.8 Estimated Resource Usage

	8.15 HouseKeeping 0.0
	8.15.1 Introduction
	8.15.2 Interfaces
	8.15.2.1 Overview
	8.15.2.2 Interface to component 2

	8.15.3 Functional Description
	8.15.4 Configuration
	8.15.5 Status Indicators
	8.15.6 Latency
	8.15.7 Error Handling
	8.15.8 Estimated Resource Usage

	9 Radiation Tolerance 0.0
	10 Testing, Validation and Commissioning 0.9
	10.1 Simulation
	10.1.1 UVVM

	10.2 Gitlab CI
	10.3 Nightly firmware test on hardware

	11 Firmware Management and Reliability Matters 0.0
	11.1 Firmware Source Management and Release Plan
	11.2 Consequences of Failures
	11.3 Prior Knowledge of Expected Reliability
	11.4 Measures Proposed to Ensure Reliability of the Firmware

	12 Organization of Firmware Development 0.0
	References
	A Code Management 0.0
	B Appendix
	B.1 FELIX register map, version 5.0
	B.2 Data Formats
	B.2.1 CRToHost Block format
	B.2.2 CRFromHost Data format
	B.2.3 TTC ToHost Data format
	B.2.4 BUSY ToHost Data format
	B.2.5 Default emulator chunk payload

	C Terms, Definitions and Glossary
	C.1 Glossary

