
FELIX Phase-II firmware specifications ATLAS Doc.: AT2-DQ-ES-0006
EDMS Id: 2681548 v.1

ATLAS Phase-II Upgrade Project

ATLAS FELIX firmware Phase-II Upgrade:
Firmware specifications

Abstract

This document describes the firmware specifications of the ATLAS FELIX Phase-II Upgrade Project
[Collaboration:2285584].

FELIX Phase-II firmware specifications
ATLAS Doc: AT2-DQ-ES-0006
EDMS Id: 2681548 v.1
EDMS Url: https://edms.cern.ch/document/2681548/1
Version: 1.037
Created: January 12, 2021
Last modified: June 28, 2024

Prepared by: Checked by: Approved by:

The FELIX Team The FELIX Team The ATLAS review commit-
tee

c© 2024 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed As specified in the CC-BY-4.0 license.

https://edms.cern.ch/document/2681548/1

[INTENTIONALLY BLANK PAGE]

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

REVISION HISTORY

Revision Date Author(s) Description
0.001 2019-12-19 Frans Schreuder Added some entities as a graphical symbol and wave-

forms for axi stream
0.002 2019-12-19 Frans Schreuder Added skeleton for RD53b decoder
0.003 2019-12-20 Frans Schreuder Added several blocks, entities and moved around some

text
0.004 2019-12-20 Frans Schreuder Added full mode decoder entity
0.005 2020-01-07 Frans Schreuder Split RD53b decoder and Aurora decoder in separate

subsections
0.006 2020-01-08 Frans Schreuder Described the DecodingGearBox
0.007 2020-01-09 Frans Schreuder Added block diagram of Decoding Egroups and Epaths

for (lp)GBT 8b10b mode
0.008 2020-01-10 Frans Schreuder Added block diagram for Pixel ToHost e-path
0.009 2020-01-10 Frans Schreuder Added description of the 8b10b decoder
0.010 2020-01-10 Frans Schreuder Added progress bars to the different sections (Thank you

LASP people for the idea)
0.011 2020-01-13 Jacopo Pinzino added some informations about endeavour blocks
0.012 2020-01-14 Frans Schreuder Added some missing encoder (skeleton) tex files
0.013 2020-01-14 Frans Schreuder Added TTC Emulator
0.014 2020-01-14 Jacopo Pinzino improving the Endeavour Encoder subsection
0.015 2020-01-16 Frans Schreuder Added decoding egroup resources
0.016 2020-01-16 Frans Schreuder regenerated pdf
0.017 2020-01-21 Elena Zhivun Added description of the LCB protocol
0.018 2020-01-23 Frans Schreuder Added atlas template
0.019 2020-01-24 Frans Schreuder Changed information about CRC polynomial in

FullMode.pdf
0.020 2020-01-27 Marius Wensing starting work on the RD53B Decoder
0.021 2020-01-28 Frans Schreuder Replaced verbatim with lstlisting in LCBEncoder.tex, it

gave typesetting errors
0.022 2020-02-04 Marius Wensing updating RD53B decoder entity and re-generated PDF
0.023 2020-02-04 Marius Wensing adding entity for FromHost Central Router
0.024 2020-02-04 Jacopo Pinzino add table
0.025 2020-02-10 Marius Wensing more work on the RD53B decoder section
0.026 2020-02-10 Jacopo Pinzino improvement endeavour encoder decoder part
0.027 2020-02-11 Frans Schreuder Regenerated wupper documentation with rm4.9
0.028 2020-02-17 Marius Wensing adding example waveform for CRFromHost input
0.029 2020-02-17 Marius Wensing starting to document the FromHost Central Router
0.030 2020-02-18 Marius Wensing adding resource usage for RD53B decoder
0.031 2020-02-20 Frans Schreuder Fixed some issues in the EndeavourDecoder/Encoder

documents (figures not found etc) Unified tables through-
out the document

0.032 2020-02-20 Jacopo Pinzino improvement endeavour encoder decoder part
0.033 2020-02-20 Frans Schreuder regenerated pdf
0.034 2020-02-21 Frans Schreuder Some minor updates to Endeavour Decoder / Encoder
0.035 2020-03-17 Frans Schreuder Added section about TTC Encoder
0.036 2020-05-07 jacopo pinzino added EndeavourDeglitcher in the Endeavour Decoder

subsection of the Phase2_FM_specs
0.037 2020-05-07 jacopo pinzino correct typo in Endeavour Decoder subsection of the

Phase2_FM_specs
0.038 2020-05-12 jacopo pinzino small grammatical corrections

Revision History iii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

0.039 2020-06-05 Elena Zhivun Started on updating ITk Strips documentation
0.040 2020-06-05 Elena Zhivun Started on LCB module documentation
0.041 2020-06-07 Elena Zhivun Editing the documentation
0.042 2020-06-08 Elena Zhivun Fixed bit ordering
0.043 2020-06-08 Elena Zhivun Editing the text
0.044 2020-06-08 Elena Zhivun Edit documentation
0.045 2020-06-09 Elena Zhivun Added examples
0.046 2020-06-10 Elena Zhivun Updated Strips protocol description
0.047 2020-06-16 Frans Schreuder Built PDF
0.048 2020-06-24 Elena Zhivun Added remark about BC gating interval
0.049 2020-06-25 Elena Zhivun Updated remark about BC gating generation
0.050 2020-07-23 Nico Giangiacomi Modified TTC Encoder table, removed useless TTCOp-

tions
0.051 2020-11-19 Elena Zhivun Update Strips module documentation
0.052 2021-01-12 Frans Schreuder Added chapter about testing
0.053 2021-01-12 Frans Schreuder Added related documents
0.054 2021-01-15 Frans Schreuder Added section about FULL mode, added detailed toplevel

schematic including all toplevel signals
0.055 2021-01-19 Frans Schreuder Added register-map 5.0 as appendix
0.056 2021-01-21 Frans Schreuder Added documentation for: * Wupper * Firmware flavours

* Minor other modifications
0.057 2021-01-21 Frans Schreuder Minor modifications in felix toplevel (detailed) drawing
0.058 2021-01-21 Marius Wensing working on CRFromHost
0.059 2021-01-22 Frans Schreuder Started section about CRToHost
0.060 2021-01-26 Kai Chen some texts are added in section 4/6/8, to be continued
0.061 2021-01-27 Marius Wensing more work on CRFromHost chapter
0.062 2021-01-27 Frans Schreuder Finished section about CRToHost, added resources for

CRFromHost
0.063 2021-01-27 Frans Schreuder Removed FELIX_Phase2_firmware_specs generated

PDF, and instead generated it using Gitlab CI. Need to
find a way to publish it somewhere.

0.064 2021-01-27 Frans Schreuder Fixed capitalization of extension png=>PNG of file name
0.065 2021-01-28 Frans Schreuder Added makefile for Wupper
0.066 2021-01-28 Frans Schreuder Worked on Data Formats
0.067 2021-02-02 Kai Chen add material for GBT/lpGBT in sec 8.6, and sec. 4
0.068 2021-02-02 Frans Schreuder Updated front page and added glossaries
0.069 2021-02-02 Elena Zhivun Add resource utilization for Strips links
0.070 2021-02-02 Elena Zhivun Update the Strips documentation
0.071 2021-02-02 Elena Zhivun Fix tables
0.072 2021-02-08 Nico Giangiacomi Added 8b10bEncoder
0.073 2021-02-09 Kai Chen Changes to the Section 8.6
0.074 2021-02-09 Kai Chen Changes to the Section 6
0.075 2021-02-09 Kai Chen Changes to the Section 8.6
0.076 2021-02-15 Frans Schreuder Some work on Global Description
0.077 2021-02-16 Frans Schreuder Added a chapter about AXI stream IDs per firmware

flavour
0.078 2021-02-18 Frans Schreuder Added description of HDLC Decoder
0.079 2021-02-18 Kai Chen add fansink information for FLX-712
0.080 2021-02-19 Frans Schreuder Described HDLC Encoder
0.081 2021-03-04 Frans Schreuder Added description of the BUSY ToHost Virtual E-Link
0.082 2021-03-04 Frans Schreuder Modified makefile to generate History.tex from git log

Revision History iv

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

0.083 2021-03-04 Frans Schreuder Reverted template/Makefile, now generate History.tex
from MakeHistory.sh

0.084 2021-03-04 Frans Schreuder Automatic version history from GIT with 0.xx numbering,
alsu automate the version of the document this way

0.085 2021-03-05 Frans Schreuder Separated TTC (Legacy) and BUSY sections, added
LTI/TTC interface (empty placeholder)

0.086 2021-03-05 Frans Schreuder Added section about the TTC ToHost Virtual E-Link
0.087 2021-03-15 Frans Schreuder Described encoding entity
0.088 2021-05-07 Elena Zhivun Added strips ToHost elink mapping
0.089 2021-05-07 Elena Zhivun Place table at bottom of the page
0.090 2021-05-07 Elena Zhivun Update LCBEncoder.tex
0.091 2021-08-12 Frans Schreuder Publish document in User files
0.092 2021-08-19 Nayib Boukadida Added Interlaken documentation
0.093 2021-08-25 Alexander Para-

monov
legacy ttc

0.094 2021-08-27 Alexander Para-
monov

legacy ttc

0.095 2021-08-27 Alexander Para-
monov

legacy ttc

0.096 2021-08-27 Alexander Para-
monov

legacy ttc

0.097 2021-08-27 Alexander Para-
monov

legacy ttc

0.098 2021-08-27 Alexander Para-
monov

legacy ttc

0.099 2021-08-27 Alexander Para-
monov

legacy ttc

0.100 2021-08-27 Alexander Para-
monov

legacy ttc

0.101 2021-08-30 Alexander Para-
monov

legacy ttc

0.102 2021-08-31 Elena Zhivun Update documentation
0.103 2021-08-31 Alexander Para-

monov
legacy ttc

0.104 2021-08-31 Alexander Para-
monov

legacy ttc

0.105 2021-08-31 Alexander Para-
monov

legacy ttc

0.106 2021-09-01 Elena Zhivun Update Endeavour documentation
0.107 2021-09-01 Alexander Para-

monov
legacy ttc

0.108 2021-09-01 Alexander Para-
monov

legacy ttc

0.109 2021-09-01 Elena Zhivun Update strips documentation
0.110 2021-09-01 Elena Zhivun Fix typo
0.111 2021-09-01 Elena Zhivun Rename file
0.112 2021-09-01 Elena Zhivun Add missing file
0.113 2021-09-01 Elena Zhivun Update module diagram for Endeavour
0.114 2021-09-01 Elena Zhivun Replace files
0.115 2021-09-01 Elena Zhivun Fix typos
0.116 2021-09-07 Alexander Para-

monov
legacy ttc

Revision History v

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

0.117 2021-09-08 Alexander Para-
monov

legacy ttc

0.118 2021-09-08 Alexander Para-
monov

legacy ttc

0.119 2021-09-13 Alexander Para-
monov

legacy ttc

0.120 2021-09-13 Alexander Para-
monov

legacy ttc

0.121 2021-09-13 Alexander Para-
monov

legacy ttc

0.122 2021-09-14 Alexander Para-
monov

legacy ttc

0.123 2021-09-14 Alexander Para-
monov

legacy ttc

0.124 2021-09-16 Alexander Para-
monov

64b66b decoder

0.125 2021-09-17 Alexander Para-
monov

64b66b decoder

0.126 2021-09-17 Alexander Para-
monov

64b66b decoder

0.127 2021-09-20 Alexander Para-
monov

64b66b decoder

0.128 2021-09-27 Alexander Para-
monov

64b66b decoder

0.129 2021-09-27 Alexander Para-
monov

64b66b decoder

0.130 2021-09-27 Alexander Para-
monov

64b66b decoder

0.131 2021-09-28 Frans Schreuder fixed typo in wupper_structure diagram
0.132 2021-10-08 Alexander Para-

monov
64b66b decoder

0.133 2021-10-08 Alexander Para-
monov

64b66b decoder

0.134 2021-10-08 Alexander Para-
monov

64b66b decoder

0.135 2021-10-11 Alexander Para-
monov

64b66b decoder

0.136 2021-10-11 Alexander Para-
monov

64b66b decoder

0.137 2021-10-12 Alexander Para-
monov

64b66b decoder

0.138 2021-10-12 Alexander Para-
monov

64b66b decoder

0.139 2021-10-13 Alexander Para-
monov

64b66b decoder

0.140 2021-10-13 Alexander Para-
monov

64b66b decoder

0.141 2021-10-13 Alexander Para-
monov

64b66b decoder

0.142 2021-10-13 Alexander Para-
monov

64b66b decoder

0.143 2021-10-13 Alexander Para-
monov

64b66b decoder

Revision History vi

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

0.144 2021-10-13 Alexander Para-
monov

64b66b decoder

0.145 2021-10-15 Alexander Para-
monov

ItkPix encoder

0.146 2021-10-15 Alexander Para-
monov

ItkPix encoder

0.147 2021-10-15 Alexander Para-
monov

ItkPix encoder

0.148 2021-10-18 Alexander Para-
monov

ItKPix encoder

0.149 2021-10-20 Alexander Para-
monov

ITkPix encoder

0.150 2021-10-21 Alexander Para-
monov

ITkPix encoder

0.151 2021-10-22 Alexander Para-
monov

comments from Will

0.152 2021-10-25 Alexander Para-
monov

LTI TTC

0.153 2021-10-26 Alexander Para-
monov

LTI TTC

0.154 2021-11-16 Frans Schreuder History
0.155 2021-11-16 Frans Schreuder Added GBT, lpGBT and FULL mode data emulator sec-

tion
0.156 2021-11-16 Frans Schreuder Added Busy/Xoff/Xon chapter
0.157 2021-11-17 Frans Schreuder Created new toplevel block diagram, updated references
0.158 2021-11-17 Frans Schreuder Added description of EncodingGearbox, removed RDMA

functional description (now a citation to TWEPP21)
0.159 2021-11-19 Nayib Boukadida Added interlaken documentation with figures
0.160 2021-11-22 Frans Schreuder Removed 25GbLinksEncoder / Decoder (replaced by In-

terlaken)
0.161 2022-01-03 Ali Skaf Update Phase2_FW_specs/text/TTCEmulator.tex
0.162 2022-01-03 Ali Skaf Included in TTCEmulator.tex
0.163 2022-01-05 Alexander Para-

monov
LTI TTC

0.164 2022-01-05 Alexander Para-
monov

LTI TTC

0.165 2022-01-06 Alexander Para-
monov

fixed compilation

0.166 2022-01-06 Alexander Para-
monov

fixed compilation

0.167 2022-01-06 Alexander Para-
monov

ITk Pix Encoder

0.168 2022-01-10 Frans Schreuder Updated resources on target FPGA, based on values es-
timated in FLX-1769

0.169 2022-01-10 Frans Schreuder Added some comments Management and Reliability, re-
moved some progress bars on sections that are already
done

0.170 2022-01-11 Frans Schreuder Added Organisation and ManagementAndReliability
0.171 2022-01-11 Frans Schreuder Updated document history
0.172 2022-01-11 Frans Schreuder Fixed organisation layout
0.173 2022-01-12 Frans Schreuder Added section about Dynamic DMA channel selection in

CRToHost

Revision History vii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

0.174 2022-01-13 William Panduro
Vazquez

Update Firmware_Specs-metadata.tex

0.175 2022-01-13 Frans Schreuder Added description of Housekeeping and clock and reset
0.176 2022-01-14 Frans Schreuder Some corrections after Jos’ comments
0.177 2022-01-14 Frans Schreuder Added small versiond of the toplevel block diagram with

a highlight where it can be found
0.178 2022-01-14 Frans Schreuder Move figure to another tex file to fix the Wupper stan-

dalone document
0.179 2022-01-17 Frans Schreuder Added clocking scheme
0.180 2022-01-17 Frans Schreuder Merge branch ’master’ of ssh://gitlab.cern.ch:7999/atlas-

tdaq-felix/documents
0.181 2022-01-17 Frans Schreuder Removed draft, pushed version to 1.0
1.000 2022-01-18 Frans Schreuder Edited decoding figures to explain clock domains, added

TC Link and TX Phase alignment to Link Wrapper
1.001 2022-01-18 Frans Schreuder Updated LTI data formats from lti spec v1.1 (July 2021)
1.002 2022-01-18 Frans Schreuder Updated screenshot of the CI pipelines
1.003 2022-01-19 Frans Schreuder Removed "Instructions for this chapter" remarks
1.004 2022-01-20 Jose Guillermo

Panduro Vazquez
Suggested pre-review changes.

1.005 2022-01-21 Frans Schreuder Added requirement for 48-channel hardware option
(LTDB), removed empty section headers

1.006 2022-01-25 Nayib Boukadida Added Interlaken resource utilization
1.007 2022-03-25 Frans Schreuder Added TTC options 6 and 7 to document. Option 7 in-

cludes xoff, option 6 was already there.
1.008 2022-08-11 Elena Zhivun Fix the error in L0A command format
1.009 2022-09-28 Nayib Updated (missing) Interlaken documentation
1.010 2022-09-28 Nayib Small improvements in Interlaken documentation
1.011 2022-11-16 Frans Schreuder Added new firmware flavours 12, 13, 14
1.012 2022-11-16 Frans Schreuder Forgot to escape underscore
1.013 2023-01-24 Elena Zhivun Fix the error in the figure
1.014 2023-01-27 Frans Schreuder Added interrupt 4 as ToHost available for descriptor 4
1.015 2023-03-02 Frans Schreuder Added section about LTI encoder, and added LTI encoder

to the FULL mode (phase2) and Interlaken flavours
1.016 2023-03-29 Frans Schreuder Updated description of interrupt masking
1.017 2023-05-09 Frans Schreuder Added firmware flavour FULL-LTI (14) and renamed

FULL to FULL-GBT (1)
1.018 2023-05-10 Frans Schreuder Changed firmware flavour FULL-LTI to number 15, 14

was already taken by FELIG_PIXEL
1.019 2023-05-17 Frans Schreuder Removed FULL_LTI flavour from GlobalDescription
1.020 2023-06-08 Frans Schreuder Added description about Trickle descriptor in Wupper and

updated register map 5.0
1.021 2023-06-20 Frans Schreuder Added TTC option 8, HGTD FastCMD
1.022 2023-06-20 Frans Schreuder Removed Phase1 TTC options from legacy TTC Wrapper
1.023 2023-07-07 Nayib Updated info on the Interlaken Receiver
1.024 2023-07-07 Frans Schreuder Updated register map 5
1.025 2023-09-25 Frans Schreuder Updated the CRFromHost data format specification, as

described in FLX-2294
1.026 2023-10-16 Carlo Alberto Got-

tardo
Add .gitlab-ci.yml file

1.027 2023-10-16 Carlo Alberto Got-
tardo

Add regmap submodule, CI pulls last version

Revision History viii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

1.028 2023-10-16 Carlo Alberto Got-
tardo

use ralative path to regmap submodule

1.029 2023-10-16 Carlo Alberto Got-
tardo

Update .gitlab-ci.yml

1.030 2023-11-22 Frans Schreuder Clarified AXIs ID for lpGBT and pixel flavour in Appendix
B2

1.031 2024-03-19 Frans Schreuder FLX-2369: Added extra TTC option with LFSR bit
1.032 2024-05-27 Frans Schreuder Fixed some funny characters in the TTC emulator section
1.033 2024-05-27 Mark Donszel-

mann
Update .gitlab-ci.yml file

1.034 2024-05-27 Mark Donszel-
mann

Update .gitlab-ci.yml file

1.035 2024-06-10 Frans Schreuder Upded regmap to 5.1
1.036 2024-06-28 Jochem Leijen-

horst
Add gitignore

1.037 2024-06-28 Jochem Leijen-
horst

Add description of HIFIFO and describe chunk header
format

Revision History ix

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

TABLE OF CONTENTS

Revision History . iii

Table of Contents . x

1 Related Documents . 1

2 Global Description and Specification 2

2.1 Firmware Flavours . 2
2.1.1 E-Path IDs/ AXIs IDs . 3

2.2 Top level . 4
2.2.1 Transceiver and link wrapper . 5
2.2.2 Encoding . 5
2.2.3 Decoding . 6
2.2.4 AXIs MUX (ToHost Fanout Selector) 7
2.2.5 CRFromHost: CentralRouter in FromHost direction 7
2.2.6 CRToHost: CentralRouter in ToHost direction 7
2.2.7 ToHost Emulator . 7
2.2.8 Wupper . 8
2.2.9 Number instances per FPGA . 9

3 Busy Xon/Xoff specification 10

3.1 Overview . 10

3.2 Reference Note: K-Characters in 8B/10B encoded links 10

3.3 Flow control (XOFF/XON) for FULL mode links 11
3.3.1 Conditions leading to the assertion of flow control 11
3.3.2 Control and monitoring of XON and XOFF signal generation 11

3.3.2.1 Busy information in the datastream 13

3.4 Propagation and management of BUSY conditions in GBT and FULL
mode firmware . 13

3.4.1 Generation of BUSY at the request of a front-end data source 13
3.4.1.1 Inclusion of BUSY-ON/BUSY-OFF symbols in FULL mode packets 14

3.4.2 Generation of a BUSY condition on the basis of the state of the FELIX firmware 14
3.4.2.1 BUSY due to host memory saturation 14
3.4.2.2 BUSY PCIe FIFO saturation . 14

3.4.2.2.1 NSW MicroMegas . 15
3.4.2.2.2 NSW sTGC . 15

3.4.3 Control and monitoring of the generation of BUSY conditions and the BUSY signal . . . 17
3.4.3.1 FULL mode specific monitoring and control 17
3.4.3.2 GBT mode specific monitoring and control 17
3.4.3.3 Interrupt-based BUSY reporting 19
3.4.3.4 Virtual E-links for BUSY monitoring 19

3.4.3.4.1 FULL mode virtual E-link configuration 19
3.4.3.4.2 GBT mode virtual E-link configuration 20

Table of Contents x

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

3.5 Propagation and management of BUSY and flow control (XOFF) in FELIX
software . 20

3.5.1 GBT Mode . 20
3.5.2 FULL mode . 20
3.5.3 Software BUSY and XOFF Monitoring 20
3.5.4 Flow control from SW ROD to FELIX 21
3.5.5 BUSY handling and DCS . 21

4 External Interfaces (I/O) . 23

4.1 FrontEnd links . 23

4.2 PCIe . 23

4.3 TTC Interface . 24

4.4 BUSY . 24

4.5 100Gb/s Ethernet . 24

5 Target FPGA . 25

6 Power and Cooling . 27

7 Input/Output . 29

8 Detailed Functional Description and Specification 32

8.1 Introduction . 32

8.2 Compatibility . 32

8.3 Clocking scheme . 33

8.4 Decoding . 35
8.4.1 Introduction . 35
8.4.2 Interfaces . 35

8.4.2.1 Overview . 35
8.4.2.1.1 GBT mode, 8b10b, HDLC . 36
8.4.2.1.2 lpGBT mode, 8b10b . 38
8.4.2.1.3 lpGBT mode, Pixel . 38
8.4.2.2 Interface to CRToHost . 38
8.4.2.3 Interface to Link Wrapper . 39
8.4.2.4 Interface to Wupper . 39

8.4.3 Functional Description . 39
8.4.4 Configuration . 39
8.4.5 Status Indicators . 39
8.4.6 Latency . 40
8.4.7 Estimated Resource Usage . 40
8.4.8 Decoding Gearbox . 41

8.4.8.1 Introduction . 41
8.4.8.2 Interfaces . 41
8.4.8.2.1 Overview . 41
8.4.8.2.2 Interface to GBT or lpGBT wrapper 41
8.4.8.2.3 Interface to Decoders . 42
8.4.8.3 Functional Description . 42
8.4.8.4 Configuration . 42

Table of Contents xi

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.4.8.5 Status Indicators . 43
8.4.8.6 Latency . 43
8.4.8.7 Error Handling . 43
8.4.8.8 Estimated Resource Usage . 43

8.4.9 StripDecoder . 45
8.4.10 Endeavour Decoder . 46

8.4.10.1 Introduction . 46
8.4.10.2 Interfaces . 46
8.4.10.3 Functional Description . 47
8.4.10.4 Error handling . 47
8.4.10.5 Estimated Resource Usage . 47

8.4.11 Aurora 64b/66b Decoder for ITkPix . 48
8.4.12 RD53B Decoder . 51

8.4.12.1 Introduction . 51
8.4.12.2 Interfaces . 51
8.4.12.2.1 Overview . 51
8.4.12.2.2 Interface to the Aurora Decoder 51
8.4.12.2.3 Interface to the ToHost Central Router 52
8.4.12.3 Functional Description . 52
8.4.12.3.1 Input stage . 52
8.4.12.3.2 Stream decoder . 52
8.4.12.3.3 Output multiplexer . 52
8.4.12.4 Configuration . 52
8.4.12.5 Status Indicators . 53
8.4.12.6 Latency . 53
8.4.12.7 Estimated Resource Usage . 53

8.4.13 8b10b E-Link decoder . 56
8.4.13.1 Introduction . 56
8.4.13.2 Interfaces . 56
8.4.13.2.1 Interface to DecodingGearBox 56
8.4.13.2.2 Interface to ByteToAxiStream 56
8.4.13.3 Functional Description . 57
8.4.13.3.1 Alignment . 57
8.4.13.3.2 8b10b decoding . 57
8.4.13.3.3 Framing error detection . 57
8.4.13.3.4 E-link busy assertion . 57
8.4.13.3.5 Deframing . 57
8.4.13.4 Configuration . 58
8.4.13.5 Status Indicators . 58
8.4.13.6 Latency . 58
8.4.13.7 Error Handling . 58
8.4.13.8 Estimated Resource Usage . 58

8.4.14 HDLC E-Link decoder . 59
8.4.14.1 Introduction . 59
8.4.14.2 Interfaces . 59
8.4.14.2.1 Generics . 59
8.4.14.2.2 Elink interface . 59
8.4.14.2.3 Interface to ByteToAxiStream 60
8.4.14.3 Functional Description . 60
8.4.14.4 Configuration . 60
8.4.14.5 Status Indicators . 60
8.4.14.6 Latency . 60
8.4.14.7 Error Handling . 61
8.4.14.8 Estimated Resource Usage . 61

Table of Contents xii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.4.15 FULLModeDecoder . 62
8.4.15.1 Introduction . 62
8.4.15.2 Interfaces . 63
8.4.15.2.1 Interface from LinkWrapper . 63
8.4.15.2.2 Interface to CRToHost . 63
8.4.15.3 Functional Description . 63
8.4.15.3.1 Flow control . 64
8.4.15.3.2 CRC . 65
8.4.15.4 Configuration . 65
8.4.15.5 Status Indicators . 65
8.4.15.6 Error Handling . 65
8.4.15.7 Estimated Resource Usage . 66
8.4.15.8 User Example design . 66

8.4.16 Direct mode E-Link Decoder . 68
8.4.16.1 Introduction . 68

8.4.17 TTCToHost virtual E-Link . 69
8.4.17.1 Introduction . 69
8.4.17.2 Interfaces . 69
8.4.17.2.1 Generics . 69
8.4.17.2.2 Interface from TTC Wrapper . 69
8.4.17.2.3 clock, reset and enable . 70
8.4.17.2.4 Interface to Central Router ToHost 70
8.4.17.3 Functional Description . 70
8.4.17.4 Configuration . 70
8.4.17.5 Status Indicators . 70
8.4.17.6 Latency . 70
8.4.17.7 Error Handling . 70
8.4.17.8 Estimated Resource Usage . 70

8.4.18 BUSY virtual E-Link . 72
8.4.18.1 Introduction . 72
8.4.18.2 Interfaces . 72
8.4.18.2.1 Generics . 72
8.4.18.2.2 Interface from various BUSY sources 72
8.4.18.2.3 Timestamp inputs . 73
8.4.18.2.4 clock, reset and enable . 73
8.4.18.2.5 Interface to Central Router ToHost 73
8.4.18.3 Functional Description . 73
8.4.18.4 Configuration . 73
8.4.18.5 Status Indicators . 73
8.4.18.6 Latency . 73
8.4.18.7 Error Handling . 74
8.4.18.8 Estimated Resource Usage . 74

8.4.19 25 Gb/s Interlaken . 75
8.4.19.1 Interfaces . 75
8.4.19.1.1 User Interface . 75
8.4.19.1.2 Clock signals . 76
8.4.19.2 Functionality . 76
8.4.19.2.1 Burst frames . 76
8.4.19.2.2 Meta frames . 77
8.4.19.2.3 Encoder/Decoder . 78
8.4.19.2.4 (De)Scrambler . 78
8.4.19.3 Configuration . 79
8.4.19.4 Latency . 79
8.4.19.5 Status Indicators . 79
8.4.19.6 Error Handling . 80

Table of Contents xiii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.4.19.7 Estimated Resource Usage . 80

8.5 Encoding . 81
8.5.1 Introduction . 81
8.5.2 Interfaces . 81

8.5.2.1 Overview . 81
8.5.2.2 Interface from CRFromHost . 82
8.5.2.3 Interface to LinkWrapper . 82

8.5.3 Functional Description . 82
8.5.4 Configuration . 82
8.5.5 Status Indicators . 82
8.5.6 Encoding Gearbox . 83

8.5.6.1 Introduction . 83
8.5.6.2 Interfaces . 83
8.5.6.2.1 Overview . 83
8.5.6.2.2 Interface to GBT or lpGBT wrapper 83
8.5.6.2.3 Interface from Encoders . 84
8.5.6.3 Functional Description . 84
8.5.6.4 Configuration . 84
8.5.6.5 Status Indicators . 85
8.5.6.6 Latency . 85
8.5.6.7 Error Handling . 85
8.5.6.8 Estimated Resource Usage . 85

8.5.7 Endeavour Encoder . 86
8.5.7.1 Introduction . 86
8.5.7.2 Interfaces . 86
8.5.7.3 Functional Description . 87
8.5.7.4 Estimated Resource Usage . 87

8.5.8 ITkPix Encoder . 88
8.5.9 ITk Strips LCB Encoder . 90

8.5.9.1 Introduction . 90
8.5.9.2 Configuration storage submodule 93

8.5.9.2.1 Configuration command. 93
8.5.9.3 LCB frame generator submodule 93
8.5.9.4 Bypass frame aggregator submodule 93
8.5.9.5 Trickle configuration memory . 95
8.5.9.6 Command decoder . 95

8.5.9.6.1 No operation. 95
8.5.9.6.2 IDLE command. 96
8.5.9.6.3 L0A command. 96
8.5.9.6.4 Fast command. 96
8.5.9.6.5 Register commands. 96
8.5.9.6.6 Block commands. 96

8.5.9.7 LCB sequence encoder . 96
8.5.9.8 LCB frame FIFO . 98
8.5.9.9 Trickle trigger generator . 98
8.5.9.10 LCB scheduler . 98
8.5.9.11 Examples . 99
8.5.9.11.1 Sending basic LCB commands via LCB Command elink and Command Decoder

(ENCODING_ENABLE=1) . 99
8.5.9.11.2 Sending basic LCB commands via LCB Command elink and Bypass Frame Aggre-

gator (ENCODING_ENABLE=0) . 99
8.5.9.11.3 Writing trickle configuration . 99
8.5.9.11.4 Issuing software-generated trickle trigger 99

8.5.9.11.1 Single LCB elink. 99

Table of Contents xiv

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.5.9.11.2 Continuous trickle configuration. 100
8.5.9.11.3 All LCB elinks simultaneously. 100
8.5.9.11.4 All LCB elinks simultaneously with pre-buffering. 100
8.5.9.11.5 Trickle trigger during specified BC interval 100

8.5.9.12 Latency . 100
8.5.9.13 Estimated Resource Usage . 100

8.5.10 ITk Strips R3L1 Encoder . 101
8.5.10.1 Introduction . 101
8.5.10.2 Configuration storage submodule 103

8.5.10.2.1 Configuration command. 103
8.5.10.3 Frame synchronizer . 103
8.5.10.4 R3 and L1 Frame generators . 103
8.5.10.5 R3 and L1 Frame FIFOs . 103
8.5.10.6 Bypass frame aggregator . 104
8.5.10.7 R3L1 Scheduler . 104
8.5.10.8 Latency . 104
8.5.10.9 Estimated Resource Usage . 104

8.5.11 8b10b Encoder . 105
8.5.11.1 Introduction . 105
8.5.11.2 Interfaces . 105
8.5.11.2.1 Interface to AxiStreamToByte 105
8.5.11.2.2 Interface to EncodingGearBox 105
8.5.11.3 Functional Description . 106
8.5.11.3.1 Overview . 106
8.5.11.3.2 8b10b encoding . 106
8.5.11.4 Configuration . 106
8.5.11.5 Latency . 106
8.5.11.6 Error Handling . 106
8.5.11.7 Estimated Resource Usage . 106

8.5.12 HDLC Encoder . 107
8.5.12.1 Introduction . 107
8.5.12.2 Interfaces . 107
8.5.12.2.1 Generics . 107
8.5.12.2.2 Interface from AxiStreamToByte 107
8.5.12.2.3 Interface to GBT/lpGBT E-Link 107
8.5.12.3 Functional Description . 108
8.5.12.4 Configuration . 108
8.5.12.5 Status Indicators . 108
8.5.12.6 Latency . 108
8.5.12.7 Error Handling . 108
8.5.12.8 Estimated Resource Usage . 108

8.5.13 Direct mode E-Link Encoder . 109
8.5.13.1 Introduction . 109

8.5.14 TTC Encoder . 110
8.5.14.1 Introduction . 110
8.5.14.2 Interfaces . 110
8.5.14.3 Functional Description . 110
8.5.14.3.1 TTC Delay and Extended testpulse 110
8.5.14.3.2 TTC Options . 111
8.5.14.4 Configuration . 112
8.5.14.5 Status Indicators . 113
8.5.14.6 Latency . 113
8.5.14.7 Error Handling . 113

Table of Contents xv

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.6 LTI Encoder . 114

8.7 Link Wrapper . 115
8.7.1 Introduction . 115
8.7.2 Functional Description . 115

8.7.2.1 GBT mode wrapper . 115
8.7.2.2 lpGBT mode wrapper . 116
8.7.2.2.1 TC Link and TX Phase alignment 117
8.7.2.3 Full mode wrapper . 117
8.7.2.4 64b67b Link wrapper for 25G Interlaken 118

8.7.3 Configuration . 118
8.7.4 Status Indicators . 118
8.7.5 Latency . 119

8.8 GBT, lpGBT and AXI4 Stream Data Emulator 120
8.8.0.1 Introduction . 120
8.8.0.2 Interfaces . 120
8.8.0.3 Functional Description . 121
8.8.0.4 Configuration . 121
8.8.0.5 Estimated Resource Usage . 121

8.9 TTC Emulator . 123
8.9.1 Introduction . 123
8.9.2 Interfaces . 123
8.9.3 Functional Description . 123
8.9.4 Configuration . 124
8.9.5 Status Indicators . 124
8.9.6 Error Handling . 124
8.9.7 Estimated Resource Usage . 125

8.10 Legacy TTC decoder . 126

8.11 LTI/TTC Interface 128

8.12 CRToHost: ToHost or Upstream Central Router 130
8.12.1 Introduction . 130
8.12.2 Interfaces . 131

8.12.2.1 Overview . 131
8.12.2.2 Interface from decoding . 131
8.12.2.3 Interface to Wupper . 132

8.12.3 Functional Description . 132
8.12.3.1 CRToHostdm . 132
8.12.3.1.1 ToHostAxiStreamController . 133
8.12.3.1.2 Channel FIFO . 133
8.12.3.2 CRToHost PCIeManager . 135
8.12.3.2.1 PCIe DMA channel selection 135
8.12.3.3 CRToHost MUX . 136
8.12.3.4 CRResetManager . 136

8.12.4 Configuration . 136
8.12.5 Status Indicators . 136
8.12.6 Latency . 136
8.12.7 Error Handling . 137
8.12.8 Estimated Resource Usage . 137

Table of Contents xvi

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.13 CRFromHost: FromHost or Downstream Central Router 138
8.13.1 Introduction . 138
8.13.2 Interfaces . 138

8.13.2.1 Interface to Wupper . 138
8.13.2.2 Interface to the encoders . 139

8.13.3 Functional Description . 139
8.13.3.1 CRFromHost top-level . 139
8.13.3.2 CRFromHost data manager . 139
8.13.3.3 CRFromHost transfer manager . 140

8.13.4 Configuration . 140
8.13.4.1 Generics . 140
8.13.4.2 Run-time configuration . 140

8.13.5 Status Indicators . 140
8.13.6 Latency . 140
8.13.7 Estimated Resource Usage . 140

8.14 Wupper: PCIe DMA core and register map 141
8.14.1 Introduction . 141
8.14.2 Interfaces . 142

8.14.2.1 Generics . 142
8.14.2.2 fromHostFifo . 143
8.14.2.3 toHostFifo . 143
8.14.2.4 interrupt_call . 144
8.14.2.5 Clocks and Resets . 144
8.14.2.6 BUSY . 144
8.14.2.7 PCIe . 144
8.14.2.8 Register Map . 145

8.14.3 Functional Description . 145
8.14.4 DMA descriptors . 146
8.14.5 Endless DMA with a circular buffer and wrap around 147
8.14.6 Trickle descriptor . 150
8.14.7 Interrupt controller . 151
8.14.8 Xilinx PCIe EndPoint Core . 151

8.14.8.1 Xilinx AXI4-Stream interface . 152
8.14.8.2 Configuration of the core . 152

8.14.9 Status Indicators . 152
8.14.10 Latency . 152
8.14.11 Error Handling . 152
8.14.12 Estimated Resource Usage . 152
8.14.13 Simulation . 153

8.15 HouseKeeping . 154
8.15.1 Introduction . 154
8.15.2 Interfaces . 155
8.15.3 Functional Description . 155

8.15.3.1 I2C interface . 155
8.15.3.2 GenericConstantsToRegs . 155
8.15.3.3 xadc_drp . 156
8.15.3.4 dna . 156
8.15.3.5 flash_wrapper . 156
8.15.3.6 LMK03200_wrapper . 156
8.15.3.7 pex_init . 156
8.15.3.8 gc_multichannel_frequency_meter 156
8.15.3.9 Tachometer . 156

Table of Contents xvii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.16 Clock And Reset . 157
8.16.1 Introduction . 157
8.16.2 Interfaces . 157
8.16.3 Functional Description . 158

9 Testing, Validation and Commissioning 159

9.1 Simulation . 159
9.1.1 UVVM . 160

9.2 Gitlab CI . 160

9.3 Nightly firmware test on hardware 161

10 Firmware Management and Reliability Matters 162

10.1 Firmware Source Management and Release Plan 162
10.1.1 Version numbers and releases . 162
10.1.2 File name of a firmware build . 162

10.2 Consequences of Failures . 163

10.3 Reliability measures in the FELIX firmware 164
10.3.1 Redundant DMA channels and separation of DCS data 164
10.3.2 BUSY and XOFF mechanism . 164
10.3.3 (E-)Link realignment and truncation . 164

11 Organization of Firmware Development 165
11.0.1 Institutes contributing to FELIX firmware 166
11.0.2 Developers and their roles in the FELIX firmware 167

References . 171

Appendix A: Code Management A.1

Appendix B: Appendix . B.1

B.1 FELIX register map, version 5.1 B.2

B.2 Data Formats . B.40
B.2.1 CRToHost Block format . B.40
B.2.2 CRFromHost Data format . B.42
B.2.3 TTC ToHost Data format . B.43
B.2.4 BUSY ToHost Data format . B.44
B.2.5 Default emulator chunk payload . B.45

Appendix C: Terms, Definitions and Glossary C.1

C.1 Glossary . C.6

Table of Contents xviii

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

1
RELATED DOCUMENTS

The following documents are most relevant to the firmware to be described here:

• FELIX Phase-II Readout Requirements Document
https://edms.cern.ch/document/2166531/1

• FELIX Phase-II System Specification Document
https://edms.cern.ch/document/2218837/1

• FELIX Phase-II Software Specification Document
https://edms.cern.ch/document/2681892/1

Other useful links can be found below:

• FELIX User Manual
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/

• FELIX Developer Manual
https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/felix-developer-manual.html

• FLX-712 Hardware User manual
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf

• ATLAS FELIX website
https://atlas-project-felix.web.cern.ch

• General user documentation
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation.html

1. Related Documents Page 1 of 172

https://edms.cern.ch/document/2166531/1
https://edms.cern.ch/document/2218837/1
https://edms.cern.ch/document/2681892/1
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/felix-developer-manual.html
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/docs/BNL-711_V2P0_manual.pdf
https://atlas-project-felix.web.cern.ch
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/documentation.html

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

2
GLOBAL DESCRIPTION AND SPECIFICATION

While the FELIX firmware for ATLAS Phase-II upgrade will inherit most of the functionalities from the Phase-I
firmware, the architecture has undergone as significant re-design. The aim is to improve the generality of the
core of the firmware while making it more flexible for developer to incorporate different modules for specific
detectors.

This document details a preliminary design of the FELIX firmware for ATLAS Phase-II upgrade. It starts
from the top level firmware structure before going into details for each module. The interfaces between the
modules are specified.

2.1 FIRMWARE FLAVOURS

The FELIX Phase II firmware is kept as generic as possible. All the firmware flavours that fall within the
scope of this document - the officially supported flavours - are built from a single toplevel VHDL file called
felix_top.vhd. The firmware flavour is determined at build time by means of a generic: "FIRMWARE_MODE".
Based on this generic, the appropriate Link Wrapper will be instantiated, and a set of encoders and decoders
is selected.

Flavour Link Wrapper Decoders Encoders Remarks

0: GBT GBT 8b10b 8.4.13
HDLC 8.4.14
Direct 8.4.16
TTCToHost 8.4.17
BusyToHost 8.4.18

8b10b 8.5.11
HDLC 8.5.12
Direct 8.5.13
TTC 8.5.14

The GBT mode flavour is available in 8 and 24
channel versions, with a complete set of encoders /
decoders, and a so called SemiStatic configuration
where some decoders/encoders are left out. FELIX
aims to provide a 24 channel fully configurable
version for FLX712, it has been demonstrated to
work but with high resource count (78% LUTs)

1: FULL ToHost FULL,
FromHost GBT or
LTI

FULL 8.4.15
TTCToHost 8.4.17
BusyToHost 8.4.18

8b10b 8.5.11
HDLC 8.5.12
Direct 8.5.13
TTC 8.5.14
LTI-tx 8.6

The FULL mode flavour is available in 24 channels
for FLX712 and FLX128. The ToHost side/decoding
is using 9.6Gb/s 8b10b data without logical links.
FromHost/encoding is identical to GBT, with an option
to transmit a copy of the LTI-TTC link data at 9.6Gb
8b10b with additional fields for XOFF

2: LTDB GBT 8b10b 8.4.13
HDLC 8.4.14
Direct 8.4.16
TTCToHost 8.4.17
BusyToHost 8.4.18

8b10b 8.5.11
HDLC 8.5.12
Direct 8.5.13
TTC 8.5.14

LTDB mode is a 48 channel version of GBT mode,
but with reduced e-link configurability. This flavour
only includes the EC and IC e-links, as well as an
AUX e-link (Egroup 4, link 7) with HDLC/8b10b/Direct
configuration. Additionally TTC distribution is
available on all FromHost/ToFrontend e-links.

4: PIXEL lpGBT HDLC (EC/IC)
8.4.14
Aurora 8.4.11
TTCToHost 8.4.17
BusyToHost 8.4.18

RD53A/B 8.5.8
TTC 8.5.14
HDLC (IC/EC)
8.5.12

The Pixel flavour was designed to read out the ITk
Pixel detector over lpGBT with Aurora e-links. The
encoder uses a custom protocol for RD53 and
includes a trigger and command state machine.

2. Global Description and Specification Page 2 of 172

FELIX Phase-II firmware specifications: 2.1 Firmware Flavours June 28, 2024 - Version 1.037

5: STRIP lpGBT HDLC (IC) 8.4.14
Endeavour (EC)
8.4.10
8b10b 8.4.13, 8.4.9
TTCToHost 8.4.17
BusyToHost 8.4.18

HDLC (EC) 8.5.12
Endeavour (EC)
8.5.7
LCB 8.5.9
R3L1 8.5.10

The Strip flavour was designed to read out the ITk
Strip detector over lpGBT with 8b10b e-links. The
encoder uses a strip custom protocol with so called
trickle merge.

9: LPGBT lpGBT HDLC (EC/IC)
8.4.14
8b10b 8.4.13
Direct 8.4.16
TTCToHost 8.4.17
BusyToHost 8.4.18

8b10b 8.5.11
HDLC 8.5.12
Direct 8.5.13
TTC 8.5.14

The lpGBT Flavour is the lpGBT equivalent of the
GBT flavour. It involves 8b10b, HDLC and TTC
protocols and the aim is to have a fully configurable
24 channel build available. The LPGBT flavour will
include encoding and decoding schemes for the
HGTD

10: INTERLAKEN 64b67b ToHost Interlaken,
FromHost LTI
8.4.19

LTI-tx 8.6 The Interlaken Flavour has 24x 25.78125 Gb/s
Interlaken links in ToHost direction. Note that no
more than 12 links can be fully occupied as otherwise
the PCIe Gen4 bandwidth will be saturated. As
encoders, the Interlaken flavour implements the
TTC-LTI encoder, a copy of the received LTI frame
but with additional XOFF bits.

12: HGTD_LUMI lpGBT 6b8b

13: BCMPRIME lpGBT

14: FELIG-PIXEL lpGBT-FE

Table 2.1: Firmware Flavours and their configurations.

The following firmware flavours fall outside the scope of this document, and are documented elsewhere.

• 3: FEI4, For internal development only, not an official release.

• 6: FELIG, GBT Front End emulator [1].

• 7: FMEMU, FULL Mode Front End Emulator [2].

• 8: MROD, FELIX_MROD is a special flavour that was developed in case the legacy MRODs fail during
Run 3. [3]

• 11: FELIG LPGBT, [1] Front-End emulator for lpGBT 8b10b operation

• 14: FELIG Pixel, [1] Front-End emulator for lpGBT / ItkPix operation

2.1.1 E-PATH IDS/ AXIS IDS

At build time, the firmware flavour is defined, and depending on this flavour every physical link is equipped
with a number of logical links (E-Links). Every individual encoder or decoder is associated with an AXIs ID,
which is used to address the correct encoder / decoder. Addressing is done by means of the header in the
FromHost data format (see ??), and the block header in the ToHost data format (see B.3)

Flavour ToHost AXIs IDs FromHost AXIs IDs Remarks

0: GBT 0-39: 8b10b, HDLC, Direct
40: EC: 8b10b, HDLC, Direct
41: IC: HDLC

0-39: 8b10b, HDLC, Direct,
TTC
40: EC: 8b10b, HDLC, Direct
41: IC: HDLC

A semistatic configuration may have a subset
of this configuration

1: FULL 0: FULL 0-39: 8b10b, HDLC, Direct,
TTC
40: EC: 8b10b, HDLC, Direct
41: IC: HDLC
0: LTI-tx

2: LTDB 39: AUX: 8b10b, HDLC, Direct
40: EC: 8b10b, HDLC, Direct
41: IC: HDLC

0-38: TTC
39: AUX 8b10b, HDLC, Direct,
TTC
40: EC: 8b10b, HDLC, Direct
41: IC: HDLC

4: PIXEL 0,4,8,12,16,20,24: Aurora
28: EC: 8b10b, HDLC, Direct
29: IC: HDLC

0-15: RD53
16: EC: 8b10b, HDLC, Direct
17: IC: HDLC

1 E-Path per ToHost E-group, 3 AXIs IDs per
ToHost E-group are unused.

2. Global Description and Specification Page 3 of 172

FELIX Phase-II firmware specifications: 2.1 Firmware Flavours June 28, 2024 - Version 1.037

5: STRIP 0-27: 8b10b
28: EC: Endeavour
29: IC: HDLC

0,5,10,15: lcb config
1,6,11,16: lcb command
2,7,12,17: lcb trickle
3,8,13,18: r3l1 config
4,9,14,19: r3l1 command
20: EC Endeavour
21: IC HDLC

Strip FromHost AXIs IDs are not associated
with the E-Link number on the lpGBT frame,
but have a dedicated numbering scheme, see
also 8.5.9 and 8.5.10

9: LPGBT 0-27: 8b10b
28: EC: 8b10b, HDLC, Direct
29: IC: HDLC

0-15: 8b10b, HDLC, Direct,
TTC
16: EC: 8b10b, HDLC, Direct
17: IC: HDLC

10: INTERLAKEN 0: Interlaken 0: LTI-tx No logical links on top of Interlaken

Table 2.2: E-Link configurations and AXIs IDs for the Firmware Flavours.

Table 2.2 shows the available AXIs IDs which are mapped on the physical links. Every link and its asso-
ciated E-Links/AXIs IDs are replicated by the number of physical optical links in the build, so the encoder /
decoder is not only addressed by the AXIs ID, but also by the GBT ID, which is the number of the physical link
starting at 0 from every endpoint. For a typical 24 channel firmware flavour, every PCIe endpoint is associated
with 12 GBT IDs (0-11).

In ToHost direction, there is one extra GBT ID for the virtual E-links, associated with axis_aux, the auxiliary
AXI Streams. These streams contain the TTCToHost and BUSYToHost virtual E-links.

• TTCToHost: GBT ID: GBT_NUM (12), AXIs ID: 0

• BUSYToHost: GBT ID: GBT_NUM (12), AXIs ID: 1

2.2 TOP LEVEL

The design strategy is to keep the top level architecture as general as possible. At all time, the dependencies
among the module should be kept as minimal as possible to maintain the amount of change at a minimum
when a small change is needed in a feature. Modules with similar functionality shall be grouped together to
encourage code reuse.

2. Global Description and Specification Page 4 of 172

FELIX Phase-II firmware specifications: 2.2 Top level June 28, 2024 - Version 1.037

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 2.1: The FELIX firmware top level block diagram using PCIe Gen4. On Gen5 capable hardware, the
diagram will have 4 endpoints, each with a PCIe Gen5x4 link.

2.2.1 TRANSCEIVER AND LINK WRAPPER

• Interfaces to electrical to optical and optical to electrical transceivers

• TX: GBT or lpGBT scrambling: input GBT or lpGBT E-Link frames @ BC frequency, 25Gb/s links (Aurora
or Interlaken), 10Gb/s links

• RX

– For GBT or lpGBT descrambling, FEC handling, output GBT or lpGBT E-Link frames @ BC fre-
quency to E-link Decoder

– For FULL mode output of 8B/10B decoded data stream, with a CharisK indicator. The FULL mode
Decoder block will further decode this data stream into 32b AXI stream.

– for 25.78125 Gb/s Interlaken links 64b67b frames will be delivered to the Encoding / Decoding
blocks.

A more detailed description of the Transceiver and Link wrapper is given in 8.7

2.2.2 ENCODING

• Inputs: Encoding connects to CRFromHost by means of a 2D array of 8-bit AXI4-Stream, the size of
this array is the number of optical links by the number of logical links (E-Links) on top of every optical
link. Data for the 25G Interlaken links will be delivered on a 64-bit AXI4-Stream.

2. Global Description and Specification Page 5 of 172

FELIX Phase-II firmware specifications: 2.2 Top level June 28, 2024 - Version 1.037

• Outputs: GBT or lpGBT E-link frames @ BC frequency, TTC virtual E-link, 64b67b encoded data for 25G
Interlaken links. Depending on the firmware flavour (See section 2.1) a set of the following encoders
may be included in some or all E-links:

– HDLC coding for IC E-link and configurable per E-link for other E-Links

– Endeavour for the EC e-link of the strip flavour

– 8B/10B coding for XON-XOFF messages configurable per E-link

– 6B/8B coding of merged FromHost data and TTC signals (accepts, resets) for strips configurable
per E-link

– Pixel custom coding of merged FromHost data and of TTC signals (accepts, resets) configurable
per E-link

– TTC signals @ BC frequency configurable per E-link

– Interlaken for 25.78125 Gb/s links

• Broadcast Memory

– In combination with the TTC emulators, generates a fixed pattern and send them to front ends
chips at a programmable frequency in order to act as trigger loops.

– Broadcast memory will be used in combination with trickle merge

A more detailed description of the Encoding block is given in 8.5

2.2.3 DECODING

• Inputs:

– GBT frames, using E-Links. These E-links can carry multiple protocols such as 8b/10b, HDLC or
direct (no encoding) mode.

– lpGBT frames, using E-Links. These E-Links can carry multiple protocols such as 8b/10b, direct
(no encoding), Aurora streams or Endeavour.

– FULL mode. Links are 8b/10b encoded at 9.6Gb/s and chunks are delimited with special K-
characters defined in 8.4.15

– 25Gb/s links Interlaken links, the raw (scrambled) 67b data is decoded in a submodule of the
decoding block. 8.4.19

GBT or lpGBT E-Link frames @ BC frequency or 8B/10B or Aurora streams via E-links @ rate syn-
chronous with BC frequency

• Outputs: data fragments, to be forwarded via the ToHost Multplexer to the ToHost Router with associated
flags signaling start and end of fragments and error conditions, and an output or outputs for BUSY-ON
and BUSY-OFF. The data fragments are also called Chunks, these chunks consist of any number of
bytes and will later be packed in blocks by the ToHost Central Router (CRToHost) 8.12. The output
format of the Decoding block, and all it’s internal components is a 2D array of AXI-Stream 32b, the size
of the AXI-Stream 32b array is the number of optical links by the number of logical links (E-Links) on top
of the optical link. Data from 25G Interlaken links will be carried by 64-bit AXI4-Streams.

• Every E-link on a GBT or lpGBT is encoded depending on the specification of the subdetector / frontend.
A firmware flavour (See section 2.1) may have a subset of on or more of the following options to decode
the E-links:

– 8B/10B decoding for E-links transferring 8B/10B coded data. Strip data streams contain event and
register data, splitting in software in the host PC. Extraction of BUSY-ON and BUSY-OFF control
symbols and forwarding to the Busy output of this block is done by the 8b10b decoder as well.

– HDLC decoding of the IC E-link data and configurable for other E-links

2. Global Description and Specification Page 6 of 172

FELIX Phase-II firmware specifications: 2.2 Top level June 28, 2024 - Version 1.037

– Aurora decoding, single data stream via either 1, 2 or 4 lanes (1 lane per E-link), this single data
stream needs to be reconstructed, in the case of 4 lanes two lanes may be associated with two
E-links from another physical link than the two other lanes, mapping of lanes on E-links need to be
configurable. Register data and event data in same data stream. See also 8.4.11.

– Endevour decoding is included for the EC E-Link of the strips flavour.

– FULL Mode: 9.6Gb/s 8b10b encoded links can be decoded. FULL mode does not include E-Links
but the encoding happens directly on top of the physical link.

– Interlaken: The 25G Interlaken decoder will be included as a submodule of the decoding block.

A more detailed description of the Decoding block is given in 8.4

2.2.4 AXIS MUX (TOHOST FANOUT SELECTOR)
• Forwards data with associated flags signalling start and end of fragments and of error conditions, either

from E-Link Decoder, for FULL mode from Link Wrapper RX or from ToHost Emulator to ToHost Router

• Control with configuration register

2.2.5 CRFROMHOST: CENTRALROUTER IN FROMHOST DIRECTION

• Inputs and buffers data packets that contain information on E-link and packet length in data streams
from FromHost FIFOs. Packets are buffered, complete packets are output to FromHost Multiplexer

2.2.6 CRTOHOST: CENTRALROUTER IN TOHOST DIRECTION

• Inputs fragments with associated flags signalling start and end and error conditions

• Inputs fragments from virtual TTC E-Link and from virtual E-Link for BUSY XON/XOFF monitoring (if
implemented)

• Forms blocks with headers and filled with chunks or subchunks with appropriate trailers on the basis of
the data and the flags received

• Outputs blocks to the FIFO of the ToHost FIFOs with which the block is associated.

• The number of output FIFOs is determined by the number of parallel ToHost DMA paths supported by
Wupper (see 8.14).

2.2.7 TOHOST EMULATOR

• Forward either event data, DCS or R3 data to ToHost Switch

• For each E-link there is a separate data stream

• Event data have an embedded L1ID, which is incremented for each fragment

• Event data can be generated on the basis of L0 or of L1 accepts, as received via TTC P2P, or as
generated by the TTC emulator

• Random fragment sizes on the basis of arbitrary probability distribution.

• R3 Data can be generated on the basis of L0 accepts as received via TTC P2P, or as generated by the
TTC emulator

2. Global Description and Specification Page 7 of 172

FELIX Phase-II firmware specifications: 2.2 Top level June 28, 2024 - Version 1.037

2.2.8 WUPPER

• FromHost FIFOs

– One FIFO in FromHost direction

• ToHost FIFOs

– One FIFO per ToHost DMA channel

– Generates Busy if FIFO(s) becomes too FULL

– Generates Busy if server PC memory becomes too FULL

• Register map

– All registers with updates synchronised with BC clock

– Can generate Busy under software control

– Can generate XON or XOFF for individual links under software control

• Wupper Core

– DMA engine

– PCIe interfacing

– Interrupt generation and control

– Register map I/O

– Generates Busy if output circular buffer(s) in host memory are too full

Control and Monitoring

• Dead Time Monitoring

– Input of all Busy signals

– Input of all Xon/XOFF statuses

– Status available in registers

– Output of Busy to Busy Output, configurable which Busy inputs contribute

– Optional virtual E-link output of time stamped messages indicating Busy-On, Busy-Off, XON or
XOFF and the E-link or link associated with the condition if relevant

• Monitoring

– Temperatures

– Fan Speed

– Optical input levels

– Voltages

– ...

• Housekeeping: i2c control

• Clock Manager

– Receives clock synchronous with BC frequency from TTC or TTC-P2P, if present, and jitter clean-
ing of this clock

– Can also generate clock without presence of TTC or TTC-P2P

TTC / Busy out

• TTC P2P Input

2. Global Description and Specification Page 8 of 172

FELIX Phase-II firmware specifications: 2.2 Top level June 28, 2024 - Version 1.037

– Input of TTC data patterns from the original TTC system or TTC P2P.

– Output to E-Link Encoder and ToHost Emulator via TTC Multiplexer

• TTC / TTC P2P Emulator

– Generation of TTC data patterns and trigger tags as received either from the original TTC system
or via PON

– Output to E-Link Encoder and ToHost Emulator via TTC Multiplexer

• Busy output: receives Busy signal from Dead Time Moritoring and outputs this via LEMO output or via
PON

2.2.9 NUMBER INSTANCES PER FPGA
• TTC / Busy out: 1

• Control and Monitoring: 1

• Link Protocol Wrapper: 1

• CRToHost: 1 per Wupper

• CRFromHost: 1 per Wupper

• Encoding: 1 per Wupper

• Decoding: 1 per Wupper

• Wupper: typically 2, each servicing an 8 lane PCIe Gen4 interface or, for PCIe Gen5, 4, each servicing
a 4 lane PCIe interface

2. Global Description and Specification Page 9 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

3
BUSY XON/XOFF SPECIFICATION

3.1 OVERVIEW

This chapter contains a functional specification for the FELIX firmware and software with respect to BUSY
propagation and flow control. The majority of the section will deal with the firmware implementation, with the
final section detailing the proposed integration with FELIX software and connected clients.

In the context of this document, flow control specifically refers to XON and XOFF1 signals used to throttle
the transmission of data from the front-end to FELIX to prevent buffer overflow.

The BUSY signal, which is either asserted by FELIX over its output LEMO connector in case of the legacy
(phase 1) TTC system or through a bit in the TTC/LTI interface, see Fig. 8.68, will be asserted if at least one
"BUSY condition" (i.e. a firmware condition that should give rise to assertion of the BUSY signal) has been
raised. The signal will be de-asserted once there is no BUSY condition satisfied. Possible sources of BUSY
include BUSY-ON or BUSY-OFF commands received from front-ends via input links and the internal state of
the firmware and software. BUSY assertion expresses an emergency situation with impending buffer overflow,
resulting in all ATLAS data taking being paused, and is not intended (and should not be used) for normal flow
control.

The implementation of BUSY handling is required in GBT, FULL, lpGBT, Interlaken, PIXEL and STRIP
mode firmware, while XON/XOFF is only required for FULL mode and Interlaken firmware. This is because
(lp)GBT front-ends are not expected to have sufficient buffering capacity to be able to implement any mean-
ingful flow control. For FULL mode firmware it is expected that the BUSY conditions based on the state of the
firmware will not be active in normal use, with XOFF the preferred method of stopping dataflow. However, the
mechanism will still be implemented and retained as an option.

Note: most descriptions in this chapter assume a FLX712 board (i.e. with two Wupper cores and asso-
ciated link counts). However, the overall implementation is unchanged for the FLX709, FLX128 or FLX181.
The main differences are the single Wupper core and reduced link count. The FLX181 and FLX128 boards
do not have a LEMO output for BUSY propagation, but it will be assumed that the LTI/TTC interface will be
used instead.

3.2 REFERENCE NOTE: K-CHARACTERS IN 8B/10B ENCODED

LINKS

The the 8B/10B encoding standard implemented by FELIX provides a reference for control symbols to be
exchanged with front-end systems. These symbols, implemented as K-characters, are used to indicate: the

1XOFF: “transmission off”: stop sending data, XON: “transmission on”: resume sending data

3. Busy Xon/Xoff specification Page 10 of 172

FELIX Phase-II firmware specifications: 3.2 Reference Note: K-Characters in 8B/10B encoded linksJune 28, 2024 - Version 1.037

start of a data packet (SOP); the end of a data packet (EOP); a request from the front-end to assert the BUSY
signal (BUSY-ON); and removal of the BUSY condition caused by a previous BUSY-ON request (BUSY-OFF)2.
Table 8.13 lists the K-characters associated with these control symbols3.

Table 3.1: K-characters used for 8B/10B coded links. BUSY-ON/OFF arrive from the front-end in both FULL
mode and GBT mode cases..

K-character 8-bit value Use

K28.1 0x3c Start-of-Packet (SOP)
K28.6 0xdc End-of-Packet (EOP)
K28.5 0xbc idle
K28.2 0x5c BUSY-ON (from front-end), XOFF (to front-end for FULL mode)
K28.3 0x7c BUSY-OFF (from front-end), XON (to front-end for FULL mode)

3.3 FLOW CONTROL (XOFF/XON) FOR FULL MODE LINKS

FULL mode links (from front-end) operate at 9.6 Gb/s, with 8B/10B coded data. Flow control is implemented
via dedicated GBT links from FELIX to the front-end, using the XOFF/XON K-characters specified in Table 3.1
as control symbols. The FULL mode firmware supports up to 24 FULL mode input links from front-end and,
per set of 12 links, at least one GBT output link towards the front-end. The GBT link is clocked with the
clock derived from the LHC bunch crossing clock and supplies this clock to the front-end. It also transfers
bit patterns associated with TTC information, such as L1A, BCR, ECR (typically via an 8-bit E-link, with fixed
latency).

The GBT links will be used to transfer XON and XOFF signals to the front-ends by means of 24 2-bit
E-links4, i.e. one per incoming FULL mode link from the front-end. The same K-characters are used as
XOFF/XON control symbols as for the BUSY-ON and BUSY-OFF requests sent from the front-end to FELIX,
as indicated in Table 8.13. The proposed connectivity schema for the links described above is presented in
Figure 3.1.

3.3.1 CONDITIONS LEADING TO THE ASSERTION OF FLOW CONTROL

The data arriving on each FULL mode link flow into a 16 kB deep FIFO. Each FIFO has configurable high
and low level watermarks. If the FIFO contains more data than indicated by the high watermark, FELIX will
exert backpressure by forwarding an XOFF control symbol toward the front-end via an E-link in a GBT link
associated with the FIFO. An XON control symbol will be sent via the same E-link once the amount of data has
decreased below that indicated by the low watermark. The different high and low watermarks will introduce a
form of hysteresis, meaning that there is minimal risk of oscillation of XON/XOFF signals.

3.3.2 CONTROL AND MONITORING OF XON AND XOFF SIGNAL GENERA-
TION

As explained in the previous section, the generation of XON and XOFF signals in FULL mode is controlled
by the high and low watermarks of the 16 kByte FIFOs at the input of each FULL mode link. The values
of these watermarks should be configurable for each input FIFO, with a resolution of 1 kByte. Therefore, for
each Wupper engine the registers need to contain 12x4-bit fields to set the low watermark values and 12x4-bit
fields to set the high watermarks. The fill status of these FIFOs will be monitored via a pair of 12 bit fields,

2SOB, "Start-Of-BUSY" and EOB, "End-Of-BUSY" have been, but should no longer be, used as alternatives for BUSY-ON and BUSY-
OFF.

3The SOP K-character is the comma character defined for the serializer core that forces 32-bit alignment.
4All E-links not used for forwarding TTC bit patterns can be used to send messages to the front-end, with the restriction that E-links

used for XON-XOFF signalling need to use 8B/10B coding (i.e. use of HDLC or Direct mode is not possible).

3. Busy Xon/Xoff specification Page 11 of 172

FELIX Phase-II firmware specifications: 3.3 Flow control (XOFF/XON) for FULL mode links June 28, 2024 - Version 1.037

BUSY

16	kB	FIFOs

TTC

GBT	link

16	kB FIFOs

XON/XOFF

TTC	/
FromHost

Wupper	0

Wupper	1

0

2

1

3

4

0

2

1

3

4

XON/XOFF

GBT	link

TTC	/
FromHost

miniPOD

miniPOD

FULL	mode	links

GBT
banks2	x	12	links	or	1	x	24	links

Optional

TTC BUSY

SLRx

SLRy

0
1
2
3
4
5
6
7
8
9
10
11

One		row	
in	MTP	
connector

One		row	
in	MTP	
connector

12
13
14
15
16
17
18
19
20
21
22
23

0
|
5
6
|
11
12
|
17
18
|
23

12
|
17
18
|
23	
0
|
5
6
|
11

0
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23

FULL	mode	links

Figure 3.1: Connections of 24 FULL mode links from the front-end and E-link assignment for GBT links to
the front-end, using two fibre assemblies that each connect one row in a MTP48 feedthrough to a single
miniPOD. The upper GBT link can be used for XON-XOFF signalling for all 24 links. With the optional E-links
implemented the lower GBT link can also be used for this purpose, but with the E-link assignment adapted to
use the lower set of links. It is also possible to use the two GBT links in conjunction with two independent sets
of 12 FULL mode links. The E-links specified are 80Mb/s (2-bit) wide. The numbers in the rectangular blocks
are GBT bank numbers..

3. Busy Xon/Xoff specification Page 12 of 172

FELIX Phase-II firmware specifications: 3.3 Flow control (XOFF/XON) for FULL mode links June 28, 2024 - Version 1.037

indicating whether the fill level is above the high or low watermarks. The register bit values will latch when
above the high watermark, and remain until reset by writing to the register.

To facilitate testing of XOFF and XON handling by front-ends, XOFF and XON generation under software
control should be possible by means of setting bits in bit fields available for this purpose. Two sets of 12-bit
fields are needed for this purpose per Wupper engine. In order to test the ability to generate XOFF and XON
on the basis of the amount of data in the input FIFOs it should be possible to halt and restart the Wupper
engine under software control. This is possible if tests use "single-shot" DMA transfers. An overview of all bit
fields needed in the configuration registers for one Wupper engine is presented in Table 3.2.

Table 3.2: Bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX card) for
control and monitoring of the generation of XON and XOFF signals..

Type of contents Number of bits Type of access

Low watermark 12 x 4 bits Write / Read
High watermark 12 x 4 bits Write / Read
Filling level higher than low / high watermark 2 x 12 bits Read
High watermark has been crossed upward (latched) 12 bits Read / Write (for reset)
Generation of XOFF/XON 12 bits Write only
XOFF Enable 12 bits Write / Read

3.3.2.1 BUSY INFORMATION IN THE DATASTREAM

The busy state of the front end is included in the data stream towards the FELIX host. If the front end has
sent start of busy (SOB), the firmware will indicate this by adding an out of band trailer (0xE05C) after every
regular trailer. In the 32 bit trailer format, the out of band trailer has been replaced with a ’B’ or Busy bitfield in
the trailer.

In the felixcore application this character can be interpreted and translated into a virtual elink that can be
subscribed to.

3.4 PROPAGATION AND MANAGEMENT OF BUSY CONDITIONS

IN GBT AND FULL MODE FIRMWARE

FELIX may assert BUSY due either to a request from the front-end (BUSY-ON) or due to FELIX buffers/FIFOs
filling up, meaning dataflow cannot continue. In this section both paths will be specified for both GBT and
FULL mode.

3.4.1 GENERATION OF BUSY AT THE REQUEST OF A FRONT-END DATA

SOURCE

The receipt of a BUSY-ON control symbol via a FULL mode link or GBT mode E-link will cause a BUSY
condition. Once the BUSY condition for a link has been raised the first BUSY-OFF control symbol received
will remove it. Front-end systems should implement protection such that there is a minimum 6 clock cycles (at
240 MHz) between transitions in state, corresponding to 1 bunch crossing.

If at least one BUSY condition exists the BUSY signal will be asserted by FELIX through its LEMO connec-
tor on the FLX712 card 5 or signalled via the LTI/TTC interface. Once all BUSY conditions have been removed
the BUSY signal will be de-asserted. In Table 3.3 the bit fields in the configuration registers associated with
BUSY generation are listed. The fields are included in the configuration register specification for software
control and monitoring of BUSY conditions in Section 3.4.3 (FULL mode) and Section 3.4.3.2 (GBT mode).

5The BUSY output is an open collector output, it is pulled to ground upon assertion.

3. Busy Xon/Xoff specification Page 13 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

Table 3.3: Bit fields in the configuration registers for control of assertion and de-assertion of the BUSY signal..

Type of contents Number of bits Type of access

Generate BUSY condition 1 bit Write / Read
BUSY condition asserted (each bit is associated with an E-link) 24 x 57 bits Read
Reset BUSY conditions 1 bit Write

3.4.1.1 INCLUSION OF BUSY-ON/BUSY-OFF SYMBOLS IN FULL MODE PACKETS

A potentially useful feature for extra robustness is that BUSY-ON and BUSY-OFF control symbols can be
sent by FULL mode front-ends to FELIX at any time, and can therefore also be inserted into data packets
themselves. This can be exploited in the FULL mode case as each data packet includes in the trailer a BUSY-
ON or a BUSY-OFF control symbol, which should reflect whether a BUSY condition request is active. This
control symbol can then be handled by the firmware like normal BUSY-ON or a BUSY-OFF control symbols,
meaning that the loss of a single BUSY-ON or BUSY-OFF control symbol can be tolerated. Note, the control
symbols are stripped out by the firmware and won’t be visible to external clients. A similar mechanism has
not been implemented in the GBT case, as it was understood it could not be supported by front-ends.

3.4.2 GENERATION OF A BUSY CONDITION ON THE BASIS OF THE STATE

OF THE FELIX FIRMWARE

The transfer of data from FELIX hardware to the host server is routed through a PCIe FIFO. This is emptied
continuously via DMA into a circular buffer in host memory as long as there is space for transfers to be
enacted. Generation of a BUSY condition from this chain is possible in two locations: the amount of host
memory remaining (indicated by the value of the circular buffer’s read/write pointers); and the fill state of the
PCIe FIFO itself. For GBT mode this is considered a required feature, but for FULL mode it is expected that
the XOFF mechanism will avoid the need to assert BUSY from this source. That said, the BUSY chain will
still be implemented in FULL mode and it will be retained as an configurable option.

3.4.2.1 BUSY DUE TO HOST MEMORY SATURATION

As mentioned above, the amount of free memory in the host is defined by the values of the read and write
pointers. If difference between these two values becomes smaller than a configurable high watermark FELIX
will assert BUSY. Given the amount of available memory in modern server PC’s this value can be configured
generously, with up to 1 GB of space potentially able to be left spare. This will be tuned to allow enough
run-off space for any data arriving after BUSY assertion to be safely transferred to the host without overruns.
Once the difference in pointers grows to such that occupancy is below the low watermark, BUSY will be de-
asserted. The different high and low watermarks will introduce a form of hysteresis, meaning that there is
minimal risk of oscillation of BUSY assertion/de-assertion.

3.4.2.2 BUSY PCIE FIFO SATURATION

The 128 kB PCIe FIFO is large enough to handle temporary PCIe transfer stalls, but will nevertheless fill up if
its input bandwidth is saturated long enough when a temporary stall occurs. It is therefore safest to implement
a configurable low and high watermark for the FIFO, where upward crossings of the high watermark cause
a BUSY condition. After the assertion of the BUSY the data flow into the FPGA should halt fast enough to
prevent FIFO overflow. Once again, the different high and low watermarks will introduce a form of hysteresis,
meaning that there is minimal risk of oscillation of BUSY assertion/de-assertion.

For the GBT mode case, given no XOFF is possible, the generation of BUSY must be finely tuned to avoid
FIFO overruns. Such a study has yet to be completed for each use case, but we present some indicative
scenarios below. In all cases, downward crossing of the low watermark will cause removal of the BUSY
condition.

3. Busy Xon/Xoff specification Page 14 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

FULL
mode

1000	MB/s	in
7680	MB/s	out

16	kB

7680	MB/s	in
8000	MB/s	out

Average:	
6000	MB/s	out	

128	kB

1000	MB/s	in
7680	MB/s	out

16	kB

6x
or
12	x

1	kByte	in	
per	1.024	µs

1	kByte	out
per		0.13	µs

FIFOs PCIe	FIFO

≤	960	MB/s decoding,	insertion	of	
block	headers	and	chunk	

trailers

≤	960	MB/s decoding,	insertion	of	
block	headers	and	chunk	

trailers

Round-Robin
readout	of	FIFOs
of	1	kByte	blocks
Max.	cycle	length:
6	links:	0.8	µs
12	links:	1.6	µs

Max.	
12	*	960	=	
11620	MB/s
or	6	*	960	=
5760	MB/s

Figure 3.2: Bandwidths of internal data paths for FULL mode firmware..

In the FULL mode case it should not be necessary to rely on BUSY as it is expected that XOFF should
result in a fast halt of the data flow (e.g. if there is still 4 kByte buffer space in a 16 kB FIFO and the data
arrives at 960 MB/s, the data flow should stop within about 4 µs). Figure 3.2 presents an overview of the data
paths and associated bandwidths for one Wupper engine in this case.

3.4.2.2.1 NSW MICROMEGAS

For the case of NSW MicroMegas detectors, the input bandwidth of the PCIe FIFO at maximum is one third of
the available bandwidth (see Figure 3.3 for an overview). After a temporary PCIe transfer stall the FIFO should
therefore be emptied considerably faster than it fills. Furthermore, the NSW Readout Controllers (ROCs) have
8 kB output buffers, in which data associated with L1As is stored. Should FELIX assert BUSY due to PCIe
FIFO saturation these buffers can be holding at most 64 kByte of extra data to transfer to FELIX if full. The
E-path FIFOs and the width-matching FIFOs are emptied fast in comparison with the the transfer of incoming
data, so at best there is only 32 kByte of storage available. Therefore, generation of a BUSY condition on the
basis of the filling of the PCIe FIFO may in principle cause data loss, although this is unlikely in view of the
low predicted E-link utilisation (< 30%).

Given the potential amount of data to be stored it is not possible to simply set the high watermark of the
PCIe FIFO low enough to accommodate the extra data. One mitigation option which could be considered
would be to enlarge the width-matching FIFOs to 64 kByte. Thus far it has been concluded that this is un-
necessary if a BUSY condition generation based on the host memory saturation is implemented as specified
above.

3.4.2.2.2 NSW STGC
For the NSW sTGC detectors the problem of insufficient buffer space in the FELIX firmware if the ROC output
buffers are full and a BUSY is generated also may occur. In this case it would be possible to configure the high
watermark of the PCIe FIFO to generate BUSY early enough to leave sufficient space in the FIFO to safely
store all of the data from the ROCs. An overview of the data paths in this case can be seen in Figure 3.4.

3. Busy Xon/Xoff specification Page 15 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

32	MB/s	in

32	MB/s	in

32	MB/s	in

32	MB/s	in

32	MB/s	in

32	MB/s	in

8	MB/s	in

8	MB/s	in

480	MB/s	in
7680	MB/s	out

16	kB

SCA:	9	x
10	MB/s

7680	MB/s	in
8000	MB/s	out

Average:	
6000	MB/s	out

128	kB

480	MB/s	in
7680	MB/s	out

16	kB

Event	data:	≤	224	MB/s
(after	8b/10b	decoding)

2	kByte

1	kByte	in:	≥	32	or	128	µs

Width-matching	FIFOsE-path	FIFOs

max.	256	µs

ROC	output	FIFOs
8	kByte

max.	256	µs

max.	512	µs

max.	512	µs

max.	512	µs

max.	512	µs

max.	1024	µs

max.	1024	µs

Times	needed
for	emptying

full	output	FIFO
No	effect	of	BUSY
(no	L1	accepts)

PCIe	FIFO

GBT
mode
MM

Round-Robin	readout	of	
FIFOs	of	1	kByte	blocks,	
max.	cycle	length:	17	µs	
(1	kByte	per	2.13	µs)

Round-Robin	readout	
of	FIFOs	of	1	kByte	
blocks,	max.	cycle	
length:	1.6	µs											
(1	kByte	per	0.13	µs)

12	x

Max.	
12	*	224	=	
2688	MB/s

Figure 3.3: Bandwidths of internal data paths for GBT mode firmware configured for NSW MicroMegas
detectors..

32	MB/s	in

32	MB/s	in

32	MB/s	in

480	MB/s	in
7680	MB/s	out

16	kB

SCA:	3	x
10	MB/s

7680	MB/s	in
8000	MB/s	out

Average:	
6000	MB/s	out

128	kB

480	MB/s	in
7680	MB/s	out

16	kB

Event	data:	≤	96	MB/s
(after	8b/10b	decoding)

2	kByte

1	kByte	in:	≥	32	µs

Width-matching	FIFOsE-path	FIFOs

max.	256	µs

ROC	output	FIFOs
8	kByte

max.	512	µs

max.	1024 µs

Times	needed
for	emptying

full	output	FIFO
No	effect	of	BUSY
(no	L1	accepts)

PCIe	FIFO

GBT
mode
sTGC

Round-Robin	
readout	of	FIFOs	of	
1	kByte	blocks,	max.	
cycle	length:	6.4	µs	
(1	kByte	per	2.13	µs)

Round-Robin	
readout	of	FIFOs	of	1	
kByte	blocks,	max.	
cycle	length:	1.6	µs	
(1	kByte	per	0.13	µs)

12	x

Max.	
12	*	96	=	
1152	MB/s

Figure 3.4: Bandwidths of internal data paths for GBT mode firmware configured for NSW sTGC detectors..

3. Busy Xon/Xoff specification Page 16 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

3.4.3 CONTROL AND MONITORING OF THE GENERATION OF BUSY CON-
DITIONS AND THE BUSY SIGNAL

As has been discussed, FELIX supports multiple sources of BUSY condition assertion. These sources are
the same in both the FULL and GBT mode cases. In the following section common control and monitoring
aspects will be discussed, followed by dedicated discussion of specific differences for each mode.

Alongside BUSY-ON requests received from front-end sources via the input links, there are two additional
internal sources of BUSY per Wupper engine: upward crossing of the high watermark of the PCIe FIFO;
and saturation of the cyclic buffer in the main memory of the host PC, as indicated by the difference between
the read and write pointers. The two Wupper-based BUSY sources need additional configuration functionality.
The low watermark and the high watermark of the PCIe FIFO will be configurable in steps of 1 kB, and similarly
a low watermark as well as a high watermark for the amount of free buffer memory will be configurable (in
steps of 1 MB up to a maximum of 4 GB). A bit in the configuration registers will indicate whether a BUSY
condition is associated with one of the two Wupper-based sources. The different BUSY conditions will also
be resettable, which per Wupper engine means 1 bit per condition is needed.

It should be possible to assert or de-assert BUSY by writing to a dedicated bit in the configuration registers.
In principle only one bit is needed, but for symmetry reasons there will be one bit per Wupper engine for this
purpose. To test the generation and removal of the BUSY condition associated with the PCIe FIFO upon
upward crossing of the high watermark, it should also be possible to halt or restart the Wupper engine. This
can be achieved by testing with "single-shot" DMA transfers.

It should be possible to assert and de-assert the BUSY signal under software control, both taking into
account existing BUSY conditions and ignoring them. To achieve this, two bits are needed in the configuration
registers. For symmetry reasons it is proposed to implement these for both Wupper engines. With one bit a
BUSY condition can be raised or removed. With the other bit the BUSY output is forced to de-assert the BUSY
signal irrespective of any existing BUSY condition6. Once the BUSY control bit is de-asserted by software the
BUSY state will return to that which is dictated by the standard BUSY sources.

An overview of all common bit fields needed in the configuration registers (across all firmware flavours) for
one Wupper engine is presented in Table 3.4.

3.4.3.1 FULL MODE SPECIFIC MONITORING AND CONTROL

Were BUSY used in FULL mode (rather than XOFF), the 24 input links could each cause a BUSY condition.
A 12-bit field in the configuration registers for each Wupper engine will indicate whether a BUSY condition is
associated with each link. Individual BUSY conditions will be resettable, for which a 12-bit field is needed. An
overview of all extra bit fields needed in the configuration registers for one Wupper engine in FULL mode is
presented in Table 3.5.

3.4.3.2 GBT MODE SPECIFIC MONITORING AND CONTROL

For GBT mode a configurable number of E-links, up to 57 per GBT link (for a 2-bit only E-link configuration
without forward error correction), may receive BUSY-ON and BUSY-OFF requests. For the standard 24 GBT
link configuration, as used for NSW detectors, there are therefore up to 24 x 57 possible sources of BUSY, as
specified in Table 3.3. To avoid resource availability problems it is proposed to monitor the status of the BUSY
conditions on a per GBT link basis in the same way as for FULL mode firmware. In addition, for each GBT
link a 57-bit field is provided in which each bit is associated with an E-link. A bit is set if a BUSY condition
has been generated on that E-link. This should make it simple to determine which E-link(s) caused a BUSY
condition.

An overview of all extra bit fields needed in the configuration registers for one Wupper engine in GBT
mode is presented in Table 3.6.

6Raising a BUSY condition will result in assertion of the BUSY signal if it is not already asserted.

3. Busy Xon/Xoff specification Page 17 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

Table 3.4: Common bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX
card) for control and monitoring of the generation of BUSY conditions for both GBT and FULL mode firmware.
Each firmware flavour adds extra fields on top of this common base, as shown in Tables 3.5 and 3.6..

Type of contents Number of bits Type of access
Enable BUSY 1 bit Write / Read
PCIe FIFO low watermark 11 bits Write / Read
PCIe FIFO high watermark 11 bits Write / Read
PCIe FIFO filling level higher than low watermark 1 bit Read
PCIe FIFO filling level higher than high watermark 1 bit Read
PCIe FIFO high watermark has been crossed upward (latched) 1 bit Read / Write (for reset)
Reset PCIe FIFO BUSY condition 1 bit Write

Free memory low watermark (steps of 1 MB) 12 bits Write / Read
Free memory high watermark (steps of 1 MB) 12 bits Write / Read
Free memory filling level higher than low watermark 1 bit Read
Free memory filling level higher than high watermark 1 bit Read
Free memory high watermark has been crossed upward (latched) 1 bit Read / Write (for reset)

Raise / remove BUSY condition 1 bit Write / Read
Force BUSY de-assertion 1 bit Write / Read
Enable BUSY from free memory high watermark 1 bit Write / Read
Enable BUSY from PCIe FIFO high watermark 1 bit Write / Read
Enable BUSY from E-link (BUSY-ON from FE) 12 x 57 bits Write / Read

Table 3.5: Extra bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX card)
for control and monitoring of the generation of BUSY conditions for FULL mode firmware..

Type of contents Number of bits Type of access

Input link BUSY condition status (latched) 12 bits Read / Write (for reset)

Table 3.6: Extra bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX card)
for control and monitoring of the generation of BUSY conditions for GBT mode firmware..

Type of contents Number of bits Type of access

Input link BUSY condition state 12 bits Read / Write
Input link BUSY condition generated 12 bits Read / Write (for reset)
BUSY condition generated, one bit per E-link 12 x 57 bits Read
Reset BUSY condition generated (reset of 57 bits) 12 bits Write
Reset BUSY conditions, one bit per GBT link 12 bits Write

3. Busy Xon/Xoff specification Page 18 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

3.4.3.3 INTERRUPT-BASED BUSY REPORTING

In order to notify any client application of a change to the busy state, the FELIX firmware will send an interrupt
on a designated line to indicate any assertion or de-assertion of BUSY, whatever the underlying cause. Full
details are given in the Wupper engine documentation [wupper].

3.4.3.4 VIRTUAL E-LINKS FOR BUSY MONITORING

In order to monitor the fraction of time that a BUSY condition exists is it is proposed (but not concluded) that
the use of “virtual E-links” introduced in Section 3.3.2 should be extended to also convey messages indicating
the start or end of a BUSY condition. It is also proposed to add a “virtual E-link” per Wupper engine for
messages indicating the start or end of a BUSY condition due to the high or low watermark of the PCIe FIFO
or host memory ring buffer having been crossed. Each message inserted in these “virtual E-links” should
have a header indicating the type of condition. A proposal for the message format is specified in Table 3.7.

Table 3.7: “Virtual E-link” message format..

Field Number of bits

Type of message (example lists in this Section) 4 bits
BCID 12 bits
Last extended L1ID 32 bits
Time stamp derived extracted from BCR (1 MHz clock) 32 bits

The message types transmitted by the “Virtual E-links” will depend on which firmware flavour is in use.
However, many elements will be common to both FULL mode and GBT. An proposed list of these is presented
below:

• BUSY condition start due to upward crossing of PCIe FIFO high watermark

• BUSY condition stop due to downward crossing of PCIe FIFO low watermark

• BUSY condition start due to upward crossing of free memory high watermark

• BUSY condition stop due to downward crossing of free memory low watermark

• BUSY output asserted

• BUSY output de-asserted

3.4.3.4.1 FULL MODE VIRTUAL E-LINK CONFIGURATION

For FULL mode firmware it will be possible to have one “virtual E-link” per incoming link. The use of a
single “virtual E-link” per Wupper engine could also be considered. However, given that information on XON
and XOFF signalling has also to be transmitted on a potentially more frequent basis, it is likely that the extra
flexibility of having a “virtual E-link” per FULL mode link would be useful. Furthermore, with a “virtual E-link”
being associated with a specific physical link there would be no need to include link ids in the messages
conveyed. The list of common message types above should be extended in the FULL mode case to include
the following extra elements:

• XOFF generated

• XON generated

• BUSY condition start due to receipt of BUSY-ON

• BUSY condition stop due to receipt of BUSY-OFF

3. Busy Xon/Xoff specification Page 19 of 172

FELIX Phase-II firmware specifications: 3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmwareJune 28, 2024 - Version 1.037

3.4.3.4.2 GBT MODE VIRTUAL E-LINK CONFIGURATION

For GBT mode, implementing a “virtual E-link” per E-link will be problematic with respect to resource usage.
Furthermore, it is expected that BUSY-ON and BUSY-OFF requests will have a low probability of occurring.
Therefore, a single “virtual E-link” per Wupper engine is proposed. Messages are to be transmitted via this
link upon BUSY conditions being generated or being removed.

The message format specified in Table 3.7 is suitable for this type of “virtual E-link”. BUSY conditions
associated with individual E-links could also be configured to give rise to messages, but this would require
that E-link as well as GBT link identification be included in the messages. This is not proposed in view
of the low probability for generation of BUSY-ONs and BUSY-OFFs, especially when once considers that
implementation may not be straightforward. The list of common message types above should be extended in
the GBT mode case to include the following extra elements:

• Start of the OR-ed BUSY condition associated with the receipt of BUSY-ON requests, due to receipt of
a BUSY-ON via any E-link

• Removal of the OR-ed BUSY condition associated with the receipt of BUSY-ON requests

3.5 PROPAGATION AND MANAGEMENT OF BUSY AND FLOW

CONTROL (XOFF) IN FELIX SOFTWARE

This section describes the proposed actions of FELIX software in response to conditions which require either
the assertion of a BUSY signal or XOFF. In this context a discussion is also presented on the interactions with
the SW ROD and DCS systems.

3.5.1 GBT MODE

The FelixCore application will maintain a set of DAQ buffers (configurable in terms of number, size and link
assignment) through which data are routed on their way to network end points. An example of the layout is
given in Figure 3.5. Each buffer will have a configurable high and low watermark. Should the fill state of any
one of these buffers exceed the high watermark, FelixCore will immediately request that the FELIX firmware
assert a BUSY signal by writing to the ’Generate BUSY’ control bit in the register map specified in Table 3.3.
Once the fill state of the buffer has reduced to below the low watermark FelixCore will request de-assertion of
the BUSY using the same register bit.

3.5.2 FULL MODE

As for the GBT case, FelixCore will maintain buffers with configurable high and low watermarks. Should a
buffer fill beyond the high watermark, FelixCore will request assertion of XOFF for the links in question by
writing to the XOFF/XON control bit for the FULL mode link in question as per Table 3.2. The option will be
retained to assert BUSY instead of XOFF in this case should requirements evolve such that this is needed. In
this case BUSY would be asserted by writing to the ’Generate BUSY’ control bit described in Table 3.3.

3.5.3 SOFTWARE BUSY AND XOFF MONITORING

The FelixCore buffer high and low watermarks, as well as their fill state, can be read and published by monitor-
ing applications for GBT and FULL mode alike. The exact nature of these applications, and their associated
clients outside FELIX, has yet to be fully defined. It is currently not proposed to include this data in the
potential “virtual E-link” implementations discussed earlier in this document.

3. Busy Xon/Xoff specification Page 20 of 172

FELIX Phase-II firmware specifications: 3.5 Propagation and management of BUSY and flow control (XOFF) in FELIX softwareJune 28, 2024 - Version 1.037

FLX Card

FelixCore

SW ROD

OPC/UA SCA

Ring
Buffer

DAQ buffer

DAQ buffer

DCS buffer
Links
From
FE

DMA Network
or UDS

DAQ buffer

Figure 3.5: FelixCore buffer schematic in from-front-end direction. In reality DCS will also have a to-front-end
path, but this has no bearing on the BUSY logic..

3.5.4 FLOW CONTROL FROM SW ROD TO FELIX
SW ROD applications can send flow control (XOFF/XON) signals to FelixCore via a dedicated data subscrip-
tion at configurable granularity (e.g. specific E-links/FULL mode links or groups of links). Upon receipt of such
a signal, FelixCore will stop sending data to the relevant network end point. As the same time, FelixCore will
either immediately request XOFF or BUSY from the FELIX firmware, or allow its buffers to fill and eventually
trigger the conditions described earlier in this section. The reason one might want to assert XOFF/BUSY
immediately is to avoid oscillations caused by the SW ROD de-asserting XOFF after emptying its buffers and
immediately becoming saturated once again as FelixCore rapidly empties its own filled buffers into the SW
ROD. The final decision can be made based on test experience facilitated by the configurable watermarks
available for each FelixCore buffer 7.

3.5.5 BUSY HANDLING AND DCS
In the case of DCS there is a requirement that data remain flowing uninhibited in the case of BUSY. For this
purpose FelixCore will maintain a dedicated buffer for DCS data, through which no DAQ data will be routed
(as shown in Figure 3.5. It is then proposed that the FelixCore DAQ buffer high watermarks be configured
such that sufficient capacity remains to permit them to absorb all regular DAQ data which may arrive between
the assertion of BUSY and the halting of L1 Accepts by the CTP. This means that the DMA ring buffer will not
be allowed to fill up, thus reserving space at all times for the transfer of DCS data. FelixCore will continue
routing DCS data to subscribed clients irrespective of the DAQ BUSY state.

While DCS data itself should be protected from BUSY, it is possible that DCS data itself could cause
the high watermark of the PCIe FIFO within the FELIX firmware to be exceeded, with as consequence the
assertion of BUSY for all DAQ data. However, the amount of DCS data flowing into FELIX is very small
compared to DAQ. Therefore, if such a condition were to arise it is likely that the DAQ data would already be
close to causing a BUSY condition. Therefore, this scenario is not considered to require specific mitigation.

However, should DCS clients stop reading data from FELIX, or do so slowly enough that the dedicated
DCS buffer fills up, a mechanism is needed to prevent propagation of backpressure into the FELIX firmware
such that DAQ dataflow is affected. As such, it is proposed that the DCS buffer also has configurable high and
low watermarks. Should the fill state exceed the high watermark, FELIX will discard any DCS data packets
received from that point until the fill state is below the low watermark. It is to be discussed how such a condition

7There is an open question on how BUSY conditions look to the P1 expert system, and how the source of BUSY is reported for the
purposes of stopless removal/recovery. This could either be in the form of: the ROD BUSY module receiving the BUSY from FELIX and
triggering a message to the expert system via an application on its master SBC; or via the SW ROD itself sending a message the given
links are BUSY and need to be removed. This is an area of discussion with the C&C group, but is beyond the scope of this document

3. Busy Xon/Xoff specification Page 21 of 172

FELIX Phase-II firmware specifications: 3.5 Propagation and management of BUSY and flow control (XOFF) in FELIX softwareJune 28, 2024 - Version 1.037

will be communicated to connected DCS clients. Two possible options are: the insertion of a dedicated error
message into the DCS data path; or the creation of a dedicated subscription for the propagation of such
messages. A final option would be for FELIX to drop the DCS subscription itself, thus generating an error on
the client side and activating client-side recovery mechanisms.

3. Busy Xon/Xoff specification Page 22 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

4
EXTERNAL INTERFACES (I/O)

This section describes the hardware interfaces (I/O) provided by the cards. The FLX-712 card provides up to
24 or 48 bi-directional optical links via the 12-channel 14-Gbps MiniPOD modules. The supported protocols
are listed in Section 4.1. The detailed format are described in Section 8.7. The timing mezzanine card can
provide interfaces for TTC and BUSY, which can be connected to the existing ATLAS TTC system. With
different assembly, it can also be configured to with an SFP module [4], to interface different types of timing
system, for instance TTC-PON or White Rabbit.

For Phase-II card, the optical module will be the Samtec FireFly module, which can support a link speed
of up to 28 Gbps. More details will be shown in the hardware documents. The VCU128 used for firmware
demonstration provides 4× QSFP28 module, with in total 16× 28 Gbps links, which can be used to verify the
proposed 25 Gbps Interlaken and also 100 Gbps Ethernet connection.

4.1 FRONTEND LINKS

The protocols supported by FELIX firmware are listed in Table 4.1. For different protocol, FELIX firmware will
configure the on-board jitter cleaner to output clocks with low phase noise for Xilinx transceivers.

4.2 PCIE
The FELIX Phase II firmware will interface with the FELIX server through a PCIe Gen4x16 interface. This
interface will consist of 2 Gen4x8 interfaces in the FELIX FPGA, combined with a PCIe Gen4 bridge on the
FELIX card.

Figure 4.1: The timing mezzanine for FLX-712, with different configuration.

4. External Interfaces (I/O) Page 23 of 172

FELIX Phase-II firmware specifications: 4.2 PCIe June 28, 2024 - Version 1.037

Protocol FELIX Front-end
GBT TX: 4.8G, RX: 4.8G TX: 4.8G, RX: 4.8G
FULL TX: 4.8G, RX: 9.6G TX: 9.6G, RX: 4.8G
lpGBT TX: 2.56.8G, RX: 10.24G TX: 10.24G, RX: 2.56G
25G link TX: GBT 4.8G, RX: 25.78125 GB Interlaken TX: 25.78125 GB Interlaken, RX: GBT 4.8G

Table 4.1: Protocols supported by FELIX.

During the development phase, FELIX is also built for the Phase I hardware platform - FLX712, which has
a PCIe Gen3x16 interface. The firmware will support both Gen3 and Gen4 PCIe interfaces, depending on the
hardware platform the link speed will be chosen.

4.3 TTC INTERFACE

The left photo in Figure 4.1 shows the timing mezzanine on FLX-712 card, with the TTC optical receiver and
CDR ASIC on it. For Phase-2, the TTC interface will be replaced by the TTC-LTI interface.

4.4 BUSY
The Phase I hardware platform has a dedicated LEMO-00 output (Open drain / pull down) to report BUSY,
shown in Figure 4.1. In Phase II the BUSY condition will be communicated to the LTI over the TTC-P2P link.

4.5 100GB/S ETHERNET

The hardware platform that is used to evaluate Phase II link speeds up to 25 Gb/s, will also be equipped with
one or more 100 Gb/s capable links. The FLX128 (Xilinx VCU128) is equipped with 4 QSFP28 transceivers
for this purpose. The 100Gb/s Ethernet interface can be used for the RDMA link which is currently under
investigation as a possible alternative / addition to PCIe DMA [5].

4. External Interfaces (I/O) Page 24 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

5
TARGET FPGA

The FELIX Phase I card, also called FLX712 FELIX Phase I PCIe card (BNL712) with FELIX firmwares has
been used for developing the FELIX firmware for Phase I. Most of the components of the FELIX Phase II
firmware will be based on their Phase I counterparts, even though some interfaces will change and some
components have to be redesigned while others will have to be created from the start.

The primary development platform for the FELIX Phase II firmware PDR will be the FLX712 card (The
Phase I FELIX card), and all the features that can be demonstrated on that platform will be implemented.

There are some features that are of interest for the Phase II upgrade that can not be demonstrated with
the FLX712 hardware. These features are:

• PCIe Gen4 or Gen5

• 25 Gb/s Interlaken links

• 100Gb/s RDMA (feasibility study)

In order to demonstrate these features, a second development platform will be used, the Xilinx VCU128,
incorporating a XCVU37P-L2FSVH2892EES9837 FPGA. The VCU128 may also be referred to as Xilinx
VCU128 / VU37P Development kit with FELIX firmware, meaning a VCU128 running FELIX firmware. The
next generation of Xilinx FPGA’s - the Versal Prime and Versal Premium families will also be investigated. A
prototype with the Xilinx Versal Prime VM1802 FPGA has been developed within the FELIX project - known as
the BNL181 card or FLX181, and the Xilinx Versal Premium VP1552 is also being investigated as a possible
option for the Phase II FELIX card.

Resource FLX712 / KU115 FLX128 / VU37P FLX181 / VM1802 VP1552
LUTs 663,360 1,303,680 899,840 1,753,984
FlipFlops 1,326,720 2,607,360 1,799,680 3,508,560
BlockRAM 36kb 2160 2,016 967 2,541
UltraRAM 288kb - 960 463 1,301
HBM DRAM - 8 GB - -
Transceivers GTH < 16.3 Gbps 64 - - -
Transceivers GTY < 32.75 Gbps - 96 44 68
Transceivers GTM 16−58 Gbps - - - 20
PCIe interface Gen3 Gen4 Gen4 Gen5

Table 5.1: Available resources on the different development platforms for FELIX Phase II.

5. Target FPGA Page 25 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

KU115 VU37P VM1802 VP1552
GBT 24 channel LUT 80.65% 48.04% 69.60% 35.71%

FF 77.03% 35.16% 50.94% 26.13%
BRAM 70.00% 42.91% 89.45% 34.04%
URAM 30.00% 62.20% 22.14%

FULL 24 channel LUT 52.59% 30.61% 44.35% 22.75%
FF 38.40% 22.92% 33.21% 17.03%
BRAM 40.46% 10.07% 20.99% 7.99%
URAM 30.00% 62.20% 22.14%

LPGBT 24 channel LUT 112.51% 57.25% 82.94% 42.55%
FF 52.39% 26.66% 38.62% 19.81%
BRAM 68.94% 38.14% 79.52% 30.26%
URAM 30.00% 62.20% 22.14%

PIXEL 24 channel LUT 82.40% 41.93% 60.75% 31.17%
FF 62.04% 31.57% 45.74% 23.46%
BRAM 61.20% 29.86% 62.25% 23.69%
URAM 30.00% 62.20% 22.14%

STRIP 24 channel LUT 67.04% 34.11% 49.42% 25.35%
FF 49.94% 25.41% 36.81% 18.88%
BRAM 121.43% 50.10% 104.45% 39.75%
URAM 70.00% 145.14% 51.65%

INTERLAKEN 8 channel LUT 6.31% 9.15% 4.69%
FF 5.44% 7.89% 4.05%
BRAM 19.39% 40.43% 15.39%
URAM 0.00% 0.00% 0.00%

Table 5.2: Resource utilization for all firmware flavours estimated for the different hardware platforms. The
numbers for FM1802 and VP1552, and also for KU115 for the LPGBT, PIXEL and STRIP flavours are estima-
tions based on the build for VU37P.

The numbers shown in Table 5.2 provide a good picture on the requirements for the FELIX Phase II
hardware. As a rule of thumb, the LUT and FF utilization should not exceed 70% in order to have a good
chance of meeting timing. For Versal Prime devices however this rule of thumb seems to be different, and the
tools are unable to properly route the design if the LUT utilization exceeds 50%. The KU115 (FLX712) must
only be seen as a development platform for Phase II, and can be used to exercise lower channel counts for
all flavours. The FLX181 with the Versal Prime VM1802 FPGA can be seen as a development platform with
Gen4 support, and as a learning platform before the Versal Premium devices are available. Both VU37P and
VP1552 comfortably fit the resources for all the FELIX flavours with 24 channels, while the VP1552 supports
PCIe Gen5 which could double the throughput. With the VP1552 it will be possible to double the channel
count to 48 channels for some of the flavours.

Requirement 5.1:

A hardware platform with 48 transceiver channels must be available for the LTDB.

5. Target FPGA Page 26 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

6
POWER AND COOLING

For the FLX-712, the power rails are listed in Table 6.2. The maximum current of each power rail and the
esitimated (measured) current with Phase-I firmware are also contained in the Table.

(to do: Verify Maximum current for Phase-I cases can be measured, for phase-2, estimation can be got by
Xilinx XPE, however this section really relies on the hardware, not sure whether this should be put in firmware,
especially for Phase 2.)

Name of Voltage Rails Max I budgeted for Voltage Rail Estimated I budgeted for Voltage Rail
SYS5: 5V 18A very low, only for the TTC receiver module
VCCINT: 0.95V 18A typical: 6A
PEX0P9V: 0.9V 18A typical: 6A
MGTAVCC: 1.0V 18A typical: 8A
MGTAVTT: 1.2V 18A <4.5A
SYS18: 1.8V 18A <1.5A
SYS25: 2.5V 18A <1.5A
SYS33: 3.3V 18A typical: 3.5A for 48-channel card

Table 6.2: Power Requirements.

The fansink used on FLX-712 is 30-18828-04 shown in Figure 6.1. There are three pins for the fan, which
are the 12V power, ground and the pin for tachometer. The fan speed is around 8500 RPM. The mean time
to failure (MTTF) at 40 Celsius degree is about 36 years, while after 10 years, 10% of fans are estimated to
malfunction. The heatsink is stuck on the FPGA. During the production, it was found for some heatsink, it has
bad contact with the FPGA. For Phase 2 cards, the maxiGRIP fansink will be used. Phase change thermal
interface material (TIM) will be used to attach the heatsink to the FPGA. Screws will be used to assemble the
fansink.

Phase-2: to be added by Hongbin: fan selection, control and monitoring. And power estimation.

Name of Voltage Rails Max I budgeted for Volt-
age Rail

Estimated I budgeted for
Voltage Rail

Other Requirements

1 2 3 4
Table 6.4: Power Requirements.

6. Power and Cooling Page 27 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Figure 6.1

6. Power and Cooling Page 28 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

7
INPUT/OUTPUT

Name Direction Type Description
BUSY_OUT out LVCMOS18 std_logic, Busy output (to LEMO) 1 = BUSY
CLK_TTC_N in LVDS std_logic, 160 MHz clock from TTC
CLK_TTC_P in LVDS std_logic, 160 MHz clock from TTC
DATA_TTC_N in LVDS std_logic, Recovered data from TTC
DATA_TTC_P in LVDS std_logic, Recovered data from TTC
I2C_SMB out LVCMOS18 std_logic, PEX I2C Enable
I2C_SMBUS_CFG_nEN out LVCMOS18 std_logic, PEX SMBus CFG Enable
I2C_nRESET_PCIe out LVCMOS18 std_logic, PEX active low reset
LOL_ADN in LVCMOS18 std_logic, ADN2814 LOL input
LOS_ADN in LVCMOS18 std_logic, ADN2814 LOS input
MGMT_PORT_EN out LVCMOS18 std_logic, PEX management port enable
NT_PORTSEL out LVCMOS18 std_logic_vector(2 downto 0), PEX port select
PCIE_PERSTn1 out LVCMOS18 std_logic, PEX PERST
PCIE_PERSTn2 out LVCMOS18 std_logic, PEX PERST
PEX_PERSTn out LVCMOS18 std_logic, PEX PERST
PEX_SCL out LVCMOS18 std_logic, PEX I2C
PEX_SDA inout LVCMOS18 std_logic, PEX I2C
PORT_GOOD in LVCMOS18 std_logic_vector(7 downto 0), PEX port good

indicator
Perstn1_open in LVCMOS18 std_logic, input pin, leave open
Perstn2_open in LVCMOS18 std_logic, input pin, leave open
GTREFCLK_N_IN in LVDS std_logic_vector(5 downto 0), Reference

clocks for transceivers
GTREFCLK_P_IN in LVDS std_logic_vector(5 downto 0), Reference

clocks for transceivers
RX_N in LVDS std_logic_vector(23 downto 0), To and from

Minipods
RX_P in LVDS std_logic_vector(23 downto 0), To and from

Minipods
TX_N out LVDS std_logic_vector(23 downto 0), To and from

Minipods
TX_P out LVDS std_logic_vector(23 downto 0), To and from

Minipods
SCL inout LVCMOS18 std_logic, Global board I2C bus

Table 7.1: IO pins (continued...)

7. Input/Output Page 29 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Name Direction Type Description
SDA inout LVCMOS18 std_logic, Global board I2C bus
SHPC_INT out LVCMOS18 std_logic, output, tie to constant ’1’
SI5345_A out LVCMOS18 std_logic_vector(1 downto 0), Si5345 jitter

cleaner configuration
SI5345_INSEL out LVCMOS18 std_logic_vector(1 downto 0), Si5345 jitter

cleaner configuration
SI5345_OE out LVCMOS18 std_logic, Si5345 jitter cleaner configuration
SI5345_RSTN out LVCMOS18 std_logic, Si5345 jitter cleaner configuration
SI5345_SEL out LVCMOS18 std_logic, Si5345 jitter cleaner configuration
SI5345_nLOL in LVCMOS18 std_logic, Si5345 jitter cleaner configuration
STN0_PORTCFG out LVCMOS18 std_logic_vector(1 downto 0), Constant

output, tie to "0Z"
STN1_PORTCFG out LVCMOS18 std_logic_vector(1 downto 0), Constant

output, tie to "01"
SmaOut_x3 out LVCMOS18 std_logic, Optional debug output
SmaOut_x4 out LVCMOS18 std_logic, Optional debug output
SmaOut_x5 out LVCMOS18 std_logic, Optional debug output
SmaOut_x6 out LVCMOS18 std_logic, Optional debug output
TACH in LVCMOS18 std_logic, Fan tachometer input
TESTMODE out LVCMOS18 std_logic_vector(2 downto 0), Constant

output, tie to "000"
UPSTREAM_PORTSEL out LVCMOS18 std_logic_vector(2 downto 0), Constant

output, tie to "000"
app_clk_in_n in LVDS std_logic, 200 MHz board crystal
app_clk_in_p in LVDS std_logic, 200 MHz board crystal
clk40_ttc_ref_out_n out LVDS std_logic, BC clock Towards Si5345 CLKIN
clk40_ttc_ref_out_p out LVDS std_logic, BC clock Towards Si5345 CLKIN
clk_ttcfx_ref1_in_n in LVDS std_logic, 240.474 MHz from Si5345
clk_ttcfx_ref1_in_p in LVDS std_logic, 240.474 MHz from Si5345
emcclk in LVCMOS18 std_logic, High speed JTAG clock
i2cmux_rst out LVCMOS18 std_logic, Reset I2C mux
leds out LVCMOS18 std_logic_vector(7 downto 0), Board GPIO

leds
flash_SEL out LVCMOS18 std_logic, Boot flash pins
flash_a out LVCMOS18 std_logic_vector(24 downto 0), Boot flash

pins
flash_a_msb inout LVCMOS18 std_logic_vector(1 downto 0), Boot flash pins
flash_adv out LVCMOS18 std_logic, Boot flash pins
flash_cclk out LVCMOS18 std_logic, Boot flash pins
flash_ce out LVCMOS18 std_logic, Boot flash pins
flash_d inout LVCMOS18 std_logic_vector(15 downto 0), Boot flash

pins
flash_re out LVCMOS18 std_logic, Boot flash pins
flash_we out LVCMOS18 std_logic, Boot flash pins
opto_inhibit out LVCMOS18 std_logic_vector(OPTO_TRX-1 downto 0),

Minipod / FireFly enable / reset
pcie_rxn in LVDS std_logic_vector(15 downto 0), PCIe link

lanes
pcie_rxp in LVDS std_logic_vector(15 downto 0), PCIe link

lanes
pcie_txn out LVDS std_logic_vector(15 downto 0), PCIe link

lanes
Table 7.1: IO pins (continued...)

7. Input/Output Page 30 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Name Direction Type Description
pcie_txp out LVDS std_logic_vector(15 downto 0), PCIe link

lanes
sys_clk_n in LVDS std_logic_vector(ENDPOINTS-1 downto 0),

100MHz PCIe reference clock
sys_clk_p in LVDS std_logic_vector(ENDPOINTS-1 downto 0),

100MHz PCIe reference clock
sys_reset_n in LVCMOS18 std_logic, Active-low system reset from PCIe

interface
uC_reset_N out LVCMOS18 std_logic, Active-low reset for the AtMega uC

Table 7.1: IO pins.

7. Input/Output Page 31 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8
DETAILED FUNCTIONAL DESCRIPTION AND

SPECIFICATION

8.1 INTRODUCTION

The FELIX toplevel design instantiates all the components / blocks that are described in the sections in this
chapter. The detailed schematic of the toplevel design can be found in Figure 8.2.

The toplevel design (felix_top.vhd) is designed to work for all firmware flavours (GBT, FULL, Strip, Pixel,
lpGBT) as well as all hardware platforms (FLX709, FLX712, FLX128, FLX180).

8.2 COMPATIBILITY

FELIX had been tested on the following platforms and tools:

1. Operating systems:

• Scientific Linux CERN 6, kernel 2.6

• Scientific Linux 7, kernel 3.10

2. Xilinx Vivado:

• 2020.1: migrated 11-2020

• 2018.1: migrated 05-2019

• 2015.4: migrated 02-2016

• 2014.4: initial version

3. Xilinx FPGA:

• Virtex-7 690T

• Kintex Ultrascale XCKU115

• Virtex Ultrascale+ VU9P, VU37P

• Versal Prime VM1802

8. Detailed Functional Description and Specification Page 32 of 172

FELIX Phase-II firmware specifications: 8.3 Clocking scheme June 28, 2024 - Version 1.037

8.3 CLOCKING SCHEME

LTI

9.6G, 8b10b

4.8G, 8b10b

FireFly

FireFly

FireFly

FPGA

240.474 MHz

GTY

FELIX card

rxrefclk

txrefclk

Front Ends

Si5345

GTY
rxrefclk

txrefclk

rxoutclk

MMCM

Local clock

clk40

clk80

clk160

clk240

clkin1

clkin2

40.079 MHz

clk250

80.158 MHz

160.158 MHz

240.474 MHz

250.0 MHz

24
0.

47
4

M
H

z

PCIe /
Wupper

25.0 MHz

LTI/TTC

Sync clock

Regmap clock

40
.0

79
 M

H
z

40.079 MHz

Figure 8.1: Clocking scheme for the FELIX Phase II firmware..

FELIX should be capable of receiving the CERN LHC clock from the LTI and distribute it to the Front End
electronics. A large part of the FELIX firmware will also operate on (a multiple of) the LHC clock of 40.079
MHz.

• The LTI transmits TTC information (8b10b encoded) in a fixed data frame of 6 240.474 MHz clock cycles.

• The 240.474 MHz rxoutclk is recovered from the LTI data by the GTY in the FELIX FPGA. The GTY
transceiver is using an independent 240.474 MHz clock source as an rxrefclk.

• The LTI/TTC interface recovers the 40.079 MHz and feeds it to the main MMCM.

• The main MMCM can alternatively run from a local 40.079 MHz clock source if the LTI is not available.

• The main MMCM generates 40.079 MHz (clk40) and multiples of that frequency to be used in the FPGA
fabric

• clk40 is used to synchronize the Wupper register map to.

• clk40 is fed to the Si5345 jitter cleaner on the board which will create a clean 240.474 MHz clock, used
as a reference clock (tx/rx) for all the transceivers, as well as the tx reference clock for the TTC/LTI
transceiver.

8. Detailed Functional Description and Specification Page 33 of 172

FE
LIX

P
hase-IIfirm

w
are

specifications:8.3
C

locking
schem

e
June

28,2024
-Version

1.037

felix_top

DATA_TTC_N
DATA_TTC_P

OPTO_LOS

LMK_LD

LOL_ADN
LOS_ADN

PORT_GOOD

LMK_N
LMK_P
RX_N
RX_P

SI5345_nLOL
TACH

pcie_rxn
pcie_rxp

CLK_TTC_N
CLK_TTC_P

GTREFCLK_N_IN
GTREFCLK_P_IN

app_clk_in_n
app_clk_in_p

clk_ttcfx_ref1_in_n
clk_ttcfx_ref1_in_p
clk_ttcfx_ref2_in_n
clk_ttcfx_ref2_in_p

emcclk

sys_clk_n
sys_clk_p

BUSY_OUT

CLK40_FPGA2LMK_N
CLK40_FPGA2LMK_P

I2C_SMB
I2C_SMBUS_CFG_nEN

LMK_CLK
LMK_DATA

LMK_GOE
LMK_LE

LMK_SYNCn

MGMT_PORT_EN
PCIE_PERSTn1
PCIE_PERSTn2
PEX_PERSTn
PEX_SCL
PEX_SDA

TX_N
TX_P

SCL
SDA

SHPC_INT

SI5345_A
SI5345_INSEL
SI5345_OE
SI5345_RSTN
SI5345_SEL

clk_adn_160_out_n
clk_adn_160_out_p
clk40_ttc_ref_out_n
clk40_ttc_ref_out_p

i2cmux_rst
leds

flash_SEL
flash_a
flash_a_msb
flash_adv
flash_cclk
flash_ce
flash_d
flash_re
flash_we

opto_inhibit

si5324_resetn

pcie_txn
pcie_txp

clock_and_reset
register_map_control

sys_reset_n

app_clk_in_n
app_clk_in_p
clk_adn_160
clk_ttc_40
clk_ttcfx_ref1_in_n
clk_ttcfx_ref1_in_p
clk_ttcfx_ref2_in_n
clk_ttcfx_ref2_in_p

MMCM_Locked_out
MMCM_OscSelect_out

clk10_xtal
clk160
clk240
clk250
clk40

clk40_xtal
clk_adn_160_out_n
clk_adn_160_out_p
clk_ttcfx_ref_out_n
clk_ttcfx_ref_out_p

reset_out

link_wrapper
OPTO_LOS
TX_P
TX_N
RX_P
RX_N
LMK_P
LMK_N
register_map_control
register_map_link_monitor

rst_hw

clk40
clk240
clk40_xtal
GTREFCLK_N_in
GTREFCLK_P_in

GBT_DOWNLINK_USER_DATA
GBT_UPLINK_USER_DATA

lpGBT_DOWNLINK_USER_DATA
lpGBT_DOWNLINK_IC_DATA
lpGBT_DOWNLINK_EC_DATA
lpGBT_UPLINK_USER_DATA

lpGBT_UPLINK_EC_DATA
lpGBT_UPLINK_IC_DATA

GTH_FM_RX_33b_out
LinkAligned

RXUSRCLK_OUT

GBTdataEmulator
register_map_control

rst_hw
rst_soft

clk40
wrclk

GBTdata
lpGBTdataToHost

lpGBTECdata
lpGBTICdata
GBTlinkValid

GBT_fanout_selector
EMU_GBTDataIn
EMU_lpGBTDataToHostIn
EMU_lpGBTECDataIn
EMU_lpGBTICDataIn
EMU_GBTlinkValidIn
GBTDataIn
lpGBTDataToHostIn
lpGBTECDataIn
lpGBTICDataIn
GBTLinkValidIn
sel

clk40

GBTDataOut
lpGBTDataToHostOut

lpGBTECDataOut
lpGBTICDataOut
GBTLinkValidOut

GBTdataEmulator
register_map_control
GBTdata
lpGBTdataToFE
lpGBTECdata
lpGBTICdata

rst_hw
rst_soft

clk40
wrclk

GBT_fanout_selector
GBTDataOut
lpGBTDataToFEOut
lpGBTECDataOut
lpGBTICDataOut

sel

clk40

EMU_GBTDataIn
EMU_lpGBTDataToFEIn

EMU_lpGBTECDataIn
EMU_lpGBTICDataIn

GBTDataIn
lpGBTDataToFEIn

lpGBTECDataIn
lpGBTICDataIn

encoding
GBT_DOWNLINK_USER_DATA
lpGBT_DOWNLINK_USER_DATA
lpGBT_DOWNLINK_EC_DATA
lpGBT_DOWNLINK_IC_DATA
TTCin
register_map_control
register_map_encoding_monitor

aresetn

clk40

s_axis
s_axis_tready

aclk

CRFromHostAxis
fhAxis
fhAxis_tready
fhAxis_aclk
register_map_control

aresetn

fromHostFifo_dout
fromHostFifo_empty

fromHostFifo_clk
fromHostFifo_rd_en

fromHostFifo_rst
fifo_monitoring

axis_32_fanout_selector
emu_axis
emu_axis_tready
emu_axis_prog_empty
decoding_axis
decoding_axis_tready
decoding_axis_prog_empty
register_map_control

aclk

fanout_sel_axis
fanout_sel_axis_tready

fanout_sel_axis_prog_empty

FullModeDataEmulator
register_map_control
register_map_control_appreg_clk
register_map_gbtemu_monitor

aresetn

appreg_clk
clk240
aclk

m_axis
m_axis_tready

m_axis_prog_empty

wupper
fromHostFifo_dout
fromHostFifo_empty
fromHostFifo_rd_clk
fromHostFifo_rd_en
fromHostFifo_rst
toHostFifo_din
toHostFifo_prog_full
toHostFifo_wr_clk
toHostFifo_wr_en
toHostFifo_rst
interrupt_call
master_busy_in

reset_hw_in
sys_reset_n

sync_clk
sys_clk_n
sys_clk_p

toHostFifo_busy_out
lnk_up

pcie_rxn
pcie_rxp
pcie_txn
pcie_txp

register_map_control_sync
register_map_control_appreg_clk

register_map_gen_board_info
register_map_crtohost_monitor

register_map_crfromhost_monitor
register_map_decoding_monitor
register_map_encoding_monitor
register_map_gbtemu_monitor

register_map_link_monitor
register_map_ttc_monitor

register_map_xoff_monitor
register_map_hk_monitor

appreg_clk
reset_soft

reset_soft_appreg_clk
tohost_busy_out

CRToHost
s_axis
s_axis_tready
s_axis_prog_empty
s_axis_aux
s_axis_aux_tready
s_axis_aux_prog_empty
register_map_control
register_map_xoff_monitor
register_map_crtohost_monitor

aresetn

clk40
clk250
aclk_tohost

interrupt_call
toHostFifo_din

toHostFifo_prog_full
toHostFifo_wr_clk
toHostFifo_wr_en

toHostFifo_rst

housekeeping_module
MMCM_Locked_in
MMCM_OscSelect_in
SI5345_nLOL
TACH
register_map_control
LMK_LD
PORT_GOOD
lnk_up

rst_soft
sys_reset_n
rst_hw

appreg_clk
emcclk
clk10_xtal
clk40_xtal
clk40
RXUSRCLK_IN

SCL
SDA

SI5345_A
SI5345_INSEL

SI5345_OE
SI5345_RSTN
SI5345_SEL
flash_SEL

flash_a
flash_a_msb

flash_adv
flash_cclk
flash_ce
flash_d
flash_re
flash_we

i2cmux_rst
leds

opto_inhibit
register_map_gen_board_info

register_map_hk_monitor
CLK40_FPGA2LMK_P
CLK40_FPGA2LMK_N

LMK_DATA
LMK_CLK
LMK_LE

LMK_GOE
LMK_SYNCn

I2C_SMB
I2C_SMBUS_CFG_nEN

MGMT_PORT_EN
PCIE_PERSTn1
PCIE_PERSTn2
PEX_PERSTn

PEX_SCL
PEX_SDA
SHPC_INT

versal_sys_reset_n_out

ttc_wrapper
DATA_TTC_P
DATA_TTC_N
LOL_ADN
LOS_ADN
register_map_control
TTC_BUSY_mon_array
BUSY_IN

CLK_TTC_P
CLK_TTC_N
clk40

register_map_ttc_monitor
TTC_out

clk_adn_160
clk_ttc_40

TTC_ToHost_Data_out

ttc_busy
register_map_control
BUSY_REQUESTs
DMA_BUSY_in
FIFO_BUSY_in

mrst

mclk

ANY_BUSY_REQ_OUT
TTC_BUSY_mon_array

rst_hwrst_hw

rst_hw

rst_hw

sys_reset_n

116

32

 2

 2

12x116

 12x32

 12x2

 12x2

12x116

 12x32

 12x2

 12x2

24x116

 24x32

 24x2

 24x2

TTCToHostData

decoding
GBT_UPLINK_USER_DATA
lpGBT_UPLINK_USER_DATA
lpGBT_UPLINK_EC_DATA
lpGBT_UPLINK_IC_DATA
LinkAligned
FULL_UPLINK_USER_DATA
TTCToHostData
ElinkBusyIn
DmaBusyIn
FifoBusyIn
BusySumIn
TTC_in
register_map_control
register_map_decoding_monitor

aresetn

RXUSRCLK
clk160
clk250
clk40

m_axis
m_axis_tready

m_axis_prog_empty
m_axis_aux

m_axis_aux_tready
m_axis_aux_prog_empty

aclk

32
 2x32

 2

 2

256 or 512

4x256 or 4x512

 4

 4

 BUSY

 BUSY

24x116

 24x230

 24x2

 24x2

24

24

12x116

 12x230

 12x2

 12x2

12

12x116

 12x230

 12x2

 12x2

12

12

 24x33 12x33

 12x33

RM-5

RM-5

RM-5

RM-5
RM-5

RM-5

RM-5

RM-5

RM-5
RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

RM-5

ElinkBusy

DmaBusy

FifoBusy

BUSY

DmaBusy

FifoBusy

lnk_up

rst_soft

 BUSY

 BUSY

clk160
clk240
clk250
clk40

clk10_xtal

clk40_xtal

clk40

clk40
clk250
aclk_th

aclk_th

aclk_th

RM-5

TTCToHostData

MMCM_locked

MMCM_OscSelect

MMCM_locked

MMCM_OscSelect

RM-5

RM-5

RM-5

lnk_up

rst_hw

rst_soft

aresetn

aresetn

aresetn

aresetn

aresetn

aresetn

rst_hw

rst_soft

ElinkBusy

DmaBusy

FifoBusy

clk40
clk250
clk160

clk40

clk40

appreg_clk

appreg_clk

appreg_clk

aclk_th

rst_hw

rst_soft

appreg_clk

clk40

clk40

clk40

rst_soft

clk40

clk40

clk240

clk240
clk40_xtal

appreg_clk

clk40
clk40_xtal
clk10_xtal

rst_hw

rst_soft

sys_reset_n

sys_reset_n

sys_reset_n

RM-5

RM-5

116

230

 2

 2

clk40

TTC

TTC

TTC

for generate [PCIe Endpoints]

 12x42x8

12x42

 12x42x32

 12x42x32

12x42

12x42

12x42

12x42

Figure 8.2: The FELIX firmware top level detailed schematic..

8.D
etailed

FunctionalD
escription

and
S

pecification
P

age
34

of172

FELIX Phase-II firmware specifications: 8.3 Clocking scheme June 28, 2024 - Version 1.037

8.4 DECODING

8.4.1 INTRODUCTION

Decoding is the block in the FELIX firmware which instantiates the subdetector specific, but also Atlas wide
protocol handling in the ToHost direction (Upstream).

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links
Figure 8.3: The decoding block in the toplevel diagram.

8.4.2 INTERFACES

decoding

FULL_UPLINK_USER_DATA
Full mode data input
txrx33b_type(GBT_NUM-1 downto 0)

GBT_UPLINK_USER_DATA
GBT data input
txrx120b_type(GBT_NUM-1 downto 0)

lpGBT_UPLINK_USER_DATA
lpGBT data input
txrx230b_type(GBT_NUM-1 downto 0)

lpGBT_UPLINK_EC_DATA
lpGBT EC data input
txrx2b_type(GBT_NUM-1 downto 0)

lpGBT_UPLINK_IC_DATA
lpGBT IC data input
txrx2b_type(GBT_NUM-1 downto 0)

LinkAligned
Transceiver aligned
std_logic_vector(GBT_NUM-1 downto 0)

register_map_control
Settings (From Wupper)
register_map_control_type

aresetn
Active low reset
std_logic

RXUSERCLK
Data clock for FULL mode
std_logic_vector(GBT_NUM-1 downto 0)

clk250
Used for driving aclk and internal processing
std_logic

clk40
LHC BC Clock
std_logic

aclk
Driven by decoding

std_logic

m_axis
Towards CRToHost

axis_32_2d_array_type(GBT_NUM-1 downto 0, STREAMS_TOHOST-1 downto 0)

m_axis_tready
From CRToHost

axis_tready_2d_array_type(GBT_NUM-1 downto 0, STREAMS_TOHOST-1 downto 0)

register_map_decoding_monitor
Monitoring signals (To Wupper)

register_map_decoding_monitor_type

GBT_NUM : integer := 4
Number of transceiver links

FIRMWARE_MODE : integer := 1

STREAMS_TOHOST : integer := 1
Number of E-links (1 for FULL mode)

Figure 8.4: The decoding block, instantiating all decoder entities based on FIRMWARE_MODE [6].

8.4.2.1 OVERVIEW

The decoder for GBT mode FELIX in phase 2 was derived from the CentralRouter Egroup in phase 1 FELIX.
The functionality is the same, but the design will be more modular, and the entities will be more unified among
different E-Path / EPROC widths.

Instead of defining a separate entity for every E-link width, as done in phase 1, a configurable and generic
gearbox was introduced (see 8.4.8). This gearbox can be configured to support all E-link widths in GBT and
lpGBT mode, and output widths for the different protocols (HDLC, 8b10b, Aurora).

8. Detailed Functional Description and Specification Page 35 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

The HDLC and 8b10b decoder are very similar to the phase 1 design and can be taken with only slight
modification. Finally the GBT mode epath should output the axi stream32 protocol. Therefore the ByteToAx-
iStream entity was introduced which will take care of the conversion, but also contain the axi stream E-Path
FIFO.

8.4.2.1.1 GBT MODE, 8B10B, HDLC

 2

 8

 8

 8

 8 32

clk40

clk40

reset

reset

clk40

reset

clk40

reset

10 10 8
MUX8x3

DecoderHDLC
ena
DataIn

reset

clk40

DataOut
DataOutValid

EOP
TruncateHDLC

ByteToAxiStream
DataIn
DataInValid
EOP
FramingError
ElinkBusy
TruncateIn

reset

clk40

m_axis
m_axis_tready
m_axis_aresetn

m_axis_aclk

DecodingGearBox
ELinkData
ElinkAligned
ElinkWidth
MsbFirst
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

Decoder8b10b
DataIn
DataInValid
BitSlip
AlignmentPulse

reset

clk40

DataOut
DataOutValid

EOP
FramingError

ElinkBusy
DecoderAligned

clk40 domain m_axis_aclk domain

FIFO

2kB

Figure 8.5: Block diagram of a single E-Path decoder in GBT mode.

The E-Path as described in Figure 8.5 can be configured to support 8, 4 and 2 bit E-links, and handle different
protocols; 8b10b, HDLC and direct mode (the latter is mainly meant for development purposes, the protocol
decoder will be skipped if this mode is selected. There is also no bit alignment)

E-Paths are grouped in an E-group. In phase 2 GBT mode, an e-group has 8 E-paths. This is similar to
the behaviour of phase 1, however phase 1 FELIX had 15 E-procs that were fixed in width. Because 4 of the
8 E-paths in phase 2 GBT mode will have a selectable with (2/4/8 or 2/4) only 8 E-paths are needed. The
concept of E-proc will be removed in phase 2, only E-path will be used.

Figure 8.6 shows how 8 E-paths are grouped in an E-group, inputting 16 bits of the GBT E-group data.
The resulting output data is in the form of an array of AXI Stream 32 buses. Per GBT link this array will have
a fixed size of 40 from the Egroups. Additionally 2 AXI stream buses will be added per link for the IC and EC
E-link, plus 2 AXI stream buses for the virtual E-links (BUSY/XOFF and TTCToHost). In GBT mode the total
number of AXI streams per GBT link will be set to 44.

The GBT mode decoding block will finally handle the data of all the 24 GBT links, outputting a 2 dimen-
sional array of AXI stream 32 buses (24 x 44).

8. Detailed Functional Description and Specification Page 36 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

 8

 2

 4

 2

 4

 2

 8

 2

7:0

3:2

16 32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

AlignmentPulseGen
clk40 AlignmentPulseclk40

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

32

clk40

reset

DecodingEpathGBT
ElinkData
ElinkAligned
AlignmentPulse

reset

clk40

m_axis
m_axis_tready

m_axis_aclk
m_axis_aresetn

7:4

7:6

15:8

11:10

15:12

15:14

8

2

4

2

8

2

4

2

Figure 8.6: Block diagram of an E-Group decoder in GBT mode.

8. Detailed Functional Description and Specification Page 37 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.2.1.2 LPGBT MODE, 8B10B

 8 8 32
DecodingGearBox

ELinkData
ElinkAligned
ElinkWidth
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

clk40

reset

clk40

reset
clk40

reset

10 10 8

 8 16 32
DecodingGearBox

ELinkData
ElinkAligned
ElinkWidth
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

clk40

reset

clk40

reset
clk40

reset

20 1016

MUX10x3
DataIn0
DataIn0Valid
DataIn1
DataIn1Valid
DataIn2
DataIn2Valid
sel

clk40

DataOut
DataOutValid

MUX10x2
DataIn0
DataIn0Valid
DataIn1
DataIn1Valid
sel

clk40

DataOut
DataOutValid

 8 8 32
DecodingGearBox

ELinkData
ElinkAligned
ElinkWidth
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

clk40

reset

clk40

reset
clk40

reset

10 8
MUX10x2

DataIn0
DataIn0Valid
DataIn1
DataIn1Valid
sel

clk40

DataOut
DataOutValid

 8 32 32
DecodingGearBox

ELinkData
ElinkAligned
ElinkWidth
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

clk40

reset

clk40

reset
clk40

reset

4032 10

10

10

10

10

10

10

9:0

19:10

29:20

39:30

10

10

9:0

19:10

 2

 4

32

15:8

31:16

31:24
Decoder8b10b

DataIn
DataInValid
BitSlip
AlignmentPulse

reset

clk40

DataOut
DataOutValid

EOP

ByteToAxiStream
DataIn
DataInValid
EOP

reset

clk40

m_axis
m_axis_tready
m_axis_aresetn

m_axis_aclk

ByteToAxiStream
DataIn
DataInValid
EOP

reset

clk40

m_axis
m_axis_tready
m_axis_aresetn

m_axis_aclk

ByteToAxiStream
DataIn
DataInValid
EOP

reset

clk40

m_axis
m_axis_tready
m_axis_aresetn

m_axis_aclk

ByteToAxiStream
DataIn
DataInValid
EOP

reset

clk40

m_axis
m_axis_tready
m_axis_aresetn

m_axis_aclk

Decoder8b10b
DataIn
DataInValid
BitSlip
AlignmentPulse

reset

clk40

DataOut
DataOutValid

EOP

Decoder8b10b
DataIn
DataInValid
BitSlip
AlignmentPulse

reset

clk40

DataOut
DataOutValid

EOP

Decoder8b10b
DataIn
DataInValid
BitSlip
AlignmentPulse

reset

clk40

DataOut
DataOutValid

EOP

 2

 4

AlignmentPulse

AlignmentPulse

AlignmentPulse

AlignmentPulse

clk40

clk40

clk40

clk40 domain m_axis_aclk domain

FIFO

2kB

FIFO

2kB

FIFO

2kB

FIFO

2kB

Figure 8.7: Block diagram of an E-Group decoder in lpGBT/8b10b mode.

8.4.2.1.3 LPGBT MODE, PIXEL

64

 2

32

DecodingGearBox
ELinkData
ElinkAligned
ElinkWidth
OutputWidth

Reset

clk40

DataOut
DataOutValid

BitSlip

clk40

reset
reset

clk40

reset

6632
AuroraDecoder

DataIn
DataInValid
BitSlip

reset

clk40
clk

aurora_header
aurora_frame
aurora_valid
aurora_rden

clk160 clk160

32

rd53b_dataprocessor
aurora_header
aurora_frame
aurora_valid
aurora_rden

rst

clk

m_axis_event_aclk
m_axis_event_aresetn

m_axis_event
m_axis_event_tready
m_axis_service_aclk

m_axis_service_aresetn
m_axis_service

m_axis_service_tready
event_tag

event_tag_valid

Figure 8.8: Block diagram of a single E-Path decoder in lpGBT / Pixel (RD53b) mode.

8.4.2.2 INTERFACE TO CRTOHOST

aclk

tdata[31:0] P0 P0 P1 P2 P4 P5 P6 P7

tvalid

tlast

tkeep[3:0] BE BE

tuser[2:0] Busy, ChunkError, CRC Busy, ChunkError, CRC

aresetn

tready

c

d

e

a b

M
as

te
r

Sl
av

e

Figure 8.9: Example waveform of a typical AXI stream 32b transfer. [7].

8. Detailed Functional Description and Specification Page 38 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Name Direction Type Remark
clk250 in std_logic Used for driving aclk and internal

processing
aclk out std_logic Driven by decoding
aresetn in std_logic Active low reset
m_axis out axis_32_2d_array_type Towards CRToHost
m_axis_tready in axis_tready_2d_array_type From CRToHost
m_axis_prog_empty out axis_tready_2d_array_type Towards CRToHost, indicating that 1

block of data is available in the FIFO
Table 8.1: Ports to/from CRToHost..

8.4.2.3 INTERFACE TO LINK WRAPPER

Name Direction Type Remark
FULL_UPLINK_USER_DATA in txrx33b_type Full mode data input
GBT_UPLINK_USER_DATA in txrx120b_type GBT data input
lpGBT_UPLINK_USER_DATA in txrx230b_type lpGBT data input
lpGBT_UPLINK_EC_DATA in txrx2b_type lpGBT EC data input
lpGBT_UPLINK_IC_DATA in txrx2b_type lpGBT IC data input
LinkAligned in std_logic_vector Transceiver aligned
RXUSERCLK in std_logic_vector Data clock for FULL mode
clk40 in std_logic LHC BC Clock

Table 8.2: Ports to/from Link Wrapper..

8.4.2.4 INTERFACE TO WUPPER

Name Direction Type Remark
register_map_control in register_map_control_type Settings
register_map_decoding_monitor out register_map_decoding_monitor_type Monitoring signals

Table 8.3: Ports to/from Wupper..

8.4.3 FUNCTIONAL DESCRIPTION

The decoding block contains no functional logic, it is only used to instantiate the different decoding blocks,
depending on the generic FIRMWARE_MODE. Therefore the decoding block contains a set of if/generate and
for/generate statements in which the functional protocol decoders are instantiated. Additionally the arrays of
buses (AXI stream 32 array, GBT, lpGBT and FULL mode data array) are indexed and routed towards and
from the correct decoder.

8.4.4 CONFIGURATION

The Wupper registermap will be routed towards the different protocol decoders and virtual E-links. Decoding
has no configuration settings itself.

8.4.5 STATUS INDICATORS

Status indicators from the various protocol decoders are described in their specific sections.

8. Detailed Functional Description and Specification Page 39 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.6 LATENCY

Latency of the various protocol decoders is described in their specific sections.

8.4.7 ESTIMATED RESOURCE USAGE

Resource E-Group GBT link 24 GBT links % (XKCU115)
LUTs 1348 6740 161760 24.38%
Flip-Flops 1592 7960 191040 14.40%
Block RAM 4 20 480 22.22%

Table 8.4: Resource consumption in GBT mode, fully configurable.

8. Detailed Functional Description and Specification Page 40 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.8 DECODING GEARBOX

8.4.8.1 INTRODUCTION

for lpGBT and GBT based firmware flavours, the data arrives at E-Link level with for GBT mode 2, 4 or 8 bits
per BC clock cycle. for lpGBT mode the data arrives with 8, 16 or 32 bits per BC clock cycle.

The different protocol decoders require different data widths per BC clock cycle, the Decoding Gearbox
will deliver these different data widths by means of shift registers to the different decoder blocks. The available
widths on in- and output of the gearbox will be partly configurable at runtime and partly at build time.

8.4.8.2 INTERFACES

8.4.8.2.1 OVERVIEW

DecodingGearBox

ELinkData std_logic_vector(MAX_INPUT-1 downto 0)

ElinkAligned std_logic

ElinkWidth
runtime configuration: 0:2, 1:4, 2:8, 3:16, 4:32
std_logic_vector(2 downto 0)

OutputWidth
runtime configuration: 0:8, 1:10, 2:20, 3:40, 4:66
std_logic_vector(2 downto 0)

Reset
Active high reset
std_logic

clk40
BC clock
std_logic

DataOut
Aligned output with set number of bits.

std_logic_vector(MAX_OUTPUT-1 downto 0)

DataOutValid
DataOut valid indicator

std_logic

BitSlip
Triggered by the protocol decoder to shift one bit

std_logic

MAX_INPUT : integer := 32

MAX_OUTPUT : integer := 66

SUPPORT_INPUT : std_logic_vector(4 downto 0)
32, 16, 8, 4, 2

SUPPORT_OUTPUT : std_logic_vector(4 downto 0)
66, 4x10, 2x10, 10, 8

Figure 8.10: The Decoding GearBox entity.

clk40

reset

BitSlip

ElinkAligned

ElinkData [7:0] 5c 17 05 c1 70 5c 17 05 c1 70 5c 17 05 c1 70 5c 17 05 c1 70

DataOut [9:0] 000 170 2e0 1c1 382 305

DataOutValid

ElinkWidth 2

OutputWidth 1

Figure 8.11: DecodingGearBox running with 8 bit input, 10 bit output. The data is constant 0x305 (k28.5+).
[7].

8.4.8.2.2 INTERFACE TO GBT OR LPGBT WRAPPER

Data from an E-link (lpGBT mode or GBT mode) will be connected to ELinkData. Depending on the maximum
required speed of the E-link and also the position of the DecodingGearBox in the E-Group, MAX_INPUT will

8. Detailed Functional Description and Specification Page 41 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

be set. For instance, a GBT mode E-Group will contain 2 Gearboxes with MAX_INPUT set to 8, 2 Gearboxes
with MAX_INPUT set to 4 and 4 Gearboxes with MAX_INPUT set to 2. This way a total of 8 streams of
variable bandwidth (80, 160 or 320 Mb/s) can be created.

Apart from ElinkData there is one other connection to the GBT or lpGBT wrapper: ElinkAligned, which will
be connected to the GBT or lpGBT aligned flag of the (lp)GBT wrapper.

8.4.8.2.3 INTERFACE TO DECODERS

3 ports are connected to the different protocol decoders: DataOut, DataOutValid and BitSlip.
DataOut
The input bandwidth / number of bits (MAX_INPUT) should not exceed MAX_OUTPUT. For a 16 bit E-link

in 8b10b mode, the OutputWidth has to be set to 20 bits("010"), this way every clock cycle carries 2 8b10b
words on DataOut if DataOutValid = ’1’. For a 1.28Gb/s E-link in 8b10b the number of 8b10b decoders per
DecodingGearBox will be 4.

DataOutValid
DataOutValid indicates that enough bits were shifted into the gearbox, and the correct number of bits were

loaded on DataOut. Correct alignment of the 8, 10, 20, 40 or 66 bit word is not guaranteed or indicated in any
way. It is the responsibility of the protocol decoder to detect alignment.

BitSlip If the protocol decoder detects a misalignment of DataOut, a pulse of 1 clockcycle can be given
on BitSlip. This will shift DataOut by 1 bit.

8.4.8.3 FUNCTIONAL DESCRIPTION

Depending on the configuration, the DecodingGearBox will shift a number of bits of ElinkData (2, 4, 8, 16
or 32) into a shift register every clockcycle. The number of bits in the shift register are counted. Depending
on the configured OutputWidth (8, 10, 20, 40 or 66) the data will be loaded on DataOut and the number of
output bits will be subtracted from the internal bit counter. When data is available on DataOut, DataOutValid
indicates that the data can be loaded into the decoder for further handling.

A pulse one BitSlip will decrement the internal counter by 1, resulting in a bitshift on the output. This can
be used for alignment of the data that goes into the decoder.

8.4.8.4 CONFIGURATION

Buildtime configuration 4 generics of the DecoderGearBox define its functionality.

• MAX_INPUT: Defines the maximum number of bits that is supported at ElinkData

• MAX_OUPUT: Defines the maximum number of bits that is supported at DataOut

• SUPPORT_INPUT: a 5 bit vector of which every bit configures a supported input width to be configured

– 0: 2 bit / 80 Mb/s E-Link is supported

– 1: 4 bit / 160 Mb/s E-Link is supported

– 2: 8 bit / 320 Mb/s E-Link is supported

– 3: 16 bit / 640 Mb/s E-Link is supported

– 4: 32 bit / 1280 Mb/s E-Link is supported

• SUPPORT_OUTPUT: a 5 bit vector of which every bit configures a supported output width to be con-
figured

– 0: 8 bit output is supported

– 1: 10 bit output is supported

– 2: 20 bit (2 x 10 bit) output is supported

– 3: 40 bit (4 x 10 bit) output is supported

– 4: 66 bit output (Aurora) is supported

8. Detailed Functional Description and Specification Page 42 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Runtime configuration
The DecodingGearBox can also be configured at runtime, if the option was supported at build time. Two

input ports are provided for this purpose:

• ElinkWidth[2:0] can be connected to a register of the Wupper register map to configure the width of the
E-Link to be decoded. Possible values are:

– 0: 2 bit / 80Mb/s Elink connected to ElinkData[1:0]

– 1: 4 bit / 160Mb/s Elink connected to ElinkData[3:0]

– 2: 8 bit / 320Mb/s Elink connected to ElinkData[7:0]

– 3: 16 bit / 640Mb/s Elink connected to ElinkData[15:0]

– 4: 32 bit / 1280Mb/s Elink connected to ElinkData[31:0]

• OutputWidth[2:0] can be connected to a register of the Wupper register map to configure the width of
the path to the decoder. Possible values are:

– 0: 8 bit for HDLC or no decoding

– 1: 10 bit for 8b10b decoding

– 2: 20 bit for 8b10b decoding (2 decoders)

– 3: 40 bit for 8b10b decoding (4 decoders)

– 4: 66 bit for Aurora 64b66b decoding

8.4.8.5 STATUS INDICATORS

DecodingGearBox has no status indicators. Status of the protocol decoder has to be provided by the decoder
itself.

8.4.8.6 LATENCY

The Decoding Gearbox has a latency for all configurations of 1 clockcycle (40,079 Mhz, 25 ns), that means
the output data will be valid 1 clockcycle after the last bits of the E-link data were delivered.

8.4.8.7 ERROR HANDLING

DecodingGearBox has no internal error checking. The user / software must make sure that the configuration
ports are set up correctly, the protocol decoder should be able to detect and handle protocol errors on the
E-link.

8.4.8.8 ESTIMATED RESOURCE USAGE

In2 In4 In8 In16 In32 Out8 Out10 Out20 Out40 Out66 LUT FF Remark
1 X X 33 23 HDLC
2 X X X 44 29 HDLC, 8b10b
3 X X X X 65 37 HDLC, 8b10b
4 X X X X X 93 40 HDLC, 8b10b
5 X X 66 37 8b10b
6 X X X X 137 71 8b10b
7 X X X X X X 400 153 8b10b
8 X X 332 207 Aurora

Table 8.5: Estimated resource consumption for Decoding Gearbox..

8. Detailed Functional Description and Specification Page 43 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

In GBT mode firmware we can implement maximum 8 2-bit E-links per E-group, 4 4-bit E-links and 2 8-bit
E-links. Assuming a fully configurable 24-channel GBT mode firmware that supports 8b10b, the resources
add up as follows for the XKCU115 (Phase I prototype card).

LUT FF LUT(% XKCU115) FF(% XKCU115)
Egroup 492 270 0.07% 0.02%
Link 2460 1350 0.37% 0.11%
Card (24) 59040 32400 8.90% 2.74%

Table 8.6: Estimated resource consumption for Decoding Gearbox in GBT mode..

The necessary configurations for lpGBT mode are not fully defined yet. It is not clear whether there will
for instance be a use case for 8b10b encoding on a 1.28Gb (32 bit) E-link.

Assuming that all the possible 8b10b configurations in lpGBT mode will be implemented, the resources of
the XKCU115 (Phase I prototype card) will be as follows.

LUT FF LUT(% XKCU115) FF(% XKCU115)
Egroup 669 298 0.10% 0.03%
Link 4014 1788 0.61% 0.15%
Card (24) 96336 42912 14.52% 3.63%

Table 8.7: Estimated resource consumption for Decoding Gearbox in lpGBT mode (8b10b)..

In the pixel (RD53b) mode, only Aurora encoding will be used on 32 bit E-links. This will give the following
figure on the XKCU115 (Phase I prototype card)

LUT FF LUT(% XKCU115) FF(% XKCU115)
Egroup 332 207 0.05% 0.02%
Link 1992 1242 0.30% 0.11%
Card (24) 47808 29808 7.21% 2.52%

Table 8.8: Estimated resource consumption for Decoding Gearbox in lpGBT mode (Aurora)..

8. Detailed Functional Description and Specification Page 44 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.9 STRIPDECODER

The decoder for ITk Strips will be the same decoder as described in section 8.4.13. Special K-characters are
defined for the strips at build time, but the behaviour is the same.

8. Detailed Functional Description and Specification Page 45 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.10 ENDEAVOUR DECODER

8.4.10.1 INTRODUCTION

Strips firmware has blocks for communicating with the AMAC ASIC chips: the Endeavour Decoder and the
Endeavour Encoder. The AMAC is designed to serve monitoring and Low Voltage and High Voltage control
functions on the ATLAS ITk Strips modules. The Endeavour is a serial “Morse code” protocol, which tolerates
±50 % variation with respect to the nominal 40 MHz AMAC ring-oscillator frequency.

The Endeavour Decoder decodes the data arriving from an AMAC chip. Polarity of the AMAC Decoder
serial line can be configured by setting bitfield INVERT_AMAC_IN of register GLOBAL_STRIPS_CONFIG.

8.4.10.2 INTERFACES

Figure 8.12: The Endeavour deglitcher entity.

EndeavourDecoder

amac_signal
Connect to Deglitcher
std_logic

LinkAligned
(lp)GBT link aligned
std_logic

invert_polarity
invert link polatiry
std_logic

aresetn
Active low reset in AXI clock domain
std_logic

rst
Active high reset in BC clock domain
std_logic

clk40
(lp)GBT BC clock
std_logic

m_axis_aclk
CRToHost Clock
std_logic

m_axis
Output to CRToHost

axis_32_type

m_axis_tready
from CRToHost

std_logic

m_axis_prog_emptystd_logic

DEBUG_en : boolean := false

Figure 8.13: The Endeavour decoder entity.

The Endeavour Decoder decodes data from an E-link and send its output towards the ToHost Central Router
(CRToHost) via 32-bit AXI stream interface. In the Strips firmware, the data input is connected to the EC elink
of lpGBT frame.

Module ports are listed below. Unless otherwise indicated, the input signals are sampled in clk40 domain.

• clk40 - BC clock driving the decoder logic

• m_axis_aclk - clock for communication with the Central Router

• amac_signal - “Morse code” signal from the AMAC chip

• LinkAligned (active HIGH) - indicates that the lpGBT link is aligned and decoding may be enabled

• aresetn - asynchronous reset for the AXI stream FIFO. Sampled in m_axis_aclk domain.

• rst - synchronous reset for the main logic

8. Detailed Functional Description and Specification Page 46 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

• m_axis - output AXI Stream

• invert_polarity - inverts polarity of amac_signal before decoding

• m_axis_tready - indicates that m_axis is ready to accept the data. Sampled in m_axis_aclk domain.

• m_axis_prog_empty - output indicates that the output FIFO is close to being empty. Sampled in m_-
axis_aclk domain.

8.4.10.3 FUNCTIONAL DESCRIPTION

Endeavour Decoder de-serializes AMAC data according to these rules:

• serial line is LOW when idle

• HIGH pulses 6 < n < 22 BC clock periods long are decoded as ZERO

• HIGH pulses 29 < n < 124 BC clock periods long are decoded as ONE

• LOW signal longer than 75 clocks following a pulse is decoded as end-of-word

Decoded words are sent to the host via 32-bit AXI Stream interface, with individual words sent as separate
chunks.

8.4.10.4 ERROR HANDLING

Chunk error is asserted if the timing of the received waveform does not confirm to the AMAC specification, for
example:

• bit pulse is longer than the maximum duration of ONE pulse (bit is truncated)

• bit pulse is shorter than the minimum duration of ZERO pulse (bit is decoded as ZERO)

• bit pulse is longer than the maximum duration of ZERO pulse, but shorter than the minimum duration of
ONE pulse (bit is decoded as ONE)

• bit gap is shorter than the minimum duration of a bit gap

If the number of received bits is not divisible by 8, the last byte will have zero bits prepended to the MSB
side. There is no indication of whether this situation occurred.

8.4.10.5 ESTIMATED RESOURCE USAGE

Resource lpGBT link 24 GBT links % (XKCU115)
LUTs 149 3576 <0.1%
Flip-Flops 185 4440 <0.1%
Block RAM 0.5 12 0.5%

Table 8.9: Resource consumption of Endeavour Decoder module.

8. Detailed Functional Description and Specification Page 47 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.11 AURORA 64B/66B DECODER FOR ITKPIX

An ITkPix IC outputs data serially via 1 to 4 lanes at 1.28 Gb/s per lane [8]. The data are encoded with 64b/66b
line code as per IEEE 802.3ae-2002 amendment. Data are transfered in 66-bit blocks where the first two bits
are sync header and the other 64 bits are payload. Two or more lanes can be agregated into a transmission
channel with the Aurora 64b/66b protocol from Xilinx [9]. The output data can be pixel hit data, service data,
or idle blocks (see Fig. 8.14). Frames on all output lanes of an ITkPix are strictly aligned; their data block
types are the same. The pixel hit data are transmitted as variable-length streams. Each stream may contain
data from multiple ITkPix ICs when on-chip data merging is used. Streams use a sophisticated data format
and their processing is discussed in Section 8.4.12. The link level-firmware, i.e. the Aurora 64b/66b decoder,
does not process the streams.

N data blocks N data blocks N data blocks
1 service block 1 service block

10b address 16b valueK-Word

0-511 are global registers
512-895 are offset pixel row numbers

63b of stream data

2b ID

OR

... ...

OR

10

 ID

01

2b stat. 10b address 16b value

NS

61b of stream data01 NS

AURORA code0x7810 48b unused

Figure 8.14: ITkPix output data consists of data or idle blocks interrupted by periodic service blocks. The
content of each block is shown before scrambling. NS stands for New Stream bit and ID is the two least
significant bits of chip ID.

An instance of the Aurora 64b/66b decoder receives seven 32-bit words every clock cycle from the lpGBT
decoder with one ITkPix lane as a 32-bit word (e-link) as shown in Fig. 8.15. Each 32-bit word is passed to
a gearbox that forms 66-bit blocks; the gearbox outputs 32+2 data bits and 2 control bits each clock cycle.
Phase alignment of a gearbox is done with a lane initializtion state machine (aka block lock) as descibed in
IEEE 802.3ae (2002) Figure 49-12. The state machine uses sync header bits. Only "01" and "10" are valid
sync headers. To reach the locked state the state machine needs to receive 6000 valid headers sequentially.
Alignment is lost if the state machine detects 16 invalid headers among 5999 or fewer headers. Alignment of
lanes can be found in registers DECODING_LINK_ALIGNED_00 - DECODING_LINK_ALIGNED_23.

While the sync headers are transmitted unscambled, the payload bits are scambled with a self-fynchronizing
scrambler polynomial G(x) = 1 + x39

+ x58 as per IEEE 802.3ae. The decoder descrambles the payload data
and performs time deskew of selected lanes using idle blocks with channel bonding bits. The lane ordering
and selection is done with DECODING_LINK_CB(LINK).CBOPT registers. After completing the time deskew
the transmission latencies of these lanes are equal; lanes with the smaller latencies are delayed. The lane
with the highest latency is passed through (it is not delayed at all). Time deskew is needed to aggregate the
selected lanes (aka channel bond) into a single channel. The channel bonding idles are transmitted on all
lanes at the same time at regular intervals. The low-latency deskew is achieved by using shift registers. Se-
lection of lanes for time-deskew can be done via DECODING_LINK_CB(LINK).CBOPT registers. A deskew
block uses a state machine to determine a delay for each transmission lane. The status of the time deskew
state machines is available in registers AAABBBCCC.

The link payload can be inspected after descrambling with YARR_DEBUG_ALLEGROUP_TOHOST(LINK).REF_-
PACKET(63 downto 32) and YARR_DEBUG_ALLEGROUP_TOHOST(LINK).CNT_RX_PACKET registers. The

8. Detailed Functional Description and Specification Page 48 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

3-lane aggregator

40 MHz to 160 MHz
converter

40 MHz to 160 MHz
converter

64b to 32b splitter 64b to 32b splitter 64b to 32b splitter 64b to 32b splitter

Symbol decoding Symbol decoding

Latency deskew

32+2b to 66b gearbox 32+2b to 66b gearbox

Descrambler Descrambler

Lane init SM Lane init SM 32b to 32+2b gearbox 32b to 32+2b gearbox 32b to 32+2b gearbox 7x

224b at 40 MHz

Lane init SM
7x (bit slip)

7x (32b+2b + control signals)
7x (2b sync header + control signals)

Descrambler 7x

7x (32b+2b + control signals)

32+2b to 66b gearbox

7 to 7 lane remap

7x

7x (66b+valid)

7x (66b+valid)

Latency deskew 2x

7x (66b+valid)

MUX 7x

Symbol decoding 7x
7x (soft errors and busy)

7x (66b+valid)

7x (pixel data: 64b+valid) 7x (service data: 64b+valid+tlast)

7x

64b to 32b splitter 64b to 32b splitter 7x 7x

40 MHz to 160 MHz
clock up-converter

7x (32b+valid+tlast)
at 40 MHz

7x

7x (32b+valid+tlast)
at 160 MHz

40 MHz to 160 MHz
converter

40 MHz to 160 MHz
converter

40 MHz to 160 MHz
clock up-converter

7x (32b+valid+tlast) at 40 MHz

7x

7x (32b+valid+tlast) at 160 MHz

3-lane aggregator

MUX 7x

2x (32b+valid+tlast)
at 160 MHz

2x

Service data output Pixel data output

7x (32b+valid+tlast) at 160 MHz

Figure 8.15: Dataflow in the 64b/66b decoder.

8. Detailed Functional Description and Specification Page 49 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

counter is for all the lanes for a given lpGBT link. It increments if there is a data block containing the reference
word.

The symbol decoding block separates the idle blocks, pixel hit data, and service data. ItkPix transmits
Service data as user K-blocks. Blocks with an incorrect data format (IDLE and user K-blocks) are counted as
soft errors. The soft error counters are in AAA_DECODING_SOFT_ERROR register. The errors are detected
separately for each lane. The user K-blocks from each lane are output directly to the host (user). The BUSY
bits are also extracted from the K-blocks and output as separate signals. The K-blocks can be masked via the
DECODING_MASK64B66BKBLOCK register. Pixel hit data are transmitted as data blocks while separator
and separator-7 blocks are not used by ITkPix. Pixel hit data from the selected lanes can be aggregated into
channels as needed.

Input to the decoder and the majority of processing is done with the 40 MHz clock. The data is ouput with
a 160 MHz clock that is also used for the lane aggregation blocks (channel bonding). The decoder is reset
if the corresponding lpGBT link loses lock. Each lane can be disabled individually with the DECODING_-
DISEGROUP register.

The decoder was designed for low-latency data processing. The cumulative latency of the decoder is
under 200 ns. About three quarters of the latency is attributed to the gearboxes.

A single decoder takes 7.9k LUTs and 10.2k 28 FFs (Table 8.10), which result in 190k LUTs and 245k FFs
for 24 decoders (see Tab. 8.10). For comparison, a VM1802 FPGA offers about 900k LUTs and 27M FFs.

Number of decoders 1 24

LUTs 7896 189.5k
Flip-Flops 10257 246.2k
RAMB36 28 672
RAMB18 7 168

Table 8.10: FPGA resource consumption of 64b/66b Aurora decoders for ITkPix. There is one decoder per
an lpGBT link.

The FELIX internal data emulator can also be used with a 64b66b bitstream to debug the decoder when
ITkPix is not available. The emulator can be enabled with GBT_TOHOST_FANOUT.SEL(LINK) register.

The firmware has been extensively tested and validated with simulations, calibration scans and testbeam.

8. Detailed Functional Description and Specification Page 50 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.12 RD53B DECODER

8.4.12.1 INTRODUCTION

The RD53B Decoder is responsible for preprocessing the compressed and encoded data from the ITk Pixel
front-end chip. It processes the Aurora-decoded and channel-bonded raw data from the Aurora Decoder (see
Section 8.4.11) and splits off event data and service data. The event data is also split into single events
and the hit information will be decompressed. Both data streams are sent through the AXI-Stream interface
towards the ToHost Central Router (see Section 8.12).

8.4.12.2 INTERFACES

rd53b_dataprocessor

aurora_header
64b66b header from Aurora decoder
std_logic_vector(1 downto 0)

aurora_frame
64b66b payload from Aurora decoder
std_logic_vector(63 downto 0)

aurora_valid
valid flag from Aurora decoder
std_logic

enable_multichip
configuration multichip enabled or disabled
std_logic

enable_binarytree
binary tree enabled or disabled
std_logic ('1')

enable_tot
ToT field enabled or disabled
std_logic ('1')

drop_tot
drop ToT at decoder output
std_logic ('0')

reset
reset synchronous to clk
std_logic

event_axis_aresetn
async. reset for event AXIstream
std_logic

service_axis_aresetn
async. reset for event AXIstream
std_logic

clk
clock input used for Aurora input
std_logic

event_axis_aclk
clock input for event AXIstream interface
std_logic

service_axis_aclk
clock input for event AXIstream interface
std_logic

event_axis
event AXIstream output

axis_32_type

event_axis_tready
event AXIstream ready input

std_logic

service_axis
event AXIstream output

axis_32_type

service_axis_tready
event AXIstream ready input

std_logic

NUM_STREAMDECODERS_PER_FRONTEND : integer range 1 to 8 := 1
stream decoders per frontend chip to be implemented

NUM_FRONTENDS : integer range 1 to 4 := 1
max. frontend chips connected to Aurora link

Figure 8.16: The RD53b Dataprocessor entity.

8.4.12.2.1 OVERVIEW

The RD53B Decoder has four main interfaces. The incomoing data is passed through a simple data bus with
data valid signal and no backpressure. All outgoing data is sent through AXI-Stream interfaces to the ToHost
Central Router. Additional to the data interfaces, there is also a configuration interface to change settings in
the decoder. Figure 8.16 shows the entity of the RD53B Decoder.

8.4.12.2.2 INTERFACE TO THE AURORA DECODER

The interface to the Aurora decoder is kept as simple as possible. It consists of a 64-bit data bus, taking the
data bits of a full Aurora frame. Additional to that a 2-bit data bus carries the header bits of the Aurora frame
to be able to distinguish between event and service frames. A data valid bit indicates that both data busses
are valid during that clock cycle.

8. Detailed Functional Description and Specification Page 51 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.12.2.3 INTERFACE TO THE TOHOST CENTRAL ROUTER

The data outputs for service and event data to the ToHost Central Router are both AXI-Stream 32b busses.
An example waveform of the AXI-Stream 32b bus is given in Figure 8.9.

Remark 8.1: ToDo

Describe internal data structure of the AXI interface!

8.4.12.3 FUNCTIONAL DESCRIPTION

8.4.12.3.1 INPUT STAGE

The input stage will distribute the Aurora frames to the different sub-decoders. First it will distinguish service
data from event data by looking at the Aurora header. All frames with header 10 are identified as service
frames. If these service frames contain register data (Aurora codes 0xB4, 0x55, 0x99, 0xD2) they are put into
the service data FIFO. Frames with header 01 contain event data. They are split by front-ends (if multi-chip
readout is enabled) and streams and put into FIFOs in front of every stream decoder. Frames with an invalid
Aurora header (00 or 11) are dropped.

8.4.12.3.2 STREAM DECODER

The stream decoders are the central part of the RD53B Decoder. Each stream decoder will process a single
event stream from an RD53B front-end chip. Internally, it contains a finite state machine which controls the
splitting of the different fields in the event stream. The fields are then re-assembled into an AXI-Stream 32b
bus. If a stream contains multiple events, they are split into packets.

8.4.12.3.3 OUTPUT MULTIPLEXER

The output multiplexer is responsible for merging the event streams from multiple stream decoders into a
single AXI-Stream 32b bus. First, all events are collected into packet FIFOs. If a packet is completed it will be
forwarded to the output in one piece. The arbitration of this merging is round-robin.

8.4.12.4 CONFIGURATION

The configuration of the RD53B Decoder is split into two parts. There is a static synthesis-time configuration,
and a dynamic run-time configuration.

The static configuration options are passed as a generic:

• NUM_STREAMDECODERS_PER_FRONTEND: integer between 1 and 8, will define the maximum number of
streams which can be processed in parallel. As each stream decoder has a limited throughput this
number should be at least d front-end bandwidth

stream decoder througput e

• NUM_FRONTENDS: integer between 1 and 4, will define the number of front-end chips sharing a single
Aurora link. Each front-end requires its own stream decoder.

The dynamic configuration is passed through four configuration bits in the port of the RD53B Decoder.
These bits can be changed at run-time and have to match the configuration of the front-end chip, otherwise
the decoding will not work as expected and produce garbage. Following configuration bits are available:

• enable_multichip: a logic-1 on this port enables the multi-chip readout mode in the decoder. If the
multi-chip mode is enabled, each Aurora frame has to start with a 2-bit chip ID followed by the data for
this particular front-end chip. If the multi-chip mode is disabled, all data bits of the Aurora frame will
be decoded. Note: The front-end chip usually powers-up in the multi-chip mode, even if only a single
front-end chip is connected to the Aurora link.

8. Detailed Functional Description and Specification Page 52 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

• enable_binarytree: a logic-1 on this port configures the decoder to uncompress the binary tree into
the uncompressed 16-bit hitmap. For debugging purposes the binary tree can be disabled in the front-
end chip. Then the decoder has to be configured accordingly.

• enable_tot: If ToT fields in the data stream are present this bit has to be set to logic-1.

• drop_tot: To reduce the output bandwidth of the RD53B Decoder the ToT fields can be dropped in the
decoder.

8.4.12.5 STATUS INDICATORS

Currently, there are no status indicators foreseen. The RD53B protocol does not contain enough redundancy
for proper error checking. Also the stream-based encoding allows to recover from decoding errors at the
beginning of a new stream.

8.4.12.6 LATENCY

Latency studies have been made with a data set from the ATLAS simulation group for a specific region in
the outer part of the ITk Pixel detector. Under the assumption of a 50 % link occupancy and with five stream
decoders per front-end chip, the latency between input and output of the decoder has been measured using a
behavioral simulation. In this simulation the latency is defined as the difference between two timestamp. The
first timestamp is set, when the event header is provided at the input of the decoder. A second timestamp is
created when the event appears in the AXI stream at the output of the decoder. Figure 8.17 shows the latency
distributions of all simulated events for different number of events per data stream.

Also the impact of the binary-tree encoding in the event data has been analyzed with respect to latency.
Therefore, an example data set with the uncompressed raw 16-bit hitmap has been generated. Figure 8.18
shows the latency distributions for the same number of events per stream as before, but with disabled binary
tree.

8.4.12.7 ESTIMATED RESOURCE USAGE

For the resource usage the total number of stream decoders is important:
NUM_STREAMDECODERS_TOTAL = NUM_STREAMDECODERS_PER_FRONTEND × NUM_FRONTENDS

It is now possible to estimate the resource usage for each type of FPGA element:

• LUTs = 3200 × NUM_STREAMDECODERS_TOTAL

• Flipflops = 720 × NUM_STREAMDECODERS_TOTAL + 264

• BRAMs = 2 × NUM_STREAMDECODERS_TOTAL + 1

All numbers have been derived from synthesis results of the pure RD53B Decoder.

8. Detailed Functional Description and Specification Page 53 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

(a) Nevent = 1 (b) Nevent = 2

(c) Nevent = 5 (d) Nevent = 20

Figure 8.17: RD53B Decoder latency for different number of events per stream (Nevent) with a binary-tree
encoded hitmap.

8. Detailed Functional Description and Specification Page 54 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

(a) Nevent = 1 (b) Nevent = 2

(c) Nevent = 5 (d) Nevent = 20

Figure 8.18: RD53B Decoder latency for different number of events per stream (Nevent) with uncompressed
hitmap..

8. Detailed Functional Description and Specification Page 55 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.13 8B10B E-LINK DECODER

8.4.13.1 INTRODUCTION

The 8b10b Decoder has been extensively used in phase 1 FELIX in GBT mode. In Phase II, the 8b10b
decoder has been decoupled from the E-proc, and retains in the generic E-Path in GBT and lpGBT mode
firmware flavours.

The tasks for the 8b10b decoder are:

• Alignment of the 8b10b words using K28.5 / BitSlip

• Decode the 8b10b stream to 8-bits + CharIsK

• Detect Framing Errors

• Detect E-link BUSY assertion

• Deframing: Convert Decoded byte + CharIsK into DataOut, DataOutValid and EOP

8.4.13.2 INTERFACES

Decoder8b10b

DataIn
10b Data from GearBox
std_logic_vector(9 downto 0)

DataInValid
Data validated by GearBox
std_logic

BitSlip
For GearBox alignment
std_logic

AlignmentPulse
2 pulses to realign if no K28.5 found
std_logic

reset
Acitve high reset
std_logic

clk40
BC clock for DataIn
std_logic

DataOut
Towards ByteToAxiStream

std_logic_vector(7 downto 0)

DataOutValid
Towards ByteToAxiStream

std_logic

EOP
End of chunk indicator

std_logic

FramingError
Indicator for faulty input stream

std_logic

ElinkBusy
Elink has sent SOB, indicating busy.

std_logic

Figure 8.19: The 8b10b Decoder entity.

8.4.13.2.1 INTERFACE TO DECODINGGEARBOX

The 8b10b decoder receives DataIn[9:0] and DataInValid from the DecodingGearBox. If the 10 bit word is
misaligned, a pulse can be generated on BitSlip in order to skip one bit in the gearbox.

8.4.13.2.2 INTERFACE TO BYTETOAXISTREAM

All the outputports of the 8b10b decoder will be connected to ByteToAxiStream.

• DataOut[7:0] : Contains payload data. Comma characters are stripped from the data stream

• DataOutValid : Indicates that DataOut contains payload data

• EOP : End of packet (chunk) indicator

• FramingError : EOP or SOP character was missing from the input stream.

• ElinkBusy : FrontEnd has asserted busy (Using SOP K-character.)

8. Detailed Functional Description and Specification Page 56 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.13.3 FUNCTIONAL DESCRIPTION

8.4.13.3.1 ALIGNMENT

The 8b10b encoder must perform an alignment sequence on the 10b word on DataIn. When 2 consecutive
Idle Comma characters are received (K28.5 in GBT mode, K28.1 in Strip or FEI4 mode), the Decoder is in
an aligned state. Only in the aligned state, DataOutValid will be asserted. A timer external to the 8b10b
decoder generates pulses at a given adjustable interval. The decoder should count 2 pulses. Detection of 2
consecutive Idle comma characters causes the counter to reset to 0. If the counter arrives at the value of 2,
the alignment state of the decoder will be deasserted and a pulse will be given on BitSlip. BitSlip will cause
the DecodingGearBox to skip one bit and the decoder cat retry the alignment sequence.

8.4.13.3.2 8B10B DECODING

Comma characters:

Function GBT mode Strip/LCB FEI4 Meaning
Comma K28.5 K28.1 K28.1 Idle character
SOP K28.1 K28.7 K28.7 Start of chunk / packet
EOP K28.6 K28.5 K28.5 End of chunk / packet
SOB K28.2 N/A N/A Start of busy
EOB K28.3 N/A N/A End of busy

Table 8.11: Comma characters with a special meaning in different firmware flavours.

The functional description of the 8b10b decoder itself, converting a 10b word into 8 bit + CharIsK is well
defined in other literature, and the code has been implemented in phase 1 FELIX.

8.4.13.3.3 FRAMING ERROR DETECTION

A chunk or packet of data coming from the FrontEnd electronics over an E-link should be encapsulated in
SOP and EOP characters (see table 8.11). A framing error is asserted if any of the following conditions is
violated:

• A payload data byte that is not encapsulated within SOP / EOP

• An SOP occurring before a chunk was ended with EOP

• An EOP occurring without an SOP.

Note that SOB and EOB (Start and End of BUSY) may occur at any moment within or outside a chunk.
Also IDLE comma characters may be inserted in the middle of a chunk without assertion of FramingError.

8.4.13.3.4 E-LINK BUSY ASSERTION

An FrontEnd may assert BUSY by sending an SOB (Start Of BUSY) character (K28.2, see 8.11) EOB (K28.3)
will deassert BUSY. Whether the BUSY LEMO connector will actually be raised on E-link busy can be config-
ured through the register map, see also section 3

8.4.13.3.5 DEFRAMING

DataOut will contain only the payload data (CharIsK = ’0’) that is decoded from the 8b10b stream. The last
byte of a chunk / packet will be indicated with EOP. For this mechanism an extra pipeline stage after the 8b10b
decoder is needed to store the payload data, until the next byte is validated. If the next byte is an EOP comma
character, the EOP signal will be asserted with the last payload byte. SOP, Idle, SOB and EOB characters will
simply be ignored by the deframer.

8. Detailed Functional Description and Specification Page 57 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.13.4 CONFIGURATION

The meaning of the different comma characters in table 8.11 can be configured based on the FIRMWARE_-
MODE generic at build time. It is not foreseen at the moment to make a runtime configurable option for the
8b10b decoder.

8.4.13.5 STATUS INDICATORS

The 8b10b decoder will output ElinkAligned into the Wupper registermap. Framing errors and busy will be
reported through the datastream and will end up in chunk trailers.

8.4.13.6 LATENCY

The 8b10b decoder has a latency of 1 clock cycle (25 ns). The deframer adds another clock. This will bring
the total latency of the 8b10b Decoding block to 2 BC clocks or 50 ns.

8.4.13.7 ERROR HANDLING

Misalignment of the 8b10b encoded E-link is reported through the Wupper registermap. Framing error and
ElinkBusy will be reported through the data stream.

8.4.13.8 ESTIMATED RESOURCE USAGE

The resource usage will be estimated for the complete GBT Egroup and the complete decoding block per
firmware mode.

8. Detailed Functional Description and Specification Page 58 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.14 HDLC E-LINK DECODER

8.4.14.1 INTRODUCTION

The HDLC Protocol [10] is used by the GBTx chip, to configure the chip itself through the Internal Control (IC)
E-link, and to communicate with the GBT Slow Control Adaptor (GBT-SCA) over the External Control (EC)
E-Link or any other 80 Mb/s E-link of the GBT or lpGBT.

The HDLC decoder used in Phase II FELIX was based on the GBT-sc module for FPGA by Julian Mendez
[11]. Only the deserializer was used to decode the bytes. All higher level decoding that is covered in the orig-
inal GBT-sc module was left out in FELIX and instead handled by software, in order to save FPGA resources.
Additionally the deserializer was modified to fit FELIX requirements with the following modifications:

• The interface was modified to fit ByteToAxiStream

• A truncation mechanism was added

• The deserializer for IC and EC were merged into a single file.

8.4.14.2 INTERFACES

DecoderHDLC

ena
active high enable
std_logic

DataIn
Data! 2 bits from the 80 Mb ELink
std_logic_vector(1 downto 0)

EnableTruncation
Enable truncation mechanism > 12 bytes
std_logic

reset
active high reset
std_logic

clk40
BC clock
std_logic

DataOut
Deserialized/decoded data

std_logic_vector((g_WORD_SIZE-1) downto 0)

DataOutValid
Control & status! Write request to the external FIFO

std_logic

EOP
Delimiter detected flag

std_logic

TruncateHDLC
High when message is > 12 bytes

std_logic

g_WORD_SIZE : integer := 8
Size of the words to be stored into the external FIFO

g_DELIMITER : std_logic_vector(7 downto 0) := "01111110"
Delimiter pattern

g_IDLE : std_logic_vector(7 downto 0) := "01111111"
IDLE pattern, "11111111" for IC, "01111111" for EC

Figure 8.20: The HDLC decoder entity.

8.4.14.2.1 GENERICS

• g_WORD_SIZE: This generic should be set to 8 to be compatible with the FELIX operation.

• g_DELIMITER: The standard delimiter or FLAG is by default set to 0x7E, and should be unchanged.

• g_IDLE: The IDLE pattern, or ERROR FLAG in the HDLC specification is defined differently by the
GBTx chip (IC link) and the GBT-SCA (EC link), therefore it can be set to 0xFF for IC and ox7F for EC.

8.4.14.2.2 ELINK INTERFACE

The HDLC decoder does not connect to the DecodingGearbox, since it only connects to 2-bit (80 Mb/s)
E-Links. Instead it connects directly to the 2 bits of the E-Link data.

8. Detailed Functional Description and Specification Page 59 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.14.2.3 INTERFACE TO BYTETOAXISTREAM

The HDLC decoder is combined with other decoders (8b10b, direct) in one DecodingEpath, and therefore
shares its output with these other decoders. The output port consists of:

• DataOut: 8-bit output data

• DataOutValid: Indication that DataOut should be registered this clock cycle

• EOP: End of packet indication

• TruncateHDLC: Indication that the current packet consists of more than 12 bytes, if EnableTruncation is
set.

8.4.14.3 FUNCTIONAL DESCRIPTION

clk40

DataIn[1..0] 3 3 3 2 1 3 3 2 2 1 0 3 2 0 0 0 1 0 0 0 3 0 0 0 1 3 3 2 3 3 3 2

reg[7..0] 7F DF F7 FD 7F 9F E7 F9 7E 5F 97 25 C9 72 1C 07 01 80 20 08 02 C0 30 0C 03 80 E0 F8 7E DF F7 FD 7F

DataOut[7..0] 00 C9 01 02 03 03

DataOutValid

EOP

Figure 8.21: The HDLC decoder waveform.

The HDLC decoder is a shift register that shifts in 2 bits at a time. Data arrives LSB first, for the E-Link bits
(DataIn) the LSB arrives at bit 1, bit 0 is the second bit. The deserializer process has a bitstuffing detection, if
5 consecutive ones are detected, the next ’0’ is removed. If this is not the case, a FLAG or IDLE message is
marked.

A second process buffers the deserialized byte, and if a FLAG is decoded after the data byte, the byte is
marked as EOP (end of packet).

Additionally, a truncation mechanism can be enabled. For this mechanism, a counter counts the number
of bytes before a FLAG, if this number exceeds 12, the TruncateHDLC output will be asserted.

8.4.14.4 CONFIGURATION

The HDLC decoder has two configuration inputs:

• ena: To enable the decoder. Setting this input to ’0’ will keep DataOutValid low.

• EnableTruncation: This input enables the truncation mechanism which limits the chunk size to 12 bytes.

8.4.14.5 STATUS INDICATORS

The outputs will be handled by the tuser bits of the AXI Stream, and marked as flags in the trailer bits of the
chunk trailer by CRToHost.

8.4.14.6 LATENCY

One byte arrives 2 bit per BC clock cycle and therefore takes 4 clockcycles to clock into DataIn. Once the last
bits of the data have arrived, the byte is available in the internal shift register of the decoder called "reg" (see
Figure 8.21). In order to make the decoder compatible with AXI Stream, the last byte has to be synchronized
with the end of packet indication, therefore the data must be buffered to see if the next byte is a "Flag" to
indicate the end of a frame. This mechanism takes a total latency of 5 clock cycles, but 1 additional clock
needs to be accounted for if a ’0’ is stuffed in the data, as described in the HDLC protocol [10]

8. Detailed Functional Description and Specification Page 60 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.14.7 ERROR HANDLING

The HDLC Decoder has a truncation mechanism that limits the bandwidth in case of a faulty E-Link which
generates random data. It limits the chunk to 12 bytes, any data after that will be ignored by CRToHost.

8.4.14.8 ESTIMATED RESOURCE USAGE

The resource usage of the complete GBT E-group, including the HDLC decoder is shown in Table 8.4.

8. Detailed Functional Description and Specification Page 61 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.15 FULLMODEDECODER

8.4.15.1 INTRODUCTION

In Phase I FELIX, two types of link protocols were supported; GBT (4.8Gb/s, divided into E-links) and FULL
(9.6Gb/s 8b10b). The FULL mode protocol will be implemented in the Phase II firmware without functional
modification.

The protocol specified in this section, called “FULL mode” (The name originates from FULL bandwidth).
Full mode is intended for high bandwidth (i.e. 9.6 Gb/s) connections from FPGAs, as opposed to links from
the GBTx ASIC [12]. Data is streamed to FELIX without any handshaking.

At this time, the need for Full mode links only in the ToHost direction has been expressed. The opposite,
from-FELIX, direction would use standard GBTx protocol. The rest of this section will therefore focus on
the ToHost Full mode direction only. Should the need for Full mode in the FromHost direction be needed in
future, it can be implemented in a similar manner. Figure 8.22 shows a block diagram of both the FrontEnd
and FELIX ends of a Full mode link in the to-FELIX direction. The number of channels supported by single
FELIX FPGA is not yet determined. As an upper limit estimation, six channels, each with a maximum payload
throughput of 7.68 Gb/s (9.6 Gb/s reduced by 8b/10b encoding) could be transferred within the PCIe Gen3
8-lane bandwidth (maximum 64 Gb/s). FELIX based on the FLX712 FPGA platform has two such PCIe
interfaces which may be combined to a single 16-lane interface. A standard FLX712 FULL mode build in the
FELIX release has 24 channels, however we recommend to connect only 12 out of the 24 channels, unless
the transceiver bandwidth is limited by means of the XOFF mechanism, see also 8.4.15.3.1.

FPGA
transmitter

9.6Gb/s per link
8b/10b encoding

max data rate 7.68Gb/s

FullMode
decoder

xN

axis32

ToHost
Central
Router
CRToHost

Figure 8.22: Block diagram of both the FrontEnd and FELIX ends of a Full mode link in the ToHost direction.

In summary, the main features of Full mode are:

• Channel line transmission rate of 9.6 Gb/s

• Maximum user payload of 7.68 Gb/s

• 8b/10b encoding

• Logical packets: packets are multiples of 32-bit words, no maximum packet size is specified.

• Option to include a stream id per packet for transmitting different logical data streams on the same
physical link. Streams may be routed by FELIX to different network endpoints. When the E-link is
configured to have stream ids, they are included as the low byte of the first word of every packet of user
data.

• Support for forwarding BUSY from the Front End to the Central Trigger. Policies for asserting BUSY are
not determined by FELIX.

• Possibility of flow control with XON, XOFF symbols sent from FELIX on a GBT normal mode E-link.

• A user example design with a FIFO-like interface has been provided.

8. Detailed Functional Description and Specification Page 62 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.15.2 INTERFACES

FullToAxis
FMdin std_logic_vector(32 downto 0)

LinkAligned std_logic
path_ena std_logic

aresetn std_logic

clk240 std_logic
aclk std_logic

m_axisaxis_32_type
m_axis_treadystd_logic

Figure 8.23: The FULL mode decoder entity.

8.4.15.2.1 INTERFACE FROM LINKWRAPPER

The FULL Mode decoder has two ports that connect to the LinkWrapper in FULL mode:

• FMdin: This 33-bit signal carries the 32 data bits (bits [31..0]). The MSB, bit 32 indicates that bits 31..24
carry a K-character (Idle, SoP, EoP, SoB, EoB).

• LinkAligned: This input indicates that the transceiver is properly aligned and able to receive data from
the Front End.

8.4.15.2.2 INTERFACE TO CRTOHOST

The interface to the Central Router ToHost (CRToHost) is the same as for other decoders: axi stream 32. In
de decoding block the axis32_type outputs from the FullModeDecoder will be combined into a 2D array of
axis32_2d_array_type with the first dimension the number of links (GBT_NUM) and the second dimension is
set to 1, because every link has only one logical link. In summary, each Full mode connection is essentially a
high bandwidth 8b/10b E-link.

The axis32_type is defined in axi_stream_package.vhd. The individual record fields are described in Table
8.12

Table 8.12: 32 bit axi stream interface.

Field Bits Description

tdata [31..0] Payload data
tvalid 0 Indicates that a data chunk is active
tlast 0 Indicates the last 32 bits of a chunk
tkeep [3..0] Byte enable, always "1111" for Full Mode
tuser 3 Truncation, indicates that data was received while a FIFO was full, a part of the chunk was discarded.
tuser 2 Link Busy, Asserted when SOB is received, deasserted when EOB is received
tuser 1 Chunk error, Asserted when data is not correctly embedded within SoP/EoP
tuser 0 CRC20 error, Asserted when the CRC20 calculation over the payload does not match the CRC20 field in the EoP word

8.4.15.3 FUNCTIONAL DESCRIPTION

The FULL Mode Decoder (FullToAxis) interprets the K-characters as cescribed in section 8.13, and translates
the stream of data into the industry standard AXI4 stream bus, which can be handled by the CRToHost entity.

8. Detailed Functional Description and Specification Page 63 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Table 8.13: K-characters used in FULL Mode.

K-character 8-bit value Use

K28.1 0x3c Start-of-Packet, SOP
K28.6 0xdc End-of-Packet, EOP
K28.5 0xbc idle
K28.2 0x5c BUSY-ON
K28.3 0x7c BUSY-OFF

The idle K-character is the comma character defined for the serializer core that forces 32-bit alignment.
The format of the data transmission between the serializer and deserializer of the Full mode wrapper is shown
in Figure 8.24. See Section 8.4.15.3.2 for details on the CRC.

0:7
EOP
0xdc

24:31

16:23

8:15

0:7

24:31

16:23

8:15

0:7

24:31

16:23

8:15

0:7

24:31

16:23

8:15

0:7
0:7
SOP
0x3c

0:7
IDLE

0:7
IDLE

Chunk data
SOP: K28.1
EOP: K28.6
IDLE: K28.5 Arbitrary data, will be discarded

20-bit
checksum

Structure of data passed to GTH transmitter

Only if there is no
data to be sent

TXCHARISK[0] high TXCHARISK[0] high TXCHARISK[0] high TXCHARISK[0] high

to transmitter

JV_data_format_V03

24:27

16:23

8:15

0xbc 0xbc

24:31

16:23

8:15

24:31

16:23

8:15

24:31

16:23

8:15

busy-on/off
reserved[3]

28:31

Figure 8.24: The format of the data transmitted between the serializer and deserializer of the Full mode
wrapper.

8.4.15.3.1 FLOW CONTROL

If a Front-end requires FELIX to assert BUSY to CTP it will transmit BUSY-ON K-character via the stream
controller interface (defined as rising edge of BUSY line). On receipt of this, FELIX asserts BUSY for a
minimum of two 40 MHz clock cycles. While in BUSY state FELIX will fill its input buffers and send out data
to host flagged with a BUSY symbol. Once the buffers are full FELIX will reject all subsequent data until
BUSY-OFF is received.

Once the condition is cleared the front-end should send a BUSY-OFF K-character (falling edge of busy
line), causing FELIX to de-assert BUSY to CTP. Caveat: users should account for one extra word of data
being added by FELIX for insertion of BUSY symbol, otherwise buffers will overflow. The K-characters used
for BUSY signalling will not appear in the FELIX data stream (but can be flagged to processing code or used
to generate interrupts as needed) The EOP word for each packet should contain BUSY state, to allow for
recovery if signal on busy line not received.

8. Detailed Functional Description and Specification Page 64 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

If the data rate of the 24 FULL mode links exceeds the PCIe bandwidth towards the host server, the XOFF
flow control system can be used.

The Xoff signal can be sent through a 2-bit (8b10b configured) GBT E-link on the FromHost link. The
e-link used to send out Xoff is Elink 0 / Egroup 0 of every FromHost GBT link.

To assert flow control, FELIX sends an XOFF (K28.2) K-character on this link when firmware detects an
internal FIFOs reaching the almost full state (or if it receives a direct software signal). Upon receipt of XOFF,
the front-end should halt data transmission and wait for new signal before resuming transfers.

When the condition is cleared (defined as internal FELIX FIFOs reaching almost empty state, or direct
software signal), a XON (K28.3) K-character sent by FELIX to front-end, resuming flow of data.

8.4.15.3.2 CRC

The 32-bit EoP word will contain a 20-bit CRC field for the packet / chunk. The CRC will not be part of the
payload transmitted over the PCIe bus to the FELIX server. When a CRC error is detected by the Central
Router, a flag will be set in the packet trailer sent to the FELIX server.

During the transmission of a K-character, 24 bits are normally unused, except for the EOP (End of Pack-
age) K-Char (K28.6). In Figure 8.60 has been defined that bits 27:8 carry a 20-bit CRC checksum. The TX
Stream controller (included in the Full Mode example design provided to the Felix users) calculates this 20-bit
CRC checksum and adds it to the EOP field. The FELIX Full mode implementation checks the CRC using the
same algorithm and reports a CRC error to the software, by setting the CRC error bit in the trailer.

The CRC module has a data width of 32 bit and a checksum width of 20 bits. The polynomal and initial
value have been set to the values below.

• Polynomal: 0xC1ACF (alternative notation)

• Polynomial: 0x8359F (different endianness, see https://its.cern.ch/jira/browse/FLXUSERS-149 for de-
tails)

• Initial value: 0xFFFFF

The polynomal has been chosen based on research by Philip Koopman https://users.ece.cmu.edu/ koop-
man/crc/. With this polynomal a Hamming distance of four can be achieved with a maximum message length
of 524267 bits.

The VHDL module to calculate the checksum can be found in the FELIX firmware repository, as well as a
C example to calculate the same checksum.

The C module can be found here: crc.c
A highly optimized and generated VHDL version of the CRC20 module which is currently used in the

FELIX firmware can be found here: crc.vhd
For future reference, a more descriptive module with the same behavior as crc.vhd, but depending on the

vendor / version of the synthesis tool with a wors performance can be found here. crc20.vhd

8.4.15.4 CONFIGURATION

The only configuration bit of the FullToAxis entity is the "path_ena" input port, which will be connected to the
register DECODING_EGROUP_CTRL[LINK][0].EPATH_ENA[0]. This is the same register that would enable
Egroup 0 / Epath 0 on a GBT or lpGBT link.

8.4.15.5 STATUS INDICATORS

The status indicators for FullToAxis are only the tuser bits in the axi stream interface. The BUSY / Xoff status
bits are reflected in dedicated registers, see also section 3.

8.4.15.6 ERROR HANDLING

Data errors in the FullToAxis module (Framing error, CRC error, Truncation/FIFO full error, as well as the
BUSY status) are reflected by the tuser bits in the AXI4 stream interface. The bits will be interpreted by the
CRToHost entity and will then be reflected in the FELIX data format before sent to the host PC. The BUSY
bits can also be found in the register map.

8. Detailed Functional Description and Specification Page 65 of 172

https://its.cern.ch/jira/browse/FLXUSERS-149
https://users.ece.cmu.edu/~koopman/crc/
https://users.ece.cmu.edu/~koopman/crc/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc.c
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc.vhd
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/-/blob/phase2/master/sources/CRC20/crc20.vhd

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.15.7 ESTIMATED RESOURCE USAGE

A single FullToAxis entity (including the axi stream FIFO) is reflected in the table below. The numbers are for
a single channel.

Resource Count % (XKCU115)
LUTs 248 0.037%
Flip-Flops 286 0.021%
Block RAM 3 0.13%

Table 8.14: Resource consumption for the FullToAxis entity.

8.4.15.8 USER EXAMPLE DESIGN

The user example design transmits data via the so-called “Full mode stream controller” module, which hides
the details of the protocol between the user and FELIX FPGAs, as described below. Figure 8.25 shows a
block diagram with the user’s data source connected to the to-FELIX Full mode stream controller provided
by the FELIX project. The transmission channel line rate is 9.6 Gb/s, whereas user data (payload) has a
maximum net rate of 7.68 Gb/s as a result of 8b/10b encoding. The effective bandwidth will be further reduced,
depending on the packet lengths, by 4-byte packet headers and trailers, as described in Section 8.4.15.3.

to-FELIX Full mode stream controller

serializer
of the

Full mode
wrapper

User data source logic

wclk0
we0

data0
data_type0

fifo_full0
busy0

FEfirmware_V03

32
2

× N channels × N channels

link_ready0
rclk0

32
2

re0
data0
type0
empty0
busy0

link_ready0
channel state machine
(pauses data read and

transmission for
SoP, EoP, Idle, BUSY)

240MHz240MHz

Figure 8.25: block diagram with the user’s data source and to-FELIX Full mode stream controller.

In the “to-FELIX Full mode” each link has its independent interface. Each channel in the Full mode stream
controller reads data from a dual clock FIFO provided by the user. This allows the user’s logic to run with a
clock speed different from the 240 MHz required by the transmit logic. The FIFO data width is 32 bits (4 bytes)
plus two additional bits (data_type) which qualify the four bytes written. The FIFO implementation (LUT or
Block RAM) and depth are chosen by the user. Table 8.15 describes the stream controller’s input and output
signals.

The first and last word data-type flags result in a word containing a Start-of-Packet (SoP) or End-of-Packet
(EoP) K-character to be inserted into the data stream. Refer to section 8.4.15.3 for the K-characters inserted
by the stream controller. The FIFO write port is in the user’s clock domain, i.e. the write-clock is the user’s
design clock. Once the channel state machine asserts link_ready, users can directly send data to the FIFOs.
Data is written when the WE signal is asserted. For a 240 MHz user clock, if data is written on every clock
without pausing between packets, the FIFO will eventually overflow. The user should use the FIFO full signal
to prevent this.

The to-FELIX Full mode stream controller will be provided by the FELIX team and integrated into the user’s
firmware. It is a closed module with the interface described in Table 8.15. The module will be implemented by:

• a read interface to the user’s FIFO running at 240 MHz, reading with maximal data rate of 7.68 Gb/s.

• the serializer part of the Full mode wrapper

• control logic, i.e. a state machine, that inserts defined packet boundary K-characters and busy K-
characters into the data stream.

8. Detailed Functional Description and Specification Page 66 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Table 8.15: Description of the stream controller input and output signals.

Signal Direction Description

240 MHz clock from user clock for the Tx logic; this clock MUST be derived from the
BC clock and also used as the GTH reference clock

link_ready to user active when link detected and locked
rclk to user read clock to read from user’s FIFO
re to user read enable
data[32] from user 32-bit wide payload data
data_type[2] from user 2-bit qualifier for data:

0b01: The word is the first word of a packet.
0b10: The word is the last word of the current packet.
0b00: The word is an intermediate word of the current packet.
0b11: The word is ignored.

fifo_empty from user user’s FIFO is empty
busy from user a level indicating that the user wants FELIX to assert BUSY to

the Central Trigger. Minimum duration is two 240 MHz clocks

8. Detailed Functional Description and Specification Page 67 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.16 DIRECT MODE E-LINK DECODER

8.4.16.1 INTRODUCTION

Direct decoding is implemented by omitting the decoder. This is done by connecting ByteToAxiStream directly
to the DecodingGearBox, as shown in figure 8.5

Remark 8.2: Direct mode

Direct decoding (no decoding) should not be used by any front-end, and is only included for debugging
purposes. If no encoding technique is used on top of an E-Link, there is no way for the decoder to
distinguish the byte boundary, and where a frame (chunk) starts or ends.

8. Detailed Functional Description and Specification Page 68 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.17 TTCTOHOST VIRTUAL E-LINK

8.4.17.1 INTRODUCTION

The TTC ToHost Virtual E-Link generates a data stream uplon L1A events. This data stream can be sub-
scribed to just like any other E-Link. The data is meant to inform the subscriber about TTC related events and
counters, so the event data can be matched to TTC information.

8.4.17.2 INTERFACES

TTCToHostVirtualElink

TTC_ToHost_Data_in
Contains TTC information
TTC_ToHost_data_type

Enable
Virtual elink enable.
std_logic

aresetn
Active low reset
std_logic

clk40
40 MHz BC clock
std_logic

m_axis
AXI4 Stream Towards CRToHost aux

axis_32_type

m_axis_prog_empty
Towards CRToHost aux

std_logic

m_axis_tready
AXI4 Stream handshake from CRToHost aux

std_logic

m_axis_aclk
AXI4 Stream clock

std_logic

BLOCKSIZE : integer
Determines the m_axis_prog_empty threshold

Figure 8.26: The TTC ToHost Virtual E-Link entity.

8.4.17.2.1 GENERICS

• BLOCKSIZE: Used to set the threshold for m_axis_prog_empty to go low if there is at least a block of
data in the AXIs FIFO.

8.4.17.2.2 INTERFACE FROM TTC WRAPPER

The TTC Wrapper generates data for the various TTC related signals. On every L1A, the data record as
described in Listing 8.1 is generated, and a single pulse on data_rdy is asserted. This record is used by
the TTCToHost Virtual E-Link in order to generate a message, to notify a subscriber of the L1A and the
corresponding fields.

type TTC_ToHost_data_type is record
FMT : s t d _ l o g i c _ ve c to r (7 downto 0) ; −−byte0
LEN : s td _ l og i c_ v e c t o r (7 downto 0) ; −−byte1
reserved0 : s t d_ l o g i c _v e c to r (3 downto 0) ; −−byte2
BCID : s t d _ l o g i c _ ve c t o r (11 downto 0) ; −−byte2 ,3
XL1ID : s td _ l o g i c_ v ec t o r (7 downto 0) ; −−byte4
L1ID : s t d_ l og i c _v e c t o r (23 downto 0) ; −−byte 5 ,6 ,7
o r b i t : s t d _ l og i c_ v ec t o r (31 downto 0) ; −−byte 8 ,9 ,10 ,11
t r i g g e r _ t y p e : s t d _ l og i c_ v e c t o r (15 downto 0) ; −−byte 12 ,13
reserved1 : s t d_ l o g i c _v e c to r (15 downto 0) ; −−byte 14 ,15
L0ID : s t d_ l og i c _v e c t o r (31 downto 0) ; −−byte 16 ,17 ,18 ,19
data_rdy : s t d _ l o g i c ;

end record ;

Listing 8.1: The TTC_ToHost_data_type as declared in centralRouter_package.vhd.

8. Detailed Functional Description and Specification Page 69 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.17.2.3 CLOCK, RESET AND ENABLE

• clk: 40 Mhz bunch crossing clock. It is assumed that all non AXIs related inputs are registered on this
clock.

• m_axis_aclk: Clock on which the AXI4 Stream bus is operated towards the CRToHost.

• aresetn: Active low reset.

• Enable: To enable the virtual E-Link. Connected to the Wupper register map.

8.4.17.2.4 INTERFACE TO CENTRAL ROUTER TOHOST

The AXI4 Stream interface consisting of m_axis, m_axis_prog_empty, m_axis_tready and m_axis_aclk holds
the data towards CRToHost. CRToHost has a secondary input called s_axis_aux, which will have equal
functionality with respect to the regular AXI4 Stream input s_axis, however the dimension is different (Always
an array of 2) to connect to the two Virtual E-Links (BusyVirtualElink and TTCToHostVirtualElink).

8.4.17.3 FUNCTIONAL DESCRIPTION

The TTC ToHost Virtual E-Link will be triggered by the data_rdy signal in TTC_ToHost_Data_in input. Upon
this trigger, it will create a message containing all the data fields from the input. The last 6 bytes contain a so
called L1A counter. This L1A counter will not be reset after an ECR, and can be used as a measure to verify
whether any event was lost. Before an ECR, it should hold the same value as L1ID.

The message / chunk is described in Appendix B.2.3.
The length of the message is 26 bytes. When the TTC ToHost virtual e-link is triggered, it immediately

constructs the complete message and writes this into a FIFO. This FIFO is read out and the output is converted
into AXI4 stream (32b). This dual FIFO mechanism allows the virtual E-Link to be triggered every clock cycle,
until the first FIFO is full (Depth=16 messages) without dead time.

8.4.17.4 CONFIGURATION

The TTC ToHost virtual E-Link can only be Enabled using the Enable input. No other configuration possibilities
are implemented.

8.4.17.5 STATUS INDICATORS

This virtual sends data towards CRToHost. No additional status indication is available.

8.4.17.6 LATENCY

From the first data_rdy input to the end of transmission of the 26-byte AXI4 Stream packet it was measured to
take 157 ns. The latency may increase if multiple L1A events are fired shortly after each other and the internal
FIFOs fill up.

8.4.17.7 ERROR HANDLING

If the FIFOs are full while more busy events occur, the truncation flag in the TUSER bits of the AXI4 stream
bus will be asserted.

8.4.17.8 ESTIMATED RESOURCE USAGE

Resource Count % (XKCU115)
LUTs 329 0.05%
Flip-Flops 651 0.05%

8. Detailed Functional Description and Specification Page 70 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Block RAM 1 0.05%
Table 8.16: TTC ToHost Virtual E-Link Resource utilization.

8. Detailed Functional Description and Specification Page 71 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.18 BUSY VIRTUAL E-LINK

8.4.18.1 INTRODUCTION

The FELIX system knows 4 sources of BUSY:

• E-Link BUSY (BUSY-ON/BUSY-OFF from FrontEnd electronics over E-Links)

• Soft BUSY (Assertion of a register in the register map)

• FIFO busy (The ToHost FIFO in Wupper passed a certain threshold)

• DMA busy (The circular buffer in the server memory is filled beyond a certain threshold)

8.4.18.2 INTERFACES

BusyVirtualElink

Orbit
Orbit counter for timestamp
std_logic_vector(31 downto 0)

BCID
Bunch Crossing counter for timestamp
std_logic_vector(11 downto 0)

ElinkBusyIn
SOB/EOB received through Elinks
busyOut_array_type(0 to GBT_NUM-1)

SoftBusyIn
Triggered by register map
std_logic

DmaBusyIn
Host memory occupation
std_logic

FifoBusyIn
Wupper ToHostFifo prog_full
std_logic

BusySumIn
Status of the board LEMO output
std_logic

Enable
Virtual elink enable.
std_logic

aresetn
Active low reset
std_logic

clk
40 MHz BC clock
std_logic

m_axis
AXI4 Stream Towards CRToHost aux

axis_32_type

m_axis_prog_empty
Towards CRToHost aux

std_logic

m_axis_tready
AXI4 Stream handshake from CRToHost aux

std_logic

m_axis_aclk
AXI4 Stream clock

std_logic

GBT_NUM : integer
Number of links, for size of ElinkBusyIn

BLOCKSIZE : integer
Determines the m_axis_prog_empty threshold

Figure 8.27: The Busy Virtual E-Link entity.

8.4.18.2.1 GENERICS

• GBT_NUM: Specifies the number of GBT links, to determine the size of the ElinkBusyIn input

• BLOCKSIZE: Used to set the threshold for m_axis_prog_empty to go low if there is at least a block of
data in the AXIs FIFO.

8.4.18.2.2 INTERFACE FROM VARIOUS BUSY SOURCES

• ElinkBusyIn: A 2-D array of std_logic, each bit representing the BUSY state of the E-Link. The Fron-
tEnd can set this BUSY state by issuing a BUSY-ON/SOB command, and clear it by issuing a BUSY-
OFF/EOB command.

• SoftBusyIn: BUSY state triggered by a write to a register

8. Detailed Functional Description and Specification Page 72 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

• DmaBusyIn: BUSY asserted because the PC memory (ToHost) was occupied beyond a certain thresh-
old

• FifoBusyIn: FIFO busy asserted, the Wupper ToHost FIFO was occupied beyond a certain threshold

8.4.18.2.3 TIMESTAMP INPUTS

• Orbit: Orbit counter input from TTC system / Emulator, used as a timestamp in the message.

• BCID: Bunch Crossing counter input from TTC system / Emulator, used as a timestamp in the message.

8.4.18.2.4 CLOCK, RESET AND ENABLE

• clk: 40 Mhz bunch crossing clock. It is assumed that all non AXIs related inputs are registered on this
clock.

• m_axis_aclk: Clock on which the AXI4 Stream bus is operated towards the CRToHost.

• aresetn: Active low reset.

• Enable: To enable the virtual E-Link. Connected to the Wupper register map.

8.4.18.2.5 INTERFACE TO CENTRAL ROUTER TOHOST

The AXI4 Stream interface consisting of m_axis, m_axis_prog_empty, m_axis_tready and m_axis_aclk holds
the data towards CRToHost. CRToHost has a secondary input called s_axis_aux, which will have equal
functionality with respect to the regular AXI4 Stream input s_axis, however the dimension is different (Always
an array of 2) to connect to the two Virtual E-Links (BusyVirtualElink and TTCToHostVirtualElink).

8.4.18.3 FUNCTIONAL DESCRIPTION

The BUSY Virtual E-Link monitors the status of the 4 sources of busy explained in 8.4.18. Together with the
current timestamp (Orbit/BCID) a message will be constructed containing the state of all BUSY sources. This
message will be created if BUSY is asserted, but also when it is negated. The message / chunk is described
in Appendix B.2.4.

The length of the message is 64 bit. When the BUSY virtual e-link is triggered, it immediately constructs
the complete message and writes this into a FIFO. This FIFO is read out and the output is converted into AXI4
stream (32b). This dual FIFO mechanism allows the virtual E-Link to be triggered every clock cycle, until the
first FIFO is full (Depth=16 messages) without dead time.

8.4.18.4 CONFIGURATION

The BUSY virtual E-Link can only be Enabled using the Enable input. No other configuration possibilities are
implemented.

8.4.18.5 STATUS INDICATORS

This virtual E-Link is in fact a status indicator of the BUSY system. No additional status indication is available.

8.4.18.6 LATENCY

From the first busy input to the end of transmission of the 64-bit AXI4 Stream packet it was measured to take
144 ns. The latency may increase if multiple BUSY events are fired shortly after each other and the internal
FIFOs fill up.

8. Detailed Functional Description and Specification Page 73 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.18.7 ERROR HANDLING

If the FIFOs are full while more busy events occur, the truncation flag in the TUSER bits of the AXI4 stream
bus will be asserted.

8.4.18.8 ESTIMATED RESOURCE USAGE

Resource Count % (XKCU115)
LUTs 313 0.05%
Flip-Flops 436 0.03%
Block RAM 1 0.05%

Table 8.17: Busy Virtual E-Link Resource utilization.

8. Detailed Functional Description and Specification Page 74 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.19 25 GB/S INTERLAKEN

The Interlaken protocol would be an excellent candidate to use for 25 Gb/s data links. It is a simple to use
high bandwidth protocol which is also royalty free. An open source FPGA core (Core1990) has already been
developed and earlier work has proven that this is compliant with the Interlaken protocol standard.

The core carries provides the following features:

• In band and out of band flow control (simple Xon/Xoff)

• 64b67b line encoding and scrambling

• Performance that scales with lanes

• Error detection implementing both CRC-24 and CRC-32

Core1990 is not included in the Felix firmware repository but is included as a submodule.8 Felix will only
receive Interlaken data and this is why solely the Interlaken receiver will be specified in this document.

8.4.19.1 INTERFACES

Interlaken_Receiver_multiChannel

RX_Data_In
From receiver gearbox
slv_67_array(0 to Lanes-1)

RX_Datavalid
From GTY Transceiver
std_logic_vector(Lanes-1 downto 0)

PacketLength
Meta frame length in 67b words
std_logic_vector(11 downto 0)

reset
Active high reset
std_logic

clk
Connect to transceiver RXUSRCLK
std_logic_vector(Lanes-1 downto 0)

m_axis_aclk
AXI Stream interface clock
std_logic

FlowControl
Flow control data (yet unutilized)
slv_16_array(0 to Lanes-1)

Bitslip
Signal to gearbox to perform bitslip

std_logic_vector(Lanes-1 downto 0)

m_axis
Axi Stream Interface to CRToHost

axis_64_array_type(0 to Lanes-1)

m_axis_tready
Axi Stream handshake

axis_tready_array_type(0 to Lanes-1)

m_axis_prog_empty
Axi Stream FIFO half full signal

axis_tready_array_type(0 to Lanes-1)

Descrambler_lock
Descrambler lock status

std_logic_vector(Lanes-1 downto 0)

Decoder_Lock
Decoder lock status

std_logic_vector(Lanes-1 downto 0)

decoder_error_sync
Decoder status fields

std_logic_vector(Lanes-1 downto 0)

descrambler_error_badsync
Descrambler status fields

std_logic_vector(Lanes-1 downto 0)

descrambler_error_statemismatch
Descrambler status fields

std_logic_vector(Lanes-1 downto 0)

descrambler_error_nosync
Descrambler status fields

std_logic_vector(Lanes-1 downto 0)

burst_crc24_error
CRC error status

std_logic_vector(Lanes-1 downto 0)

meta_crc32_error
CRC Error status

std_logic_vector(Lanes-1 downto 0)

HealthLane
Status field from burst frame

std_logic_vector(Lanes-1 downto 0)

HealthInterface
Status field from burst frame

std_logic

Lanes : positive := 4
Configurable value of Transmission channels/Lanes

Figure 8.28: The Interlaken receiver entity.

8.4.19.1.1 USER INTERFACE

Interfacing with the Interlaken receiver consists of two parts. The first part is connecting the receiver to an
active Interlaken data stream (e.g. a transceiver). This data will be processed by the receiver entity.

The second part consists of received data words that are ready to be processed by the user. The originally
transmitted data will be accessible through an interface that’s using the AXI-Stream protocol. This mainly
consists of three signals: tdata, tvalid and tlast. Data words will arrive at the 64-bit tdata bus, while tvalid will

8https://gitlab.cern.ch/atlas-tdaq-felix/core1990_interlaken

8. Detailed Functional Description and Specification Page 75 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

indicate that this data is valid and meant to be further processed by the user. Tlast will indicate the end of an
AXI-Stream packet. The core will only provide data when the tready handshake signal is set. When this is not
the case data will be put on hold. At the receiving side this means stalling the data and potential data loss in
case a RX FIFO overflow (this can mitigated by the use of flow control).

Signal Direction Width Description

RX_data_in In 67 64-bit data word with 3-bit header
RX_data_valid In 1 RX_data_in is valid

Bitslip Out 1 Bitslip Interlaken data for alignment (header 64b67b decoding)
m_axis Out 1 Data output in AXI-Stream format

m_axis_tready In 1 Handshake to make new data arrive at the output
m_axis_prog_empty Out 1 AXI-Stream FIFO in the receiver is half full

Table 8.18: Interlaken receiver user interface.

Three other signals are also provided in the AXI-Stream interface. This contains a tkeep signal to indicate
which bytes of the tdata word are valid. Another signal, tuser, will be used to provide the user status/error
indication. The tid signal is used to indicate which Interlaken channel the data is from.

Signal Width Description

m_axis.tdata 64 User data word
m_axis.tvalid 1 User data word is valid
m_axis.tlast 1 Last data word of stream / End of packet

m_axis.tkeep 8 Valid bytes
m_axis.tuser 4 Status/error bits

m_axis.tid 8 Channel number

Table 8.19: Interlaken receiver AXI-Stream signals.

8.4.19.1.2 CLOCK SIGNALS

The Interlaken receiver requires two clocks. The main clock has to be synchronous to the received data. All
Interlaken logic will use this clock. The outputted data towards the user through the AXI-S interface will be
synchronous to the m_axis_aclk.

Clock signal Description Frequency @ 25 Gbps

clk Synchronous to RX_Data_In, drives RX logic 402.83 MHz
m_axis_aclk m_axis data read input clock User defined

Table 8.20: Interlaken receiver clock signals.

8.4.19.2 FUNCTIONALITY

The interlaken core uses an AXI-Stream interface to transfer data. This is on a per-lane basis so each AXIS
interface will be connected to a lane. The user can configure the amount of lanes required to be implemented
and each of these lanes will have it’s own AXI-Stream interface.

8.4.19.2.1 BURST FRAMES

User data will be packed in bursts. Such a burst will carry a specific amount of consecutive data words, start
with a SOP (Start Of Packet) indication and end with a EOP (End Of Packet) indication. These SOP and EOP

8. Detailed Functional Description and Specification Page 76 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

settings will be indicated by transmitting a Burst Control Word with the specific bit set. The minimum and
maximum length of these bursts are configurable and can be controlled by the user. However if the payload
contains less words than required to achieve the minimum burst length, the burst will contain additional Idle
Control words to ensure the minimum burst length is reached. (This minimum has been set te reduce the
burden on the transmitter and receiver)

Each Burst and Idle Control word will contain a CRC-24 (poly: 0x328B63) word to ensure data integrity. A
Burst Control word containing a EOP will contain a CRC that covers the preceding payload including the EOP
itself (So the SOP is not included).

Figure 8.29: Interlaken Burst.

8.4.19.2.2 META FRAMES

The framed burst data (control and data) will be packed in Meta Frames. This is a set of four control words to
align lanes (Synchronization), synchronize the scrambler (Scrambler State), clock compensation (Skip) and
diagnostic information (Diag). A complete Meta Frame consists of these four control words appended with the
payload. The length of the meta frame can be defined by the user.

Each Diagnostic word contains a CRC-32 (poly: 0x1EDC6F41) word that covers the entire meta frame,
however the Scrambler State and CRC-32 fields are treated as zeroes. This is done before any encod-
ing/scrambling and covers 64 bits of the words, so without any added headers.

The length of a complete meta frame can be defined by the user but should be configured the same length
for both the transmitting and receiving sides.

Figure 8.30: Interlaken Metaframe.

8. Detailed Functional Description and Specification Page 77 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.19.2.3 ENCODER/DECODER

The Interlaken Protocol defines the usage of 64b67b encoding. The encoder will be provided with 64-bit
(63:0) words accompanied by a 2-bit header input. These bits (65:64) will be used to determine whether the
provided 64-bit word is a data or control block. This is comparable to 64b66b encoding.

However there will be 67 bits at the output. The additional 67th bit is a data inversion bit to ensure better
DC-balancing. This is done by constantly monitoring the running disparity in data packets. A ’1’ will increase
the disparity and a ’0’ will decrease the disparity. So a disparity value of lower or higher than 32 will indicate
that a word contains more ones or zeroes.

Every time a new word enters the encoder, the disparity will be compared against that of the current run-
ning disparity. If both these words contain a higher amount of the same sign, the new word will be inverted
and the inversion bit will be set high. This will ensure the running disparity will stay with a bound of about
96-bit and will result in better line stability/lower BER.

At the receiver node data will be recovered by detecting for valid encoding bit transitions and aligning the
data words correctly so that the data/control words is located at bits 63:0. When the inversion bit is set high,
data should be inverted again to retrieve the original data.

Bits(66:64) Interpretation bits (63:0)

001 Message contains a data word (63:0 non-inverted)
010 Message contains a control word (63:0 non-inverted)
101 Message contains a data word (63:0 inverted)
110 Message contains a control word (63:0 inverted)
others Illegal word

Table 8.21: 64b67b interpretation (Interlaken).

8.4.19.2.4 (DE)SCRAMBLER

The 64b67b encoder always has to be accompanied by a scrambler. While the encoder applies inversion on
the data/control word, the scrambler will randomize the data by using a polynomial (X58

+ X38
+ 1). This is

done to prevent long sequences of the same sign in data/control words which could caused undesired effects
on the communication line (BER, EMI).

The Interlaken Protocol defines the usage of an independent synchronous scrambler. This means that
the scrambler state has to be transmitted at pre-defined intervals to ensure the receiver descrambler is still
correctly synchronized on the transmitter scrambler. This will cause additional overhead (dependent on the
chosen interval) but ensures that the descrambler is always synchronous with the scrambler and can recover
after processing faulty data.

Scrambling should be done before the data inversion of the encoder and only with the 64-bit word. How-
ever the synchronization and scrambler state control words are exceptions and should not be scrambled.

Figure 8.31: Encoding overview.

8. Detailed Functional Description and Specification Page 78 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.4.19.3 CONFIGURATION

By default the Interlaken receiver will be configured with parameters recommended by the Interlaken Pro-
tocol Definition. However it is possible to change some of these configurations according to desires. The
amount of lanes desired by the user can be configured. However it should be noted that this is intended for
channel bonding. When it’s desired to implement independent lanes, it’s better to instantiate the Interlaken
receiver component multiple times (equal to the amount of desired lanes). Another configuration is setting the
PacketLength. This is the expected length of received metaframes. Data arriving from the transmitter should
contain the same metaframe length as the configured value here, otherwise this will result in an error and thus
no data output. For now it should be noted that

Configuration Default Range/Description
Lanes 4 Amount of lanes introduced in the core

PacketLength 2048 Length of transmitted/expected metaframes

Table 8.22: Interlaken receiver configurations.

8.4.19.4 LATENCY

Several tests have been performed to determine the latency of the Interlaken core. Latency of the complete
core has been measured real world on a Xilinx VCU128-ES1 (VU37P) and using a QSFP loopback module.
However for the receiver side and it’s individual components, simulation results have been used. Table 8.23
provides more details on the latency for each RX lane component.

RX latency Delay cycles 25 Gbps (402.83 MHz) 10 Gbps (156.25 MHz)
RX lane 8 cycles 19.84 ns 51.2 ns
Decoder 1 cycle 2.48 ns 6.4 ns

Descrambler 4 cycles 9.92 ns 25.6 ns
Meta deframer 1 cycle 2.48 ns 6.4 ns
Burst deframer 2 cycles 4.96 ns 12.8 ns

Table 8.23: Interlaken RX lane latencies.

8.4.19.5 STATUS INDICATORS

The Interlaken receiver has several status signals. Important matters such as the status of the rx fifo or
whether the decoder and descrambler are in lock will be notified through the use of a dedicated status signal.

Status signal Description

Descrambler_Lock Descrambler of lane is in lock
Decoder_Lock Decoder of lane is in lock

HealthLane Lane is ready to receive user data and has no errors
HealthInterface Same as HealthLane but for all lanes in an Interlaken instantiation

FlowControl Flow control status received from other end of the connection

Table 8.24: Interlaken receiver status signals.

Besides the described status signals, the AXI-Stream interface also contains some information in the m_-
axis.tuser field. This provides the most important status signals in four bits, which makes it easy for an existing
AXI-Stream entity to read the current status of the core.

8. Detailed Functional Description and Specification Page 79 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

Status signal Description

m_axis.tuser(3) RX FIFO not accepting data
m_axis.tuser(2) Flowcontrol status (not correctly utilized yet)
m_axis.tuser(1) Combined error signal from Meta/Burst deframing if any
m_axis.tuser(0) Combined error signal from CRC24 and CRC32

Table 8.25: Interlaken m_axis.tuser status signals.

8.4.19.6 ERROR HANDLING

Several signals have been added to notify the user of an error condition in the core and also what is the cause
of the error. The core features several error signals to notify the user of problems. Two error signals are
provided which indicate whether a CRC24 or CRC32 error has occurred. This should invalidate the data.

Error signal Description

decoder_error_sync Decoder cannot synchronize on preamble bits

descrambler_error_badsync
Descrambler received three bad sync word while being
in lock (can be caused by wrong Meta length)

descrambler_error_statemismatch
Descrambler received three wrong Scrambler
State words while being in lock

descrambler_error_nosync No Synchronization words detected in data stream
burst_crc24_error Burst packet contains faulty CRC24
meta_crc32_error Meta frame contains faulty CRC32

Table 8.26: Interlaken core error signals.

8.4.19.7 ESTIMATED RESOURCE USAGE

The Interlaken Core has been implemented on a Xilinx VCU128-ES1 (VU37P) to determine the required
resources. Since this only concerns the receiving side, the estimate amount of recources utilitzed by the
Interlaken receiver will be described. Table 8.27 depicts to the resources consumed by a Interlaken receiver
implementation on a per lane basis. This has been a design with four unbonded channels, so they function
independently from each other. This also means that all lanes consume nearly an equal amount of resources.
In this case the single lane mentioned represents lane 0 in the design.

RX logic LUT FF BRAM LUT% FF% BRAM%
Single RX lane (incl fifo) 759 (895) 933 (1111) 0 (5.5) 0.06 (0.07) 0.04 (0.04) 0.00 (0.27)

Burst deframer 40 203 0 <0.01 <0.01 0
Meta deframer 344 298 0 0.03 0.01 0
Descrambler 322 345 0 0.02 0.01 0

Decoder 54 87 0 <0.01 <0.01 0

Table 8.27: Interlaken resource utilization RX logic.

8. Detailed Functional Description and Specification Page 80 of 172

FELIX Phase-II firmware specifications: 8.4 Decoding June 28, 2024 - Version 1.037

8.5 ENCODING

8.5.1 INTRODUCTION

Encoding is the block in the FELIX firmware which instantiates the subdetector specific, but also Atlas wide
protocol handling in the FromHost direction (Downstream).

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links
Figure 8.32: The encoding block in the toplevel diagram.

8.5.2 INTERFACES

encoding

s_axis
From CRFromHost
axis_8_2d_array_type(GBT_NUM-1 downto 0, STREAMS_FROMHOST-1 downto 0)

s_axis_tready
to CRFromHost
axis_tready_2d_array_type(GBT_NUM-1 downto 0, STREAMS_FROMHOST-1 downto 0)

register_map_control
Contains several settings (from Wupper)
register_map_control_type

LinkAligned
Indicates that the (lp)GBT links are aligned.
std_logic_vector(GBT_NUM-1 downto 0)

aresetn
Active low reset
std_logic

TXUSERCLK std_logic_vector(GBT_NUM-1 downto 0)

clk40
LHC BC clock
std_logic

aclk
AXI clock is selected by encoding
std_logic

register_map_encoding_monitor
Status signals (to Wupper)

register_map_encoding_monitor_type

GBT_DOWNLINK_USER_DATA
GBT data

txrx120b_type(GBT_NUM-1 downto 0)

lpGBT_DOWNLINK_USER_DATA
lpGBT data

txrx32b_type(GBT_NUM-1 downto 0)

lpGBT_DOWNLINK_EC_DATA
lpGBT EC data

txrx2b_type(GBT_NUM-1 downto 0)

lpGBT_DOWNLINK_IC_DATA
lpGBT IC data

txrx2b_type(GBT_NUM-1 downto 0)

GBT_NUM : integer := 4
Number of links

FIRMWARE_MODE : integer := 1

STREAMS_FROMHOST : integer := 1
Number of Elinks per (lp)GBT link

Figure 8.33: The encoding block, instantiating all encoder entities based on FIRMWARE_MODE.

8.5.2.1 OVERVIEW

The encoder entity itself does not contain any protocol specific logic, but rather instantiates the protocol
specific encoders inside its hierarchy.

The encoder for GBT mode FELIX in phase 2 for instance was derived from the CentralRouter Egroup in
phase 1 FELIX. The functionality is the same, but the design will be more modular, and the entities will be
more unified among different E-Path / EPROC widths.

Instead of defining a separate entity for every E-link width, as done in phase 1, a configurable and generic
gearbox was introduced (see 8.5.6). This gearbox can be configured to support all E-link widths in GBT and
lpGBT mode, and output widths for the different protocols (8b10b, direct mode, 6b8b).

8. Detailed Functional Description and Specification Page 81 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

The HDLC and 8b10b decoder are very similar to the phase 1 design and can be taken with only slight
modification. Finally the GBT mode epath should input the axi stream8 protocol. Therefore the AxiStream-
ToByte entity was introduced which will take care of the conversion, but also contain the axi stream E-Path
FIFO.

8.5.2.2 INTERFACE FROM CRFROMHOST

All the protocol encoders that take data from CRFromHost will be equipped with an AXI Stream (8-bit) inter-
face. The encoding entity has an input for a 2-dimensional array of AXI Stream ports, each of them represents
a single E-Link. An exception will be made for the 25Gb/s Interlaken links. These Interlaken encoders will
need a higher bandwidth which can’t be delivered with 8-bit AXI Stream, therefore a 64-bit AXI Stream inter-
face will be used.

8.5.2.3 INTERFACE TO LINKWRAPPER

The outputs towards the optical links are arrays of std_logic_vector, depending on the protocol.

• GBT: GBT_NUM * 120b

• lpGBT: GBT_NUM * (32b(E-Links) + 2b(EC) + 2b(IC))

• Interlaken: GBT_NUM * 76b

8.5.3 FUNCTIONAL DESCRIPTION

Encoding does not contain any functional logic, protocol specific logic is implemented in the instantiated
encoders. Depending on the firmware flavour and other generics, a series of if- and for-generate statements
determine the content of the encoding block.

8.5.4 CONFIGURATION

Configuration registers in register_map_control are routed through encoding into the instantiated encoders.

8.5.5 STATUS INDICATORS

Status of the different encoders can be monitored in register_map_encoding_monitor.

8. Detailed Functional Description and Specification Page 82 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.6 ENCODING GEARBOX

8.5.6.1 INTRODUCTION

for lpGBT and GBT based firmware flavours, the data is first encoded in either HDLC, 8b10b or 6b8b or as
parallel TTC bits, and needs to be converted to the width of the E-Link (2, 4 or 8 bits) per BC clock cycle.

The different protocol encoders require different data widths per BC clock cycle, the Encoding Gearbox will
read these different data widths by means of shift registers and convert it to the E-Link width. The available
widths on in- and output of the gearbox will be partly configurable at runtime and partly at build time.

8.5.6.2 INTERFACES

8.5.6.2.1 OVERVIEW

EncodingGearBox

ElinkWidth
runtime configuration: 0:2, 1:4, 2:8,
std_logic_vector(1 downto 0)

ReverseOutputBits
Default 0, reverse the bits of the output Elink
std_logic

DataIn
Input with set number of bits.
std_logic_vector(MAX_INPUT-1 downto 0)

InputWidth
runtime configuration: 0:8, 1:10
std_logic

Reset
Active high reset
std_logic

MsbFirst
Default 1, make 0 to reverse the bit order
std_logic

clk40
BC clock
std_logic

ELinkData
Connect to ELink or Egroup

std_logic_vector(MAX_OUTPUT-1 downto 0)

ReadyOut
m_axis_tready to AxiStreamToByte

std_logic

MAX_OUTPUT : integer := 8
Width of the maximum supported ELink

MAX_INPUT : integer := 10
Maximum width of the input

SUPPORT_OUTPUT : std_logic_vector(2 downto 0) := "111"
8, 4, 2

SUPPORT_INPUT : std_logic_vector(1 downto 0) := "11"
10, 8

Figure 8.34: The Encoding GearBox entity.

ElinkData [7:0] 5c 17 05 c1 70 a3 e8 fa 3e 8f 5c 17 05 c1 70 a3 e8 fa 3e 8f

DataIn [9:0] 305 0fa 305 0fa

ReadyOut

MsbFirst 1

ElinkWidth 2

InputWidth 1

clk40

reset

Figure 8.35: EncodingGearBox running with 8 bit output, 10 bit input. The data is alternating 0x305/0x0FA
(k28.5+). [7].

8.5.6.2.2 INTERFACE TO GBT OR LPGBT WRAPPER

Data to an E-link (lpGBT mode or GBT mode) will be connected to ELinkData. Depending on the maximum
required speed of the E-link and also the position of the DecodingGearBox in the E-Group, MAX_OUTPUT
will be set. For instance, a GBT mode E-Group will contain 2 Gearboxes with MAX_OUTPUT set to 8, 2

8. Detailed Functional Description and Specification Page 83 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Gearboxes with MAX_OUTPUT set to 4 and 4 Gearboxes with MAX_OUTPUT set to 2. This way a total of 8
streams of variable bandwidth (80, 160 or 320 Mb/s) can be created.

8.5.6.2.3 INTERFACE FROM ENCODERS

2 ports are connected to the different protocol decoders: DataIn and ReadyOut.
DataIn
The output bandwidth / number of bits should not exceed MAX_OUTPUT. For an 8 bit E-link in 8b10b

mode, the InputWidth has to be set to 10 bits("010"), this way every clock cycle carries 1 8b10b word on InOut
if ReadyOut = ’1’.

ReadyOut
ReadyOut indicates that the gearbox is ready to accept new data from the encoder, and the correct number

of bits should be available on DataIn.

8.5.6.3 FUNCTIONAL DESCRIPTION

Depending on the configuration, the EncodingGearBox will shift a number of bits of DataIn into a shift register
every clockcycle when ReadyOut = ’1’. ElinkData is always valid and carries the shifted number of bits, ready
to be transmitted over lpGBT or GBT.

8.5.6.4 CONFIGURATION

Buildtime configuration 4 generics of the DecoderGearBox define its functionality.

• MAX_OUTPUT: Defines the maximum number of bits that is supported at ElinkData

• MAX_INPUT: Defines the maximum number of bits that is supported at DataIn

• SUPPORT_OUTPUT: a 3 bit vector of which every bit configures a supported output width to be con-
figured

– 0: 2 bit / 80 Mb/s E-Link is supported

– 1: 4 bit / 160 Mb/s E-Link is supported

– 2: 8 bit / 320 Mb/s E-Link is supported

• SUPPORT_INPUT: a 2 bit vector of which every bit configures a supported input width to be configured

– 0: 8 bit output is supported

– 1: 10 bit output is supported

Runtime configuration
The EncodingGearBox can also be configured at runtime, if the option was supported at build time. Two

input ports are provided for this purpose:

• ElinkWidth[1:0] can be connected to a register of the Wupper register map to configure the width of the
E-Link to be encoded. Possible values are:

– 0: 2 bit / 80Mb/s Elink connected to ElinkData[1:0]

– 1: 4 bit / 160Mb/s Elink connected to ElinkData[3:0]

– 2: 8 bit / 320Mb/s Elink connected to ElinkData[7:0]

• InputWidth[0] can be connected to a register of the Wupper register map to configure the width of the
path to the decoder. Possible values are:

– 0: 8 bit for HDLC or no decoding

– 1: 10 bit for 8b10b decoding

8. Detailed Functional Description and Specification Page 84 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.6.5 STATUS INDICATORS

EncodingGearBox has no status indicators. Status of the protocol encoder has to be provided by the encoder
itself.

8.5.6.6 LATENCY

The Encoding Gearbox has a latency for all configurations of 2 clockcycles (40,079 Mhz, 25 ns), that means
the output data will be valid 2 clockcycles after the data was shifted into the shift register.

8.5.6.7 ERROR HANDLING

EncodingGearBox has no internal error checking. The user / software must make sure that the configuration
ports are set up correctly, the protocol encoder should be able to detect and handle protocol errors on the
E-link.

8.5.6.8 ESTIMATED RESOURCE USAGE

Out2 Out4 Out8 In8 In10 LUT FF Remark
1 X X 15 24 8b10b
2 X X X 15 24 Direct, 8b10b
3 X X X 28 30 8b10b
4 X X X X 33 30 Direct, 8b10b
5 X X X X 58 41 8b10b
6 X X X X X 63 41 Direct, 8b10b

Table 8.28: Estimated resource consumption for Encoding Gearbox, depending on different build-time con-
figurations.

8. Detailed Functional Description and Specification Page 85 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.7 ENDEAVOUR ENCODER

8.5.7.1 INTRODUCTION

Strips firmware has blocks for communicating with the AMAC ASIC chips: the Endeavour Decoder and the
Endeavour Encoder. The AMAC is designed to serve monitoring and Low Voltage and High Voltage control
functions on the ATLAS ITk Strips modules. The Endeavour is a serial “Morse code” protocol, which tolerates
±50 % variation with respect to the nominal 40 MHz AMAC ring-oscillator frequency.

Endeavour Encoder serializes data for sending it to AMAC chips. Polarity of the encoder can be configured
by setting bitfield INVERT_AMAC_OUT of register GLOBAL_STRIPS_CONFIG.

8.5.7.2 INTERFACES

EndeavourEncoder

LinkAligned std_logic

s_axis axis_8_type

s_axis_tready std_logic

invert_polarity
invert link polatiry
std_logic

aresetn std_logic

rst std_logic

clk40 std_logic

s_axis_aclk std_logic

amac_signalstd_logic

almost_fullstd_logic

DEBUG_en : boolean := false

Figure 8.36: The Endeavour encoder entity.

The Endeavour Encoder inputs data from the FromHost Central Router (CRFromHost) via 8-bit AXI Stream
interface, and outputs the generated pulse sequence to an E-Link. In the Strips firmware, the data input is
connected to the EC elink of lpGBT frame. Both bits in EC field are set to the same value, reducing the
effective sampling frequency to 40 MHz.

Module ports are listed below. Unless otherwise indicated, the input signals are sampled in clk40 domain.

• clk40 - BC clock driving the encoder logic

• s_axis_aclk - clock for communication with the Central Router

• amac_signal - output “Morse code” signal to the AMAC chip

• LinkAligned (active HIGH) - indicates that the lpGBT link is aligned and encoding may be enabled

• aresetn - asynchronous reset for the AXI stream FIFO. Sampled in s_axis_aclk domain.

• rst - synchronous reset for the main logic

• s_axis - input AXI Stream

• invert_polarity - inverts polarity of amac_signal

• s_axis_tready - indicates that the module is ready to accept more data. Sampled in s_axis_aclk
domain.

8. Detailed Functional Description and Specification Page 86 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.7.3 FUNCTIONAL DESCRIPTION

The Endeavour Encoder converts data arriving from CRFromHost to a series of pulses, compliant with the
serial Endeavour protocol. Table 8.29 lists the timing of the pulse waveform.

Waveform feature Width in BC periods
ZERO pulse 14
ONE pulse 77
Bit gap 43
Word gap 100

Table 8.29: Endeavour protocol.

clk40

s_axis_tready

tdata 0XBF 0X99

tvalid

tlast

amac_signal

triggered by s_axis.tlast

bit 1: 77 clocks intragap 43 clocks bit 0: 14 clocks end 100 clocks

ready to accept new data

g

a

b c d e f

s_
ax

is

Figure 8.37: example of waveform.

8.5.7.4 ESTIMATED RESOURCE USAGE

Resource lpGBT link 24 GBT links % (XKCU115)
LUTs 44 1056 <0.1%
Flip-Flops 29 696 <0.1%
Block RAM 0.5 12 0.5%

Table 8.30: Resource consumption of Endeavour Encoder module.

8. Detailed Functional Description and Specification Page 87 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.8 ITKPIX ENCODER

ITkPix needs to receive a 160 Mbps bitstream composed of 16-bit frames for control and configuration as
described in [8]. ITkPix also uses the bitstream to recover an internal clock syncronous to the 40 MHz LHC
clock. Trigger, write register, read register, and other commands are composed of one or more frames. Single-
frame commands such as trigger and global pulse need to be transmitted synchronoustly (with fixed latency)
with the LHC beam or with each other. The multi-frame commands such as read and write register can be
transmitted asynchronously.

An ITkPix encoder receives 40 MHz clock, a trigger and trigger tag signals, an 8-bit command with a valid
signal, a clear signal, and a reset signal as shown in Figs. 8.38 and 8.39. The reset and 40 MHz clock signals
go to all components of the encoder and they are not shown in the block diagram. The trigger and clear
signals come from the LTI-TTC decoder and are identical for all the ITkPix encoders.

8b+valid from user

8b to 16b gearbox

FIFO

16b+valid

16b+valid

command
processor

ready_out

rd_en

16b+valid rd_en

trigger
processor

clear
processor

trigger clear

16b+valid 16b+valid rd_en

command prioritizer

4b

sync
processor

16b+valid rd_en

Figure 8.38: Dataflow in the ITkPix encoder.

8. Detailed Functional Description and Specification Page 88 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

ENCRD53A

trigger std_logic

command_in std_logic_vector(7 downto 0)

command_rdy std_logic

rst std_logic

clk40 std_logic

dataoutstd_logic_vector(3 downto 0)

readyoutstd_logic

PCIE_ENDPOINT : integer := 0
MT

LINK : integer := 0

EGROUP : integer := 0

EPATH : integer := 0

Figure 8.39: The RD53A/B encoder entity.

The trigger and clear signals are translated into ITkPix commands by the trigger processor and clear pro-
cessor blocks. The 8-bit input bus is connected to a gearbox to form 16-bit frames. The 16-bit frames from
the gearbox are stored in a FIFO to prevent data losses since the input data rate to the encoder exceeds the
output data rate. The command processor reads from the FIFO to verify and buffer the incoming commands.
The verification and buffering are used for debugging. The processor can also generate sequences of calibra-
tion pulse and trigger commands for ITkPix calibrations. A sequence is initiated with a special 16b command.
The binary data format for the special ccommand is 111 + number of iteration(7b) + period (6b). The number
of iterations is how many times the sequence is sent to ITkPix and the period is the time between sending two
sequences in units of 1.6 µs. The effective frequency of sequence transmission can vary from 10 kHz to 625
kHz. Sequence data are fully programmable. A typical sequence includes one global pulse and 16 triggers.
Therefore, the trigger frequence varies from 160 kHz to 10 MHz.

The command prioritizer reads 16 bit frames from one of the four sources depending on the source pri-
ority. The trigger commands have the highest priority and they are read as soon as they are available. The
next highest in priority is the clear command followed by the sync command. A sync command is available
once every 32 frames. Frames from the command processor are the lowest in priority. If no input data are
available, the prioritizer samples NOOP commands. The prioritizer samples 16-bit frames into 4-bit words
with adjustable phase.

An encoder takes 481 LUTs, 404 FFs, 1 RMB18 and 1 DSP. There are 8 encoders per lpGBT link and
there are 24 lpGBT links per FELIX. Therefore, encoders for an lpGBT link require 3848 LUTs, 3232 FFs, 8
RAMB18, and 8 DSPs. Encoders for 24 lpGBT links require 92352 LUTs, 77568 FFs, 192 RAMB18, and 192
DSPs.

Trickle config of ITkPix is expected to be done by transmitting commands and data from from the host
server (via PCIe) since the target FPGAs do not have enough memory to store all the configuration data.

8. Detailed Functional Description and Specification Page 89 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.9 ITK STRIPS LCB ENCODER

8.5.9.1 INTRODUCTION

Strips LCB encoder facilitates control of LCB link of ITk Strips modules. It provides independent control for
each Strips link, as well as independent trickle configuration memory storage. The commands are accepted
in two formats: compact encoding for efficient storage of trickle configuration, and raw 6b8b user-encoded
frames for testing. The LCB encoder merges commands from TTC system, trickle configuration memory and
LCB Command elink. Commands originated from TTC system are prioritized and have fixed latency. Strips
LCB encoder may be configured to send low-priority commands only within a configurable BC interval, for
example during a beam gap.

The functional diagram of LCB encoder module is presented on Figure 8.40. The blocks shown in red are
data inputs. The corresponding FromHost elink IDs are listed in Table 8.31).

Polarity of the encoder can be adjusted by setting bitfield INVERT_LCB_OUT of FELIX register GLOBAL_-
STRIPS_CONFIG.

The LCB encoder inputs data from the TTC system and three FELIX FromHost elinks. The LCB Config-
uration elink is used to configure the LCB encoder. The data sent to the Trickle Configuration elink is written
into the trickle configuration memory. Finally, the Command elink sends commands to the LCB input of a
Strips module (shown in green).

8. Detailed Functional Description and Specification Page 90 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Elink hex Elink dec Strips Encoder

00 0 LCB#0 configuration
01 1 LCB#0 command
02 2 LCB#0 trickle
03 3 R3L1#0 configuration
04 4 R3L1#0 command

05 5 LCB#1 configuration
06 6 LCB#1 command
07 7 LCB#1 trickle
08 8 R3L1#1 config
09 9 R3L1#1 command

0a 10 LCB#2 config
0b 11 LCB#2 command
0c 12 LCB#2 trickle
0d 13 R3L1#2 config
0e 14 R3L1#2 command

0f 15 LCB#3 configuration
10 16 LCB#3 command
11 17 LCB#3 trickle
12 18 R3L1#3 config
13 19 R3L1#3 command

14 20 EC (AMAC out)
15 21 IC

Table 8.31: Strips ToHost elilnk mapping. In this table, elink mapping of lpGBT optical link 0 is listed. To find
elink IDs for encoders of another optical link, add 0x40 * (lpGBT link ID) to the elink IDs listed in the table..

8. Detailed Functional Description and Specification Page 91 of 172

FE
LIX

P
hase-IIfirm

w
are

specifications:8.5
E

ncoding
June

28,2024
-Version

1.037

All modules are synchronous to 40MHz BC clk

TTC Phase II
L0ID

L0_trigger

BCR

LCB frame generator

L0ID

L0 trigger

BCR

LCB frame start pulse

TTC L0A frame

Configuration:

TTC_BCR_DELAY
L0A_FRAME_PHASE

LCB scheduler

LCB frame start pulse

TTC L0A frame

trickle_bc_gating

elink frame in

Low-priority LCB frame

LCB frame out

Configuration:

GATING_TTC_ENABLE
TTC_L0A_ENABLE
L0A_FRAME_DELAY

LCB link

data out

Trickle configuration memory

FIFO in

FIFO out (commands)

Configuration:

TRICKLE_TRIGGER_PULSE
TRICKLE_TRIGGER_RUN
TRICKLE_DATA_START
TRICKLE_DATA_END
TRICKLE_WRITE_ADDR
TRICKLE_SET_WRITE_ADDR_PULSE

Trickle trigger generator

BCR

trickle_bc_gating

Configuration:

GATING_BC_START
GATING_BC_STOP
GATING_TTC_ENABLE

FromHost elink

LCB configuration

Command decoder

FIFO in (commands, high priority)

FIFO in (commands, low priority)

LCB command + data

LCB encoder ready

LCB sequence encoder

LCB frame sequence

LCB command + data

LCB encoder ready

Configuration:

HCC_MASK
ABC_MASK_0..F

Bypass frame
 aggregator

FIFO 16 bit out

FIFO 8 bit in

LCB frame FIFO

FIFO out

FIFO in

FromHost elink

LCB command

FromHost elink

Trickle configuration

C
on

fig
ur

at
io

n:

EN
C

O
D

IN
G

_E
N

AB
LE

Configuration storage

FIFO in (commands)

LCB configuration

0

1

Figure 8.40: Functional diagram of ITk Strips LCB Encoder module.

8.D
etailed

FunctionalD
escription

and
S

pecification
P

age
92

of172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Figure 8.41: LCB link configuration command format.

8.5.9.2 CONFIGURATION STORAGE SUBMODULE

This submodule stores and updates the LCB link configuration registers. Please note that these registers are
separate and independent from the FELIX register map. In the default configuration after FELIX power-on all
registers are set to zero. The module can be returned to the default configuration at any time by disabling and
re-enabling the LCB configuration elink. The configuration registers can be updated by issuing the “configure”
command via the LCB configuration elink. This is the only valid command for the configuration elink.

8.5.9.2.1 CONFIGURATION COMMAND. Configuration commands update LCB configuration registers given
the data and the register address. (Fig. 8.41). The configuration registers of the LCB encoder are listed in
the Table 8.32. Please note that although the data width in the “configure” command is always 16 bits, many
configuration registers only use a few least significant bits (indicated by the #bits column in Table 8.32). Each
command sequence must be completed within 100 ms. Incomplete command sequences are discarded by
the encoder.

Whenever a configuration register is mentioned in this section, it refers to the local LCB encoder configu-
ration storage register, unless explicitly specified as a FELIX register.

8.5.9.3 LCB FRAME GENERATOR SUBMODULE

This submodule determines the phase of LCB frame and generates L0A frames in response to the signals
from the TTC module. The exact contents of L0A frame depend on configurable LCB frame phase and the
timing of L0 triggers.

The phase of LCB frame with respect to BCR signal is configurable via L0A_FRAME_PHASE register. The
frame phase is locked to TTC BCR signal in order to facilitate synchronization of all ITk Strips links. Inde-
pendently of the frame phase, the module can also add configurable delay to the BCR signal via adjusting
TTC_BCR_DELAY register. This setting only affects L0A frame generation, and does not influence other func-
tions dependent on BCR signal, such as frame phase or trickle triggering. BCR delay must always be smaller
than BCR period for the module to function correctly.

Remark 8.3: Adjusting LCB frame phase

Adjusting LCB frame phase while the link is active will result in data corruption and decoding errors on
the front-end side. LCB frame phase should not be adjusted during active data taking and command
transmission.

8.5.9.4 BYPASS FRAME AGGREGATOR SUBMODULE

Bypass frame aggregator forms 16-bit LCB frames from Command elink data and forwards them to frame
scheduler when ENCODING_ENABLE=0 (default). Since bypass frames are not processed by the encoder logic,
it is user’s responsibility to ensure that the frame sequence is complete and encoded in 6b8b. The odd-count
elink bytes becomes MSB, and even-count bytes become LSB of the LCB frames. Each two-byte frame

8. Detailed Functional Description and Specification Page 93 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Address Name #bits Description

0x00 L0A_FRAME_PHASE 2 Determines LCB frame phase with respect to
the TTC BCR signal

0x01 L0A_FRAME_DELAY 4 Determines the overall delay of L0A frame in
BC units. Only L0A frames originated from
TTC system are delayed. Will affect LCB frame
phase when it’s not a multiple of 4.

0x02 TTC_L0A_ENABLE 1 Enables generation of L0A frames in response
to the TTC signals

0x03 TTC_BCR_DELAY 12 Delay BCR signal from TTC system by this
many BC units before issuing L0A

0x04 GATING_TTC_ENABLE 1 When set to 1, the low-priority frames are only
allowed during the interval between GATING_-
BC_START and GATING_BC_STOP (counted from
non-delayed TTC BCR signal)

0x05 GATING_BC_START 12 Start of BC gating interval
0x06 GATING_BC_END 12 End of BC gating interval
0x07 TRICKLE_TRIGGER_PULSE 1 Write 1 to issue a single trickle trigger
0x08 TRICKLE_TRIGGER_RUN 1 Write 1 to issue trickle trigger continuously
0x09 TRICKLE_DATA_START 14 Address of the first valid byte in the trickle con-

figuration memory
0x0A TRICKLE_DATA_END 14 Address of the last valid byte in the trickle con-

figuration memory
0x0B TRICKLE_WRITE_ADDR 14 Trickle configuration memory write pointer
0x0C TRICKLE_SET_WR_ADDR_PULSE 1 Write 1 to move the trickle configuration write

pointer to the address in TRICKLE_WRITE_ADDR
0x0D ENCODING_ENABLE 1 When 0, the data sent into LCB command elink

is forwarded to LCB line without processing. It
is the user’s responsibility to ensure the com-
mands are formed correctly and encoded in
6b8b. When 1, the commands are interpreted
as described in Section 8.5.9.6.

0x0E HCC_MASK 16 HCC* command mask. When a bit is set to 1,
commands to this HCC* chip (and all connected
ABC* chips) will be ignored. Will match broad-
casts. LSB corresponds to HCC* address 0,
MSB corresponds to HCC* address 0xF.

0x0F ABC_MASK_0 16 ABC* command mask for chips connected to
HCC* with address 0. LSB corresponds to
ABC* address 0, MSB corresponds to ABC* ad-
dress 0xF. When a bit is set to 1, commands
to this ABC* chip will be ignored. Will match
broadcasts.

0x10 ABC_MASK_1 16 ABC* command mask for chips connected to
HCC* with address 1.

...
0x1E ABC_MASK_F 16 ABC* command mask for chips connected to

HCC* with address 0xF.

Table 8.32: LCB link configuration registers.

8. Detailed Functional Description and Specification Page 94 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Figure 8.42: No operation command format.

sequence must be completed within 100 ms. Incomplete frame sequences are discarded by the aggregator.
Bypass frames are treated as low-priority frames by the frame scheduler.

8.5.9.5 TRICKLE CONFIGURATION MEMORY

Each LCB link has an independent memory storage for trickle configuration. The memory is byte-addressable
and has the total size of 16 kB per LCB encoder. Other data, such as calibration sequence, may also be
stored in trickle configuration memory.

Trickle configuration memory can store multiple sequences provided there is sufficient space. The se-
quence selected for readout is determined by memory pointers defined in the configuration registers TRICKLE_-
DATA_START and TRICKLE_DATA_END.

Trickle configuration memory can be triggered from software. To issue a single software trickle trigger,
write ’1’ to register TRICKLE_TRIG_PULSE. To send trickle configuration continuously, write ’1’ to TRICKLE_-
TRIG_RUN. If synchronization between multiple LCB links is required, software trickle trigger pulse can be
issued simultaneously for all links by writing ’1’ to FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_-
PULSE.

Trickle configuration memory can only be written when trickle configuration readout is inactive. This re-
quires that TRICKLE_TRIG_RUN is set to ’0’, and any preceding trickle configuration readout has completed.
Before updating the memory, set TRICKLE_WRITE_ADDR to the memory address where the configuration is to
be stored and write ’1’ to TRICKLE_SET_WRITE_ADDR_PULSE to move the write pointer there. Send the data
into the Trickle Configuration elink to write it into the trickle configuration memory. As the data is written into
the elink, the memory write pointer will automatically advance. The trickle configuration commands must be
in the format compatible with the command decoder (see Section 8.5.9.6 below). No bypass frames may be
stored in trickle configuration memory.

For the data taking with hardware triggering, the LCB link can be configured to only send trickle configu-
ration during a beam gap. See the description of Trickle Trigger Generator and LCB Scheduler modules for
more detail, and see Section 8.5.9.11 for the setup procedure.

Remark 8.4: Time-critical command sequences read out from trickle memory

For certain command sequences, such as L0A followed immediately by fast command, command
decoder might be unable to encode the LCB frames in time, and IDLE frames are inserted in between.
This disrupts calibration sequences that require predictable timing between command frames. The
workaround for sending time-critical command sequences is provided in section 8.5.9.11.

8.5.9.6 COMMAND DECODER

This module decodes commands originating from the trickle configuration memory and LCB Command elink
(only when ENCODING_ENABLE=1). The commands from the two sources are merged into a single low-priority
frame queue. Command decoder always processes LCB Command elink commands first when both sources
have data. Each command sequence must be completed within 100 ms. Incomplete command sequences
are discarded by the encoder. Below is the list of valid commands and their format.

8.5.9.6.1 NO OPERATION. This command is ignored by the command decoder. It is added for compatibility
with phase1 firmware and to prevent frame generation from uninitialized trickle configuration memory. The
format of no operation command is shown on Fig. 8.42.

8. Detailed Functional Description and Specification Page 95 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Figure 8.43: IDLE command format.

Figure 8.44: L0A command format.

8.5.9.6.2 IDLE COMMAND. Places a single IDLE frame into the LCB link queue (Fig. 8.43). IDLE can be
written into trickle configuration memory as a part of the calibration sequence to add 100 ns delay between
commands.

8.5.9.6.3 L0A COMMAND. This issues a user-defined L0A frame to the front-end (Fig. 8.44). At least a
single bit in mask or BCR must be set to ’1’ for the command to be valid. Invalid L0A commands are ignored
by the command decoder.

8.5.9.6.4 FAST COMMAND. Fast command sends a user-defined fast command to the front-end (Fig. 8.45).

8.5.9.6.5 REGISTER COMMANDS. Register commands issue a read (Fig. 8.46) or write (Fig. 8.47) frame
sequence for HCC* or ABC* register.

8.5.9.6.6 BLOCK COMMANDS. Block write command (Fig. 8.48) allows writing contiguous blocks of regis-
ters with a single command, reducing the command memory overhead. Upon receiving a block write com-
mand, the command decoder will issue a sequence of ABC* or HCC* register write commands to the LCB
link. The first register data word is sent to the specified register address, which is then incremented for each
subsequent data word. Byte #3 specifies the number of the following data words in the block sequence, where
zero corresponds to a single data word.

8.5.9.7 LCB SEQUENCE ENCODER

This module generates single or multiple low-priority LCB frames as requested by the command decoder.
Generating register commands addressed to certain chips may be blocked by this module using HCC ID and
ABC ID masking. This is achieved by writing configuration registers HCC_MASK and ABC_MASK_X. When a bit
in the mask is set to ’1’, register commands for the corresponding chip will be ignored by the module. This can
be used to quickly disable configuration for selected chips without overwriting trickle configuration memory.

Figure 8.45: Fast command format.

8. Detailed Functional Description and Specification Page 96 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Figure 8.46: Register read command format.

Figure 8.47: Register write command format.

Figure 8.48: Block write command format.

8. Detailed Functional Description and Specification Page 97 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.9.8 LCB FRAME FIFO

This FIFO stores contents of low-priority LCB frames, originated from elink or trickle configuration memory.
Default FIFO depth is 64 frames.

8.5.9.9 TRICKLE TRIGGER GENERATOR

This module controls timing of sending trickle configuration commands to the front-end during the data taking.
When enabled by setting GATING_TTC_ENABLE to ’1’, low-priority frames are only allowed during BC gating
interval between GATING_BC_START and GATING_BC_STOP. Low-priority frames are defined as frames that did
not originate from the TTC system. Please note that trickle configuration readout must be enabled by setting
TRICKLE_TRIG_RUN to ’1’ in addition to setting GATING_TTC_ENABLE to ’1’.

This module also defines the guard interval for register commands, which begins 64 BC periods before
GATING_BC_STOP. This ensures that register commands are transmitted completely before the BC gating
interval ends. During the guard interval any active register command is allowed to complete, but no new
register commands are allowed to begin.

Remark 8.5: BC gating and stuck elinks

Please note that when the BC gating is enabled the encoder module may not process LCB Command
elink commands unless it receives periodic BCR signal from the TTC system and BC gating interval
is correctly configured. BC gating signal will not be generated if BC_START=BC_STOP. BC gating signal
will be generated incorrectly if BC_START>BC_STOP.

Remark 8.6: BC gating and the guard interval

Please note that BC gating interval duration must be at least equal to the guard interval size + 5 (69
BC) for the module to function correctly. When this condition is violated, register commands may be
either transmitted partially, or not transmitted at all.

8.5.9.10 LCB SCHEDULER

This module prioritized LCB commands according to their source, merges them into a single data stream, and
sends them to the front end. The module encodes LCB frames in 6b8b as needed, and may be configured to
add a variable overall time delay to the LCB frame, as defined by L0A_FRAME_DELAY in BC period units.

Remark 8.7: Adjusting LCB frame delay

Adjusting the overall frame delay will result in loss or corruption of LCB frames and decoding errors on
the front-end side. LCB frame delay should not be adjusted during active data taking and command
transmission. Adding a delay will change the phase of the LCB frame, meaning that frame phases on
different links may not match if they are configured with the same phase, but different frame delays.

Overview of the scheduling algorithm:

1. Send TTC L0A frame if available

2. Else send bypass frame if available and no register command from LCB frame FIFO is in progress

3. Else send next frame from LCB frame FIFO

4. Else send an IDLE frame

If BC gating is enabled (GATING_TTC_EN is set to 1), low-priority frames will only be sent during the BC
gating interval. TTC L0A frames are always sent regardless of the BC gating configuration, provided TTC_-
L0A_ENABLE=1.

8. Detailed Functional Description and Specification Page 98 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.9.11 EXAMPLES

8.5.9.11.1 SENDING BASIC LCB COMMANDS VIA LCB COMMAND ELINK AND COMMAND
DECODER (ENCODING_ENABLE=1)

• Fast command example (command=6, BC=3): 0x81 0x36

• L0A command example (BCR=1, mask=0x3, tag=0x53): 0x82 0x13 0x53

• ABC* register read example (register 0x12, HCC ID=0xA, ABC ID=F): 0xA0 0x12 0xAF

• HCC* register read example (register 0x42, HCC ID=0x7, ABC ID=0): 0xA1 0x42 0x70

• ABC* register write example (write 0xDEADBEEF to register 0x12, HCC ID=0xA, ABC ID=0xF): 0xA2
0xDE 0xAD 0xBE 0xEF 0x12 0xAF

• HCC* register write example (write 0xBABEABBA to register 0x42, HCC ID=7, ABC ID=0): 0xA3 0xBA
0xBE 0xAB 0xBA 0x42 0x70

8.5.9.11.2 SENDING BASIC LCB COMMANDS VIA LCB COMMAND ELINK AND BYPASS
FRAME AGGREGATOR (ENCODING_ENABLE=0)

To send the commands directly to Strips LCB input, send commands to the Bypass elink. The bypass com-
mands are not verified or processed in any way. Register commands send through bypass elink are not
filtered based on HCC_MASK or ABC_MASK_X. The bypass register commands can be merged correctly with
trickle configuration commands, as long as complete register commands arrive in a single chunk to the By-
pass elink.

• Fast command example (command=0xB, BC=3): 0x6A 0x5A

• L0A command example (BCR=1, mask=0xD, tag=0x38): 0x3A 0xB8

• ABC* register read example (register 0x38, HCC ID=0xC, ABC ID=0xD) 0x47 0x3C 0x71 0xB4 0x71
0x74 0x47 0xAC

• HCC* register read example (register 0xD6, HCC ID=0x5, ABC ID=0xB): 0x47 0x95 0x71 0x6C 0x59
0xAC 0x47 0xC5

• ABC* register write example register write example (write 0x1021ABD2 to register 0x5E, HCC ID=0x5,
ABC ID=0xC): 0x47 0x35 0x59 0xB1 0x59 0x3C 0x59 0x71 0x59 0x71 0x59 0xC6 0x71 0x17 0x71 0xD2
0x47 0xA5

• HCC* register write example (write 0x8A37DF3C to register 0x2B, HCC ID=0xF, ABC ID=0xB): 0x47
0x5C 0x59 0xAC 0x71 0x96 0x59 0x69 0x71 0xD1 0x71 0x5C 0x59 0x4E 0x59 0x3C 0x47 0x4B

8.5.9.11.3 WRITING TRICKLE CONFIGURATION

1. Set TRICKLE_WRITE_ADDR=0

2. Set TRICKLE_SET_WRITE_ADDR_PULSE=1

3. Set TRICKLE_DATA_START=0, and set TRICKLE_DATA_END equal to the length of the trickle configuration
in bytes

4. Write trickle configuration to the Trickle Configuration elink. All commands must be in the format de-
scribed in Section 8.5.9.6

8.5.9.11.4 ISSUING SOFTWARE-GENERATED TRICKLE TRIGGER

8.5.9.11.1 SINGLE LCB ELINK. Issue trickle trigger to a single elink by writing ’1’ to TRICKLE_TRIGGER_-
PULSE configuration register.

8. Detailed Functional Description and Specification Page 99 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.9.11.2 CONTINUOUS TRICKLE CONFIGURATION. Send trickle configuration continuously by writing ’1’
to TRICKLE_TRIGGER_RUN configuration register.

8.5.9.11.3 ALL LCB ELINKS SIMULTANEOUSLY. Issue trickle trigger to LCB encoder elink by writing ’1’ to
FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_PULSE.

8.5.9.11.4 ALL LCB ELINKS SIMULTANEOUSLY WITH PRE-BUFFERING.

1. Write 0 to GATING_BC_START and GATING_BC_STOP of each elink to be triggered

2. Write ’1’ to FELIX register GLOBAL_STRIPS_CONFIG.TTC_GENERATE_GATING_ENABLE

3. Write ’1’ to FELIX register GLOBAL_STRIPS_CONFIG.TRICKLE_TRIG_PULSE

4. Wait a few milliseconds for the encoded frames to buffer

5. Write ’0’ to FELIX register GLOBAL_STRIPS_CONFIG.TTC_GENERATE_GATING_ENABLE to issue the com-
mands

8.5.9.11.5 TRICKLE TRIGGER DURING SPECIFIED BC INTERVAL

1. Write the first BCID of the allowed interval into GATING_BC_START

2. Write the last BCID of the allowed interval into GATING_BC_STOP

3. Write ’1’ to GATING_TTC_ENABLE to enable BC gating

4. Write ’1’ to TRICKLE_TRIGGER_RUN to start trickle configuration

8.5.9.12 LATENCY

• TTC: Fixed 10 BC latency

• Bypass: Fixed TBD BC latency (when not pre-empted by TTC)

• Elink decoder: Variable 16–20 BC latency (when not pre-empted)

• Trickle: ∼36 BC after readout enabled (empty LCB frame buffer, GATING_TTC_ENABLE=0)

8.5.9.13 ESTIMATED RESOURCE USAGE

Resource E-Group lpGBT link 24 lpGBT links % (XKCU115)
LUTs 661 2644 63456 10%
Flip-Flops 899 3596 86304 7%
Block RAM 5.5 22 528 25%

Table 8.33: Resource consumption of LCB encoder module for XKCU115.

8. Detailed Functional Description and Specification Page 100 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.10 ITK STRIPS R3L1 ENCODER

8.5.10.1 INTRODUCTION

Strips R3L1 encoder facilitates control of R3L1 link of ITk Strips modules. The module processes R3 and L1
hardware triggers, and inserts user-encoded R3L1 frames into the data stream.

The functional diagram of R3L1 encoder module is presented on Figure 8.49.
Polarity of the encoder can be adjusted by setting bitfield INVERT_R3L1_OUT of FELIX register GLOBAL_-

STRIPS_CONFIG.

8. Detailed Functional Description and Specification Page 101 of 172

FE
LIX

P
hase-IIfirm

w
are

specifications:8.5
E

ncoding
June

28,2024
-Version

1.037

6b8b software-encoded
R3L1 frames

All modules are synchronous to 40 MHz BC clk

Frame synchronizer

BCR in

R3L1 frame start pulse

Configuration registers:

FRAME_PHASE

R3_L1 scheduler

R3L1 frame start pulse

L1 frame in

R3 frame in

elink frame in

Encoded R3L1 frame

R3L1 link

data out

Bypass frame
 aggregator

FIFO 16 bit out

FIFO 8 bit in

FromHost elink

R3L1 command

R3 Frame generator

Trigger in

Module mask in

L0 tag

FIFO out

Configuration registers:

R3_ENABLE

RoIE

R3 trigger

Module mask

L0 tag

L1 Frame generator

Trigger in

L0 tag

FIFO out

Configuration registers:

L1_ENABLE

TTC Phase II

BCR

L1A trigger

L0 tag

R3 Frame FIFO

FIFO in

FIFO out

Width = 12 bits
Depth = 8 frames

L1 Frame FIFO

FIFO in

FIFO out

Width = 7 bits
Depth = 8 frames

FromHost elink

R3L1 configuration

Configuration storage

FIFO in (commands)

LCB configuration

Figure 8.49: Functional diagram of ITk Strips R3L1 Encoder module.

8.D
etailed

FunctionalD
escription

and
S

pecification
P

age
102

of172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

Figure 8.50: R3L1 link configuration command format.

Address Name #bits Description

0x00 FRAME_PHASE 2 Determines R3L1 frame phase with respect to
the TTC BCR signal

0x01 L1_ENABLE 1 Allows processing of L1 signals from the TTC
system

0x02 R3_ENABLE 1 Allows processing of R3 signals from the TTC
system

Table 8.34: R3L1 link configuration registers.

8.5.10.2 CONFIGURATION STORAGE SUBMODULE

This submodule stores and updates the R3L1 link configuration registers. Please note that these registers
are separate and independent from the FELIX register map. In the default configuration after FELIX power-on
all registers are set to zero. The module can be returned to the default configuration at any time by disabling
and re-enabling the R3L1 configuration elink. The configuration registers can be updated by issuing the
“configure” command via the R3L1 configuration elink. This is the only valid command for the configuration
elink.

8.5.10.2.1 CONFIGURATION COMMAND. Configuration commands update R3L1 configuration registers
given the data and the register address. (Fig. 8.50). The corresponding FromHost elink IDs are listed in
Table 8.31). The configuration registers of the R3L1 encoder are listed in the Table 8.34. Please note that
although the data width in the “configure” command is always 16 bits, many configuration registers only use
a few least significant bits (indicated by the #bits column in Table 8.34). Each command sequence must be
completed within 100 ms. Incomplete command sequences are discarded by the encoder.

Whenever a configuration register is mentioned in this section, it refers to the local R3L1 encoder config-
uration storage register, unless explicitly specified as a FELIX register.

8.5.10.3 FRAME SYNCHRONIZER

This submodule determines the phase of R3L1 frame, which is configurable via FRAME_PHASE register. The
frame phase is locked to TTC BCR signal in order to facilitate synchronization of all ITk Strips links.

8.5.10.4 R3 AND L1 FRAME GENERATORS

R3 and L1 Frame modules generate R3 and L1 frames in response to the corresponding hardware signals.
Generation of either frame must be enabled by setting registers L1_ENABLE or R3_ENABLE to ’1’.

8.5.10.5 R3 AND L1 FRAME FIFOS

These FIFOs stores contents or either R3 or L1 frames. Default FIFO depth is 16 frames.

8. Detailed Functional Description and Specification Page 103 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.10.6 BYPASS FRAME AGGREGATOR

Bypass frame aggregator forms 16-bit R3L1 frames from 8-bit elink data and forwards them to frame sched-
uler. Since bypass frames are not processed by the encoder logic, it is user’s responsibility to ensure that
the frames are valid 6b8b encoded data. The odd-count elink bytes becomes MSB, and even-count bytes
become LSB of R3L1 frames. Each two-byte frame sequence must be completed within 100 ms. Incomplete
frame sequences are discarded by the aggregator.

8.5.10.7 R3L1 SCHEDULER

This module prioritized R3L1 commands according to their source, merges them into a single data stream,
and sends them to the front end. The module encodes R3L1 frames into 6b8b as needed.

Overview of the scheduling algorithm:

1. Send R3 frame if available

2. Else send L1 frame if available

3. Else send bypass frame

4. Else send an IDLE frame

8.5.10.8 LATENCY

• R3: fixed 13 BC latency

• L1: fixed 13 BC latency (when not pre-empted by R3)

• Bypass: Fixed 10 BC latency (when not pre-empted by R3 or L1)

8.5.10.9 ESTIMATED RESOURCE USAGE

Resource E-Group lpGBT link 24 GBT links % (XKCU115)
LUTs 205 820 19680 3%
Flip-Flops 292 1168 28032 2%
Block RAM 1 4 96 4%

Table 8.35: Resource consumption of R3L1 encoder module.

8. Detailed Functional Description and Specification Page 104 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.11 8B10B ENCODER

8.5.11.1 INTRODUCTION

he 8b10b Encoder has been extensively used in phase 1 FELIX in GBT mode. In Phase II, the 8b10b encoder
has been decoupled from the E-proc, and retains in the generic E-Path in GBT and lpGBT mode firmware
flavours.

The tasks for the 8b10b encoder are:

• Encode the 8b10b stream to 8-bits + CharIsK

• Assertion of E-link BUSY in case of Xoff

• Framing: Convert DataIn, DataInValid and EOP into Encoded byte + CharIsK

8.5.11.2 INTERFACES

Decoder8b10b

DataIn
10b Data from GearBox
std_logic_vector(9 downto 0)

DataInValid
Data validated by GearBox
std_logic

BitSlip
For GearBox alignment
std_logic

AlignmentPulse
2 pulses to realign if no K28.5 found
std_logic

reset
Acitve high reset
std_logic

clk40
BC clock for DataIn
std_logic

DataOut
Towards ByteToAxiStream

std_logic_vector(7 downto 0)

DataOutValid
Towards ByteToAxiStream

std_logic

EOP
End of chunk indicator

std_logic

FramingError
Indicator for faulty input stream

std_logic

ElinkBusy
Elink has sent SOB, indicating busy.

std_logic

Figure 8.51: The 8b10b Encoder entity.

8.5.11.2.1 INTERFACE TO AXISTREAMTOBYTE

The 8b10b encoder receives from the AxiStreamToByte:

• DataIn[7:0]: payload data;

• DataInValid: indicates that payload data are valid;

• EOP_in: End Of Packet indicator.

The encoder sends towards the AxiStreamToByte:

• readyOut: flag signaling that the encoder is ready to accept new data; it corresponds to the m_axis
tready flag of the AxiStreamToByte.

8.5.11.2.2 INTERFACE TO ENCODINGGEARBOX

The 8b10b encoder receives from the EncodingGearBox:

• readyIn : indicates that the GearBox is ready to accept new data from the encoder

The encoder sends towards the EncodingGearBox

• DataOut[9:0] : 8b/10b encoded data (always valid)

8. Detailed Functional Description and Specification Page 105 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.11.3 FUNCTIONAL DESCRIPTION

8.5.11.3.1 OVERVIEW

The 8b/10b encoder encodes idles/payload data into 8b/10b protocol. Payload data are transmitted through
packets; each packet starts with a SOP (Start of Packet) comma character and ends with a EOP (End of
Packet) comma character (refer to table 8.36). A minimum of two idle comma characters is sent after EOP.

In case of Xoff rising edge, the encoder transmits a SOB (Start of Busy) comma, and a EOB (End Of Busy)
comma is sent in case of Xoff falling edge. When special comma characters, such as SOP, EOP, or during
Xoff, the encoder stops the AxiStram fifo from sending payload data by asserting a low readyOut signal.

8.5.11.3.2 8B10B ENCODING

Comma characters:

Function GBT mode Strip/LCB FEI4 Meaning
Comma K28.5 K28.1 K28.1 Idle character
SOP K28.1 K28.7 K28.7 Start of chunk / packet
EOP K28.6 K28.5 K28.5 End of chunk / packet
SOB K28.2 N/A N/A Start of busy
EOB K28.3 N/A N/A End of busy

Table 8.36: Comma characters with a special meaning in different firmware flavours.

The functional description of the 8b10b encoder itself, converting a 10b word into 8 bit + CharIsK is well
defined in other literature, and the code has been implemented in phase 1 FELIX.

8.5.11.4 CONFIGURATION

The meaning of the different comma characters in table 8.36 can be configured based on the FIRMWARE_-
MODE generic at build time. It is not foreseen at the moment to make a runtime configurable option for the
8b10b encoder.

8.5.11.5 LATENCY

The 8b10b encoder has a latency of 1 or 2 clock cycles (25 ns). However, it must be taken into considera-
tion that the readyIn signal from the GearBox plays a crucial role into determining the actual latency of the
encoding block.

8.5.11.6 ERROR HANDLING

There is no error handling within the 8b/10b Encoder block. All payload data from the AxiStreamToByte are
considered valid.

8.5.11.7 ESTIMATED RESOURCE USAGE

The resource usage will be estimated for the complete GBT Egroup and the complete encoding block per
firmware mode.

8. Detailed Functional Description and Specification Page 106 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.12 HDLC ENCODER

8.5.12.1 INTRODUCTION

The HDLC Protocol [10] is used by the GBTx chip, to configure the chip itself through the Internal Control (IC)
E-link, and to communicate with the GBT Slow Control Adaptor (GBT-SCA) over the External Control (EC)
E-Link or any other 80 Mb/s E-link of the GBT or lpGBT.

8.5.12.2 INTERFACES

EncoderHDLC

EnableIn
Enable encoder
std_logic

DataIn
8b Data from AxiStreamtoByte
std_logic_vector(7 downto 0)

DataInValid
Data validated by AxiStreamtoByte
std_logic

EOP_in
End of Packet from AxiStreamtoByte
std_logic

readyOut
m_axis_tready toward AxiStreamToByte
std_logic

rst std_logic

clk40
BC clock
std_logic

DataOut
Towards ELink

std_logic_vector(1 downto 0)

HDLC_IDLE_STATE : std_logic_vector(7 downto 0) := (others=>'1')
for EC: 0x7F, for IC: 0xFF

Figure 8.52: The HDLC encoder entity.

8.5.12.2.1 GENERICS

• HDLC_IDLE_STATE: The byte that is clocked out on IDLE, for IC E-Links this is set to 0xFF, for EC
(GBT-SCA) E-Links this should be set to 0x7F.

8.5.12.2.2 INTERFACE FROM AXISTREAMTOBYTE

The signals that connect the HDLCEncoder to AxiStreamToByte directly translate to AXI Stream signals,
however multiple encoders (8b10b, direct) are implemented within one E-Path, so there may be connection
logic in between ByteToAxiStream and EncoderHDLC.

• DataIn: Carries a data byte. Equivalent to s_axis_tdata.

• DataInValid: Marks that DataIn is valid. Equivalent to s_axis_tvalid.

• EOP_in: Marks the last data byte of a chunk. Equivalent to s_axis_tlast.

• readyOut: Encoder is ready to accept the next data byte. Equivalent to s_axis_tready.

8.5.12.2.3 INTERFACE TO GBT/LPGBT E-LINK

The 2-bit port DataOut can be directly connected to the 2 bits of an EC or IC E-Link of the GBT or lpGBT
frame, it bypasses the EncodingGearBox because only 2-bit E-Links are supported for HDLC. The Encoding
Epath may contain additional multiplexing logic depending on the configuration.

8. Detailed Functional Description and Specification Page 107 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.12.3 FUNCTIONAL DESCRIPTION

clk40

DataIn[7..0] C9 01 02 03

DataInValid

readyOut

EOP_in

DataOut[1..0] 3 3 3 2 1 3 3 2 2 1 0 3 2 0 0 0 1 0 0 0 3 0 0 0 1 3 3 2 3 3 3 2

Figure 8.53: The HDLC encoder waveform.

The HDLC decoder is a shift register that shifts out 2 bits at a time. Data is sent out LSB first, for the E-Link
bits (DataOut) the LSB is transmitted at bit 1, bit 0 is the second bit. The serializer process has a bitstuffing
functionality, if 5 consecutive ones are detected, a ’0’ inserted into the output data. Before and after a data
frame, a FLAG is inserted. On IDLE, the ERROR flag is sent out.

Transmitting the first byte takes two times the time of the next bytes, because the FLAG needs to be sent
out first before readyOut can be asserted. See for the timing diagram Figure 8.53.

8.5.12.4 CONFIGURATION

The only configuration possible is to enable the entity by setting EnableIn.

8.5.12.5 STATUS INDICATORS

The HDLC Encoder has no status indicators.

8.5.12.6 LATENCY

A byte takes 4 clockcycles to send out. The first FLAG is shipped out the clock cycle after DataInValid is
asserted, however it will take 8 clock cycles to clock out this first byte.

8.5.12.7 ERROR HANDLING

There is no error handling built into the HDLC Encoder.

8.5.12.8 ESTIMATED RESOURCE USAGE

The resource usage of the complete Encoding Epath for GBT will be covered in section 8.5.

8. Detailed Functional Description and Specification Page 108 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.13 DIRECT MODE E-LINK ENCODER

8.5.13.1 INTRODUCTION

Direct encoding is implemented by omitting the encoder. This is done by connecting AxiStreamToByte directly
to the EncodingGearBox.

Remark 8.8: Direct mode

Direct decoding (no encoding) should not be used by any front-end, and is only included for debugging
purposes. If no encoding technique is used on top of an E-Link, there is no way for the decoder to
distinguish the byte boundary, and where a frame (chunk) starts or ends.

8. Detailed Functional Description and Specification Page 109 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.5.14 TTC ENCODER

Remark 8.9: TTC for phase II

TTC-PON has been mentioned as the replacement for TTC in Phase II. The protocol is not yet final
and no functional TTC-PON systems are currently available. Therefore the TTC system as defined in
Phase I FELIX will be described in this section.

8.5.14.1 INTRODUCTION

For Phase 1, the standard encoded LHC TTC [13] signal will arrive to FELIX via a standard TTC fiber (multi-
mode, ST connector) and will be decoded by FPGA firmware that receives the separated clock and data from
the TTC FMC card on the FLX-709 (the Mini-FELIX), or by equivalent circuitry on the FLX-711/FLX-712 FPGA
card. For Phase 2, the Phase 1 functionality will be implemented as well on lpGBT E-links and extended where
needed. TTC data will be stuffed, on each BC clock, with fixed latency, directly into all output E-links to the
Front End with the “TTC” attribute.

8.5.14.2 INTERFACES

TTCEncoder

TTCIn
From TTC wrapper, through TTC Delay wrapper + ExtendedTestPulse
std_logic_vector(10 downto 0)

TTCOption
Selects the TTCoption to be encoded on the Elink
std_logic_vector(2 downto 0)

Enable
Encoder enable setting
std_logic

clk40
40 MHz BC clock
std_logic

ELinkOut
Connect to MUX towards Elink

std_logic_vector(MAX_OUTPUT-1 downto 0)

MAX_OUTPUT : integer := 8
Maximum ELink width supported by this encoder

Figure 8.54: The TTC Encoder entity.

Unlike other encoders, the TTC encoder will not have an AXI4-stream interface, and also contains no FIFO. A
strict requirement for TTC distribution is that the latency will be fixed. The data to be encoded does not arrive
from the usual path as in other encoders, the data encoded arrives on TTCIn and the bits are described in
Table 8.37.

8.5.14.3 FUNCTIONAL DESCRIPTION

Each E-link can be configured to choose bits from the possible bits shown in Table 8.37, where Brcst[7:2] are
the TTC user-defined broadcast command bits. The number of bits chosen, two, four or eight, must match
the width of the TTC E-link.

Table 8.37: Below is the list of bits decoded from the TTC system that can be chosen to be sent on an E-link
defined as a TTC E-link..

Brc_t2[1] Brc_t2[0] Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR B-chan L1A

8.5.14.3.1 TTC DELAY AND EXTENDED TESTPULSE

Inside the Encoding block, at link scope, an optional delay of 0 to 15 BC clocks can be added to the TTC
system, before the bits are distributed to the TTCEncoder entity. Additionally one signal is added to the bits to

8. Detailed Functional Description and Specification Page 110 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

choose from; the Extended testpulse (TP). The Extended testpulse is a copy of Brc_d4[0] which is stretched
from 32 40 MHz BC clock cycles.

The result is a delayed version of the bits in Table 8.37 with one extra bit added for the test pulse. The
delayed bits are described in Table 8.38

Table 8.38: Below is a copy of the bits found in 8.37 but extended with the external testpulse (TP), and with
an adjustable delay (0-15 BC).

TP Brc_t2[1] Brc_t2[0] Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR B-chan L1A

8.5.14.3.2 TTC OPTIONS

Table 8.39 shows the implemented TTC data formats for Front ends. TTC option 5 was a special option im-
plemented in Phase I LTDB mode only, where a BCR would be delayed by 0.5 BC (12.5 ns). This functionality
will be implemented as a configuration in Phase II.

Table 8.39: Possible TTC options (Brc_d4[3:0] and Brc_t2[1:0] are the TTC user defined broadcast command
bits. Bit 0 is the first bit transmitted out..

E-link option bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 2 bits B-chan L1A
1 4 bits B-chan ECR BCR L1A
2 8 bits B-chan Brc_d4[3] Brc_d4[2] Brc_d4[1] Brc_d4[0] ECR BCR L1A
3 8 bits L1A Brc_d4[1] TP ECR OCR* L0A* Brc_d4[3] LFSR*
4 4 bits BCR BCR BCR BCR
5 (LTDB) 2 bits BCR BCRd*
6 8 bits L1A Brc_d4[1]** TP ECR OCR* L0A* Brc_d4[3] Brc_d4[2]
7 4 bits ECR BCR Xoff L1A
8 8 bits HGTD Fast Command, 6b8b encoded

9 8 bits L1A Brc_d4[1] TP ECR OCR* L0A* Brc_d4[3] Brc_d4[2]

In Table 8.39, 3 bit fields are listed (marked with *) that are not directly input to the TTC Encoder:

• OCR: This bit is set 1 BC clock after BCR, and stretched for a second clock when brc_t2[1] is set.

• L0A: In phase 1 TTC there is no bit for L0A, therefore a copy of L1A is used instead.

• BCRd: A 1 BC clock delayed version of BCR, to allow a 12.5ns shift in time of the BCR distribution (for
LAr LTDB mode only)

• LFSR: To mitigate a deadlock in the GBTx descrambler, we can toggle some bits with pseudo random
numbers. This bit is generated with Listing 8.2

l f s r _ p r o c : process (c lk40)
begin

i f r i s ing_edge (c lk40) then
i f (enable = ’ 0 ’) then

LFSRstate <= " 1010101010 " ;
else

LFSRstate <= LFSRstate (9) xor LFSRstate (7) xor LFSRstate (6) xor
LFSRstate (1) & LFSRstate (9 downto 1) ;

end i f ;
end i f ;

8. Detailed Functional Description and Specification Page 111 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

end process ;

Listing 8.2: LFSR Pseudo random generator for TTC option 3 bit 0.

For Options 0, 1 & 2, the destination must decode the B-channel, one bit per 40 MHz clock. Firmware is
available. It may be that 4 or 8 bits of TTC data need to be sent when, due to E-group contraints, only 2 or
4-bit E-links are available. In this case, 2 or 4-bit options it could be defined to send particular TTC bits, so as
to build 4 or 8-bit wide data from multiple 2 or 4-bit E-links.

** For option 6, the Brc_d4[1] bit is a latched version. The other bits are equal to TTC option 3.
Note that:

• The E-link clock can be 40 MHz, but, for example, the 4-bit field can be transferred at 160 Mb/s if the
receiver generates a ×4 multiple of the 40 MHz E-link clock.

• Typically, the reverse direction of the event data E-link can be used for TTC.

• Unlike 8b/10b encoding, the TTC options above are not DC-balanced; TTC E-links must not be AC-
coupled.

• Transparent upgrade to the Phase 2 TTC system will be possible by changing the mezzanine board on
the FELIX FPGA PCIe card

• The case of a FELIX with only TTC input and only TTC output, i.e. a TTC distributor, is needed by the
LAr LTDB.

As an example, the TTC formats required by the New Small Wheel are described. The first line of Table 8.40
shows the format of the TTC words sent to the NSW Readout Controller on every bunch crossing. It provides
8 bits and requires a 320 Mb/s E-link. NSW uses Option 3 in Table 8.39 and assigns the meanings to the
various broadcast bits as shown in Table 8.40. The second line shows the format sent to the NSW ART
trigger ASIC on a 160 Mb/s E-link. Only BCR is required; it is repeated four times so that it is present for one
complete BC clock.

Table 8.40: Line 1: Format of the 8-bit TTC word sent to the NSW Readout Controller on every bunch
crossing. “OCR” is the Orbit Count Reset, “EC0R” is the reset for the Level-0 ID and “reset” is a Readout
Controller soft reset. Note that bits 7 and 6 are delivered by the GBTx to the E-link in the bunch crossing
following the other six bits. See Figure 11 of [12]. EC0R and L0A, are reserved for Phase 2; for Phase 1,
FELIX sends ECR and L1A for EC0R and L0A.
Line 2: Format sent to the NSW ART trigger ASIC..

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Use: EC0R SCA_reset L0A BCR+OCR ECR TestPulse SoftReset L1A
BCR BCR BCR BCR

Note that, to save bits, OCR is encoded on the BCR line: width of 1 BC = BCR, width of 2 BC = OCR.
Because BCR does not reset the BCID counter, but rather loads a configurable offset, OCR means reset
the orbit counter on the next rollover of the BC counter. The double width BCR implies that a BCR is also
performed, on the first BC of the pair. A double-width BCR is scheduled by sending Brcst7, otherwise unused
by NSW, to indicate that the next BCR should be double-width. Note that EC0R is not needed in a single level
trigger scheme. The SCA_reset, bit 6 of the TTC word, allows resetting the SCA via the TTC path.

Compatibility with the legacy TTCrx ASIC: For the TTCrx ASIC, broadcast bits Brcst[1:0] (BCR and
ECR) were strobes with one BC duration, whereas Brcst[7:2] were latched until a subsequent broadcast reset
them. For FELIX, all broadcast bits are strobes. FELIX will be updated to provide a strobe versus latch option
for Brcst[7:2].

8.5.14.4 CONFIGURATION

The TTC Encoder has two configuration inputs:

8. Detailed Functional Description and Specification Page 112 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

• TTCOption[2:0] which directly translates to the TTC encoding option described in Table 8.39

• Enable to enable the TTC Encoder entity.

8.5.14.5 STATUS INDICATORS

The TTC Encoder has no status indicators.

8.5.14.6 LATENCY

The Latency from TTCIn to ElinkOut is typically 1 BC clock (25ns). OCR and BCRd have one extra BC delay
by design. At E-Group level, the E-Path multiplexer adds one additional BC clock of latency.

8.5.14.7 ERROR HANDLING

The TTC Encoder has no error handling.

8. Detailed Functional Description and Specification Page 113 of 172

FELIX Phase-II firmware specifications: 8.5 Encoding June 28, 2024 - Version 1.037

8.6 LTI ENCODER

Local Trigger Interface (LTI) modules [14] will distribute Trigger, Timing, and Control (TTC) signals to FELIX
during the HL-LHC operations (see table 2.2 of [15]). In the FULL Mode (Phase2 variant) and INTERLAKEN
flavours, FELIX will transmit a copy of the recieved LTI downlink data. The LTI encoded downlink (from FELIX
to frontends) is 8b/10b encoded and it operates at 9.6 Gb/s. (see Fig. 8.55.

the downlinks provides user or trigger signals every cycle of the 40 MHz clock as shown in Fig. 8.55. The
BCID, L0ID, OrbitID, TriggerType, and LBID are output to host upon reception of Level-0 Accept (L0A). All
these signals are associated with the level-0 accept decision. The BCR signal for the front-end system is
derived using the Turn Signal (TS) which has fixed latency in respect to the LHC bunch structure. The phase
of the Turn Signal in respect to the bunch structure is independent of the trigger latency. The BCID counter
in FELIX is set to a configurable value upon reception of the TS pulse. The BCR pulse is generated when
the counter reaches zero. The BCID counter is used for incrementing the local OrbitID. Global Reset (GRst),
L0A, Set L0ID, sSet OrbitID, and other sygnal will also be passed to the front-end systems. The LTI protocol
offers 16 bits for synchronous signals (e.g. to run calibrations) and 64 bits for various asynchronous signals.
This provides flexebility to FELIX firmware to meet the requirements of the front-end systems.

Figure 8.55: The TTC message sent from the FELIX to Frontend (32 bytes) presented as six 32-bit words.

Encoding and decoding of the 8b/10b signals is handled in the multi-gigabit transceiver (MGT). The
firmware assembles the downlink messages from 32-bit words from the MGT by identifying D16.2 and K28.5
characters. It also checks the data for bit-errors with the 16-bit CRC field. The uplink TTC messages are
sampled into 32-bit words to match the MGT interface. The clock frequency is 240.474 MHz. The FPGA
resource utilization is insignificant.

The LTI Encoder format differs from the TTC-LTI format by one bit: In the Downstream user data message,
one of the reserved bits has been associated with Xoff functionality.

8. Detailed Functional Description and Specification Page 114 of 172

FELIX Phase-II firmware specifications: 8.6 LTI Encoder June 28, 2024 - Version 1.037

8.7 LINK WRAPPER

8.7.1 INTRODUCTION

As shown in Figure 8.2, the Link Wrapper instantiates the high speed transceivers (Xilinx GTH/GTY) and
interfaces with their high speed serial links and reference clocks on one side.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links
Figure 8.56: The link wrapper in the toplevel diagram.

The basic link encoding and decoding is also performed inside the Link Wrapper. The basic protocols that
are encoded and decoded inside the link wrapper are:

• GBT: This protocol will be encoded and decoded, data will be (de)scrambled and forward error correc-
tion will be performed. Delivered to the the Encoding / Decoding blocks are ready to use Elinks with all
their bits clocked at 40 MHz BC Frequency.

• lpGBT: This protocol will be encoded and decoded, data will be (de)scrambled and forward error cor-
rection will be performed. Delivered to the the Encoding / Decoding blocks are ready to use Elinks with
all their bits clocked at 40 MHz BC Frequency.

• FULL: 9.6Gb/s 8b10b encoded data will be decoded as 32b + CharisK indication.

• 25Gb/s links: Several subdetectors have expressed their interest to interface FELIX with 25Gb/s links.
The protocol for this type of link has not been defined yet, but candidates are Aurora and Interlaken.
Encoding and Decoding of this link will not happen inside the link wrapper, the link wrapper will deliver
either 64b66b or 64b67b encoded frames to the Encoding / Decoding blocks.

• 10Gb/s links: The L1Track group has expressed their interest in 10Gb/s links. The protocol for this link
has not yet been defined.

8.7.2 FUNCTIONAL DESCRIPTION

8.7.2.1 GBT MODE WRAPPER

A wrapper shown in Figure 8.57 is provided to include the Xilinx transceiver and the GBT encoding and
decoding modules.

8. Detailed Functional Description and Specification Page 115 of 172

FELIX Phase-II firmware specifications: 8.7 Link Wrapper June 28, 2024 - Version 1.037

Scrambler 21
x4

Scrambler 16
x2

Bit115-32

Bit31-0

FEC Encoder

Bit119-116

TX Gearbox
20b

RX Gearbox 20b
FEC Decoder

4

84

32

84

4

32

Descrambler 21
x4

Descrambler 16
x2Bit31-0

Bit115-32

Bit119-116

Transmitter

Receiver

Enable

TX FSM

Enable

Ctrl
TxFrameClk
TxWordClk

RX FSM

Ctrl

TxFrameClk TxWordClk

RxOutClk RxWordClk RxFrameClk

TxOutClk

Ctrl
Status

Status

Figure 8.57: Block diagram for the GBT module in the link wrapper.

The transceiver is configured as 4.8 Gbps for both directions. The GTH transceivers can be configured
in unit of one channel, which uses the CPLL in the transceiver, or be configured to in unit of one quad of
four channels, which uses the high quality QPLL in transceiver. The GBT encoding and decoding module are
based on the code from the CERN GBT group. It has the forward error correction (FEC) capability. Data is
scrambler before the FEC encoding in transmiter direction. In the receiver path, data is descrambled after the
FEC decoding. Some modifications [16] are done to reduce the latency, and to support the online GBT mode
switching between normal mode and wide-bus mode. The interface between GBT wrapper and the Central
Router will be 120-bit GBT data frame in the 40 MHz system clock which is recovered from TTC system.

TCLink and TX Phase alignment may be implemented in the GBT wrapper if required, see section 8.7.2.2.1

8.7.2.2 LPGBT MODE WRAPPER

A wrapper is provided to include the Xilinx transceiver and the lpGBT encoding and decoding modules. The
lpGBT encoding and decoding modules [17], and the lpGBT emulator for the ASIC in front-end side are pro-
vided by the CERN GBT group. The PRBS test with 24-ch bidirectional lpGBT links between 2 FLX-712
cards are carried out with different line rates and FEC coding in Table ??. The Phase-II firmware with lpGBT
wrapper has also been built for FLX-712, and been verified in the system integration between FLX-712 and
the ATLAS Phase-2 strip stave 8.58.

8. Detailed Functional Description and Specification Page 116 of 172

FELIX Phase-II firmware specifications: 8.7 Link Wrapper June 28, 2024 - Version 1.037

Figure 8.58: Integration test between FLX-712 and ATLAS Phase-II Strip Stave.

8.7.2.2.1 TC LINK AND TX PHASE ALIGNMENT

TheÂăhttps://gitlab.cern.ch/HPTD/tx_phase_alignerÂăwill be added in the firmware of the LpGBT TX path in
FELIX, to guarantee 1-2 ps fixed latency for the TX side.Âă

Additionally, TCLink (https://gitlab.cern.ch/HPTD/tclink will be implemented in the lpGBT link wrapper. It
will be used to calibrate latency drift (PVT) when communicating with LpGBTx ASIC.

Figure 8.59: Simplified block diagram of TCLink.

8.7.2.3 FULL MODE WRAPPER
A wrapper for the Xilinx GTH/GTY serializer and deserializer cores is provided. Such a wrapper for Altera
would have to be provided by someone familiar with Altera FPGAs. The Xilinx GTH transmitter and receiver
are configured to operate at a line rate of 9.6 Gb/s. Either QPLL’s or CPLL’s may be used. For Full mode,
the GTH/GTY will be operated in simplex mode, i.e. transmission (Tx) or reception (Rx). The GTH reference
guide [18] gives details about the serializer for Xilinx 7 series FPGA devices. As shown in Figure 8.60, the
GTH transmitter and receiver will be operated at 240 MHz × 32-bits. The IDLE symbol (K28.5) is defined as
the comma character, i.e. the symbol that defines the 32-bit alignment in FELIX MGT receiver. The packet
is assembled by the stream controller in multiples of 32-bit words. To insert a K-character (SoP, EoP, Idle,
BUSY-ON, BUSY-OFF) in the stream, the low byte is set to the K-character 8-bit code and the lowest of the
four Kchar_flag bits is set to 1 (See Figure 8.60). The receiver re-assembles the 32-bit words and flags the
K-characters. On the receiver side, at start-up and if alignment is lost, the SoP will be pushed later in the
output stream so that it becomes the low byte in the next 32-bit word.

8. Detailed Functional Description and Specification Page 117 of 172

https://gitlab.cern.ch/HPTD/tx_phase_aligner
https://gitlab.cern.ch/HPTD/tclink

FELIX Phase-II firmware specifications: 8.7 Link Wrapper June 28, 2024 - Version 1.037Full mode example design (transceiver level) to be Distributed

GTH	
TransmiZer	
(Tx 8b10b
enabled)	

Kai Chen	 4	

b31-24	

b23-16	

b15-8	

b7-0	

0	

0	

0	

kchar	

TxDATA:	
240MHz	
x32 bit	

Kchar_flag:	
240MHz	
x4 bit	

GTH	
Receiver	

(Rx 8b10b
enabled)	

9.6
Gbps	

b31-24	

b23-16	

b15-8	

b7-0	

0	

0	

0	

kchar	

RxDATA:	
240MHz	
x32 bit	

Kchar_flag:	
240MHz	
x4 bit	

KC_FM_GTH_CFG_V1	

Figure 8.60: Block diagram for the serializer and deserializer modules for Full mode.

8.7.2.4 64B67B LINK WRAPPER FOR 25G INTERLAKEN

The GTY implementation for 25.78125 Gb/s Interlaken is implemented inside the link wrapper. The FELIX RX
link (ToHost / Uplink)is implemented with the following properties:

• RX Data rate 25.78125 Gb/s

• Reference clock 156.25 MHz

• Asynchronous gearbox with bitslip input

• TX: GBT, equal to the implementation in section 8.7.2.3

• As an option to test FELIX Interlaken in loopback mode, a 25.78125 Gb/s TX link can be implemented
with an Interlaken transmitter, see section 8.4.19

8.7.3 CONFIGURATION

A unified firmware block Link Wrapper is put in the top level HDL file. For different firmware modes, the
building script will configure the Link Wrapper before synthesis. Meanwhile various of reset ports of the Xikinx
transceivers and the protocol encoding, decoding modules are connected to FELIX control registers. After
the firmware loading, the software can do the online reset and configuration to the Link Wrapper.

8.7.4 STATUS INDICATORS

Some status registers from the link wrapper are connected to the FELIX monitoring registers. For example,
the TX, RX reset done signals, the PLL, CDR lock status, 8b10b flags of the transceivers, and the link locking
flag, error flag and other status signals from the GBT, lpGBT modules. Via the FELIX registers, software
will be able to monitor the status of Link Wrapper. The software will be able to monitor the status, reset
or reconfigure the Link Wrapper. Meanwhile finite state machine (FSM) inside the Link Wrapper will keep
checking the link status and carry out the automatic reset or bit-slip procedures, until the link is locked. There
will be two registers for GBT and lpGBT link status. One for the short-term status monitoring, one for the
long-term status monitoring. The locking status read out by FELIX software and the FSM. For the latter, once
unlock status occurs, the lost of lock bit will be asserted, until manually clearance via software.

8. Detailed Functional Description and Specification Page 118 of 172

FELIX Phase-II firmware specifications: 8.7 Link Wrapper June 28, 2024 - Version 1.037

8.7.5 LATENCY

For GBT mode, some optimization was carried out for the GBT encoder. The Link Wrapper contributes about
60-81 ns, or less than 3.25 Bunch Crossings for the toFrontend (downlink) direction. A full chain latency
measurement was carried for Phase-I review in the past. For lpGBT mode, the CERN code will be used
directly, the latency mainly depends on the lpGBT protocol itself. A full chain latency test will need to be
carried out from the fiber from LTI, to the output elink of GBT ASic and lpGBT ASIC.

8. Detailed Functional Description and Specification Page 119 of 172

FELIX Phase-II firmware specifications: 8.7 Link Wrapper June 28, 2024 - Version 1.037

8.8 GBT, LPGBT AND AXI4 STREAM DATA EMULATOR

8.8.0.1 INTRODUCTION

The implementation of the ToHost data emulator, and it’s position in the block diagram depends on the
firmware flavour. For the GBT and lpGBT based firmware flavours, the ToHost data emulator is instanti-
ated before the decoding block. For FULL mode and 25G Interlaken, the emulator directly generates AXI4
stream and interfaces through a fanout selector directly to CRToHost.

For both use cases, the idea is similar; a memory block contains the data which has to be emulated, an
address counter increments and walks over the address space playing back the contents of the memory.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 8.61: The Front End data emulator in the toplevel diagram.

8.8.0.2 INTERFACES

GBTdataEmulator

register_map_control
rm5.x
register_map_control_type

rst_hw
hard reset
std_logic

rst_soft
soft reset
std_logic

clk40
40 MHz BC clock
std_logic

wrclk
Clock synchronous to register map
std_logic

GBTdata
Emulated GBT frame, including IC/EC. Lower 32b are all 0

std_logic_vector(119 downto 0)

lpGBTdataToFE
Emulated lpGBT frame if EMU_DIRECTION = "ToFrontEnd"

std_logic_vector(31 downto 0)

lpGBTdataToHost
Emulated lpGBT frame if EMU_DIRECTION = "ToHost"

std_logic_vector(223 downto 0)

lpGBTECdata
Emulated lpGBT EC ELink

std_logic_vector(1 downto 0)

lpGBTICdata
Emulated lpGBT IC ELink

std_logic_vector(1 downto 0)

GBTlinkValid
Necessary for PIXEL, always '1' for other flavours

std_logic

EMU_DIRECTION : string := "ToHost"
ToHost or ToFrontEnd

FIRMWARE_MODE : integer := 0
See FELIX_package for the numbers

MEM_DEPTH : integer := 16384
Depth of the emulator ram blocks

LPGBT_TOHOST_WIDTH : integer := 32
Width of an Egroup for lpGBT ToHost

LPGBT_TOFE_WIDTH : integer := 8
Width of an Egroup for lpGBT FromHost

Figure 8.62: The GBT and lpGBT data emulator[6].

8. Detailed Functional Description and Specification Page 120 of 172

FELIX Phase-II firmware specifications: 8.8 GBT, lpGBT and AXI4 Stream Data Emulator June 28, 2024 - Version 1.037

FullModeDataEmulator

register_map_control
configuration settings, at 40 MHz
register_map_control_type

register_map_control_appreg_clk
configuration settings, Wupper clock
register_map_control_type

aresetn
Active low reset
std_logic

appreg_clk
Wupper clock 25 MHz
std_logic

clk240
Internally used to emulate FULL mode data
std_logic

clk400
Internally used to emulate Interlaken
std_logic

aclk
Clock on which AXI4 Stream (32 or 64) is registered
std_logic

register_map_gbtemu_monitor
read registers

register_map_gbtemu_monitor_type

m_axis
AXI4 stream interface for FULL mode emulation

axis_32_2d_array_type(0 to GBT_NUM-1, 0 to 0)

m_axis_tready
AXI4 stream interface for FULL mode emulation

axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to 0)

m_axis_prog_empty
AXI4 stream interface for FULL mode emulation

axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to 0)

m_axis64
AXI4 stream interface for Interlaken emulation

axis_64_array_type(0 to GBT_NUM-1, 0 to 0)

m_axis64_tready
AXI4 stream interface for Interlaken emulation

axis_tready_array_type(0 to GBT_NUM-1, 0 to 0)

m_axis64_prog_empty
AXI4 stream interface for Interlaken emulation

axis_tready_array_type(0 to GBT_NUM-1, 0 to 0)

GBT_NUM : integer := 24
Number of links

BLOCKSIZE : integer
FELIX block size, to determine AXI Stream FIFO memory depth

use_blockram : boolean := true
True if block ram must be used in the memory, if false, a process is making the contents (simulation purpose)

FIRMWARE_MODE : integer
Determine whether FULL Mode or 25G Interlaken will be emulated, See FELIX_package

Figure 8.63: The FULL Mode and Interlaken data emulator[6].

8.8.0.3 FUNCTIONAL DESCRIPTION

The memory blocks in the emulator can be filled at build time using .mem files (generated by elinkconfig) or at
runtime through elinkconfig, through the register map. For GBT, LPGBT, PIXEL and STRIP, the contents of the
memory are the raw (encoded) data words as seen in a complete E-group. For FULL Mode, the unencoded
(32-bit + charisK indication) are loaded into the 33 bits of the memory. For Interlaken the memory is 65 bit
wide and contains the AXI4 stream payload + tlast.

A process with a simple counter counts over the address space of the memory blocks and outputs the
content on the output. In the FullModeDataEmulator the data is then pushed into AXI4 stream FIFOs, one for
every link.

In PIXEL mode, the lpGBT emulator functions similar to the other GBT and lpGBT based modes, but the
address counter ends at certain address that makes it possible for the aurora decoder to stay in lock. An extra
GBTlinkValid indication is used to tell the decoder when the emulator wraps the address counter, to keep the
decoder aligned in emulation mode.

8.8.0.4 CONFIGURATION

Register Description
FE_EMU_ENA.EMU_TOHOST Enable emulation in ToHost direction.
FE_EMU_ENA.EMU_TOFRONTEND Enable emulation in ToFrontEnd direction
FE_EMU_CONFIG.WE 7 bits Write enable for the different memory blocks, one per e-group.
FE_EMU_CONFIG.WRADDR Address of ram block to write
FE_EMU_CONFIG.WRDATA 8 (lpGBT toFE), 16 (GBT), 32 (lpGBT ToHost) or 33 (FULL) bit

interface to the memory blocks
SUPER_CHUNK_FACTOR_LINK For FULL mode only: Concatenate chunks of data together to form

superchunks.
GBT_TOHOST_FANOUT.SEL One bit per link to set the fanout selector into Link mode (0) or

Emulator mode (1)
GBT_TOFRONTEND_FANOUT.SEL One bit per link to set the fanout selector into Link mode (0) or

Emulator mode (1)
Table 8.41: Configuration registers associated with the GBT, lpGBT and FULL Mode data emulators.

8.8.0.5 ESTIMATED RESOURCE USAGE

Resource Count % (XKCU115)

8. Detailed Functional Description and Specification Page 121 of 172

FELIX Phase-II firmware specifications: 8.8 GBT, lpGBT and AXI4 Stream Data Emulator June 28, 2024 - Version 1.037

LUTs 555 0.08%
Flip-Flops 62 0.004%
Block RAM 37.5 1.73%

Table 8.42: GBT Emulator resources.

Resource Count % (XKCU115)
LUTs 677 0.1%
Flip-Flops 70 0.005%
Block RAM 101.5 4.70%

Table 8.43: lpGBT ToHost Emulator resources.

Resource Count % (XKCU115)
LUTs 107 0.01%
Flip-Flops 43 0.003%
Block RAM 16 0.74%

Table 8.44: lpGBT ToFrontEnd Emulator resources.

Resource Count % (XKCU115)
LUTs 2912 0.43%
Flip-Flops 4554 0.34%
Block RAM 26 1.20%

Table 8.45: FULL Mode Emulator resources.

8. Detailed Functional Description and Specification Page 122 of 172

FELIX Phase-II firmware specifications: 8.8 GBT, lpGBT and AXI4 Stream Data Emulator June 28, 2024 - Version 1.037

8.9 TTC EMULATOR

8.9.1 INTRODUCTION

The TTC Emulator block mimics the behavior of the actual TTCrx IC. When enabled, it can generate the level 1
trigger accept signal (L1A), the event counter reset (ECR) and bunch counter reset (BCR) signals, respecting
their different modes and delays. The support for short-B and long-B channel serial signal generation is also
included, in addition to an extra orbit counter reset (OCR) signal, added to the TTCrx IC functionalities.

8.9.2 INTERFACES

Two Time Division Multiplexed (TDM) channels are used. The first, channel A, is exclusively dedicated to
broadcast the first-level trigger-accept (L1A) decisions, delivering a one-bit decision for every bunch crossing.
The other, channel B, is used to broadcast data to all or specific system destinations. The used format is
illustrated if Figure 8.64. Each frame is identified by a header bit (FMT) that indicates its type. Start (logical

Figure 8.64: Transmission Frame Format.

”0”) and stop (logical ”1”) bits are always included at the beginning and end of the frame transmission to
facilitate correct synchronisation.

The check part (CHCK) implements standard Hamming code on with one additional even parity bit to
detect double bit errors. This makes 5 bits and 7 bits for the broadcast and individually-addressed command
frames.

8.9.3 FUNCTIONAL DESCRIPTION

To process the broadcast command frames, the emulator verifies the value of the incoming frame CHCK and
then executes the operation requested in the data part of the frame (8 bits denoted user and system bits: uu
ssssss). The table below summarizes the implemented broadcast commands.

Command Format uu ssssss Function
NOP uu sss000 Do nothing
BCRST uu sss001 Bunch counter reset
ECRST uu sss010 Event counter reset
BECRST uu sss011 Reset event and bunch counters
OCR uu sss100 Orbit counter reset
OBCRST uu sss101 Reset orbit and bunch counters
OECRST uu sss110 Reset orbit and event counters
OBECRST uu sss111 Reset orbit and event and bunch counters

The different reset command signals are generated upon the detection of the rising edge in the incoming
broadcast frame corresponding bit. while OCR is generated only once, BCR and ECR can be repeated with

8. Detailed Functional Description and Specification Page 123 of 172

FELIX Phase-II firmware specifications: 8.9 TTC Emulator June 28, 2024 - Version 1.037

delays determined by the value of bits<3:0> of the coarse delay register. Nevertheless, single signals shall
be generated if the corresponding control period is zero (control registers TTC_EMU_ECR_PERIOD and
TTC_EMU_BCR_PERIOD).

Individually-Addressed Commands (IAC) are sent to specific chips with identification number (ID). The
net data contained in the IAC packet amounts to 16 bits. It is divided into an 8-bit DATA byte, and an 8-bit
SUBADDR byte. IACs can be used to write internal registers of the TTCrx and execute internal commands.
One bit in the IAC data frame (the âĂIJEâĂİ bit in Figure 1) signals if the command is internal or external.
The Emulator completes the IAC frame, by adding the Hamming code and transmits it through the B-channel
serial signal output.

Receiving L1Accept signal on channel-A, (in TTC_EMU_CONTROL.L1A), the emulator activates the l1_-
accept output after a delay specified by the lower four bits of the Coarse Delay Register. If TTC_EMU_-
L1A_PERIOD is different from zero, a periodic trigger L1A signal is generated giving an adjustable frequency
trigger signal.

8.9.4 CONFIGURATION

The emulator can be enabled and disabled on the fly. IN fact, TTC_EMU_SEL selects the TTC Source: When
set to ’0’, the TTC data comes from the decoder, when set to ’1’, the TTC data comes from the TTC emulator.
TTC_EMU_ENA starts the emulator. When set to ’0’ the emulator does not produce any data. When set to
’1’ the emulator is running. The variables TTC_EMU_SEL and TTC_EMU_ENA are both controlled with the
command ’fttcemu -e’ (setting both parameters to ’1’) and ’fttcemu -n’(setting both parameters to ’0’).

As the TTC emulator is able to generate periodic L1A, ECR and BCR signals, TTC_EMU_L1A_PERIOD is
the L1A period in units of LHC clock period (25 ns) set by the user as a frequency using option -e. TTC_EMU_-
BCR_PERIOD is the BCR period in units of LHC clocks and by default has a value 3564 which is the default
in the LHC experiments (representing a period of roughly 89.1 microsecond). TT_EMU_ECR_PERIOD is the
ECR period in units LHC clocks, but note that the ’fttcemu’tool sets the ECR period in units of milliseconds.
Here are few examples:

Set an L1A frequency of 1000 Hz an ECR period of 1 second:
fttcemu -f 1000 -E 1000
Generate a single ECR and a BCR:
fttcemu -E 0 -B 0
Generate a single ECR, followed by 10 L1A triggers at 10 Hz, then switch to 1000 Hz L1A:
fttcemu -E 0 -L 10 -t 100000 -f 1000

8.9.5 STATUS INDICATORS

The status of the TTC emulator is shown running the command ./fttcemu, which displays the values of the
various TTC emulator parameters. This is an example of what is displayed:

ł $ fttcemu
Status:
TTC_EMU_SEL=0, TTC_EMU_ENA=0
TTC_EMU_BCR_PERIOD=3564
TTC_EMU_ECR_PERIOD=0
TTC_EMU_L1A_PERIOD=0

8.9.6 ERROR HANDLING

In broadcast command frames, error correction and detection is made on these eight data bits. The emulator
computes the Hamming bits corresponding to the value of TTC-EMU-LONG-CHANNEL-DATA register in order
to complete the individually addressed frame that shall be written in a fifo and then transmitted through the B
channel serial signal output.

8. Detailed Functional Description and Specification Page 124 of 172

FELIX Phase-II firmware specifications: 8.9 TTC Emulator June 28, 2024 - Version 1.037

8.9.7 ESTIMATED RESOURCE USAGE

The FPGA resource utilization for an Ultrascale FPGA is reported in Table 8.47.

Table 8.46: Post-synthesis TTC emulator resources for FLX712. .

Entity Total LUTs Logic LUTs LUT Regs FFs Carry8 Muxes

TTC emulator 533 510 23 707 26 5

8. Detailed Functional Description and Specification Page 125 of 172

FELIX Phase-II firmware specifications: 8.9 TTC Emulator June 28, 2024 - Version 1.037

8.10 LEGACY TTC DECODER

The TTC system prior to the Run 4 transmitted 2 bits each bunch crossing (LHC) clock. The first bit is the
Level-1 accept decision (aka A-channel) and the second bit (B-channel) is interpreted as short and long
commands transmitted serially. The 40.08 MHz LHC clock is also recovered from the TTC bitstream. The
TTC signal is transmitted via multi-mode optical fiber with ST connectors.

Decoding the the TTC serial stream as the L1A and other signals is done in FELIX firmware. The firmware
receives a 160 Mb/s bitstream accompanied by a 160 MHz clock from a clock-data recovery IC, ADN2814.
The TTC bitstream is biphase mask encoded so A- and B- channel are sampled as two bits each. The
A- and B-channelss can be destinguished without ambiguities because the B-channel can not have eleven
consequent 0’s while A-channel is mostly 0 (the Level-1 trigger rate is 100 kHz). The FPGA is also receiving
LOL, loss off lock, and LOS, loss is signal, from ADN2814. LOS is issued if ADN2814 is not receving proper
signal from the photo-diode. LOL is issued if the IC can not recover the 160 MHz clock. The entire TTC
decoding firmware can be reset with TTC_DEC_CTRL.TOHOST_RST register.

The B-channel is a serial data stream with three types of commands:

• idle is 111111111111.

• short, broadcast, command is 16-bit long: 00TTDDDDDEBHHHHH1 (D=Brcst[7-2], 6 bits. E=Event
Counter Reset, 1 bit. B=Bunch Counter Reset, 1 bit. H=Hamming Code, 5 bits).

• long, addressed, command is 42-bit long: 01AAAAAAAAAAAAAAE1SSSSSSSSDDDDDDDDHHHHHHH1
(A=Address, 14 bits. E=Internal(0)/External(1), 1 bit. S=SubAddress, 8 bits. D=Data, 8 bits. H=Hamming
Code, 7 bits).

Transmission of the short commands happens in sync with the LHC beam structure. Errors from the Hamming
code are in TTC_DEC_MON.TTC_BIT_ERR register.

Every clock cycle the TTC firmware in FELIX outputs L1A, B-channel, BCR (Bunch Counter Reset), ECR
(Event Counter Reset), and Brcst[2-7] signals to the TTC downlinks (2-, 4-, and 8- bit e-links) with fixed
latency. The e-link data formats are in Table 8.39, part of Section 8.5.14, (see also Table 8.37). All these
beam-synchronous signals are deceoded from the B-channel bitstream. All these B-channel-reled signals can
be delayed. The delay value in LHC clock cycles can be configured with TTC_DEC_CTRL.B_CHAN_DELAY
register. The ECR and BCR signals can be swapped via TTC_DEC_CTRL.ECR_BCR_SWAP register; this is
needed for LAr calorimeter systems.

The TTC decoder also outputs 27-byte messages to host for every level-1 accept. The messages include
BCID(12), XL1ID(8), L1ID(24), orbit(32), Trigger Type(16), and L0ID(32). The message format is shown in
Fig. 8.65 (see also Table B.9 and Sec. 8.4.17). Status of of the the FIFO with the to-host data waiting for the

0 FMT(8) Len(8) = 20 reserved
1 XL1ID(8)
2
3
4

orbit(32)
L1ID(24)

Trigger Type (16) reserved(16)
L0ID(32)

L1Ainfo_v01

BCID(12)

Figure 8.65: The TTC message sent to the Back end software (20 bytes) presented as five 32-bit words.

trigger type is accessible with TTC_DEC_MON.TH_FF_FULL, TTC_DEC_MON.TH_FF_EMPTY, and TTC_-
DEC_MON.TH_FF_COUNT registers.

BCID is a 12-bit bunch crossing counter. It is incremented every clock cycle of the LHC clock. It is reset on
arrival of the BCR pulse to a programmable offset. The offset is configured via TTC_DEC_CTRL.BCID_ONBCR

8. Detailed Functional Description and Specification Page 126 of 172

FELIX Phase-II firmware specifications: 8.10 Legacy TTC decoder June 28, 2024 - Version 1.037

register. The counter values range from to to 3563. The BCR signal is ecpected to arrive with fixed latency in
respect to the LHC buch structure about once an orbit.

The BCR periodicity is checked whether BCR period is 3564 BCs. Every mismatch of the BCR perior is
recorded with TTC_BCR_PERIODICITY_MONITOR.VALUE 32-bit counter register. The counter can be reset
with TTC_BCR_PERIODICITY_MONITOR.CLEAR register.

The 32-bit orbit counter increments when the BCID counter reaches 3563. In order to reset Orbit you have
to send Brcst[7[and BCR. Brcst[7[has to be in the same short word or before the BCR.

The 24-bit L1ID counter is incremented on every L1A and reset with ECR.
The 8-bit XL1ID counts ECRs. It is set to the TTC_DEC_CTRL.XL1ID_SW register on the raising edge of

TTC_DEC_CTRL.XL1ID_RST. The ECRs are also counted in TTC_ECR_MONITOR.VALUE 32-bit register.
The L0ID is a copy of XL1ID and L1ID. The current value of L0ID is stored in TTC_L1ID_MONITOR

register. The counter is reset with TTC_ECR_MONITOR.CLEAR.
The firmware can be configured to read trigger types from long b-channel commands by setting TTC_-

DEC_CTRL.TT_Bch_En register to 1. Then a trigger type frame will be expected for every L1A. Trigger type is
set to 0x0000 if reading of the b-channel is disabled or if a trigger types frame is not transmitted shortly after a
L1A (within 25*500 ns). Long commands with trigger types are counrted with TTC_TTYPE_MONITOR.VALUE
32-bit register. The counter is reset with TTC_TTYPE_MONITOR.CLEAR.

FELIX outputs a BUSY signal via the Lemo connector with open collector output. Assertion of a BUSY
signal tells the Central Trigger Processor to throttle the Level-1 trigger to stop the data flow from the front-
end systems to FELIX. The front-end systems can set "BUSY-ON" and "BUSY-OFF" requests to FELIX. Also,
BUSY requests can come from host via TTC_DEC_CTRL.MASTER_BUSY register. The BUSY output signal
is a logical OR of BUSY signals from host and individual (lp)GBT links. A busy signal for an (lp)GBT link
is also a logical OR or busy signals from the individual e-links. BUSY signals from individual e-links can
be supressed via ELINK_BUSY_ENABLE register. The BUSY status o the FELIX board can be read via
TTC_DEC_CTRL.BUSY_OUTPUT_STATUS. BUSY status of a GBT/lpGBT link can be monitored as a bit
in TTC_BUSY_ACCEPTED register. BUSY from DMA can be ignored via DMA_BUSY_STATUS.ENABLE.
TTC_BUSY_TIMING_CTRL.LIMIT_TIME sets minimum time interval for a BUSY signal from an(lp)GBT link
to produce global BUSY. TTC_BUSY_TIMING_CTRL.BUSYWIDTH extends the output BUSY pulse. TTC_-
BUSY_CLEAR resets BUSY condition on all links.

FELIX can control data flow from fullmode links by issuing XOFF and XON commands to the transmitting
systems. An XOFF is transmitted when a buffer in FELIX is about to overflow. After transmitting an XOFF
FELIX will transmit an XON to resume the dataflow.

The FPGA resource utilization for an Ultrascale FPGA is reported in Table 8.47.

Table 8.47: The TTC resources are post-implementation (place and rout) for FLX712. We expect similar
resouce utilization in Versal FPGAs..

Entity Total LUTs Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18

ttc decoder 1005 981 0 24 1529 7 2
busy 1652 1652 0 0 1363 0 0

8. Detailed Functional Description and Specification Page 127 of 172

FELIX Phase-II firmware specifications: 8.10 Legacy TTC decoder June 28, 2024 - Version 1.037

8.11 LTI/TTC INTERFACE

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 8.66: The LTI-TTC interface in the toplevel diagram.

Local Trigger Interface (LTI) modules [14] will distribute Trigger, Timing, and Control (TTC) signals to FELIX
during the HL-LHC operations (see table 2.2 of [15]). FELIX will output BUSY and other signals to LTIs. The
TTC system will be upgraded to use the LTI boards to handle the Level-0 trigger rate of 1 MHz. The low
bandwidth of the legacy TTC system (40 Mbps for the B-channel) does not allow it to transmit trigger types
at 1 MHz rate. LTI bioards use point to point connections to FELIX for low and deterministic latency of the
uplink (e.g. busy) signals. The downlink (from LTI to FELIX) is 8b/10b encoded and it operates at 9.6 Gb/s.
The uplink is also 8b/10b encoded and it runs at 4.8 Gb/s. Both the uplink and downlink data blocks are
synchronous with the LHC clock (40 MHz) (see Figs. 8.67 and 8.68).

the downlinks provides user or trigger signals every cycle of the 40 MHz clock as shown in Fig. 8.67. The
BCID, L0ID, OrbitID, TriggerType, and LBID are output to host upon reception of Level-0 Accept (L0A). All
these signals are associated with the level-0 accept decision. The BCR signal for the front-end system is
derived using the Turn Signal (TS) which has fixed latency in respect to the LHC bunch structure. The phase
of the Turn Signal in respect to the bunch structure is independent of the trigger latency. The BCID counter
in FELIX is set to a configurable value upon reception of the TS pulse. The BCR pulse is generated when
the counter reaches zero. The BCID counter is used for incrementing the local OrbitID. Global Reser (GRst),
L0A, Set L0ID, sSet OrbitID, and other sygnal will also be passed to the front-end systems. The LTI protocol
offers 16 bits for synchronous signals (e.g. to run calibrations) and 64 bits for various asynchronous signals.
This provides flexebility to FELIX firmware to meet the requirements of the front-end systems.

The uplink infomms LTI of busy signals from FELIX as shown in Fig. 8.68. The uplink will transmit the
blobal BUSY status and Calibration Requests (CalRec) from FELIX to LTIs. The data format has 60 reserved
bits in case the front-end system requires additional signals.

Encoding and decoding of the 8b/10b signals is handled in the multi-gigabit transceiver (MGT). The
firmware assembles the downlink messages from 32-bit words from the MGT by identifying D16.2 and K28.5
characters. It also checks the data for bit-errors with the 16-bit CRC field. The uplink TTC messages are
sampled into 32-bit words to match the MGT interface. The clock frequencies are 200 MHz ot lower. The
FPGA resource utilization is insignificant.

8. Detailed Functional Description and Specification Page 128 of 172

FELIX Phase-II firmware specifications: 8.11 LTI/TTC Interface June 28, 2024 - Version 1.037

Figure 8.67: The TTC message sent from the LTI to FELIX (32 bytes) presented as six 32-bit words.

Figure 8.68: The TTC message sent from FELIX to the LTI (12 bytes) presented as six 16-bit words.

8. Detailed Functional Description and Specification Page 129 of 172

FELIX Phase-II firmware specifications: 8.11 LTI/TTC Interface June 28, 2024 - Version 1.037

8.12 CRTOHOST: TOHOST OR UPSTREAM CENTRAL ROUTER

8.12.1 INTRODUCTION

CRToHost, or the Upstream / ToHost Central Router is the block that takes AXI stream (axis32) data from
the several decoders. This data is formatted into blocks, see Section B.2.1. The AXI stream data enters the
CRToHost entity in the form of a two dimensional array of which the first dimension is the number of optical
links, the second dimension is the number of streams per link. This is usually the number of E-links on a GBT
or lpGBT link. For FULL mode the size of the second dimension is 1.

The data is demultiplexed, buffered and formatted into a 256b, 512b or 1024b FIFO interface that is
acceptable for the Wupper ToHost DMA interface.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 8.69: The ToHost Central Router (CRToHost) in the toplevel diagram.

8. Detailed Functional Description and Specification Page 130 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

8.12.2 INTERFACES

8.12.2.1 OVERVIEW

CRToHost

s_axis
2D array of AXI4Stream from Decoding
axis_32_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_TOHOST-1)

s_axis_tready
AXI4Stream handshake
axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_TOHOST-1)

s_axis_prog_empty
Indicates that at least 1 block is in the FIFO
axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_TOHOST-1)

s_axis_aux
Additional AXI4Stream (1D array) for TTC ToHost and BUSY ToHost
axis_32_array_type(0 to 1)

s_axis_aux_tready
Handshaking
axis_tready_array_type(0 to 1)

s_axis_aux_prog_empty
Indicates that at least 1 block is in the FIFO
axis_tready_array_type(0 to 1)

register_map_control
configuration registers
register_map_control_type

register_map_xoff_monitor
Monitor registers for XOFF
register_map_xoff_monitor_type

register_map_crtohost_monitor
Monitor registers for CRToHost
register_map_crtohost_monitor_type

aresetn
Active low reset
std_logic

clk40
40 MHz clock, for interrupts,
std_logic

clk250
250 MHz clock, for output FIFO interface
std_logic

aclk_tohost
Clock of s_axis interface, determined by decoding.
std_logic

interrupt_call
Drives Wupper MSIX interrupts

std_logic_vector(NUMBER_OF_INTERRUPTS-1 downto 4)

toHostFifo_din
Connects to Wupper FIFO input

slv_array(0 to NUMBER_OF_DESCRIPTORS-2)

toHostFifo_prog_full
FIFO programmable FULL

std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)

toHostFifo_wr_clk
Write clock for Wupper FIFO (250 MHz)

std_logic

toHostFifo_wr_en
FIFO write enable

std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)

toHostFifo_rst
FIFO reset

std_logic

NUMBER_OF_DESCRIPTORS : integer := 3
Determines number of output FIFOs

NUMBER_OF_INTERRUPTS : integer := 8
Size of interrupt_call

GBT_NUM : integer := 1
First dimension of s_axis

toHostTimeoutBitn : integer := 16
Determines maximum duration of timeout.

STREAMS_TOHOST : integer := 1
Second dimension of s_axis

BLOCKSIZE : integer := 1024
Size of a block in ToHost memory

CHUNK_TRAILER_32B : boolean := true
Use 32b data format

DATA_WIDTH : integer := 256
Data width of FIFO towards Wupper. 512 for PCIe Gen4.

Figure 8.70: CRToHost interface symbol.

8.12.2.2 INTERFACE FROM DECODING

The interface s_axis of the type axis_32_2d_array_type (a 2D array of axis_32_type), see listing 8.3. The input
s_axis and the handshake lines s_axis_tready are used to take data from the different protocol decoders.
Additionally, s_axis_prog_empty is required. This is a 2D array if std_logic with the same dimensions. It
should be connected to the prog_empty outputs of the axis fifo instances in the decoders, to indicate that at
least a full block of data is available inside the FIFO. This is used for the selection of the AXIs mux, to assure
that a complete block can be sent out at once without stalling the MUX for other AXI stream inputs. The
size of s_axis and the corresponding handshake signals is (0 to GBT_NUM-1, 0 to STREAMS_TOHOST-1).
GBT_NUM is the number of optical links connected to the the Decoder in the endpoint. If the FELIX firmware
has two PCIe endpoints, this size will be half the total number of optical links available. The second number
STREAMS_TOHOST is the number of E-Links per optical link. This depends on the firmware flavour and is
defined at build time.

An additional input channel with a different dimension, but otherwise the same functionality is available
as s_axis_aux. This link is internally added to the array of s_axis, but is connected to the virtual E-Links:
TTCToHost 8.4.17 and BUSYXOFF 8.4.18.

type axis_32_type is record
t da ta : s t d _ l o g i c _ ve c to r (31 downto 0) ; −− ! Data bus
t v a l i d : s t d _ l o g i c ; −− ! Va l i d data when t ready i s ’ 1 ’
t l a s t : s t d _ l o g i c ; −− ! Last cyc le o f a chunk
tkeep : s t d _ l o g i c _ ve c to r (3 downto 0) ; −− ! Serves as byte enable
t use r : s t d_ l o g i c _v e c t o r (3 downto 0) ; −− ! Meaning o f tuse r b i t s :

−− !
3 : Truncat ion / FIFO f u l l

8. Detailed Functional Description and Specification Page 131 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

−− !
2 : FrontEnd BUSY

−− !
1 : Chunk e r r o r

−− !
0 : CRC e r r o r
end record ;

type axis_32_array_type is array (n a t u r a l range <>) of axis_32_type ;
type axis_32_2d_array_type is array (n a t u r a l range <>, n a t u r a l range <>)

of axis_32_type ;

Listing 8.3: A snippet from axi_stream_package.vhd showing the 32b axi stream type.

8.12.2.3 INTERFACE TO WUPPER

The data output of CRToHost is an interface to the input of one or multiple FIFO’s. The data width of the
interface (256 or 512 bits) is determined by the generic DATA_WIDTH. The number of FIFO interfaces is de-
termined by the generic NUMBER_OF_DESCRIPTORS-1, One is subtracted, because the last of descriptor
in Wupper (see also section 8.14) is used for communication in FromHost direction, towards CRFromHost
(see 8.13)). The FIFO interface consists of toHostFifo_din, toHostFifo_prog_full, toHostFifo_wr_clk, toHost-
Fifo_wr_en and toHostFifo_rst. The signal names can be connected to the corresponding interface ports of
Wupper. Apart from the FIFO interface, CRToHost can also generate MSIX interrupts using interrupt_call.

8.12.3 FUNCTIONAL DESCRIPTION

s_axis
s_axis_tready

s_axis_prog_empty

s_axis_aux
s_axis_aux_tready

s_axis_aux_prog_empty

aresetn
clk40

clk250

aclk_tohost

toHostFifo_wr_clk

CRToHost

CRToHostdmCRToHostdmCRToHostdmCRToHostdmCRToHostdmCRToHostdmCRToHostdmCRToHostdmCRToHostdm
256b / 512b / 1024b
ToHost Data

CRResetManager

CRToHost
PCIeManager

CRToHostdmCRToHostdmCRToHostdmCRToHostdm

XOFF

ToHostAxiStreamController

toBlock

timeout
stream
select

ax
i

m
u

x

12x42xAXIs32

42xAXIs32

2xAXIs32

256b, 512b or 1024b

32b

new_chunk
set_header

HIFIFO

kwek

Figure 8.71: CRToHost Block Schematic.

8.12.3.1 CRTOHOSTDM

For every item in the first dimension of s_axis (GBT_NUM), usually the number of optical links, one CRTo-
Hostdm is instantiated. This is a wrapper for the ToHostAxiStreamController, the Channel FIFO and the XOFF
mechanism.

8. Detailed Functional Description and Specification Page 132 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

8.12.3.1.1 TOHOSTAXISTREAMCONTROLLER

The ToHostAxiStreamController Consists of the 4 following processes, that work together to convert AXI
streams into the FELIX block format see Appendix B.2.1.

• Stream Select looks at the s_axis_prog_empty bits which show whether enough data resides in one
of the AXI stream FIFOs, inside the decoders. As a second priority, a stream can be selected that has
_tvalid set to ’1’, after a timeout occurs. This way a partial block can be read out.

• AXI Stream MUX is a clocked mux that multiplexes the array of axis_32_type records into a single AXI
stream, selected by Stream Select.

• To Block takes the seleced AXI stream record and converts this into the FELIX block format (see
Appendix B.2.1), 32 bit at a time. It generates a 32b data output, a FIFO write enable and responds
to the FIFO full handshake line to pause the operation. Exactly on the beginning of every block, a 32
bit block header will be generated, and at the end of a chunk (s_axis.tlast = ’1’) a chunk trailer will be
added to the data stream. If a chunk is still in the process of being moved out towards the channel FIFO,
but the block is at it’s end, an intermediate subchunk trailer will be added, indicating the length of the
partial chunk and a flag that the chunk is partial. At the end of a block, the AXI mux may select another
AXI stream, so the end subchunk will be sent out later, when the corresponding AXI stream is selected
again.

• Timeout Mechanism Counts up to the value of the register TIMEOUT_CTRL.TIMEOUT and incre-
ments a 2-bit counter for every AXI stream if the corresponding tvalid is ’1’, but prog_empty is also
’1’ indicating a partial block. A counter value of 2 means that the corresponding AXI stream may be
selected by Stream Select and the data copied into the channel FIFO.

8.12.3.1.2 CHANNEL FIFO

The channel FIFO, is an assymetric FIFO, matching the 32 bit output of ToHostAxiStreamController to the
width of the Wupper input FIFO (256 bit for PCIe Gen3x8, 512 bit for PCIe Gen4x8). The depth of the FIFO
in bytes is set to fit exactly to blocks.

This FIFO is replaced by a Header-Inserting FIFO (HIFIFO) from firmware version 5.2. This is a special
FIFO with two extra inputs that can be used to insert headers into its memory. This is necessary to be able to
generate chunks with headers, because the length of the chunk is not yet known when the start of the chunk
needs to be inserted into the FIFO.

The HIFIFO has two additional inputs: new_chunk and set_header. When new_chunk is asserted, the
FIFO will leave a gap in its memory which can be written to at a later time. The word written to the FIFO when
new_chunk is high is placed after the reserved gap. This gap can be written to by asserting set_header.
When set_header is asserted, the word on the input will be written to the gap that was reserved when new_-
chunk was high. Figures 8.72 and 8.73 show a write and read sequence to and from the HIFIFO. The FIFO is
first-word fall-through, which is why the first word is already at the output when the read enable pin is asserted
in fig. 8.73.

data in A B C H D

new_chunk

set_header

write clock

mem write addr 0 1 2 4 3 4 1 4 5

header address 1

Figure 8.72: The process of writing data into the HIFIFO.

The logic that handles the reservation and writing of the header word is shown in fig. 8.74

8. Detailed Functional Description and Specification Page 133 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

data out A H B C D

read clock

read enable

mem read addr 0 1 2 3 4 5

Figure 8.73: The process of reading data from the HIFIFO that was written in fig. 8.72.

D
ce

Header address

0

1 Memory
write address

set_header

wr_en

Counter

ce

+1+2 1

0

set_header

new_chunk

new_chunk

Normal
write address

Figure 8.74: A slightly simplified version of the writing logic of the HIFIFO.

To conform to timing requirements, the HIFIFO has a state machine on its output. This state machine
controls the two output registers of the HIFIFO’s memory block. It prepares the first two output words into
these registers when they are ready. The state machine diagram is shown in fig. 8.75. As shown in fig. 8.77,
the state machine controls four signals: the empty output, the clock enable of the first and second registers
(separately), and the clock enable of the HIFIFO’s read pointer counter.

none
ready

rd_en
memoryEmpty

0X
1X 00

10

01

11

00

1X
0X

X0
11

0X

buffer
ready

output
ready

both
ready

Start

Figure 8.75: The state machine diagram for the state machine used by the HIFIFO.

Memory
Buffer Outputinvaliddata[0]* invalid

none_ready

Memory
Buffer Outputdata[0] invaliddata[1]*

buffer_ready

Memory
Buffer Output

data[0] or
data[1]* data[0]data[1]*

output_ready

Memory
Buffer Outputdata[1] data[0]data[2]*

both_ready

* = might be invalid

Figure 8.76: An explanation of every state of the state machine at the output of the HIFIFO.

8. Detailed Functional Description and Specification Page 134 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

FSM

Memory

read address

Buffer

ce ce

Output

Counter
out

ce

empty

dout

memoryEmpty
rd_en

Figure 8.77: The signals the state machine controls.

More details about the exact workings of the HIFIFO can be found in its firmware code. A report was
written on the design of the HIFIFO, which can be found in [19].

8.12.3.2 CRTOHOST PCIEMANAGER

The CRToHost PCIe Manager reads the programmable empty flags from the channel FIFOs to determine
whether at least one block of data is available inside the FIFO, Additionally, it reads the AXI Stream ID from
the first cycle of the data block, and associates the AXI stream ID with one of the output descriptors / DMA
channels towards Wupper. If the target Wupper FIFO has empty space to store that block, the thch_sel and
ouput_select signals for the CRToHost MUX are set and the read enable for the channel FIFO is asserted, as
well as the write enable for the Wupper FIFO will be asserted for exactly the number of cycles needed for one
block.

8.12.3.2.1 PCIE DMA CHANNEL SELECTION

The CRToHost PCIeManager and the CRToHost MUX work together to write the correct data, coming from a
certain E-Link (identified by an AXI Stream ID) to a user selectable DMA channel.

1. When data is available in the Channel FIFO (first-word-fall-through mode), the 11 bits of the AXI-Stream
ID are read out.

2. A block memory is addressed with the AXI-Stream ID as the address. For every ID, a 3-bit target DMA
channel (descriptor) can be programmed by means of the registers mentioned in the Configuration
subsection (8.12.4). By default, all data will be forwarded to descriptor 0, standard builds have 4 ToHost
descriptors per PCIe Endpoint.

3. When the AXI Stream ID has been associated with a DMA descriptor, the CRToHost input and output
selection will be set up to connect the selected input channel with the associated Wupper FIFO.

The mechanism described above benefits reliability in two ways:

• CPU load: The data load can be separated over multiple DMA buffers in a configurable way per E-
Link. This means that when one link is expected to produce more data than the other, this can be
accounted for in the DMA channel assignment in the firmware. This way the load of the CPU cores can
be balanced.

• Isolation of (DCS) data streams: If high link occupancy is likely to cause buffer overload in the server
memory, certain (DCS) E-Links may be assigned to a separate DMA channel / descriptor. This way
a separate process will be available to handle important data independent of other data acquisition
processes.

8. Detailed Functional Description and Specification Page 135 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

8.12.3.3 CRTOHOST MUX

The CRToHost MUX is selected by the CRToHost PCIemanager and multiplexes the number of input channels
(GBT_NUM+1 for the AUX channel) into one of the FIFO data ports towards Wupper.

8.12.3.4 CRRESETMANAGER

The CRResetManager synchronizes the incoming reset to clk40 with two extended reset pulses:

• Logic reset: This reset holds for 15 clocks after the release of the incoming reset (aresetn), this reset is
used to reset all logic in the ToHostAxiStreamController, XOFF, CRToHostMUX and CRResetManager.

• FIFO reset: This reset holds for 8 clocks after the release of aresetn, and is used to reset the channel
FIFO as well as the Wupper FIFO of which the reset is generated from within the CRToHost port. This
reset clears earlier, because the FIFOs take a few clock cycles to become active after a reset.

8.12.4 CONFIGURATION

CRToHost does not have many runtime configuration options. It assumes that the decoders, feeding data to
the AXI stream interfaces can be enabled / disabled through configuration registers. What is left to configure
is:

• XOFF_FM_CH_FIFO_THRESH_LOW: The deassertion watermark level of the channel FIFO for which
XOFF will be released

• XOFF_FM_CH_FIFO_THRESH_HIGH: The ssertion watermark level of the channel FIFO for which
XOFF will be asserted

• TIMEOUT_CTRL.TIMEOUT: Number of BC clock cycles after which a timeout will occur in case a partial
block resides in an E-Path FIFO.

• TIMEOUT_CTRL.ENABLE: Enable the timeout mechanism.

• CRTOHOST_DMA_DESCRIPTOR_2.AXIS_ID: 11 bit AXI Stream ID of the E-Link to be associated with
a DMA stream

• CRTOHOST_DMA_DESCRIPTOR_1.DESCR: DMA channel (descriptor) 0-3 to be associated with the
AXI stream ID

• CRTOHOST_DMA_DESCRIPTOR_2.DESCR_READ: Register to read back the DMA channel (descrip-
tor) associated with the AXI Stream ID.

8.12.5 STATUS INDICATORS

The status of the FIFO can be read through the CRTOHOST_FIFO_STATUS.FULL and CRTOHOST_FIFO_-
STATUS.FULL_LATCHED registers in the register map. The XOFF signals are generated from the same
FIFO but with a different threshold (see Configuration). The XOFF status can be read through the reg-
isters XOFF_FM_HIGH_THRESH.CROSS_LATCHED, XOFF_FM_HIGH_THRESH.CROSSED and XOFF_-
FM_LOW_THRESH_CROSSED.

8.12.6 LATENCY

The latency of CRToHost strongly depends of the number of AXI streams per link. If only one of them contains
data, the beginning of a block can start 8 clock cycles after prog_empty goes low. This latency can be
neglected as it is much smaller than:

• The time it takes to fill the Decoder FIFO with one block of data

• The PCIe transfer latency towards the host server

8. Detailed Functional Description and Specification Page 136 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

• The time it takes to select the AXI mux and / or the CRToHost MUX if other AXI Streams or other
channels are in the process of transferring data.

8.12.7 ERROR HANDLING

Errors can be generated inside the axi stream in the tuser bits. These bits will be reflected in the (sub)chunk
trailers. Also internal data format errors as well as timeout and truncation (caused by a FULL FIFO while data
was transferred, so a loss of data) will be reflected in the (sub)chunk trailers.

8.12.8 ESTIMATED RESOURCE USAGE

LUT FF BRAM
KCU115 / FLX712 10406 1.56% 11713 0.88% 52 2.4%
VU37P / FLX128 7453 0.57% 7643 0.29% 104 5.15%

Table 8.48: CRToHost Resource utilization.

8. Detailed Functional Description and Specification Page 137 of 172

FELIX Phase-II firmware specifications: 8.12 CRToHost: ToHost or Upstream Central Router June 28, 2024 - Version 1.037

8.13 CRFROMHOST: FROMHOST OR DOWNSTREAM CEN-
TRAL ROUTER

8.13.1 INTRODUCTION

The FromHost or Downstream Central Router (CRFromHost) is the main interface between the Wupper and
the encoders towards the detector. It is used to fanout the data from the PCIe interface to the link encoders.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 8.78: The FromHost Central Router (CRFromHost) in the toplevel diagram.

8.13.2 INTERFACES

CRFromHostAxis

fromHostFifo_dout
fromHostFifo data port
std_logic_vector(DATA_WIDTH-1 downto 0)

fromHostFifo_empty
fromHostFifo empty status
std_logic

fhAxis_tready
AXI stream ready input
axis_tready_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_PER_LINK_FROMHOST-1)

register_map_control
control registers
register_map_control_type

aresetn
asynchronous reset
std_logic

fromHostFifo_rst
fromHostFifo reset
std_logic

fromHostFifo_clk
fromHostFifo read clock
std_logic

fhAxis_aclk
AXI stream master clock
std_logic

fromHostFifo_rd_en
fromHostFifo read enable pulse

std_logic

fhAxis
AXI stream output

axis_8_2d_array_type(0 to GBT_NUM-1, 0 to STREAMS_PER_LINK_FROMHOST-1)

fifo_monitoring
link FIFO monitoring registers

bitfield_crfromhost_fifo_status_r_type

GBT_NUM : integer range 1 to 32 := 1
number of GBT links

STREAMS_PER_LINK_FROMHOST : integer range 1 to 64 := 1
number of AXI stream master interfaces per GBT link

GROUP_CONFIG : IntArray(0 to MAX_GROUPS_PER_STREAM_FROMHOST-1) := (0 => 1, others => 0)
linkinternal grouping of streams

DATA_WIDTH : integer := 256
input data width from Wupper FIFO

NEW_DATA_FORMAT : boolean := false
boolean to enable new dataformat proposed in FLX1355

Figure 8.79: The FromHost or Downstream Central Router entity.

8.13.2.1 INTERFACE TO WUPPER

The interface to Wupper is a 256-bit (for PCIe 3.0) or 512-bit wide (for PCIe 4.0) FIFO interface which can
be connected to a standard FIFO. Whenever there is data available (empty = ’0’) and the internal data
forwarding is not stalled, a read-enable pulse is generated. The data has to be valid in the following read-
clock-cycle. A separate reset signal can be used to clear the FIFO in case of a reset or flush of the Central
Router. Figure 8.80 shows an example waveform of input signals for the CRFromHost.

8. Detailed Functional Description and Specification Page 138 of 172

FELIX Phase-II firmware specifications: 8.13 CRFromHost: FromHost or Downstream Central RouterJune 28, 2024 - Version 1.037

fromHostFifo_rd_clk

fromHostFifo_dout D0 D1 D2

fromHostFifo_empty

fromHostFifo_rd_en

fromHostFifo_rst

Figure 8.80: Example waveform of a typical FromHost Central Router transfer with its FIFO interface. [7].

Each 256-bit block at the input of the CRFromHost represents a packet. In case of a 512-bit FIFO interface,
two packets are sent simultaneously. Each packet consists of a 16 bit header followed by 240 bits of payload.
Table ?? shows how the bits are assigned in that packet. Details of the data format can be found in B.2.2.

8.13.2.2 INTERFACE TO THE ENCODERS

All encoders are connected to the FromHost Central Router as AXI stream 8b slaves. Therefore, the CR-
FromHost provides a number of AXI stream 8b master interfaces. Each interface is connected to a single
encoding instance. The masters are split into two groups. First all masters are grouped by the corresponding
lpGBT or GBTx link they belong to. Inside each lpGBT/GBTx link there is an additional grouping to ease
throughput of the Central Router. All AXI stream master of a group have a total maximum bandwidth which
cannot be exceeded. An example waveform of a typical AXI stream 8b transfer is shown in Figure 8.81.

aclk

tdata[7:0] P0 P0 P1 P2 P4 P5 P6 P7

tvalid

tlast

aresetn

tready

c

a b

M
as

te
r

Sl
av

e

Figure 8.81: Example waveform of a typical AXI stream 8b transfer. [7].

8.13.3 FUNCTIONAL DESCRIPTION

8.13.3.1 CRFROMHOST TOP-LEVEL

The top-level module provides the instantiation of all sub-modules in the CRFromHost together with logic to
monitor the internal status of the CRFromHost and the first distribution level.

The distribution logic first only distributes packets to the different link FIFOs, where each GBT or lpGBT
link has its own FIFO. The link ID field in the packet header is used as a address to which link the packet
should go. If all bits in the link ID field are set, the packet is treated as a broadcast packet to all links and
therefore written to all link FIFOs in parallel.

All link FIFOs are constantly monitored. If a link FIFO is full this is reported through the register bank.
A latched version of the full flag is also available in the register bank. Both flags can be found in the
CRFROMHOST_FIFO_STATUS register.

8.13.3.2 CRFROMHOST DATA MANAGER

The data manager contains the next distribution stage in the CRFromHost. Due to bandwidth reasons the
streams of a GBT or lpGBT link are split into groups, where each group has a certain maximum bandwidth.

8. Detailed Functional Description and Specification Page 139 of 172

FELIX Phase-II firmware specifications: 8.13 CRFromHost: FromHost or Downstream Central RouterJune 28, 2024 - Version 1.037

This also represents the scheme of e-groups in the GBT chip. The data manager processes the stream ID
field in the packet and forwards the packet to the transfer manager handling the group the stream belongs to.
If all bits in the stream ID field are set the packet is considered to be a broadcast packet. This broadcast is
sent to all group FIFOs in parallel.

8.13.3.3 CRFROMHOST TRANSFER MANAGER

The transfer manager is the last stage of distribution and handles all streams in a group. Based on the stream
ID field it decides which stream will be used to transmit the packet. For this stream a AXI stream transmission
is initiated.

8.13.4 CONFIGURATION

8.13.4.1 GENERICS

The configuration of the CRFromHost is mainly accomplished through various generics, which are evaluated
during synthesis time of the firmware.
GBT_NUM: This generic defines the total number of GBT or lpGBT links handled by the CRFromHost. It is

an integer number between 1 and 31. For each link one data manager is instantiated.
STREAM_PER_LINK_FROMHOST: defines the total number of streams in each GBT or lpGBT link. It is an

integer number between 1 and 63.
GROUP_CONFIG: is an array of integers with up to MAX_GROUPS_PER_STREAM_FROMHOST (usually 8) entries.

The number of non-zero entries defines the number of groups, while each entry corresponds to the number
of streams inside a group. The sum of all entries has to match STREAM_PER_LINK_FROMHOST.
DATA_WIDTH: input width from the PCIe FIFO. Allowed values are 256 for PCIe 3.0 links and 512 for PCIe

4.0 links.

8.13.4.2 RUN-TIME CONFIGURATION

The run-time configuration of the CRFromHost is performed through the register map of FELIX. During run-
time the only configurable part is the enabling or disabling of streams for broadcast transmissions. The
BROADCAST_ENABLE_00 to BROADCAST_ENABLE_23 registers allow to include the stream of a specific GBT or
lpGBT link to be included in broadcast transmissions.

8.13.5 STATUS INDICATORS

The full flag of the link FIFOs is available through the CRFROMHOST_FIFO_STATUS register. Also the latched
full flag can be read out there.

8.13.6 LATENCY

The maximum latency of the CRFromHost depends strongly on the data it has to process. Therefore, no value
is given.

The minimal latency was measured in a simulation to be 9 clock cycles of the CRFromHost clock.

8.13.7 ESTIMATED RESOURCE USAGE

LUT FF BRAM
KCU115/FLX712 34113 5.14% 63516 4.78% 48 2.22%
VU37P/FLX128 49736 3.82% 63864 2.45% 48 2.38%

Table 8.49: CRFromHost Resource utilization.

8. Detailed Functional Description and Specification Page 140 of 172

FELIX Phase-II firmware specifications: 8.13 CRFromHost: FromHost or Downstream Central RouterJune 28, 2024 - Version 1.037

8.14 WUPPER: PCIE DMA CORE AND REGISTER MAP

8.14.1 INTRODUCTION

Wupper9 is designed for the ATLAS / FELIX project [20], to provide a simple Direct Memory Access (DMA)
interface for the Xilinx Virtex-7 PCIe Gen3 hard block and has later been ported to the Kintex Ultrascale, Virtex
Ultrascale+ and Versal Prime series. The core is not meant to be flexible among different architectures, but
especially designed for the 256 and 512 bit wide AXI4-Stream interface [21] of the Xilinx Virtex-7 and Ultra-
scale FPGA Gen3 Integrated Block for PCI Express, and the Ultrascale+ and Versal Prime Gen4 Integrated
Block for PCI Express (PCIe) [22, 23, 24, 25].

The purpose of Wupper is therefore to provide an interface to a standard FIFO. This FIFO has the same
width as the Xilinx AXI4-Stream interface (256 or 512 bits) and runs at 250 MHz. The user application side
of the FPGA design can simply read or write to the FIFO; Wupper will handle the transfer into Host PC mem-
ory, according to the addresses specified in the DMA descriptors. Several descriptors can be queued, up
to a maximum of 8, and they will be processed sequentially one after the other. The number of descriptors
(NUMBER_OF_DESCRIPTORS generic) plays an important role, it determines the total number of descrip-
tors, but also the number of FIFO interfaces in the ToHost direction. The last descriptor is always dedicated
for FromHost (DMA memory read from the server) transactions, all other descriptors are dedicated for ToHost
transfers (Memory writes from the FPGA into the server memory).

Another functionality of Wupper is to manage a set of DMA descriptors, with an address, a read/write flag,
the trans f ersize (number of 32 bit words) and an enable line. These descriptors are mapped as normal PCIe
memory or IO registers. Besides the descriptors and the enable line (one per descriptor), a status register for
every descriptor is provided in the register map.

For synthesis and implementation of the Xilinx specific IP cores, it is recommend to use the latest Xilinx
Vivado release as listed in section 8.2. The cores (FIFO, clock wizard and PCIe) are provided in the Xilinx .xci
format, as well as the constraints file (.xdc) is in the Vivado Format.

For portability reasons, no Xilinx project files will be supplied with the core, but a bundle of TCL scripts
has been supplied to create a project and import all necessary files, as well as to do the synthesis and
implementation. These scripts will be described later in this document.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links

Figure 8.82: Wupper in the toplevel diagram.

9The person performing the act of bongelwuppen, the Gronings version of the famous Frisian sport of the Fierljeppen (canal pole
vaulting) https://nds-nl.wikipedia.org/wiki/Nedersaksische_sp%C3%B6llegies#Bongelwuppen

8. Detailed Functional Description and Specification Page 141 of 172

https://nds-nl.wikipedia.org/wiki/Nedersaksische_sp%C3%B6llegies#Bongelwuppen

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

8.14.2 INTERFACES

wupper

fromHostFifo_dout
FIFO interface
std_logic_vector(DATA_WIDTH-1 downto 0)

fromHostFifo_empty
FIFO interface
std_logic

fromHostFifo_rd_clk
FIFO interface
std_logic

fromHostFifo_rd_en
FIFO interface
std_logic

fromHostFifo_rst
FIFO interface
std_logic

toHostFifo_din
FIFO interface (array)
slv_array(0 to NUMBER_OF_DESCRIPTORS-2)

toHostFifo_prog_full
FIFO interface (array)
std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)

toHostFifo_wr_clk
FIFO interface (array)
std_logic

toHostFifo_wr_en
FIFO interface (array)
std_logic_vector(NUMBER_OF_DESCRIPTORS-2 downto 0)

toHostFifo_rst
FIFO interface (array)
std_logic

interrupt_call
First 4 interrupts are handled by Wupper
std_logic_vector(NUMBER_OF_INTERRUPTS-1 downto 4)

master_busy_in
BUSY input for interrupt
std_logic

reset_hw_in
External hard reset for synchronizer
std_logic

sys_reset_n
PCIe PERSTn port.
std_logic

sync_clk
Clock to synchronize the registermap to
std_logic

sys_clk_n
PCIe clock (100 MHz)
std_logic

sys_clk_p
PCIe clock (100 MHz)
std_logic

toHostFifo_busy_out
Indicates that any of the ToHost FIFOs FULL beyond the BUSY watermark

std_logic

lnk_up
PCIe link up indication

std_logic

pcie_rxn
PCIe lanes

std_logic_vector(PCIE_LANES-1 downto 0)

pcie_rxp
PCIe lanes

std_logic_vector(PCIE_LANES-1 downto 0)

pcie_txn
PCIe lanes

std_logic_vector(PCIE_LANES-1 downto 0)

pcie_txp
PCIe lanes

std_logic_vector(PCIE_LANES-1 downto 0)

register_map_control_sync
regmap R/W registers (synced)

register_map_control_type

register_map_control_appreg_clk
regmap R/W registers (unsynced)

register_map_control_type

register_map_gen_board_info
regmap R registers

register_map_gen_board_info_type

register_map_crtohost_monitor
regmap R registers

register_map_crtohost_monitor_type

register_map_crfromhost_monitor
regmap R registers

register_map_crfromhost_monitor_type

register_map_decoding_monitor
regmap R registers

register_map_decoding_monitor_type

register_map_encoding_monitor
regmap R registers

register_map_encoding_monitor_type

register_map_gbtemu_monitor
regmap R registers

register_map_gbtemu_monitor_type

register_map_link_monitor
regmap R registers

register_map_link_monitor_type

register_map_ttc_monitor
regmap R registers

register_map_ttc_monitor_type

register_map_xoff_monitor
regmap R registers

register_map_xoff_monitor_type

register_map_hk_monitor
regmap R registers

register_map_hk_monitor_type

appreg_clk
Original clock of unsynchronized regmap

std_logic

reset_soft
Synchronized soft reset

std_logic

reset_soft_appreg_clk
Unsychronized soft reset

std_logic

tohost_busy_out
DMA busy output.

std_logic

NUMBER_OF_INTERRUPTS : integer := 8
Size of interrupt vector

NUMBER_OF_DESCRIPTORS : integer := 5
Last one is FromHost

BUILD_DATETIME : std_logic_vector(39 downto 0) := x"0000FE71CE"
Date / time of build

CARD_TYPE : integer := 712
Integer of PCIe card, 709, 710, 711, 712, 800, 801, 128, 180

GIT_HASH : std_logic_vector(159 downto 0) := x"00"
Git commit

COMMIT_DATETIME : std_logic_vector(39 downto 0) := x"0000FE71CE"
Date of git commit

GIT_TAG : std_logic_vector(127 downto 0) := x"00000000000000000000000000000000"
First 16 bytes of git tag "string"

GIT_COMMIT_NUMBER : integer := 0
Number of commits after the tag

GBT_GENERATE_ALL_REGS : boolean := false
Implement GBT mode registers in regmap

EMU_GENERATE_REGS : boolean := false
Implement FELIG/FMEMU registers in regmap

MROD_GENERATE_REGS : boolean := false
Ipmlement FELIX_MROD registers in regmap

GBT_NUM : integer := 0
Number of optical FE channels

FIRMWARE_MODE : integer := 0
0: GBT, 1: FULL, etc.

PCIE_ENDPOINT : integer := 0
0 or 1, endpoint index.

PCIE_LANES : integer
Number of PCIe lanes per endpoint. Usually 8.

DATA_WIDTH : integer
256 (Gen3x8) or 512 (Gen4x8 or Gen3x16)

SIMULATION : boolean := false
True to enable simulation model of endpoint

BLOCKSIZE : integer := 1024

Figure 8.83: Wupper interface symbol.

8.14.2.1 GENERICS

Generic Type Default value Description

NUMBER_OF_INTERRUPTS integer 8 Number of individual interrupts supported by Wupper. See
Section 8.14.7

NUMBER_OF_-
DESCRIPTORS

integer 6 Total number of DMA descriptors for From- and ToHost. See
8.14.4

BUILD_DATETIME std_logic_vector(39 downto 0) x"0000FE71CE" Date / time of build shown as BCD/HEX in the form of
YYMMDDhhmm

CARD_TYPE integer 712 Integer representation of the hardware platform:

8. Detailed Functional Description and Specification Page 142 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

709 : VC709

710 : HTG710

711 : BNL711 v1.5

712 : BNL712

800 : Xupp3r VU9P

801 : BNL801 VU9P

128 : VCU128

155 : FLX155

180 : VMK180

181 : FLX181

182 : FLX182

GIT_HASH std_logic_vector(159 downto
0)

(others => ’0’) Git commit

COMMIT_DATETIME std_logic_vector(39 downto 0) x"0000FE71CE" Date of git commit in the same form as BUILD_DATETIME

GIT_TAG std_logic_vector(127 downto
0)

(ohters => ’0’) First 16 bytes of git tag "string"

GIT_COMMIT_NUMBER integer 0 Number of commits after the tag

GBT_GENERATE_ALL_-
REGS

boolean false Implement GBT mode registers in regmap

EMU_GENERATE_REGS boolean false Implement FELIG/FMEMU registers in regmap

MROD_GENERATE_REGS boolean false Ipmlement FELIX_MROD registers in regmap

GBT_NUM integer 0 Number of optical FE channels

FIRMWARE_MODE integer 0 0: GBT, 1: FULL, etc.

PCIE_ENDPOINT integer 0 0 or 1, endpoint index.

PCIE_LANES integer Number of PCIe lanes per endpoint. Usually 8

DATA_WIDTH integer 256 (Gen3x8) or 512 (Gen4x8 or Gen3x16)

SIMULATION boolean false True to enable simulation model of endpoint

BLOCKSIZE integer 1024 FELIX block size to calculate FIFO thresholds

Table 8.50: Wupper Generics.

8.14.2.2 FROMHOSTFIFO

The FromHostFifo interface connects the output of the DMA FIFO in FromHost (Server => FPGA) direction.
The FIFO ports are what you would expect from a standard FIFO interface, with a width of 256 bit or 512 bit,
depending on the PCIe configuration (Gen3x8 or Gen4x8). In FELIX, the fromHostFifo interface is connected
to the FromHost Central Router.

• fromHostFifo_dout : 256 or 512 bit data output of the DMA FromHost FIFO

• fromHostFifo_empty : Asserted if the fifo has no data available

• fromHostFifo_rd_clk : Clock to register fromHostFifo_dout with. Should be close or equal to 250MHz to
support the nominal PCIe bandwidth.

• fromHostFifo_rd_en : Assert to read from the FIFO. fromHostFifo_dout will be registered on the next
clock cycle.

• fromHostFifo_rst : Assert to reset / flush the FIFO.

8.14.2.3 TOHOSTFIFO

The ToHostFifo interface connects the ToHostFifos input ports (The number of FIFOs is determined by NUM-
BER_OF_DESCRIPTORS-1, see section 8.14.4) to the ToHost Central Router. Because there are multiple
FIFO’s in ToHost direction, the ToHostFifo port is also an array.

• toHostFifo_din : Array of 256 or 512 bit data inputs for the DMA ToHost FIFO.

8. Detailed Functional Description and Specification Page 143 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

• toHostFifo_prog_full : Programmable FULL indicator, 1 bit per FIFO. The threshold can be programmed
through the TOHOST_FULL_THRESH register in BAR0 which has two bitfields named THRESHOLD_-
ASSERT and THRESHOLD_NEGATE. See also Table B.1

• toHostFifo_wr_clk : Clock on which toHostFifo_din is registered. Should be close or equal to 250MHz
to support the nominal PCIe bandwidth.

• toHostFifo_wr_en : Assert to write into one of the FIFOs. One bit per ToHost FIFO.

• toHostFifo_rst : Assert to reset / flush the FIFO.

8.14.2.4 INTERRUPT_CALL

The input interrupt_call has the size of NUMBER_OF_INTERRUPTS - 4, because the first 4 interrupts are
used by Wupper internally. Any of the other bits can be asserted to raise an MSI-X interrupt, see section
8.14.7

8.14.2.5 CLOCKS AND RESETS

• reset_hw_in : this input is used to reset the synchronizer for the register map.

• sys_reset_n : This is input should be connected to the hard reset on the PCIe edge connector (PER-
STn).

• reset_soft : This output is a reset that can be triggered using a register, it is synchronized to sync_clk.

• reset_soft_appreg_clk : An unsynchronized version of reset_soft (registered at appreg_clk, 25MHz).

• sync_clk : Clock to synchronize the register map to. In FELIX this is connected to the 40 MHz BC clock.

• appreg_clk : Output of the 25 MHz PCIe slow clock on which the unsynchronized register map is
running.

• sys_clk_n / sys_clk_p : 100 MHz PCIe reference clock from the PCIe edge connector.

8.14.2.6 BUSY

• master_busy_in : Used in the interrupt controller, see section 8.14.7

• tohost_busy_out : Used in circular DMA mode, the software pointer is compared to the current_address
in the descriptors. If any of them is beyond a set threshold, this BUSY output is raised.

• toHostFifo_busy_out : This busy output is raised when one of the ToHost FIFOs is beyond a set pro-
grammable full threshold.

8.14.2.7 PCIE

• pcie_rxn / pcie_rxp : High speed PCIe receiver lanes

• pcie_txn / pcie_txp : High speed PCIe transmitter lanes

• sys_reset_n : This is input should be connected to the hard reset on the PCIe edge connector (PER-
STn).

• sys_clk_n / sys_clk_p : 100 MHz PCIe reference clock from the PCIe edge connector.

• lnk_up : Status indication that the PCIe link is aligned.

8. Detailed Functional Description and Specification Page 144 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

8.14.2.8 REGISTER MAP

Wupper has an internal register map that is generated from a .yaml file. The complete set of registers is
available in Appendix B. There are records called register_map_control* that contain all writable registers and
self clearing trigger registers. The read only registers are gathered in register_map_monitor which is divided
into sub-records of the different monitor sections, so that it is easy to drive each section from an individual
functional block in the firmware.

• register_map_control_sync : Synchronized version to sync_clk of the writable/trigger registers in BAR2
of the register map, see Table B.3

• register_map_control_appreg_clk : Unsynchronized version (registered on appreg_clk, 25 MHz) with
the same functionality as register_map_control_sync.

• register_map_*_monitor : Input record of the monitor registers as defined by the different monitor sec-
tions in Table B.3

8.14.3 FUNCTIONAL DESCRIPTION

Xilinx has introduced the AXI4-Stream interface [21] for the PCIe EndPoint core: a simplified version of the
ARM AMBA AXI bus [26]. This interface does not contain any address lines, instead the address and other
information are supplied in the header of each PCIe Transaction Layer Packet (TLP). Figure 8.84 shows the
structure of the Wupper_core design. The Wupper_core is divided in two parts:

1. DMA Control:
This is the entity in which the Descriptors are parsed and fed to the engine, and where the Status
register of every descriptor can be read back through PCIe. Depending on the address range of the
descriptor, the pointer of the current address is handled by DMA Control and incremented every time a
TLP completes. DMA Control also handles the circular buffer DMA if this is requested by the descriptor
(See 8.14.5).

DMA control contains a register map, with addresses to the descriptors, status registers and external
registers for the user space register map.

2. DMA Read Write:
This entity contains two processes:

• ToHost / Add Header: In the first process the descriptors are read and a header according to the
descriptor is created. If the descriptor is a ToHost descriptor, the payload data is read from the
FIFO and added after the header. This process also takes care of switching to the next active DMA
descriptor, which is leading for selecting the MUX on the output ports of the ToHostFifo’s.

• FromHost / Strip Header: In the second process the header of the received data is removed and
the length is checked; then the payload is shifted into the FIFO.

Both processes can fire an MSI-X type interrupt by means of the interrupt controller when finished.

8. Detailed Functional Description and Specification Page 145 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

wupper

sync_clk

100 MHz
refclk

register_map
control

toHostFifo
WupperFifos wupper_core pcie_ep_wrap

dma_read_write

dma_control

sort
memory

Add
Read / Write
header

Strip
Header

PCIe EP
Sim Model

axis_rq

axis_rc

axis_cc

axis_cq

Xilinx
PCIe
IP Core

Completion
process

Register map
read / write

PCIe Slow Clock

2
5

 M
H

z

2
5

0
 M

H
z

Interrupt Controller

PCIe RX/TX
8x Gen3/4

PERSTn

register_map
monitor

register

map

sync

toHostFifo

fromHostFifo

256b / 512b
ToHost Data

256b / 512b
FromHost Data

fifo clock

interrupt
request

Figure 8.84: Structure of the Felix PCIe Engine.

Figure 8.84 shows a synchronization stage for the IO and external registers, The user space registers
are stored and processed in the 25 MHz clock domain in order to relax timing closure of the design. The
synchronization stage synchronizes the register map again to the clock used in the application design (sync_-
clk).

The DMA Control process always responds to a request with a certain req_type from the server. It re-
sponds only to IO and Memory reads and writes; for all other request types it will send an unknown request
reply. If the data in the payload contains more than 128 bits, the process will send a “completion abort” reply
and go back to idle state. The maximum register size has been set to 128 bits because this is a useful max-
imum register size; it is also the maximum payload that fits in one 250 MHz clock cycle of the AXI4-Stream
interface.

The add_header process selects the descriptor and sets the ToHostFifo MUX accordingly. Based on the
descriptor content, it requests a read or write to/from the server memory. If the descriptor is set to ToHost,
it also initiates a FIFO read and adds the data into the payload of the PCIe TLP (Transaction Layer Packet).
When the descriptor is set to FromHost this process only creates a header TLP with no payload, to request a
certain amount of data from the server memory that fits in one TLP.

The DMA FromHost process checks the size of the payload against the size in the TLP header, the data
will be pushed into the FromHost FIFO.

8.14.4 DMA DESCRIPTORS

Each transfer To and From Host is achieved by means of setting up descriptors on the server side, which are
then processed by Wupper. The descriptors are set in the BAR0 section of the register map (see Appendix B).
An extract of the descriptors and their registers is shown in Table 8.51 below. The register map in BAR0 has
space for a maximum of 8 DMA descriptors, but the actual number of descriptors that are implemented is de-
termined by the generic NUMBER_OF_DESCRIPTORS. The descriptor at NUMBER_OF_DESCRIPTORS-1
is the FromHost descriptor which always has the READ_WRITE bitfield set to 1 (FROMHOST) and the de-
scriptors 0 to NUMBER_OF_DESCRIPTORS-2 are implemented as ToHost descriptors. An additional special
FromHost descriptor is implemented at NUMBER_OF_DESCRIPTORS, this is the so called trickle descrip-
tor (see ??) which is similar to the other FromHost descriptor, but it ignores the pc_pointer. The number of
ToHost FIFOs is automatically determined by the same generic, as well as the ToHost FIFO depth. Setting
NUMBER_OF_DESCRIPTORS to 6 (default in phase 2 FELIX) will result in 4 ToHost descriptors and FIFOs
(descriptor 0..3) and a single FromHost descriptor / FIFO (descriptor 4).

8. Detailed Functional Description and Specification Page 146 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

Address Name/Field Bits Type Description
0x0000 DMA_DESC_0

END_ADDRESS 127:64 W End Address
START_ADDRESS 63:0 W Start Address

0x0010 DMA_DESC_0a
PC_POINTER 127:64 W server Read Pointer
WRAP_AROUND 12 W Wrap around
READ_WRITE 11 R 1: FromHost/ 0: ToHost
NUM_WORDS 10:0 W Number of 32 bit words

. . .
0x0200 DMA_DESC_STATUS_0

EVEN_PC 66 R Even address cycle server
EVEN_DMA 65 R Even address cycle DMA
DESC_DONE 64 R Descriptor Done
CURRENT_ADDRESS 63:0 R Current Address

. . .
0x0400 DMA_DESC_ENABLE 7:0 W Enable descriptors 7:0. One

bit per descriptor. Cleared
when Descriptor is handled.

Table 8.51: DMA descriptors types.

Every descriptor has a set of registers, with the following specific functions:

• DMA_DESC: the register containing the start (start_address) and the end (end_address) memory ad-
dresses of a DMA transfer; both handled by the server (software API).

• DMA_DESC_a: integrates the information above by adding (i) the status of the read pointer on the
server side (pc_pointer), (ii) the wrap around functionality enabling (wrap_around, see Section 8.14.5
below), (iii) the FromHost (“1”) and ToHost (“0”) transfer direction bit (read_write), and (iv) the number
of 32 bits words to be transferred (num_words)

• DMA_DESC_STATUS: status of a specific descriptor including (i) wrap around information bits (even_pc
and even_dma), (ii) completion bit (desc_done, (iii) DMA pointer current address (current_address)

• DMA_DESC_ENABLE: the descriptors enable register (dma_desc_enable), one bit per descriptor

8.14.5 ENDLESS DMA WITH A CIRCULAR BUFFER AND WRAP AROUND

In single shot transfer, the DMA ToHost process continues sending data TLPs (Transaction Layer Packets)
until the end address (end_address) is reached. The server can check the status of a certain DMA transaction
by looking at the desc_done flag and the current_address. Another possible operation mode is the so- called
endless DMA: the DMA continues its action and starts over (wrap-around) at start address (start_address)
whenever the end address (end_address) is reached. The second mode is enabled by asserting the wrap-
around (wrap_around) bit. In this mode the server has to provide another address named server pointer
(PC_read_pointer): indicating where it has last read out the memory. After wrapping around the DMA core
will transfer To Host memory until the PC_read_pointer is reached. The server read pointer should be updated
more often than the wrap-around time of the DMA, however it should not be read too often as that would take
up all the bandwidth, limiting the speed of the DMA transfer in progress. A typical rule of thumb to determine
what "too often" means is that software should not update the pointer every clock cycle, but rather after
processing a block of a few kB of data.

In order to determine whether Wupper is processing an address behind or in front of the server, Wupper
keeps track of the number of wrap around occurrences. In the DMA status registers the even_cycle bits
displays the status of the wrap-around cycle. In every even cycle (starting from 0), the bits are 0, and every
wrap around the status bits will toggle. The even_pc bit flags a PC_read_pointer wrap-around, the even_dma
a Wupper wrap-around. By looking at the wrap-around flags the server can also keep track of its own wrap-
arounds. Note that while in the endless DMA mode (wrap_around bit set), the PC_read_pointer has to be

8. Detailed Functional Description and Specification Page 147 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

maintained by the server (software API) and kept within the start and end address range for Wupper to function
correctly. Figure 8.85 below shows a diagram of the two pointers racing each other, and the different scenarios
in which they can be found with respect to each other.

8. Detailed Functional Description and Specification Page 148 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

Figure 8.85: Endless DMA buffer and pointers representation diagram in ToHost mode.

Looking at Figure 8.85 above, the following scenarios can be described:

• A : start condition, both the server and the DMA have not started their operation.
• B : normal condition, the PC_read_pointer stays behind the DMA’s current_address
• C : normal condition, the DMA’s current_address has wrapped around and has to stay behind the

PC_read_pointer
• D : the server is reading too slow, the DMA is stalled because the server read pointer is not advancing

fast enough, the DMA current_address has to stay behind.

8. Detailed Functional Description and Specification Page 149 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

If the DMA descriptor is set to FromHost, the comparison of the even bits is inverted, as the server has to
fill the buffer before it is processed in the same cycle. In this mode the pc_read_pointer is also maintained
by the software API, however it is indicating the address up to where the server has filled the memory. In the
first cycle the DMA has to stay behind the read pointer, when the server has wrapped around, the DMA can
process memory up to end_address until it also wraps around.

Figure 8.86: Endless DMA buffer and pointers representation diagram in FromHost mode.

Looking at Figure 8.86 above, the following scenarios can be described:

• A : start condition, both the server and the DMA have not started their operation.

• B : normal condition, the DMA’s current_address stays behind the PC_read_pointer

• C : normal condition, the PC_read_pointer has wrapped around and has to stay behind the DMA’s
current_address

• D : the server is writing too slow, the DMA is stalled because the server read pointer is not advancing
fast enough, the DMA current_address has to stay behind.

8.14.6 TRICKLE DESCRIPTOR

The trickle descriptor is a special FromHost descriptor which is implemented at NUMBER_OF_DESCRIP-
TORS. This descriptor works exactly as the other FromHost descriptor if WRAP_AROUND is ’0’ (single shot
DMA), but with WRAP_AROUND set to ’1’, it ignores the PC_POINTER so the throughput is not throttled by
the software. Instead the throughput is limited by the target E-Link as defined in the contents of the cmem_rcc
buffer containing the trickle commands. If all the data in that buffer is targeted to one 80 Mb/s E-Link the DMA
throughput is also limited to 80 Mb/s automatically. Wupper will keep playing back the trickle memory in the
host PC until the DMA_DESC_ENABLE bit is cleared by te software.

8. Detailed Functional Description and Specification Page 150 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

8.14.7 INTERRUPT CONTROLLER

Wupper is equipped with an interrupt controller supporting the MSI-X (Message Signaled Interrupt eXtended)
as described in “Chapter 17: Interrupt Support” page 812 and onwards of [PCIe_technology]. In particular
the chapter and tables in “MSI-X Capability Structure”.

The MSI-X Interrupt table contains eight interrupts; this number can be extended by a generic parameter in
the firmware. All interrupts are mapped to the data_available interrupt of the corresponding ToHost descriptor,
formerly known as interrupt number 2 in phase1 (rm-4.x) firmware. All the other interrupt sources have been
removed since multiple ToHost descriptors were introduced in rm-5.x. The interrupts are detailed in Table 8.52.

Table 8.52: PCIe interrupts.

Interrupt Name Description

0 ToHost 0 Available Fired when data becomes available in the ToHost FIFO 0
(falling edge of ToHostFifoProgEmpty)

1 ToHost 1 Available Fired when data becomes available in the ToHost FIFO 1
(falling edge of ToHostFifoProgEmpty)

1 ToHost 2 Available Fired when data becomes available in the ToHost FIFO 2
(falling edge of ToHostFifoProgEmpty)

3 ToHost 3 Available Fired when data becomes available in the ToHost FIFO 3
(falling edge of ToHostFifoProgEmpty)

4 ToHost 4 Available Fired when data becomes available in the ToHost FIFO 4
5 crDownXoff ToHost combined full flags (CR xoff)
6 BUSY change Fired when the busy LEMO signal changes
7 ToHost Full Fired when the ToHost FIFO becomes full

All Interrupts are fired when enough data has arrived in the ToHost fifo to fill at least one TLP of data.
Once an interrupt has fired, it will not produce an additional interrupt until any write occurs to a register in
BAR0. The idea is that this write occurs when the SW_POINTER has been updated by the software.

All the interrupts can also be fired from the register INT_TEST, by setting the bitfield IRQ to the desired
interrupt number. This write action will fire a single interrupt.

8.14.8 XILINX PCIE ENDPOINT CORE

Wupper was built around the interface of the Virtex-7 FPGA Gen3 Integrated Block for PCI Express v4.3 [22],
and was later ported to other Xilinx PCIe hard blocks:

• Virtex-7 FPGA Gen3 Integrated Block for PCI Express [22]. Wupper was tested on Virtex7 with the
VC709 (FLX709) board and the HTG710 (FLX710) boards using the XC7VX690T FPGA. (PCIe Gen3x8)

• UltraScale Devices Gen3 Integrated Block for PCI Express [23]. Wupper was tested with the BNL711
(FLX711) and BNL712 (FLX712) boards, using the KU115 FPGA. (2x PCIe Gen3x8 with a PCIe x16
switch)

• UltraScale+ Devices Integrated Block for PCI Express [24]. Wupper was tested with the VCU128-
es1 (FLX128) (VU37P FPGA), the XUPP3R (VU9P FPGA) (FLX800) and the BNL801 board (FLX801)
(VU9P FPGA) 2x PCIe Gen4x8 bifurcated. 10

• Versal ACAP Integrated Block for PCI Express [25]. Wupper was tested on the VMK180 board (VM1802
ACAP), PCIe Gen4x8

This core is using a PCIe hard block in the Virtex-7 FPGA. The hard block is equipped with an AXI4-Stream
interface.

10For the VU9P FPGA, PCIe Gen4 is not officially supported, but it was demonstrated to work. It can be enabled only on Vivado 2018.1
using a tcl command or by editing the .xci file

8. Detailed Functional Description and Specification Page 151 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

8.14.8.1 XILINX AXI4-STREAM INTERFACE

The interface has the advantage that it has two separate bidirectional AXI4-Stream interfaces. The two in-
terfaces are the requester interface, with which the FPGA issues the requests and the PC replies, and the
completer interface where the PC takes initiative.

bus Description Direction
axis_rq Requester reQuest. This interface is used for DMA, the FPGA takes the initia-

tive to write to this AXI4-Stream interface and the PC has to answer.
FPGA→ PC

axis_rc Requester Completer. This interface is used for DMA reads (from PC memory
to FPGA), this interface also receives a reply message from the PC after a
DMA write.

PC→ FPGA

axis_cq Completer reQuest. This interface is used to write the DMA descriptors as well
as some other registers.

PC→ FPGA

axis_cc Completer Completer. This interface is used as a reply inteface for register
reads, as well as a reply header for a register write.

FPGA→ PC

Table 8.54: AXI4-Stream streams.

8.14.8.2 CONFIGURATION OF THE CORE

The Xilinx PCIe EndPoint core is configured as a PCI express Gen3 (8.0GT/s) or Gen4 (16.0GT/s) End Point
with 8 lanes and the Physical Function (PF0) max payload size is set to 1024 bytes. AXI-ST Frame Straddle
is disabled and the client tag is enabled. All other options are set to default, the reference clock frequency is
100MHz and the only option for the AXI4-Stream interface is 256 (512 for Gen4) bit at 250MHz.

8.14.9 STATUS INDICATORS

Apart from the lnk_up indicator, indicating that the link is up, all status indicators are described in the register
map in B.3

8.14.10 LATENCY

It is difficult to give a single figure for the latency of the Wupper core, because the DMA latency involves the
PCIe operation and is highly dependent on the type of server used.

8.14.11 ERROR HANDLING

Error handling is performed through the PCIe standard error messages, as well as status registers in the
registermap, see B.3.

8.14.12 ESTIMATED RESOURCE USAGE

The estimated resource usage of Wupper, including register map 5.0 can be found in Table 8.55. For cards
with two endpoints, the resource count must be multiplied by 2, this applies to both the FLX712 and the
FLX128 cards.

KCU115 / FLX712 VU37P / FLX128
LUT FF BRAM LUT FF BRAM

Wupper 30094 4.54% 59706 4.50% 47 2.18% % % %
WupperFifos 3007 0.45% 2275 0.17% 34 1.57% % % %
dma_read_write 1068 0.16% 1788 0.13% 4 0.19% % % %
dma_control 9864 1.49% 27026 2.04% 0 0.00% % % %

8. Detailed Functional Description and Specification Page 152 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

pcie_ep_wrap 1606 0.24% 5056 0.38% 9 0.42% % % %
register_map_sync 14221 2.14% 22631 1.71% 0 0.00% % % %
intr_ctrl 319 0.05% 893 0.07% 0 0.00% % % %

Table 8.55: Wupper Resource utilization.

8.14.13 SIMULATION

The directory firmware/simulation/Wupper contains all necessary testbenches (wupper_tb.vhd, pcie_ep_-
sim_model.vhd) to run the simulation in Mentor Graphics Modelsim or Questasim [questasim].

The directory simulation/UVVMExample contains a file modelsim.ini with some standard information, there
is also a script "ci.sh" wich will execute the UVVM based simulation. It assumes that questasim 2019.1 is
installed, the Xilinx libraries are compiled in simulation/xilinx_lib and the UVVM library is compiled in simula-
tion/UVVM. The wupper simulation can be started by executing

Listing 8.4: Run the simulation.

cd FELIX / f i rmware / s imu la t i on / UVVMExample
. / c i . s h Wupper

By default the simulation starts in command line mode. If GUI mode is desired (e.g. to view waveforms),
the ci.sh script can be edited, and the "-c" parameter from the vsim command can be removed.

8. Detailed Functional Description and Specification Page 153 of 172

FELIX Phase-II firmware specifications: 8.14 Wupper: PCIe DMA core and register map June 28, 2024 - Version 1.037

8.15 HOUSEKEEPING

8.15.1 INTRODUCTION

Housekeeping is an entity that gathers a set of components to manage and set up the board, as well as
assigning some values to a set of registers that represent values of global / toplevel generics.

FELIX phase 2 Firmware architecture

PCIe Gen4

Replicated 2x for every PCIe Gen4 endpoint / logical device or 4x in case of PCIe Gen5

Link Wrapper
GBT
lpGBT
FULL
Interlaken 25G

Encoding
8b10b
HDLC
TTC bits
Interlaken

CRFromHost
FELIX blocks to
AXI4 Stream
• 512-bit in
• 8-bit out
• 64-bit out

Decoding
8b10b
HDLC
6b8b
Aurora
Endeavour
Interlaken
Virtual E-Links

CRToHost
AXI4 Stream to
FELIX blocks
• 32-bit in
• 64-bit in
• 512-bit out

Housekeeping
Board management
Clock and reset

Wupper
PCIe
Endpoint
DMA
Register map

Internal
emulator
RAM based
emulator
generates
E-Link data

LTI/TTC
9.6/4.8Gb 8b10b
TTC-p2p protocol
TTC-p2p emulator

Raw E-Links
X24 links

AXI4 Stream 32b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

AXI4 Stream 32b
Per Virtual E-Link

Raw E-Links

AXI4 Stream 8b
Per E-Link

AXI4 Stream 64b
Per 25G-Link

4x 512b to
Wupper FIFOs

512b from
Wupper FIFO

PCIe Gen4 x8
or Gen5 x4

24x
GTY

1x
GTY

R
aw

 E-Links
Figure 8.87: The housekeeping interface in the toplevel diagram.

8. Detailed Functional Description and Specification Page 154 of 172

FELIX Phase-II firmware specifications: 8.15 HouseKeeping June 28, 2024 - Version 1.037

8.15.2 INTERFACES

housekeeping_module

MMCM_Locked_in
Main clock status
std_logic

MMCM_OscSelect_in
Main clock source
std_logic

SI5345_nLOL
Si5345 jitter cleaner pins
std_logic_vector(NUM_SI5345(CARD_TYPE)-1 downto 0)

TACH
Board fan tachometer pin
std_logic_vector(NUM_TACH(CARD_TYPE)-1 downto 0)

register_map_control
Control / R/W registers
register_map_control_type

LMK_LD
LMK03200 control interface for FLX712
std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

PORT_GOOD
PEX configuration interface for FLX712
std_logic_vector(NUM_PEX(CARD_TYPE)*8-1 downto 0)

lnk_up
From Wupper endpoints
std_logic_vector(1 downto 0)

rst_soft
soft reset from Wupper endpoint 0 (synchronous to appreg_clk)
std_logic

sys_reset_n
Connected to PCIE_PERSTn (active low reset on PCIe fingers)
std_logic

rst_hw
Active high reset, high if MMCM_MAIN is not locked
std_logic

appreg_clk
Register map 25MHz clock
std_logic

emcclk
clock for BPI flash
std_logic_vector(NUM_EMCCLK(CARD_TYPE)-1 downto 0)

clk10_xtal
10 MHz local clock
std_logic

clk40_xtal
40 MHz local clock
std_logic

clk40
40 MHz main clock
std_logic

RXUSRCLK_IN
Recovered link RXOUTCLK for frequency measurement
std_logic_vector((GBT_NUM*ENDPOINTS)-1 downto 0)

SCL
I2C clock pin

std_logic

SDA
I2C data pin
std_logic

SI5345_A
Si5345 jitter cleaner pins

std_logic_vector(NUM_SI5345(CARD_TYPE)*2-1 downto 0)

SI5345_INSEL
Si5345 jitter cleaner pins

std_logic_vector(NUM_SI5345(CARD_TYPE)*2-1 downto 0)

SI5345_OE
Si5345 jitter cleaner pins

std_logic_vector(NUM_SI5345(CARD_TYPE)-1 downto 0)

SI5345_RSTN
Si5345 jitter cleaner pins

std_logic_vector(NUM_SI5345(CARD_TYPE)-1 downto 0)

SI5345_SEL
Si5345 jitter cleaner pins

std_logic_vector(NUM_SI5345(CARD_TYPE)-1 downto 0)

flash_SEL
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

flash_a
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)*25-1 downto 0)

flash_a_msb
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)*2-1 downto 0)

flash_adv
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

flash_cclk
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

flash_ce
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

flash_d
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)*16-1 downto 0)

flash_re
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

flash_we
BPI Flash interface

std_logic_vector(NUM_BPI_FLASH(CARD_TYPE)-1 downto 0)

i2cmux_rst
To reset pin of I2C multiplexer

std_logic

leds
Board GPIO leds

std_logic_vector(NUM_LEDS(CARD_TYPE)-1 downto 0)

opto_inhibit
'0' for VC709 (SFP+), '1' for others (Minipod/Firefly RSTn)

std_logic_vector(NUM_OPTO_LOS(CARD_TYPE)-1 downto 0)

register_map_gen_board_info
Status registers for generics

register_map_gen_board_info_type

register_map_hk_monitor
Status registers for housekeeping

register_map_hk_monitor_type

CLK40_FPGA2LMK_P
Towards alternative LMK03200 jitter cleaner on FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

CLK40_FPGA2LMK_N
Towards alternative LMK03200 jitter cleaner on FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

LMK_DATA
LMK03200 control interface for FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

LMK_CLK
LMK03200 control interface for FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

LMK_LE
LMK03200 control interface for FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

LMK_GOE
LMK03200 control interface for FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

LMK_SYNCn
LMK03200 control interface for FLX712

std_logic_vector(NUM_LMK(CARD_TYPE)-1 downto 0)

I2C_SMB
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

I2C_SMBUS_CFG_nEN
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

MGMT_PORT_EN
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

PCIE_PERSTn_out
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)*2-1 downto 0)

PEX_PERSTn
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

PEX_SCL
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

PEX_SDA
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

SHPC_INT
PEX configuration interface for FLX712

std_logic_vector(NUM_PEX(CARD_TYPE)-1 downto 0)

CARD_TYPE : integer := 712
FLX Hardware device

GBT_NUM : integer := 24
Number of optical links per PCIe endpoint

ENDPOINTS : integer := 1
Number of PCIe Endpoints in the design, GBT_NUM has to be multiplied by this number in some cases.

generateTTCemu : boolean := false
TTC emulator is included in the design

AUTOMATIC_CLOCK_SWITCH : boolean := false
Main clock is switchable between TTC and crystal

FIRMWARE_MODE : integer := 0
GBT, FULL, PIXEL, STRIP, LPGBT, INTERLAKEN, etc

USE_Si5324_RefCLK : boolean := false
Indication that an alternative jitter cleaner on the VC709 board was used.

GENERATE_XOFF : boolean := true
FromHost Xoff transmission enabled on Full mode busy

IncludeDecodingEpath2_HDLC : std_logic_vector(6 downto 0) := "1111111"
Include 2bit HDLC decoder, 1 bit per egroup

IncludeDecodingEpath2_8b10b : std_logic_vector(6 downto 0) := "1111111"
Include 2bit 8b10b decoder, 1 bit per egroup

IncludeDecodingEpath4_8b10b : std_logic_vector(6 downto 0) := "1111111"
Include 4bit 8b10b decoder, 1 bit per egroup

IncludeDecodingEpath8_8b10b : std_logic_vector(6 downto 0) := "1111111"
Include 8bit 8b10b decoder, 1 bit per egroup

IncludeDecodingEpath16_8b10b : std_logic_vector(6 downto 0) := "0000000"
Include 16bit 8b10b decoder, 1 bit per egroup

IncludeDecodingEpath32_8b10b : std_logic_vector(6 downto 0) := "0000000"
Include 32bit 8b10b decoder, 1 bit per egroup

IncludeEncodingEpath2_HDLC : std_logic_vector(4 downto 0) := "00000"
Include 2bit HDLC encoder, 1 bit per egroup

IncludeEncodingEpath2_8b10b : std_logic_vector(4 downto 0) := "00000"
Include 2bit 8b10b encoder, 1 bit per egroup

IncludeEncodingEpath4_8b10b : std_logic_vector(4 downto 0) := "00000"
Include 4bit 8b10b encoder, 1 bit per egroup

IncludeEncodingEpath8_8b10b : std_logic_vector(4 downto 0) := "00000"
Include 8bit 8b10b encoder, 1 bit per egroup

BLOCKSIZE : integer := 1024
Size of the ToHost FELIX data block

CHUNK_TRAILER_32B : boolean := true
FELIX ToHost data format uses 32bit chunk trailers

FROMHOST_LENGTH_IS_5BIT : boolean := true
FELIX FromHost data format uses 5bit length field to allow odd number of bytes

FULL_HALFRATE : boolean := false

Figure 8.88: Housekeeping interface symbol.

8.15.3 FUNCTIONAL DESCRIPTION

8.15.3.1 I2C INTERFACE

The I2C interface controls the I2C pins (SCL/SDA) to control several chips on the board. The I2C interface
from i2c on OpenCores has been used.

8.15.3.2 GENERICCONSTANTSTOREGS

This entity assigns a set of toplevel generics to the register map section register_map_gen_board_info

8. Detailed Functional Description and Specification Page 155 of 172

https://opencores.org/projects/i2c

FELIX Phase-II firmware specifications: 8.15 HouseKeeping June 28, 2024 - Version 1.037

8.15.3.3 XADC_DRP

An entity to measure the temperature and FPGA voltages using the XADC or system_management_wizard
IP cores.

8.15.3.4 DNA

An entity to read out the FPGA DNA (Unique ID) from a register in the FPGA

8.15.3.5 FLASH_WRAPPER

An entity to read and write the BPI flash on the FLX712 card. This entity may have to be expanded to support
SPI flash on the Phase II board.

8.15.3.6 LMK03200_WRAPPER

Initializes the LMK03200 chip on the FLX712 card to 320.632 MHz for the lpGBT core. The default is to use
the Si5345 jitter cleaner and 240.474 MHz.

8.15.3.7 PEX_INIT

Initializes the PEX PCIe bridge on the FLX712 card. The FLX181 card has a PEX chip that is programmed
only once at production time.

8.15.3.8 GC_MULTICHANNEL_FREQUENCY_METER

A frequency meter from general-cores on OHWR to measure the recovered clock of the links.

8.15.3.9 TACHOMETER

Process to measure the fan speed on the board.

8. Detailed Functional Description and Specification Page 156 of 172

https://ohwr.org/project/general-cores/tree/master/modules/common

FELIX Phase-II firmware specifications: 8.15 HouseKeeping June 28, 2024 - Version 1.037

8.16 CLOCK AND RESET

8.16.1 INTRODUCTION

The entity clock_and_reset provides most the system clocks for for the FPGA that are synchronous to the
LHC clock or a multiple of that, as well as a reset that is synchrous to the 40.079 MHz LHC clock.

8.16.2 INTERFACES

register_map_control.MMCM_MAIN.LCLK_SEL
sys_reset_n

clk_wiz_40_0

clk_in1
clk_in2

clk_in_sel

reset

clk40

clk80

clk160

clk240

clk320

locked

clk_wiz_250

clk_in1
clk_in2

clk_in_sel

reset

clk250

clk_wiz_200_0

clk_in_p

clk_in_n clk40

clk10app_clk_in_p
app_clk_in_n

clk10_xtal
clk40_xtal

clk40
clk80
clk160
clk240
clk320

reset_out

clk250

clk_ttc_40

clk_ttcfx_ref_out_p
clk_ttcfx_ref_out_n

FPGA System clocks

}To Si5345

}To Housekeeping{Clock source
on the board

40.079 MHz

40.079 MHz

10.010 MHz

40.079 MHz

40.079 MHz

40.079 MHz

80.158 MHz

160.316 MHz

240.474 MHz

320.632 MHz

synchronous to clk40

250.0 MHz

clock_and_reset

}
200 MHz

Figure 8.89: Clock and reset block diagram.

• MMCM_Locked_out : towards Housekeeping for monitoring

• MMCM_OscSelect_out : towards Housekeeping for monitoring

• clk_ttc_40 : 40.079 MHz clock from TTC or TTC-LTI wrapper

• app_clk_in_n : Local clock oscillator on the board (200 MHz)

• app_clk_in_p : Local clock oscillator on the board (200 MHz)

• clk10_xtal : 10.01 MHz clock derived from local clock source

• clk40_xtal : 40.079 MHz clock derived from local clock source

• clk40 : 40.079 MHz clock for the FPGA logic, synchronous to either TTC or the local clock

• clk80 : 80.158 MHz clock for the FPGA logic, synchronous to either TTC or the local clock

• clk160 : 160.316 MHz clock for the FPGA logic, synchronous to either TTC or the local clock

• clk240 : 240.474 MHz clock for the FPGA logic, synchronous to either TTC or the local clock

• clk250 : 250.0 MHz clock for the FPGA logic, derived from either TTC or the local clock

• clk320 : 320.632 MHz clock for the FPGA logic, synchronous to either TTC or the local clock

• clk_ttcfx_ref_out_n : Differential copy of clk40, to Si5345 jitter cleaner clock input

• clk_ttcfx_ref_out_p : Differential copy of clk40, to Si5345 jitter cleaner clock input

• register_map_control : Contains register MMCM_MAIN.LCLK_SEL to switch from local clock to ttc clock

• reset_out : System reset (hard reset) synchronous to clk40

• sys_reset_n : Active-low reset input, connected to PCIe PERSTn pin on the PCIe edge connector

8. Detailed Functional Description and Specification Page 157 of 172

FELIX Phase-II firmware specifications: 8.16 Clock And Reset June 28, 2024 - Version 1.037

8.16.3 FUNCTIONAL DESCRIPTION

clock_and_reset contains 3 MMCM components. The first one is to turn the 200 MHz clock source on the
board into a local 40 MHz clock. The other 2 MMCM components have 2 clock inputs and can be switched
between the local 40 MHz clock and the TTC clock by means of the MMCM_MAIN.LCLK_SEL register. The
250 MHz clock is created by an additional MMCM because clk_wiz_40_0 can not create a frequency close to
250 MHz with the other frequencies already set.

clk40 is buffered through an OBUFDS buffer to provide a clock for the Si5345 jitter cleaner. This jitter
cleaner will be set up through I2C commands (software controlled) to create the 240.474 MHz reference
clocks for the transceivers.

8. Detailed Functional Description and Specification Page 158 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

9
TESTING, VALIDATION AND

COMMISSIONING

Firmware is tested in 3 ways within the FELIX project:

• Simulation (In Gitlab CI)

• Automated build (In Gitlab CI)

• On FELIX hardware using nightly tests

9.1 SIMULATION

The FELIX firmware has many different flavours and configurations. It is unrealistic to create a single sim-
ulation testbench to cover the complete picture. There are also parts of the FELIX firmware that are very
difficult to simulate. The PCIe interface for instance can be simulated using BFM (Bus Functional Models) if
they are available, but the complete behaviour of PCIe operation including the software, PCIe enumeration,
register reads / writes, DMA and interrupts would be nearly impossible to simulate. The Xilinx PCIe IP core
was therefore modelled by a simulation model that emulates a realistic FELIX operation, indluding register
writes and DMA. The high speed interfaces are not modelled, but instead the model is directly emulating the
axi4 stream interfaces as documented in the Xilinx IP core documentation [22] [23] [24] [25]

The FELIX team is therefore not trying to simulate the individual blocks, as well chains of blocks exercis-
ing different scenarios in the operation of the FELIX firmware. Breaking down the firmware into blocks for
simulation sets some constraints on the firmware design:

• The blocks must have a well defined interface, and where possible, industry standard interfaces must
be used.

– For the interface between the different encoders, decoders and both directions of the Central
Routers, we have chosen to use AXI4 stream, which can be modeled using existing BFM entities.

– Between the Central Routers and Wupper (PCIe DMA) a standard 256 or 512 bit wide FIFO inter-
face has been defined, depending on the PCIe speed (Gen3 or Gen4).

– The interfaces between the Link Wrapper and Encoder / Decoder will be arrays of std_logic_-
vector, as these types are already used by the upstream GBT and LpGBT design, and by the
transceiver wrapper for FULL mode. An exception is the transceiver for 25G Interlaken, which will
communicate through AXI4 stream.

9. Testing, Validation and Commissioning Page 159 of 172

FELIX Phase-II firmware specifications: 9.1 Simulation June 28, 2024 - Version 1.037

• Bus Functional Models (BFM) must be used to model the interfaces of the different blocks. Where
possible the BFM models from standard libraries should be used, but FELIX / ATLAS specific models
will have custom BFMs.

• The developer of a block is responsible for a complete coverage of the block by the testbench.

9.1.1 UVVM
Structural testbenches with good coverage are difficult to make. To ease the process, a simulation library can
be used. The FELIX team has studied several simulation libraries and as a result we have chosen UVVM.
[27]. The UVVM library can be used in different ways. In the most simple way, only the uvvm_utility library is
used, which gives access to a set of functions to verify signals, report errors and generated clocks and other
types of waveforms. A more advanced utilization of the UVVM library is to use the VVC library, which is a
structured and high level way to describe functional models. Both strategies have been used by the several
testbenches in the FELIX project, depending on the preferences of the developer of the block and what had
previously been implemented before UVVM was introduced in FELIX.

Independent of the used UVVM strategy, the result of the testbench for every block is a simple report that
summarizes the simulation results, counts the number of warnings and errors and gives a pass / fail result
which can be used in Gitlab CI, see Figure 9.1

Figure 9.1: Results summary of a UVVM successful simulation.

Requirement 9.1: UVVM Testbenches

Every functional block inside the FELIX firmware that can be modelled must be covered by at least
one UVVM testbench.

9.2 GITLAB CI
The Gitlab CI pipeline for the FELIX Phase II firmware knows 2 stages: Simulation and Build. In the Simulation
stage, all the testbenches (UVVM) will be executed in parallel, the transcripts are available as an artefact.

In the Build stage, FPGA bitfiles for all the active firmware flavours will be produced for the FLX712
hardware platform. Currently the following bitfiles will be produced this way:

• FULL mode 24 channels for FLX712

9. Testing, Validation and Commissioning Page 160 of 172

FELIX Phase-II firmware specifications: 9.2 Gitlab CI June 28, 2024 - Version 1.037

• GBT mode 8 channels for FLX712

• PIXEL/lpGBT mode 24 channels for FLX712

Other firmware flavours will soon be added to the CI build as soon as build scripts are available.
A typical pipeline for phase2/firmware CI is shown in Figure 9.2

Requirement 9.2: CI Simulation

For every commit, the simulation testbenches as described in Section 9.1 will be executed by Gitlab
CI.

Requirement 9.3: CI Build

For merge requests and commits to master and phase2/master branches, every active firmware
flavour will be built by Gitlab CI to produce a bitfile. A finished CI pipeline is required before a branch
can be merged. Additionally an automated test on hardware will be executed as a requirement for a
merge request.

Figure 9.2: Continuous Integration Pipelines as seen in the Gitlab interface.

9.3 NIGHTLY FIRMWARE TEST ON HARDWARE

Besides simulation and automated builds, a third way of testing is automatically performed: Nightly firmware
tests. The nightly tests are a set of tests that are performed automatically on a FELIX hardware platform
(FLX709 or FLX712), and the set of tests depends on the firmware flavour. The nightly firmware tests are
not triggered from Gitlab CI, but rather run at night. This way the test system is available at daytime for other
developments. The nightly tests involve a frontend emulator, the FELIX PCIe card, the FELIX server and will
be extended in the future with a data handler.

The set of tests is available in the following git repository:
https://gitlab.cern.ch/atlas-tdaq-felix/flx-firmware-tester
The results of the nightly tests are published on the following web interface:
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/nightly/

9. Testing, Validation and Commissioning Page 161 of 172

https://gitlab.cern.ch/atlas-tdaq-felix/flx-firmware-tester
https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/nightly/

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

10
FIRMWARE MANAGEMENT AND

RELIABILITY MATTERS

10.1 FIRMWARE SOURCE MANAGEMENT AND RELEASE PLAN

The source code management plan is described in the FELIX developer manual. The firmware can be found
in the FELIX firmware repository: https://gitlab.cern.ch/atlas-tdaq-felix/firmware/. All issues are tracked in
JIRA.

The firmware repository holds code for phase1 (master branch) and phase2 (phase2/master). All branches
related to phase2 development are prefixed with phase2/. Both master and phase2/master are protected and
merge requests can be completed by the firmware coordinator.

10.1.1 VERSION NUMBERS AND RELEASES

Releases targeted to phase2 start with 5.0-0. The version number is closely related to the version number of
the register map. The first official release will be 5.0-xxx where xxx is the number of GIT commits after the
rm-5.0 tag. On the release the v5.0 tag will be created, after which the rm-5.1 will mark the beginning of a
new release cycle.

A taste of what will be included in the firmware releases for Phase II is shown here. For more details see
the FELIX JIRA issue tracker.

• 5.0: Q1 2022 - Initial release build to demonstrate functionality of the new Phase II firmware ecosystem.
Reduced channel count builds for FLX712 will be available for all flavours, as well as FLX128, FLX181
and FLX709 builds.

• 5.1: Q3 2022 - Added support for Interlaken 25Gb, support for newly added FE protocols such as HGTD
Altiroc and lumi.

• 5.2: Q1 2023 - Nearing feature completeness, transition to bug fix releases.

10.1.2 FILE NAME OF A FIRMWARE BUILD

An example of a firmware build is shown here:
FLX128_FULLMODE_24CH_CLKSELECT_GIT_phase2-FLX-1769_AddGBTForVCU128_rm-5.0_301_211221_-
09_14.tar.gz

The .tar.gz archive contains the following files:

10. Firmware Management and Reliability Matters Page 162 of 172

https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/felix-developer-manual.html#sec:firmware
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://its.cern.ch/jira/projects/FLX/summary
https://its.cern.ch/jira/projects/FLX

FELIX Phase-II firmware specifications: 10.1 Firmware Source Management and Release PlanJune 28, 2024 - Version 1.037

• <filename>.bit: Image that can be written into the FPGA memory using JTAG

• <filename>.mcs: Image that can be written to the active flash partition either through JTAG or using
the fflashprog tool

• <filename>.prm: Information about the .mcs file, required when programming through Vivado

• <filename>.xlsx: This file is only included if the build was executed in a graphical Vivado session, it
contains a resource report of the build.

• <filename>_generics_timing.txt: Contains a report of the toplevel generics set at build time, plus a
timing and utilization report.

• <filename>_debug_nets.ltx: Only included if the build includes debug probes. Required to debug the
internals of the FPGA with ILA or VIO probes over JTAG in the Vivado GUI.

The file name of a build is build from the following strings:

• FLX128: The target board, could be FLX709, FLX712, FLX128, FLX181 or other future target boards.

• FULLMODE: The firmware flavour for which the firmware was built, could be GBT, FULLMODE, LPGBT,
STRIPS, PIXEL, INTERLAKEN.

• CLKSELECT: Indication that the internal FPGA clock is selectable between a clock source on the FELIX
card and the external (TTC) clock.

• GIT_phase2-master: Branch from which the build was created. In this case phase2/master. Note that
the "/" in the name is replaced with "-".

• rm-5.0_301: Indicating the version number (5.0-301) consisting of major.minor-<number of commits
after the rm-5.x tag>.

• 211221_09_14: Timestamp of the build time at which the build was initiated. The format is YYMMDD_-
hh_mm.

10.2 CONSEQUENCES OF FAILURES

Several factors may induce failures of the FELIX system, these factors can be internal to the firmware, internal
to the FELIX hardware, internal to the FELIX software, external instability of the (LTI/TTC) clocking system
or instability of the Front-End links, or a combination of these factors. Failure of the FELIX system can have
minor or major consequences for ATLAS data taking:

• Incorrect reconstruction of Front End data if data bytes are changed within FELIX or wrongly received /
decoded.

• Loss of data from one or more Front End links, temporarily or permanent

• Loss of data of all links connected to a FELIX card or FELIX system

• In case of obstruction (high link load) loss of DCS data

• Loss of control over the Front Ends.

10. Firmware Management and Reliability Matters Page 163 of 172

FELIX Phase-II firmware specifications: 10.3 Reliability measures in the FELIX firmware June 28, 2024 - Version 1.037

10.3 RELIABILITY MEASURES IN THE FELIX FIRMWARE

10.3.1 REDUNDANT DMA CHANNELS AND SEPARATION OF DCS DATA

The FELIX Phase II firmware (from release 5.0 and later) will have multiple ToHost DMA channels enabled by
default. The number of ToHost DMA channels (descriptors) can be chosen at build time; the default number
of DMA channels for Phase II is set to 4 ToHost channels + 1 FromHost channel per Wupper 8.14 endpoint.
This means that 8 independent threads of felix-star can process the load of one FELIX card hosting 2 DMA
endpoints.

The ToHost Central Router (CRToHost (8.12) is capable of selecting each block of data, based on its
E-Link ID, and assign the data to one of the DMA buffers in Wupper.

The mechanism described above benefits reliability in two ways:

• CPU load: The data load can be separated over multiple DMA buffers in a configurable way per E-
Link. This means that when one link is expected to produce more data than the other, this can be
accounted for in the DMA channel assignment in the firmware. This way the load of the CPU cores can
be balanced.

• Isolation of (DCS) data streams: If high link occupancy is likely to cause buffer overload in the server
memory, certain (DCS) E-Links may be assigned to a separate DMA channel / descriptor. This way
a separate process will be available to handle important data independent of other data acquisition
processes.

10.3.2 BUSY AND XOFF MECHANISM

Several sources of BUSY are available to handle exceptions in case of buffer overloads in several sections of
the FELIX system. Details about this mechanism are described in 3.4. Additionally the XOFF mechanism may
be used if the total link budget exceeds the PCIe bandwidth. This way the buffers in the Front End electronics
may be used to reduce data loss in case of data bursts.

10.3.3 (E-)LINK REALIGNMENT AND TRUNCATION

8b10b decoders in FELIX are equipped with an automatic realignment mechanism. When an illegal K-
character is received (not-in-table) the E-Link will automatically de-align, and the alignment sequence will
be initiated until a valid IDLE character or sequence is received again. This mechanism will help mitigating an
overload of the system in case of broken links that will produce random data. A similar mechanism is available
for FULL mode links. HDLC links to GBT-SCA devices are enabled with an optional truncation mechanism to
mitigate random data, and data messages (chunks) will optionally be truncated at a set length.

10. Firmware Management and Reliability Matters Page 164 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

11
ORGANIZATION OF FIRMWARE

DEVELOPMENT

This section presents a rough but reasonable estimate of the duration for the first prototyping phase, to realize
release 5.0. Again, this is subjected to change depending on available person power and other factors. The
major works expected for the first prototyping phase may include evolving the firmware to different hardware
platforms, restructuring firmware block, implementing new protocols and so on.

A large part of the FELIX functionality has been implemented in FELIX Phase I, especially FULL mode
and GBT mode. In Phase I however, the most complex part of the FELIX firmware - the Central Router -
was implemented differently for each firmware flavour. In Phase II, the Central Router has been divided into
4 independent parts: CRToHost, CRFromhost, Encoding and Decoding. CRToHost and CRFromHost are
agnostic to the protocol specific data formats, but rather handle a standardized AXI stream format which is
translated into or from the FELIX specific block format in the PCIe DMA buffers. Protocol specific encoding
and decoding can be enabled at build time, and is handled in the encoding and decoding blocks. This change
in design philosophy increases the flexibility of the firmware design and makes it easier to test and simulate
certain parts of the firmware separately using standardized design methodologies.

Porting Phase-I firmware to different hardware platforms necessarily involves working with some new types
of links (e.g PCIe 3 to PCIe 4). This required some changes in the Wupper Core. PCIe Gen4 functionality has
been implemented in Wupper and was verified on the FLX128 (Virtex Ultrascale+) card as well as the FLX181
card (Versal Prime). It will be a minor change to upgrade Wupper to PCIe Gen5 for Versal Premium Xilinx
devices. New protocols such as lpGBT and Interlaken 25G have been implemented and verified as well, and
are integrated in the phase2 design.

For the FELIX Phase I design, a system of responsibilities was established, where certain institutes were
responsible for certain functional components of the firmware, the benefit of that methodology is that it is very
clear who can be held responsible for the implementation and maintenance of a certain part of the firmware,
but a drawback is that the work load on certain developers may be high while others can be idle because a
certain component may require less attention.

In Phase II, the roles are slightly different. While certain people play expert roles for certain parts, the
different developers may be assigned different smaller tasks within the development cycle depending on the
need, availability and personal preference. This way it is also guaranteed that knowledge is spread among
the different collaborating institutes and will be maintained as developers join or leave the project.

11. Organization of Firmware Development Page 165 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

11.0.1 INSTITUTES CONTRIBUTING TO FELIX FIRMWARE

Argonne National Lab (ANL), Lemont, Illinois, USA

Bergische UniversitÃd’t Wuppertal, Germany

Brookhaven National Lab (BNL), Upton, New York, USA

CERN, Switzerland

IFIN-HH Bucharest, Romania

INFN - Istituto Nazionale di Fisica Nucleare, Italy

Nikhef - National Institute for Subatomic Physics Amsterdam, The
Netherlands

Technion - Israel Institute of Technology - Haifa, Israel

Transilvania University of Brasov, Romania

University of Bologna, Italy

University of British Colombia (UBC), Canada

University of Copenhagen, Denmark

University of GÃűttingen, Germany

U-Politechnica Bucharest, Romania

Weizmann Institute of Science, Rehovot, Israel.

Table 11.1: Institutes contributing to FELIX Firmware.

11. Organization of Firmware Development Page 166 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

11.0.2 DEVELOPERS AND THEIR ROLES IN THE FELIX FIRMWARE

• Alessandra Camplani <alessandra.camplani@cern.ch>

– TTC Emulator

• Alessandro Palombi <alessandro.palombi@cern.ch>

– DUNE

• Alessandro Thea <alessandro.thea@cern.ch>

– DUNE

– Optimization of the register map

• Alexander Paramonov <alexander.paramonov@cern.ch>

– TTC, LTI-TTC

• Ali Skaf <askaf@lab34.ph2.physik.uni-goettingen.de>

– UVVM simulation

– TTC Emulator

• Anamika Aggarwal <anamika.aggarwal@cern.ch>

– GBT front end emulation (GBT sniffer)

• Andrea Borga <andrea.borga@cern.ch>

– Previous firmware coordinator

– Toplevel design

– Wupper interrupt controller

– Housekeeping

• Carsten DÃijlsen <carsten.dulsen@cern.ch>

– ITk Pixel

– lpGBT E-Link decoding

• Dimitrios Matakias <dimitrios.matakias@cern.ch>

– lpGBT core

• Dylan Green <dylan.green@alumni.ubc.ca>

– ITk Strips

• Elena Zhivun <elena.zhivun@cern.ch>

– ITk Strips

• Enrico Gamberini <enrico.gamberini@cern.ch>

– DUNE

• Fabrizio Alfonsi <falfonsi@bo.infn.it>

– E-Link encoding (GBT)

• Filiberto Bonini <filiberto.bonini@cern.ch>

– DUNE

11. Organization of Firmware Development Page 167 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

– Optimization of the register map

– Core1990 / Interlaken

• Frans Schreuder <f.schreuder@nikhef.nl>

– Firmware coordinator

– Wupper

– CRToHost

– Decoding

– Housekeeping

• Hao Xu <haoxu@bnl.gov>

– Hardware support

• Hongbin Liu <hongbin.liu@cern.ch>

– Hardware support

• Israel Grayzman <israel.grayzman@weizmann.ac.il>

– Central Router (Phase I)

• Jacopo Pinzino <jacopo.pinzino@cern.ch>

– Endeavour endoder / decoder

• Julia Narevicius <julia.narevicius@weizmann.ac.il>

– Central Router (Phase I)

• Kai Chen <kai@cern.ch>

– GBT, lpGBT and FULL mode transceiver wrappers.

• Kazuki Todome <ktodome@cern.ch>

– E-Link encoding (GBT)

• Marco Trovato <mtrovato@felix01.hep.anl.gov>

– ITK Pixel decoding

– ITK Pixel endoding

– lpGBT wrapper

– FELIG

– Various contributions in several blocks

• Marius Wensing <wensing@uni-wuppertal.de>

– ITK Pixel / RD53B decoding

– CRFromHost

– Various contributions in encoding and decoding

• Mark Donszelmann <mark.donszelmann@cern.ch>

– Software coordinator

– WupperCodeGen

• Mesfin Gebyehu <m.gebyehu@nikhef.nl>

11. Organization of Firmware Development Page 168 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

– FMEmu

– External TTC Emulator

– XOFF / BUSY implementation

• Nayib Boukadida <n.boukadida@nikhef.nl>

– 100Gb/s RDMA core

– Core1990/Interlaken

• Nico Giangiacomi <nico.giangiacomi@cern.ch>

– DUNE

– TTC

– Endeavour encoder / decoder

– HDLC encoder / decoder

– E-Link encoding (GBT)

• Ohad Shaked <ohad.shaked@weizmann.ac.il>

– Central Router (Phase I)

• Radu Mihai Coliban <coliban.radu@unitbv.ro>

– NSW compatibility for FELIG

• Rene Habraken <r.habraken@science.ru.nl>

– FMEmu

• Ricardo Luz <rluz@felix02.hep.anl.gov>

– FELIG

– TTC Encoder

• Ryan Quinn <rquinn@cern.ch>

– ITk Strips emulator in FELIG

• Shaochun Tang <shaochun.tang@cern.ch>

– Hardware support

• Shelfali Saxena <ssaxena@felix01.hep.anl.gov>

– FELIG

– GBT Wrapper

• Simone Ponzio <simone.ponzio@cern.ch>

– Endevour encoder / decoder

• Soo Ryu <soo.ryu@cern.ch>

– TTC

– BUSY

• Thei Wijnen <t.wijnen@hef.ru.nl>

– FELIX MROD

• Ton Fleuren <t.fleuren@hef.ru.nl>

11. Organization of Firmware Development Page 169 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

– HGTD encoder / decoder

• Tong Xu <xut@felix02.hep.anl.gov>

– Core 1990/Interlaken

– Versal compatibility

• Weihao Wu <weihaowu@bnl.gov>

– GBT, lpGBT and FULL mode wrappers

• William Wulff <william.wulff@cern.ch>

– DUNE

11. Organization of Firmware Development Page 170 of 172

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

REFERENCES

[1] Argonne National Lab. FELIG User Manual. URL: https://gitlab.cern.ch/atlas-tdaq-felix/
felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf (cit. on p. 3).

[2] Nikhef, Radboud University Nijmegen. FMEMU, Documentation needed. URL: https://gitlab.cern.
ch/atlas-tdaq-felix/firmware/ (cit. on p. 3).

[3] Nikhef, Radboud University Nijmegen. FELIX_MROD, Documentation needed. URL: https://gitlab.
cern.ch/atlas-tdaq-felix/firmware/ (cit. on p. 3).

[4] K. Chen et al. “A Generic High Bandwidth Data Acquisition Card for Physics Experiments”. In: IEEE
Transactions on Instrumentation and Measurement 69.7 (2020), pp. 4569–4577. DOI: 10.1109/TIM.
2019.2947972 (cit. on p. 23).

[5] FPGA implementation of RDMA for ATLAS Readout with FELIX at High Luminosity LHC. URL: https:
//indico.cern.ch/event/1019078/contributions/4444212/ (cit. on p. 24).

[6] Frans Schreuder. Tool to create block diagrams from VHDL entities. URL: https://github.com/
fransschreuder/entity-block (cit. on pp. 35, 120, 121).

[7] Aliaksei Chapyzhenka. Tool to create waveforms. URL: https://wavedrom.com/ (cit. on pp. 38, 41,
83, 139).

[8] RD53B users guide. Tech. rep. Geneva: CERN, 2020. URL: https://cds.cern.ch/record/2754251
(cit. on pp. 48, 88).

[9] XILINX. Aurora 64B/66B Protocol Specification. URL: https://www.xilinx.com/support/documentation/
ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf (cit. on p. 48).

[10] Wikipedia. High-Level Data Link Control. URL: {https://en.wikipedia.org/wiki/High-Level\
_Data_Link_Control} (cit. on pp. 59, 60, 107).

[11] Julian Maxime Mendez. GBT-SC module for FPGA. URL: {https://gitlab.cern.ch/gbtsc-fpga-
support/gbt-sc} (cit. on p. 59).

[12] CERN GBT Project. “The GBTx Manual”. In: V0.14 (2016). URL: https://espace.cern.ch/GBT-
Project/GBTX/Manuals/gbtxManual.pdf (cit. on pp. 62, 112).

[13] TTC group. “CERN TTC homepage”. In: (). URL: http://ttc.web.cern.ch/TTC (cit. on p. 110).

[14] Phase-II Local Trigger Interface (LTI) Specification. Tech. rep. Geneva: CERN, 2021. URL: https :
//edms.cern.ch/ui/#!master/navigator/document?P:1223963387:100640118:subDocs (cit.
on pp. 114, 128).

[15] P. Farthouat and D. Francis and F. Lanni and T. Pauly. ATLAS Trigger and DAQ Interfaces with Detector
Front-End Systems: Requirement Document for HL-LHC. URL: {https://edms.cern.ch/ui/file/
1563801/1/RequirementsPhaseII_v1.1.0.pdf} (cit. on pp. 114, 128).

[16] K. Chen et al. “Optimization on fixed low latency implementation of the GBT core in FPGA”. In: Journal
of Instrumentation 12.07 (2017), P07011–P07011. DOI: 10.1088/1748-0221/12/07/p07011. URL:
https://doi.org/10.1088/1748-0221/12/07/p07011 (cit. on p. 116).

[17] LpGBT-FPGA. 2018. URL: http://lpgbt- fpga.web.cern.ch/doc/html/index.html (cit. on
p. 116).

[18] Xilinx. 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476 v1.11.1). 2015. URL: http://www.
xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf (cit. on
p. 117).

[19] Jochem Leijenhorst. URL: https: //atlas- project- felix .web.cern .ch/ atlas- project -
felix/dev/docs/Bachelor_thesis_chunk_headers_Jochem_Leijenhorst.pdf (cit. on p. 135).

[20] The FELIX team. atlas-tdaq-felix website. URL: https://atlas-project-felix.web.cern.ch/
atlas-project-felix/ (cit. on p. 141).

[21] Xilinx. UG761: Xilinx AXI Bus documentation. URL: http://www.xilinx.com/support/documentation/
ip_documentation/axi_ref_guide/latest/ug761_axi_reference_guide.pdf (cit. on
pp. 141, 145).

References References Page 171 of 172

https://gitlab.cern.ch/atlas-tdaq-felix/felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/felig-tools/-/blob/FELIG_Scripts/FeligFLX712Introduction.pdf
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://gitlab.cern.ch/atlas-tdaq-felix/firmware/
https://doi.org/10.1109/TIM.2019.2947972
https://doi.org/10.1109/TIM.2019.2947972
https://indico.cern.ch/event/1019078/contributions/4444212/
https://indico.cern.ch/event/1019078/contributions/4444212/
https://github.com/fransschreuder/entity-block
https://github.com/fransschreuder/entity-block
https://wavedrom.com/
https://cds.cern.ch/record/2754251
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
{https://en.wikipedia.org/wiki/High-Level_Data_Link_Control}
{https://en.wikipedia.org/wiki/High-Level_Data_Link_Control}
{https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc}
{https://gitlab.cern.ch/gbtsc-fpga-support/gbt-sc}
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf
http://ttc.web.cern.ch/TTC
https://edms.cern.ch/ui/#!master/navigator/document?P:1223963387:100640118:subDocs
https://edms.cern.ch/ui/#!master/navigator/document?P:1223963387:100640118:subDocs
{https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf}
{https://edms.cern.ch/ui/file/1563801/1/RequirementsPhaseII_v1.1.0.pdf}
https://doi.org/10.1088/1748-0221/12/07/p07011
https://doi.org/10.1088/1748-0221/12/07/p07011
http://lpgbt-fpga.web.cern.ch/doc/html/index.html
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
http://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/docs/Bachelor_thesis_chunk_headers_Jochem_Leijenhorst.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/docs/Bachelor_thesis_chunk_headers_Jochem_Leijenhorst.pdf
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
https://atlas-project-felix.web.cern.ch/atlas-project-felix/
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ ug761_axi_reference_guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ ug761_axi_reference_guide.pdf

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

[22] Xilinx. Virtex-7 FPGA Gen3 Integrated Block for PCI Express v4.3. URL: https://www.xilinx.com/
support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
(cit. on pp. 141, 151, 159).

[23] Xilinx. UltraScale Devices Gen3 Integrated Block for PCI Express v4.4. URL: https://www.xilinx.
com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-
pcie-gen3.pdf (cit. on pp. 141, 151, 159).

[24] Xilinx. UltraScale+ Devices Integrated Block for PCI Express v1.3. URL: https://www.xilinx.com/
support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-
ultrascale-plus.pdf (cit. on pp. 141, 151, 159).

[25] Xilinx. Versal ACAP Integrated Block for PCI Express v1.0. URL: https://www.xilinx.com/support/
documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf (cit. on
pp. 141, 151, 159).

[26] ARM. “ARM AMBA AXI bus standard specification page”. In: (). URL: http : / / www . arm . com /
products/system-ip/amba/amba-open-specifications.php (cit. on p. 145).

[27] Ali Skaf. FELIX Standardized Firmware testbench with Gitlab CI. URL: {https://indico.cern.ch/
event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
(cit. on p. 160).

[28] FELIX team. FELIX Data format. URL: {https://atlas-project-felix.web.cern.ch/atlas-
project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13_
_guide_to_felix_data_structures} (cit. on p. B.40).

References References Page 172 of 172

https://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_7x/v4_3/pg023_v7_pcie_gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie3_ultrascale/v4_4/pg156-ultrascale-pcie-gen3.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_versal/v1_0/pg343-pcie-versal.pdf
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
{https://indico.cern.ch/event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
{https://indico.cern.ch/event/858260/contributions/3613811/attachments/1930907/3198159/ASkaf_QT5r1.pdf}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}
{https://atlas-project-felix.web.cern.ch/atlas-project-felix/user/felix-user-manual/versions/Latest/C_datastructures.html#_13__guide_to_felix_data_structures}

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Appendix A
CODE MANAGEMENT

Everything related to FELIX firmware code management has been described in the FELIX developer manual

Appendix A: Code Management A.1

https://atlas-project-felix.web.cern.ch/atlas-project-felix/dev/felix-developer-manual.html#sec:firmware

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Appendix B
APPENDIX

Appendix B: Appendix B.1

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

B.1 FELIX REGISTER MAP, VERSION 5.1
Starting from the offset address of BAR0, BAR1 and BAR2. BAR0 only contains registers associated with DMA.

Bar0
DMA_DESC

0x0000 0,1 DMA_DESC_0
END_ADDRESS 127:64 W End Address 0x0000000000000000

START_ADDRESS 63:0 W Start Address 0x0000000000000000

0x0010 0,1 DMA_DESC_0a
SW_POINTER 127:64 W Pointer controlled by the software, indicating read or write status for circular DMA 0x0000000000000000

WRAP_AROUND 12 W Wrap around 0x0

FROMHOST 11 R 1: fromHost/ 0: toHost 0x0

NUM_WORDS 10:0 W Number of 32 bit words 0x00

. . .
0x00E0 0,1 DMA_DESC_7

END_ADDRESS 127:64 W End Address 0x0000000000000000

START_ADDRESS 63:0 W Start Address 0x0000000000000000

0x00F0 0,1 DMA_DESC_7a
SW_POINTER 127:64 W Pointer controlled by the software, indicating read or write status for circular DMA 0x0000000000000000

WRAP_AROUND 12 W Wrap around 0x0

FROMHOST 11 R 1: fromHost/ 0: toHost 0x0

NUM_WORDS 10:0 W Number of 32 bit words 0x00

DMA_DESC_STATUS
0x0200 0,1 DMA_DESC_STATUS_0

EVEN_PC 66 R Even address cycle PC 0x0

EVEN_DMA 65 R Even address cycle DMA 0x0

DESC_DONE 64 R Descriptor Done 0x0

FW_POINTER 63:0 R Pointer controlled by the firmware, indicating where the DMA is busy reading or writing 0x0000000000000000

. . .
0x0270 0,1 DMA_DESC_STATUS_7

EVEN_PC 66 R Even address cycle PC 0x0

EVEN_DMA 65 R Even address cycle DMA 0x0

DESC_DONE 64 R Descriptor Done 0x0

FW_POINTER 63:0 R Pointer controlled by the firmware, indicating where the DMA is busy reading or writing 0x0000000000000000

0x0300 0,1 BAR0_VALUE 31:0 R Copy of BAR0 offset reg. 0x00000000

0x0310 0,1 BAR1_VALUE 31:0 R Copy of BAR1 offset reg. 0x00000000

A
ppendix

B
:A

ppendix
B

.2

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x0320 0,1 BAR2_VALUE 31:0 R Copy of BAR2 offset reg. 0x00000000

0x0400 0,1 DMA_DESC_ENABLE 7:0 W Enable descriptors 7:0. One bit per descriptor. Cleared when Descriptor is handled. 0x00

0x0420 0,1 DMA_RESET any T Reset Wupper Core (DMA Controller FSMs) 0x0

0x0430 0,1 SOFT_RESET any T Global Software Reset. Any write resets applications, e.g. the Central Router. 0x0

0x0440 0,1 REGISTER_RESET any T Resets the register map to default values. Any write triggers this reset. 0x0

0x0450 0,1 FROMHOST_FULL_THRESH
THRESHOLD_ASSERT 22:16 W Assert value of the FromHost programmable full flag 0x0

THRESHOLD_NEGATE 6:0 W Negate value of the FromHost programmalbe full flag 0x0

0x0460 0,1 TOHOST_FULL_THRESH
THRESHOLD_ASSERT 27:16 W Assert value of the ToHost programmable full flag 0x000

THRESHOLD_NEGATE 11:0 W Negate value of the ToHost programmalbe full flag 0x000

0x0470 0,1 BUSY_THRESHOLD_ASSERT 63:0 W Tohost or Fromhost busy will be asserted in circular DMA mode when the server PC buffer gets full
(space below ASSERT threshold)..

0x0000000006400000

0x0480 0,1 BUSY_THRESHOLD_NEGATE 63:0 W Tohost or Fromhost busy will be negated in circular DMA mode when the server PC buffer gets less full
(space above NEGATE threshold).

0x0000000006E00000

0x0490 0,1 BUSY_STATUS 0 R A tohost descriptor passed BUSY_THRESHOLD_ASSERT, busy flag set 0x0

0x04A0 0,1 PC_PTR_GAP 63:0 W This is the minimum value that the pc_pointer in a descriptor has to decrease in order to flip the
evencycle_pc bit

0x0000000001000000

0x04B0 0,1 TOHOSTFIFO_EMPTY 3:0 R Empty flags of the ToHost FIFOs in Wupper 0x0

0x04C0 0,1 TOHOSTFIFO_PEMPTY 3:0 R Programmable empty flags of the ToHost FIFOs in Wupper 0x0

0x04D0 0,1 FROMHOSTFIFO_FULL 0 R Full flag of the FromHost FIFO in Wupper 0x0

0x04E0 0,1 FROMHOSTFIFO_PFULL 0 R Programmable full flag of the FromHost FIFO in Wupper 0x0

Table B.1: FELIX register map BAR0.

A
ppendix

B
:A

ppendix
B

.3

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

BAR1 stores registers associated with the Interrupt vector.

Bar1
INT_VEC

0x0000 0,1 INT_VEC_0
INT_CTRL 127:96 W Interrupt Control 0x00000000

INT_DATA 95:64 W Interrupt Data 0x00000000

INT_ADDRESS 64:0 W Interrupt Address 0x0000000000000000

. . .
0x00F0 0,1 INT_VEC_15

INT_CTRL 127:96 W Interrupt Control 0x00000000

INT_DATA 95:64 W Interrupt Data 0x00000000

INT_ADDRESS 64:0 W Interrupt Address 0x0000000000000000

0x0100 0,1 INT_TAB_ENABLE 7:0 W Interrupt Table enable
Selectively enable Interrupts

0x00

Table B.2: FELIX register map BAR1.

A
ppendix

B
:A

ppendix
B

.4

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

BAR2 stores registers for the control and monitor of HDL modules inside the FPGA other than Wupper. A portion of this register map’s section is dedicated
for control and monitor of devices outside the FPGA; as for example simple I2C devices.

Bar2
Generic Board Information

0x0000 0,1 REG_MAP_VERSION 15:0 R Register Map Version, 5.1 formatted as 0x0501 0x0000

0x0010 0,1 BOARD_ID_TIMESTAMP 39:0 R Board ID Date / Time in BCD format YYMMDDhhmm 0x0000000000

0x0030 0,1 GIT_COMMIT_TIME 39:0 R Board ID GIT Commit time of current revision, Date / Time in BCD format YYMMDDhhmm 0x0000000000

0x0040 0,1 GIT_TAG 63:0 R String containing the current GIT TAG 0x0000000000000000

0x0050 0,1 GIT_COMMIT_NUMBER 31:0 R Number of GIT commits after current GIT_TAG 0x00000000

0x0060 0,1 GIT_HASH 31:0 R Short GIT hash (32 bit) 0x00000000

0x0070 0,1 STATUS_LEDS 7:0 W Board GPIO Leds 0xAB

0x0080 0,1 GENERIC_CONSTANTS
TRICKLE_DESCRIPTOR_INDEX 35:32 R Index of the (first if more than one) Trickle descriptor 0x0

FROMHOST_DESCRIPTOR_INDEX 31:28 R Index of the (first if more than one) FromHost descriptor 0x0

TRICKLE_DESCRIPTORS 27:24 R Number of Trickle descriptors 0x0

FROMHOST_DESCRIPTORS 23:20 R Number of FromHost descriptors 0x0

TOHOST_DESCRIPTORS 19:16 R Number of ToHost descriptors 0x0

INTERRUPTS 15:8 R Number of Interrupts 0x00

DESCRIPTORS 7:0 R Number of Descriptors Tohost + FromHost excluding trickle descriptor 0x00

0x0090 0,1 NUM_OF_CHANNELS 7:0 R Number of GBT or FULL mode Channels 0x00

0x00A0 0,1 CARD_TYPE 63:0 R Card Type:
- 709 (0x2c5): FLX709, VC709
- 710 (0x2c6): FLX710, HTG710
- 711 (0x2c7): FLX711, BNL711
- 712 (0x2c8): FLX712, BNL712
- 128 (0x080): FLX128, VCU128
- 180 (0x0B4): FLX180, VMK180
- 181 (0x0B5): FLX181, BNL181
- 182 (0x0B6): FLX182, BNL182

0x0000000000000000

0x00C0 0,1 GENERATE_GBT 0 R 1 when the GBT Wrapper is included in the design 0x0

0x00D0 0,1 OPTO_TRX_NUM 7:0 R Number of optical transceivers in the design 0x00

0x00E0 0,1 GENERATE_TTC_EMU 1 R 1 when TTC emulator is generated 0x0

INCLUDE_EGROUPS
0x0100 0,1 INCLUDE_EGROUP_0

TOHOST_32 9 R ToHost EPATH32 is included in this EGROUP 0x0

FROMHOST_02 8 R FromHost EPATH02 is included in this EGROUP 0x0

FROMHOST_04 7 R FromHost EPATH04 is included in this EGROUP 0x0

FROMHOST_08 6 R FromHost EPATH8 is included in this EGROUP 0x0

FROMHOST_HDLC 5 R FromHost HDLC is included in this EGROUP 0x0

TOHOST_02 4 R ToHost EPATH02 is included in this EGROUP 0x0

A
ppendix

B
:A

ppendix
B

.5

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

TOHOST_04 3 R ToHost EPATH04 is included in this EGROUP 0x0

TOHOST_08 2 R ToHost EPATH08 is included in this EGROUP 0x0

TOHOST_16 1 R ToHost EPATH16 is included in this EGROUP 0x0

TOHOST_HDLC 0 R ToHost HDLC is included in this EGROUP 0x0

. . .
0x0160 0,1 INCLUDE_EGROUP_6

TOHOST_32 9 R ToHost EPATH32 is included in this EGROUP 0x0

FROMHOST_02 8 R FromHost EPATH02 is included in this EGROUP 0x0

FROMHOST_04 7 R FromHost EPATH04 is included in this EGROUP 0x0

FROMHOST_08 6 R FromHost EPATH8 is included in this EGROUP 0x0

FROMHOST_HDLC 5 R FromHost HDLC is included in this EGROUP 0x0

TOHOST_02 4 R ToHost EPATH02 is included in this EGROUP 0x0

TOHOST_04 3 R ToHost EPATH04 is included in this EGROUP 0x0

TOHOST_08 2 R ToHost EPATH08 is included in this EGROUP 0x0

TOHOST_16 1 R ToHost EPATH16 is included in this EGROUP 0x0

TOHOST_HDLC 0 R ToHost HDLC is included in this EGROUP 0x0

0x0170 0,1 WIDE_MODE 0 R GBT is configured in Wide mode 0x0

0x0190 0,1 FIRMWARE_MODE 4:0 R 0: GBT mode
1: FULL-GBT
2: LTDB mode (GBT mode with only IC and TTC links)
3: FEI4 mode
4: ITK Pixel
5: ITK Strip
6: FELIG GBT
7: FULL mode emulator
8: FELIX_MROD mode
9: lpGBT mode
10: 25G Interlaken
11: FELIG LPGBT
12: HGTD_LUMI
13: BCMPRIME
14: FELIG_PIXEL
15: FELIG_STRIP

0x0

0x01A0 0,1 GTREFCLK_SOURCE 1:0 R 0: Transceiver reference Clock source from Si5345
1: Transceiver reference Clock source from Si5324
2: Transceiver reference Clock from internal BUFG (GREFCLK)

0x0

0x01B0 0,1 CR_GENERICS
XOFF_INCLUDED 2 R Xoff bits (usually full mode) can be generated by the FromHost Central Router 0x0

DIRECT_MODE_INCLUDED 1 R Indicates that the Direct mode functionality was built in the Central Router 0x0

FROM_HOST_INCLUDED 0 R Indicates that the From Host path of the Central router was included in the design 0x0

0x01C0 0,1 BLOCKSIZE 15:0 R Number of bytes in a block 0x0000

0x01D0 0,1 PCIE_ENDPOINT 0 R Indicator of the PCIe endpoint on BNL71x cards with two endpoints. 0 or 1 0x0

0x01E0 0,1 CHUNK_TRAILER_32B 0 R Indicator that the chunk trailer is in the new 32-bit format 0x0

0x01F0 0,1 NUMBER_OF_PCIE_ENDPOINTS 1:0 R Number of PCIe endpoints on the card. The BNL71x cards have 2 endpoints 0x0

A
ppendix

B
:A

ppendix
B

.6

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x0200 0,1 AXI_STREAMS_TOHOST
IC_INDEX 23:16 R The AXIs ID (EPath-ID) of the ToHost IC E-Link 0x00

EC_INDEX 15:8 R The AXIs ID (EPath-ID) of the ToHost EC E-Link 0x00

NUMBER_OF_STREAMS 7:0 R Total number of AXIs IDs (EPath-IDs) per physical link ToHost 0x00

0x0210 0,1 AXI_STREAMS_FROMHOST
IC_INDEX 23:16 R The AXIs ID (EPath-ID) of the FromHost IC E-Link 0x00

EC_INDEX 15:8 R The AXIs ID (EPath-ID) of the FromHost EC E-Link 0x00

NUMBER_OF_STREAMS 7:0 R Total number of AXIs IDs (EPath-IDs) per physical link FromHost 0x00

0x0220 0,1 FROMHOST_DATA_FORMAT 2:0 R 0: The data format is as it was in phase1, supporting only multiples of 2 bytes
1: FromHost header uses a 5-bit length field as described in FLX-1355
2: FromHost header is 32-bit and the packet length is 256-bit (32 bytes) including the header FLX-1601
3: FromHost header is 32-bit and the packet length is 512-bit (64 bytes) including the header FLX-1601
4: FromHost header is 32-bit and the packet length is 256-bit (32 bytes) including the header FLX-2294.
All header bitfields are 8 bit
5: FromHost header is 32-bit and the packet length is 512-bit (64 bytes) including the header FLX-2294.
All header bitfields are 8 bit
6: FromHost header is 32-bit and the packet length is 1024-bit (128 bytes) including the header
FLX-2294. All header bitfields are 8 bit

0x0

0x0230 0,1 FULLMODE_HALFRATE 0 R If set to 1 the FULL mode firmware is running at 4.8Gb instead of the default 9.6Gb 0x0

0x0240 0,1 SUPPORT_HDLC_DELAY 0 R The HDLC encoders can offload a 1us delay as described in FLX-1826 0x0

0x0250 0,1 TOHOST_DATA_FORMAT 1:0 R 0: Use subchunk trailer format
1: Use subchunk header format
2: Use blockless header format

0x0

CR To Host Controls And Monitors
0x0800 0,1 TIMEOUT_CTRL

ENABLE 32 W 1 enables the timout trailer generation for ToHost mode 0x1

TIMEOUT 31:0 W Number of 40 MHz clock cycles after which a timeout occurs. 0xFFFFFFFF

0x0810 0,1 MAX_TIMEOUT 31:0 R Maximum allowed timeout value 0x00000000

0x0820 0,1 CRTOHOST_FIFO_STATUS
CLEAR any T Any write to this register clears the latched FULL flags 0x0

FULL 47:24 R Every bit represents the full flag of a channel FIFO 0x000000

FULL_LATCHED 23:0 R like FULL but a latched state, clear by writing to this register 0x000000

0x0830 0,1 CRTOHOST_DMA_DESCRIPTOR_1
WR_EN any T Any write to this register assigns the DMA ID to the AXIS_ID set in

CRTOHOST_DMA_DESCRIPTOR_2.AXIS_ID
0x0

DESCR 2:0 W Target descriptor 0x0

0x0840 0,1 CRTOHOST_DMA_DESCRIPTOR_2
DESCR_READ 13:11 R Read back the value of the descriptor assigned to AXIS_ID 0x0

AXIS_ID 10:0 W ID of the AXI stream (E-Path ID) to associate with CRTOHOST_DMA_DESCRIPTOR_1.DESCR 0x00

CRTOHOST_INSTANT_TIMEOUT_ENA_GEN
0x0850 0,1 CRTOHOST_INSTANT_TIMEOUT_ENA_00 41:0 W Enable instant timeout after the first data arrives in CRToHost. 0x0000000000

A
ppendix

B
:A

ppendix
B

.7

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

. . .
0x09C0 0,1 CRTOHOST_INSTANT_TIMEOUT_ENA_23 41:0 W Enable instant timeout after the first data arrives in CRToHost. 0x0000000000

0x09D0 0,1 DISCARD_DATA_FOR_DESCR
FIFO_FULL 15:8 W Discard data for a given DMA channel when Wupper FIFO is full, even if DMA is enabled 0x00

DMA_DISABLED 7:0 W Discard data for a given DMA channel when Wupper FIFO is full, and the descriptor is not enabled 0xFF

CR From Host Controls And Monitors
0x1000 0,1 CRFROMHOST_FIFO_STATUS

CLEAR any T Any write to this register clears the latched FULL flags 0x0

FULL 47:24 R Every bit represents the full flag of a channel FIFO 0x000000

FULL_LATCHED 23:0 R like FULL but a latched state, clear by writing to this register 0x000000

BROADCAST_ENABLE_GEN
0x1010 0,1 BROADCAST_ENABLE_00 41:0 W Enable path to be included in a broadcast message. 0x0000000000

. . .
0x1180 0,1 BROADCAST_ENABLE_23 41:0 W Enable path to be included in a broadcast message. 0x0000000000

0x1190 0,1 CRFROMHOST_RESET any T Central Router FromHost Controls and Monitors 0x0

Decoding Controls And Monitors
0x1800 0,1 ELINK_REALIGNMENT

CLEAR_REALIGNMENT_STATUS any T Clears the ELINK Realignment event flags 0x0

ENABLE 0 W Enable realignment mechanism in 8b10b E-Links after illegal character reception. 0x1

ELINK_REALIGNMENT_STATUS_GEN
0x1810 0,

1
ELINK_REALIGNMENT_STATUS_00 41:0 R A realignment event due to an illegal 8b10b symbol has occurred.

1 bit per Epath.
Clear status by writing to ELINK_REALIGNMENT.CLEAR_REALIGNMENT_STATUS

0x0000000000

. . .
0x18C0 0,

1
ELINK_REALIGNMENT_STATUS_11 41:0 R A realignment event due to an illegal 8b10b symbol has occurred.

1 bit per Epath.
Clear status by writing to ELINK_REALIGNMENT.CLEAR_REALIGNMENT_STATUS

0x0000000000

ELINK_REALIGNMENT_COUNT_GEN
0x18D0 0,

1
ELINK_REALIGNMENT_COUNT_00 31:0 R A realignment event due to an illegal 8b10b symbol on any E-Link in the link increments the counter.

Clear status by writing to ELINK_REALIGNMENT.CLEAR_REALIGNMENT_STATUS
0x00000000

. . .
0x1980 0,

1
ELINK_REALIGNMENT_COUNT_11 31:0 R A realignment event due to an illegal 8b10b symbol on any E-Link in the link increments the counter.

Clear status by writing to ELINK_REALIGNMENT.CLEAR_REALIGNMENT_STATUS
0x00000000

PATH_HAS_STREAM_ID
0x2000 0,1 LINK_00_HAS_STREAM_ID

EGROUP6 55:48 W EPATH (Wide mode or lpGBT) is associated with a STREAM ID 0x00

EGROUP5 47:40 W EPATH (Wide mode or lpGBT) is associated with a STREAM ID 0x00

A
ppendix

B
:A

ppendix
B

.8

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

EGROUP4 39:32 W EPATH is associated with a STREAM ID 0x00

EGROUP3 31:24 W EPATH is associated with a STREAM ID 0x00

EGROUP2 23:16 W EPATH is associated with a STREAM ID 0x00

EGROUP1 15:8 W EPATH is associated with a STREAM ID 0x00

EGROUP0 7:0 W EPATH is associated with a STREAM ID, use only bit0 for FULL mode. 0x00

. . .
0x2170 0,1 LINK_23_HAS_STREAM_ID

EGROUP6 55:48 W EPATH (Wide mode or lpGBT) is associated with a STREAM ID 0x00

EGROUP5 47:40 W EPATH (Wide mode or lpGBT) is associated with a STREAM ID 0x00

EGROUP4 39:32 W EPATH is associated with a STREAM ID 0x00

EGROUP3 31:24 W EPATH is associated with a STREAM ID 0x00

EGROUP2 23:16 W EPATH is associated with a STREAM ID 0x00

EGROUP1 15:8 W EPATH is associated with a STREAM ID 0x00

EGROUP0 7:0 W EPATH is associated with a STREAM ID, use only bit0 for FULL mode. 0x00

DECODING_LINK_STATUS_ARR
0x2180 0,1 DECODING_LINK_ALIGNED_00 57:0 R Every bit corresponds to an E-link on one (lp)GBT or FULL-mode frame. For FULL mode only bit 0 is

used
0x00000000000000

. . .
0x22F0 0,1 DECODING_LINK_ALIGNED_23 57:0 R Every bit corresponds to an E-link on one (lp)GBT or FULL-mode frame. For FULL mode only bit 0 is

used
0x00000000000000

DECODING_EGROUP_CTRL_GEN
DECODING_EGROUP

0x2300 0,1 DECODING_LINK00_EGROUP0_CTRL
ENABLE_TRUNCATION 59 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

EPATH_ALMOST_FULL 58:51 R FIFO full indication 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

PATH_ENCODING 42:11 W Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved

0x11111111

EPATH_WIDTH 10:8 W Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16, 4:32 0x0

EPATH_ENA 7:0 W Enable bits per EPATH 0x00

. . .
0x2360 0,1 DECODING_LINK00_EGROUP6_CTRL

ENABLE_TRUNCATION 59 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

EPATH_ALMOST_FULL 58:51 R FIFO full indication 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

A
ppendix

B
:A

ppendix
B

.9

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

PATH_ENCODING 42:11 W Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved

0x11111111

EPATH_WIDTH 10:8 W Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16, 4:32 0x0

EPATH_ENA 7:0 W Enable bits per EPATH 0x00

. . .
DECODING_EGROUP

0x27D0 0,1 DECODING_LINK11_EGROUP0_CTRL
ENABLE_TRUNCATION 59 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

EPATH_ALMOST_FULL 58:51 R FIFO full indication 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

PATH_ENCODING 42:11 W Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved

0x11111111

EPATH_WIDTH 10:8 W Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16, 4:32 0x0

EPATH_ENA 7:0 W Enable bits per EPATH 0x00

. . .
0x2830 0,1 DECODING_LINK11_EGROUP6_CTRL

ENABLE_TRUNCATION 59 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

EPATH_ALMOST_FULL 58:51 R FIFO full indication 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

PATH_ENCODING 42:11 W Encoding for every EPATH, 4 bits per E-path
0: direct mode
1: 8b10b mode
2: HDLC mode
3: TTC
4: ITk Strips 8b10b
5: ITk Pixel
6: Endeavour
7-15: reserved

0x11111111

EPATH_WIDTH 10:8 W Width in bits of all EPATHS in an EGROUP 0:2, 1:4, 2:8, 3:16, 4:32 0x0

EPATH_ENA 7:0 W Enable bits per EPATH 0x00

MINI_EGROUP_TOHOST_GEN
0x2840 0,1 MINI_EGROUP_TOHOST_00

ENABLE_AUX_TRUNCATION 15 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

ENABLE_IC_TRUNCATION 14 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

A
ppendix

B
:A

ppendix
B

.10

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

ENABLE_EC_TRUNCATION 13 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

AUX_ALMOST_FULL 12 R Indicator that the AUX path FIFO is almost full 0x0

AUX_BIT_SWAPPING 11 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x1

AUX_ENABLE 10 W Enables the AUX channel 0x1

IC_ALMOST_FULL 9 R Indicator that the IC path FIFO is almost full 0x0

IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x0

IC_ENABLE 7 W Enables the IC channel 0x1

EC_ALMOST_FULL 6 R Indicator that the EC path FIFO is almost full 0x0

EC_BIT_SWAPPING 5 W 0: two input bits of EC e-link are as documented, 1: two input bits are swapped 0x0

EC_ENCODING 4:1 W Configures encoding of the EC channel 0x2

EC_ENABLE 0 W Enables the EC channel 0x1

. . .
0x29B0 0,1 MINI_EGROUP_TOHOST_23

ENABLE_AUX_TRUNCATION 15 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

ENABLE_IC_TRUNCATION 14 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

ENABLE_EC_TRUNCATION 13 W Enable truncation mechanism in HDLC decoder for chunks > 12 bytes 0x0

AUX_ALMOST_FULL 12 R Indicator that the AUX path FIFO is almost full 0x0

AUX_BIT_SWAPPING 11 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x1

AUX_ENABLE 10 W Enables the AUX channel 0x1

IC_ALMOST_FULL 9 R Indicator that the IC path FIFO is almost full 0x0

IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x0

IC_ENABLE 7 W Enables the IC channel 0x1

EC_ALMOST_FULL 6 R Indicator that the EC path FIFO is almost full 0x0

EC_BIT_SWAPPING 5 W 0: two input bits of EC e-link are as documented, 1: two input bits are swapped 0x0

EC_ENCODING 4:1 W Configures encoding of the EC channel 0x2

EC_ENABLE 0 W Enables the EC channel 0x1

0x29C0 0,1 TTC_TOHOST_ENABLE 0 W Enables the ToHost Mini Egroup in TTC mode 0x1

0x29D0 0,1 DECODING_REVERSE_10B 0 W Reverse 10-bit word of elink data for 8b10b E-links
1: Receive 10-bit word in ToHost E-Paths, MSB first
0: Receive 10-bit word in ToHost E-Paths, LSB first

0x1

0x29E0 0,1 DECODING_ENDIANNESS_FULL_MODE 0 W Specify the byte order in FULL mode
1: Big-endian
0: Little-endian

0x0

YARR_DEBUG_ALLEGROUP_TOHOST_GEN
0x29F0 0,1 YARR_DEBUG_ALLEGROUP_TOHOST_00

REF_PACKET 63:32 W Reference packet to be matched 0x02000000

CNT_RX_PACKET 31:0 R Count packets of a given value 0x00000000

. . .

A
ppendix

B
:A

ppendix
B

.11

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x2AA0 0,1 YARR_DEBUG_ALLEGROUP_TOHOST_11
REF_PACKET 63:32 W Reference packet to be matched 0x02000000

CNT_RX_PACKET 31:0 R Count packets of a given value 0x00000000

PATH_ERRORS
0x2AB0 0,1 LINK_00_ERRORS

CLEAR_COUNTERS 35 W Set to 1 to clear all counter values for all egroups in the link. Set to 0 to start counting errors. 0x0

EGROUP_SELECT 34:32 W Errors for Egroup1 0x0

COUNT 31:0 R Errors for the selected egroup 0x00000000

. . .
0x2C20 0,1 LINK_23_ERRORS

CLEAR_COUNTERS 35 W Set to 1 to clear all counter values for all egroups in the link. Set to 0 to start counting errors. 0x0

EGROUP_SELECT 34:32 W Errors for Egroup1 0x0

COUNT 31:0 R Errors for the selected egroup 0x00000000

0x2C30 0,1 INTERLAKEN_CONTROL
HEALTH_INTERFACE 12 R Automatically detect the lane number in the interlaken descrambler 0x1

PACKET_LENGTH 11:0 W Lenth of an interlaken metaframe 0x7E8

INTERLAKEN_STATUS_GEN
0x2C40 0,1 INTERLAKEN_LANE_00_STATUS

CLEAR_STATUS any T Decoding block 0x0

DECODER_ERROR_SYNC 8 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_BADSYNC 7 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_STATEMISMATCH 6 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_NOSYNC 5 R Sticky error bit, clear with CLEAR_STATUS 0x0

BURST_CRC24_ERROR 4 R Sticky CRC error bit, clear with CLEAR_STATUS 0x0

META_CRC32_ERROR 3 R Sticky CRC error bit, clear with CLEAR_STATUS 0x0

HEALTH_LANE 2 R Health bit for this lane 0x0

DESCRAMBLER_ALIGNED 1 R This channels descrambler is aligned 0x0

DECODER_ALIGNED 0 R This channels decoder is aligned 0x0

. . .
0x2CF0 0,1 INTERLAKEN_LANE_11_STATUS

CLEAR_STATUS any T Decoding block 0x0

DECODER_ERROR_SYNC 8 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_BADSYNC 7 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_STATEMISMATCH 6 R Sticky error bit, clear with CLEAR_STATUS 0x0

DESCRAMBLER_ERROR_NOSYNC 5 R Sticky error bit, clear with CLEAR_STATUS 0x0

BURST_CRC24_ERROR 4 R Sticky CRC error bit, clear with CLEAR_STATUS 0x0

META_CRC32_ERROR 3 R Sticky CRC error bit, clear with CLEAR_STATUS 0x0

A
ppendix

B
:A

ppendix
B

.12

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

HEALTH_LANE 2 R Health bit for this lane 0x0

DESCRAMBLER_ALIGNED 1 R This channels descrambler is aligned 0x0

DECODER_ALIGNED 0 R This channels decoder is aligned 0x0

SUPER_CHUNK_FACTOR_GEN
0x2DE0 0,1 SUPER_CHUNK_FACTOR_LINK_00 7:0 W number of chunks glued together 0x01

. . .
0x2E90 0,1 SUPER_CHUNK_FACTOR_LINK_11 7:0 W number of chunks glued together 0x01

DECODING_LINK_CB_GEN
0x2EA0 0,1 DECODING_LINK_00_CB

DESKEWED 61:4 R Every bit corresponds to an E-link on one (lp)GBT frame.
Register indicates whether the E-link has been de-skewed in the channel.
E-link are grouped in a channel according to CBOPT

0x00000000000000

CBOPT 3:0 W Channel bonding option
0: no bonding
3: Bonding 0/1/2 3/4/5
other values: reserved

0x0

. . .
0x2F50 0,1 DECODING_LINK_11_CB

DESKEWED 61:4 R Every bit corresponds to an E-link on one (lp)GBT frame.
Register indicates whether the E-link has been de-skewed in the channel.
E-link are grouped in a channel according to CBOPT

0x00000000000000

CBOPT 3:0 W Channel bonding option
0: no bonding
3: Bonding 0/1/2 3/4/5
other values: reserved

0x0

0x2F60 0,1 DECODING_MASK64B66BKBLOCK 3:0 W Mask User K-Block based on its block number (see sp011) 0xA

0x2F70 0,1 DECODING_DISEGROUP 6:0 W Disable egroups for debugging purposes 0x0

0x2F80 0,1 FULLMODE_32B_SOP 0 W When set to 1, use 32-bit 0x0000003C as start of chunk, otherwise only 8-bit 0x3C (FULL mode only) 0x0

0x2F90 0,1 DECODING_HGTD_ALTIROC 0 W Set to 1 to use HGTD Altiroc K characters in the 8b10b decoders (LPGBT firmware mode) 0x0

0x2FA0 0,1 DECODING_HGTD_LUMI_CONF
DEBUG_DATASOURCE 36 W enable local data source for debugging 0x0

RAW_MODE 35 W enable RAW mode (just forwarding 6b8b data) 0x0

LHC_TURNS 34:25 W number of LHC turns to aggregate 0x64

TRIG_LAT 24:16 W trigger latency for per-event luminosity 0x00

SYNC_WORD 15:0 W sync word for luminosity stream 0x4778

Encoding Controls And Monitors
0x3000 0,1 ENCODING_REVERSE_10B 0 W Reverse 10-bit word of elink data for 8b10b E-links. 1 MSB first, 0 LSB first 0x1

ENCODING_EGROUP_CTRL_GEN
ENCODING_EGROUP

0x3010 0,1 ENCODING_LINK00_EGROUP0_CTRL

A
ppendix

B
:A

ppendix
B

.13

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

ENABLE_DELAY 63 W Enable inter-packet delay generation in HDLC encoder 0x0

TTC_OPTION 62:59 W Selects TTC bits sent to the E-link 0x0

EPATH_ALMOST_FULL 58:51 R Indiator that the EPATH FIFO is almost full 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

EPATH_WIDTH 42:40 W Width of the Elinks in the egroup
0: 2 bit 80 Mb/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s

0x0

PATH_ENCODING 39:8 W Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: ITk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification doc

0x11111111

EPATH_ENA 7:0 W Enable bits per E-PATH 0x00

. . .
0x3050 0,1 ENCODING_LINK00_EGROUP4_CTRL

ENABLE_DELAY 63 W Enable inter-packet delay generation in HDLC encoder 0x0

TTC_OPTION 62:59 W Selects TTC bits sent to the E-link 0x0

EPATH_ALMOST_FULL 58:51 R Indiator that the EPATH FIFO is almost full 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

EPATH_WIDTH 42:40 W Width of the Elinks in the egroup
0: 2 bit 80 Mb/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s

0x0

PATH_ENCODING 39:8 W Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: ITk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification doc

0x11111111

EPATH_ENA 7:0 W Enable bits per E-PATH 0x00

. . .
ENCODING_EGROUP

0x3380 0,1 ENCODING_LINK11_EGROUP0_CTRL
ENABLE_DELAY 63 W Enable inter-packet delay generation in HDLC encoder 0x0

TTC_OPTION 62:59 W Selects TTC bits sent to the E-link 0x0

EPATH_ALMOST_FULL 58:51 R Indiator that the EPATH FIFO is almost full 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

A
ppendix

B
:A

ppendix
B

.14

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

EPATH_WIDTH 42:40 W Width of the Elinks in the egroup
0: 2 bit 80 Mb/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s

0x0

PATH_ENCODING 39:8 W Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: ITk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification doc

0x11111111

EPATH_ENA 7:0 W Enable bits per E-PATH 0x00

. . .
0x33C0 0,1 ENCODING_LINK11_EGROUP4_CTRL

ENABLE_DELAY 63 W Enable inter-packet delay generation in HDLC encoder 0x0

TTC_OPTION 62:59 W Selects TTC bits sent to the E-link 0x0

EPATH_ALMOST_FULL 58:51 R Indiator that the EPATH FIFO is almost full 0x00

REVERSE_ELINKS 50:43 W enables bit reversing for the elink in the given epath 0x00

EPATH_WIDTH 42:40 W Width of the Elinks in the egroup
0: 2 bit 80 Mb/s
1: 4 bit 160 Mb/s
2: 8 bit 320 Mb/s

0x0

PATH_ENCODING 39:8 W Encoding for every EPATH, 4 bits per E-Path
0: No encoding
1: 8b10b mode
2: HDLC mode
3: ITk Strip LCB
4: ITk Pixel
5: Endeavour
6: reserved
7: reserved
greater than 7: TTC mode, see firmware Phase 2 specification doc

0x11111111

EPATH_ENA 7:0 W Enable bits per E-PATH 0x00

MINI_EGROUP_FROMHOST_GEN
0x33D0 0,1 MINI_EGROUP_FROMHOST_00

AUX_ENCODING 17:14 W Configures encoding of the AUX channel 0x2

ENABLE_DELAY 13 W Enable inter-packet delay generation in HDLC encoder 0x0

AUX_ALMOST_FULL 12 R Indicator that the AUX Path FIFO is almost full 0x0

AUX_BIT_SWAPPING 11 W 0: two input bits of AUX e-link are as documented, 1: two input bits are swapped 0x1

AUX_ENABLE 10 W Enables the AUX channel 0x1

IC_ALMOST_FULL 9 R Indicator that the IC Path FIFO is almost full 0x0

IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x0

IC_ENABLE 7 W Enables the IC channel 0x1

EC_ALMOST_FULL 6 R Indicator that the EC Path FIFO is almost full 0x0

A
ppendix

B
:A

ppendix
B

.15

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

EC_BIT_SWAPPING 5 W 0: two output bits of EC e-link are as documented, 1: two output bits are swapped 0x0

EC_ENCODING 4:1 W Configures encoding of the EC channel 0x2

EC_ENABLE 0 W Configures the FromHost Mini egroup 0x1

. . .
0x3540 0,1 MINI_EGROUP_FROMHOST_23

AUX_ENCODING 17:14 W Configures encoding of the AUX channel 0x2

ENABLE_DELAY 13 W Enable inter-packet delay generation in HDLC encoder 0x0

AUX_ALMOST_FULL 12 R Indicator that the AUX Path FIFO is almost full 0x0

AUX_BIT_SWAPPING 11 W 0: two input bits of AUX e-link are as documented, 1: two input bits are swapped 0x1

AUX_ENABLE 10 W Enables the AUX channel 0x1

IC_ALMOST_FULL 9 R Indicator that the IC Path FIFO is almost full 0x0

IC_BIT_SWAPPING 8 W 0: two input bits of IC e-link are as documented, 1: two input bits are swapped 0x0

IC_ENABLE 7 W Enables the IC channel 0x1

EC_ALMOST_FULL 6 R Indicator that the EC Path FIFO is almost full 0x0

EC_BIT_SWAPPING 5 W 0: two output bits of EC e-link are as documented, 1: two output bits are swapped 0x0

EC_ENCODING 4:1 W Configures encoding of the EC channel 0x2

EC_ENABLE 0 W Configures the FromHost Mini egroup 0x1

ENCODING_EGROUP_CTRL_FEI4_GEN
ENCODING_EGROUP_FEI4

0x3550 0,1 ENCODING_LINK00_EGROUP0_FEI4_CTRL
PHASE_DELAY1 11:9 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE1 8 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE1 7 W Disable automatic merging 0x0

TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled) 0x0

PHASE_DELAY0 5:3 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE0 2 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE0 1 W Disable automatic merging 0x0

TTC_SELECT0 0 W TTC/FromHost select (if automatic merging is disabled) 0x0

. . .
0x3590 0,1 ENCODING_LINK00_EGROUP4_FEI4_CTRL

PHASE_DELAY1 11:9 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE1 8 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE1 7 W Disable automatic merging 0x0

TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled) 0x0

PHASE_DELAY0 5:3 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE0 2 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE0 1 W Disable automatic merging 0x0

A
ppendix

B
:A

ppendix
B

.16

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

TTC_SELECT0 0 W TTC/FromHost select (if automatic merging is disabled) 0x0

. . .
ENCODING_EGROUP_FEI4

0x38C0 0,1 ENCODING_LINK11_EGROUP0_FEI4_CTRL
PHASE_DELAY1 11:9 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE1 8 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE1 7 W Disable automatic merging 0x0

TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled) 0x0

PHASE_DELAY0 5:3 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE0 2 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE0 1 W Disable automatic merging 0x0

TTC_SELECT0 0 W TTC/FromHost select (if automatic merging is disabled) 0x0

. . .
0x3900 0,1 ENCODING_LINK11_EGROUP4_FEI4_CTRL

PHASE_DELAY1 11:9 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE1 8 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE1 7 W Disable automatic merging 0x0

TTC_SELECT1 6 W TTC/FromHost select (if automatic merging is disabled) 0x0

PHASE_DELAY0 5:3 W phase delay of output data, with 320 Bb/s e-link 8 phases per BC 0x0

MANCHESTER_ENABLE0 2 W enable manchester encoding 0x0

AUTOMATIC_MERGE_DISABLE0 1 W Disable automatic merging 0x0

TTC_SELECT0 0 W TTC/FromHost select (if automatic merging is disabled) 0x0

YARR_DEBUG_ALLEGROUP_FROMHOST_GEN
0x3910 0,1 YARR_DEBUG_ALLEGROUP_FROMHOST1_00

RD53A_AZ_EN 48 W Auto zeroing module enable 0x0

CNT_TRIG_CMD 47:16 R Number of issued triggers via cmd 0x00000000

ERR_GENCALTRIG_DLY 15:8 R Number of mismatches between CNT_GENCALTRIG_DLY and REF_DLY_GENCALTRIG 0x00

REF_DLY_GENCALTRIG 7:0 W Reference distance between GenCal and First Trigger 0x0F

0x3920 0,1 YARR_DEBUG_ALLEGROUP_FROMHOST2_00
CNT_CMD 47:16 R Number of issued commands 0x00000000

REF_CMD 15:0 W Cmd type to be counted. See RD53 Manual for list of allowed commands 0x6666

. . .
0x3A70 0,1 YARR_DEBUG_ALLEGROUP_FROMHOST1_11

RD53A_AZ_EN 48 W Auto zeroing module enable 0x0

CNT_TRIG_CMD 47:16 R Number of issued triggers via cmd 0x00000000

ERR_GENCALTRIG_DLY 15:8 R Number of mismatches between CNT_GENCALTRIG_DLY and REF_DLY_GENCALTRIG 0x00

REF_DLY_GENCALTRIG 7:0 W Reference distance between GenCal and First Trigger 0x0F

A
ppendix

B
:A

ppendix
B

.17

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x3A80 0,1 YARR_DEBUG_ALLEGROUP_FROMHOST2_11
CNT_CMD 47:16 R Number of issued commands 0x00000000

REF_CMD 15:0 W Cmd type to be counted. See RD53 Manual for list of allowed commands 0x6666

0x3A90 0,1 YARR_FROMHOST_CALTRIGSEQ_WE 0 W enable to store CalPulse+Trigger Sequence into memory 0x0

0x3AA0 0,1 YARR_FROMHOST_CALTRIGSEQ_WRDATA 15:0 W CalPulse+Trigger Sequence to be stored in memory 0x0000

0x3AB0 0,1 YARR_FROMHOST_CALTRIGSEQ_WRADDR 4:0 W memory address to store CalPulse+Trigger Sequence 0x0

0x3AC0 0,1 HGTD_ALTIROC_FASTCMD
ALTIROC3_IDLE 14 W 0 for ALTIROC2 10101100, 1 for ALTIROC3 11110000 0x0

USE_CAL 13 W When set to 1, CAL will be sent on L1A, then after TRIG_DELAY BC clocks a TRIGGER. When 0,
TRIGGER will be sent on L1A.

0x1

SYNCLUMI 12 W Set to 1 to trigger a SYNCLUMI command, rising edge of this bit. Clear in software 0x0

GBRST 11 W Set to 1 to trigger a GBRST command, rising edge of this bit. Clear in software 0x0

TRIG_DELAY 10:0 W Number of BC clocks between CAL and TRIGGER command if USE_CAL is set to 1 0x05

0x3AD0 0,1 ITKSTRIP_LCB_R3L1_ELINK_SWAP 47:0 W Setting a bit, moves the LCB E-Link to the odd E-Link position and R3L1 to the even one on the lpGBT
downlink. 4 bits per lpGBT link

0x000000000000

0x3AE0 0,1 ENCODING_ITKPIX_TRIGGER_GENERATOR
NO_INJECT 28 W Controls the trigger generator for ItkPix 0x0

EDGE_MODE 27 W Controls the trigger generator for ItkPix 0x1

EDGE_DELAY 26:22 W Controls the trigger generator for ItkPix 0x0

EDGE_DURATION 21:14 W Controls the trigger generator for ItkPix 0x14

TRIG_DELAY 13:6 W Controls the trigger generator for ItkPix 0x3A

TRIG_MULTIPLIER 5:0 W Controls the trigger generator for ItkPix 0x10

0x3AF0 0,1 LTI_FE_OUTPUT_SELECTOR 1:0 W 0: Low latency LTI-FE distribution
1: 40 MHz sync LTI-FE distribution

0x0

Frontend Emulator Controls And Monitors
0x4000 0,

1
FE_EMU_ENA

EMU_TOFRONTEND 1 W Enable GBT dummy emulator ToFrontEnd 0x0

EMU_TOHOST 0 W Enable GBT dummy emulator ToHost 0x0

0x4010 0,
1

FE_EMU_CONFIG

WE 54:47 W write enable array, every bit is one emulator RAM block 0x00

WRADDR 46:33 W write address bus 0x000

WRDATA 32:0 W write data bus 0x00000000

0x4020 0,
1

FE_EMU_READ

SEL 35:33 W Select ramblock to read back 0x0

A
ppendix

B
:A

ppendix
B

.18

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

DATA 32:0 R Read back ramblock at FE_EMU_CONFIG.WRADDR 0x00000000

0x4030 0,
1

FE_EMU_LOGIC

L1A_TRIGGERED 33 W 1 Send a chunk on every L1A, 0 use the IDLES to determine the rate 0x0

ENA 32 W Enable logic based FrontEnd emulator, instead of RAM based. 0x0

IDLES 31:16 W Number of IDLE bytes between chunks. 0x0000

CHUNK_LENGTH 15:0 W Chunk length in bytes 0x0000

DECODING_BCM_PRIME_L1 A_CONTROLS_GEN
0x4200 0,

1
DECODING_BCM_PRIME_LINK_00_L1A

DELAY 9:5 W The data in fiber is delayed N clock cycles to match with TTC L1A 0x5

WINDOW 4:0 W The L1A signal is extended to cover multiple BCID’s 0x5

. . .
0x4370 0,

1
DECODING_BCM_PRIME_LINK_23_L1A

DELAY 9:5 W The data in fiber is delayed N clock cycles to match with TTC L1A 0x5

WINDOW 4:0 W The L1A signal is extended to cover multiple BCID’s 0x5

0x4380 0,
1

DECODING_BCM_PRIME_ONLY_L1A 0 W If enabled, the BCM_PRIME firmware, will only readout data when an L1A is sent. 0x0

0x4390 0,
1

DECODING_BCM_PRIME_EMU_BCID 0 W If enabled, the BCM_PRIME firmware will use internally generated BCIDs instead of the TTC one. 0x0

0x43A0 0,
1

DECODING_BCM_PRIME_PUBLISH_ZEROS 0 W If enabled, the BCM_PRIME firmware publish empty data-events if they are matched with L1A 0x0

Link Wrapper Controls
0x5000 0 LINK_FULLMODE_LTI 23:0 W Set to 1 to enable LTI format TTC distribution (8b10b at 9.6Gb) in the FULLMODE flavour, one bit per

channel. Set to 0 for 4.8Gb GBT distribution
0x000000

0x5400 0 GBT_CHANNEL_DISABLE 47:0 W Disable selected lpGBT, GBT or FULL mode channel 0x000000000000

0x5410 0 GBT_GENERAL_CTRL 63:0 W Alignment chk reset (not self clearing) 0x0000000000000000

0x5420 0 GBT_MODE_CTRL
RX_ALIGN_TB_SW 2 W RX_ALIGN_TB_SW 0x0

RX_ALIGN_SW 1 W RX_ALIGN_SW 0x0

DESMUX_USE_SW 0 W DESMUX_USE_SW 0x0

0x5480 0 GBT_RXSLIDE_SELECT 47:0 W RxSlide select [47:0] 0x000000000000

0x5490 0 GBT_RXSLIDE_MANUAL 47:0 W RxSlide select [47:0] 0x000000000000

0x54A0 0 GBT_TXUSRRDY 47:0 W TxUsrRdy [47:0] 0xFFFFFFFFFFFF

0x54B0 0 GBT_RXUSRRDY 47:0 W RxUsrRdy [47:0] 0xFFFFFFFFFFFF

0x54C0 0 GBT_SOFT_RESET 47:0 W SOFT_RESET [47:0] 0x000000000000

A
ppendix

B
:A

ppendix
B

.19

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x54D0 0 GBT_GTTX_RESET 47:0 W GTTX_RESET [47:0] 0x000000000000

0x54E0 0 GBT_GTRX_RESET 47:0 W GTRX_RESET [47:0] 0x000000000000

0x54F0 0 GBT_PLL_RESET
QPLL_RESET 59:48 W QPLL_RESET [11:0] 0x000

CPLL_RESET 47:0 W CPLL_RESET [47:0] 0x000000000000

0x5500 0 GBT_SOFT_TX_RESET
RESET_ALL 59:48 W SOFT_TX_RESET_ALL [11:0] 0x000

RESET_GT 47:0 W SOFT_TX_RESET_GT [47:0] 0x000000000000

0x5510 0 GBT_SOFT_RX_RESET
RESET_ALL 59:48 W SOFT_TX_RESET_ALL [11:0] 0x000

RESET_GT 47:0 W SOFT_TX_RESET_GT [47:0] 0x000000000000

0x5520 0 GBT_ODD_EVEN 47:0 W OddEven [47:0] 0x000000000000

0x5530 0 GBT_TOPBOT 47:0 W TopBot [47:0] 0x000000000000

0x5540 0 GBT_TX_TC_DLY_VALUE1 47:0 W TX_TC_DLY_VALUE [47:0] 0x333333333333

0x5550 0 GBT_TX_TC_DLY_VALUE2 47:0 W TX_TC_DLY_VALUE [95:48] 0x333333333333

0x5560 0 GBT_TX_TC_DLY_VALUE3 47:0 W TX_TC_DLY_VALUE [143:96] 0x333333333333

0x5570 0 GBT_TX_TC_DLY_VALUE4 47:0 W TX_TC_DLY_VALUE [191:144] 0x333333333333

0x5580 0 GBT_DATA_TXFORMAT1 47:0 W DATA_TXFORMAT [47:0] 0x000000000000

0x5590 0 GBT_DATA_TXFORMAT2 47:0 W DATA_TXFORMAT [95:48] 0x000000000000

0x55A0 0 GBT_DATA_RXFORMAT1 47:0 W DATA_RXFORMAT [47:0] 0x000000000000

0x55B0 0 GBT_DATA_RXFORMAT2 47:0 W DATA_RXFORMAT [95:0] 0x000000000000

0x55C0 0 GBT_TX_RESET 47:0 W TX Logic reset [47:0] 0x000000000000

0x55D0 0 GBT_RX_RESET 47:0 W RX Logic reset [47:0] 0x000000000000

0x55E0 0 GBT_TX_TC_METHOD 47:0 W TX time domain crossing method [47:0] 0x000000000000

0x55F0 0 GBT_OUTMUX_SEL 47:0 W Descrambler output MUX selection [47:0] 0x000000000000

0x5600 0 GBT_TC_EDGE 47:0 W Sampling edge selection for TX domain crossing [47:0] 0x000000000000

0x5610 0 GBT_TXPOLARITY 47:0 W 0: default polarity
1: reversed polarity for transmitter of GTH channels

0x000000000000

0x5620 0 GBT_RXPOLARITY 47:0 W 0: default polarity
1: reversed polarity for the receiver of the GTH channels

0x000000000000

0x5630 0 GTH_LOOPBACK_CONTROL 2:0 W Controls loopback for loopback: read UG476 for the details. NOTE: the TXBUFFER is disabled, near end
PCS loopback is not supported.
000: Normal operation
001: Near-End PCS Loopback
010: Near-End PMA Loopback
011: Reserved
100: Far-End PMA Loopback
101: Reserved
110: Far-End PCS Loopback

0x0

A
ppendix

B
:A

ppendix
B

.20

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x5640 0 LPGBT_FEC 47:0 W 0: FEC5
1: FEC12

0x000000000000

0x5650 0 LPGBT_DATARATE 47:0 W 0: 10.24 Gbps
1: 5.12 Gbps

0x000000000000

0x5700 0 GBT_TOHOST_FANOUT
LOCK 48 W Locks this particular register. If set prevents software from touching it. 0x0

SEL 47:0 W ToHost FanOut/Selector. Every bitfield is a channel:
1 : GBT_EMU, select GBT Emulator for a specific CentralRouter channel
0 : GBT_WRAP, select real GBT link for a specific CentralRouter channel

0x000000000000

0x5710 0 GBT_TOFRONTEND_FANOUT
LOCK 48 W Locks this particular register. If set prevents software from touching it. 0x0

SEL 47:0 W ToFrontEnd FanOut/Selector. Every bitfield is a channel:
1 : GBT_EMU, select GBT Emulator for a specific GBT link
0 : TTC_DEC, select CentralRouter data (including TTC) for a specific GBT link

0x000000000000

0x5720 0 FULLMODE_AUTO_RX_RESET
ENABLE 32 W Enable the Automatic RX Reset mechanism 0x1

TIMEOUT 31:0 W Number of 40 MHz clock cycles until an unaligned link results in a reset pulse 0x00100000

TCLINK_CNTRL_GEN
0x5730 0 TCLINK_CONTROL_00

OFFSET_ERROR 63:16 W Error-offset for phase-control Recommended to freeze with an initial value read 0x000000000000

CLOSE_LOOP 15 W Close TCLink loop (enables compensation) 0x0

TX_PI_PHASE_CALIB 14:8 W UI alignment Tx PI calibrated phase 0x0

TX_UI_ALIGN_CALIB 7 W UI alignment Tx PI activate 0x0

TX_FINE_REALIGN 6 W Repeats fine alignment procedure 0x0

PS_STROBE 5 W Shifts phase of transmitter serial data 0x0

PS_INC_NDEC 4 W Shifts phase of transmitter serial data 0x0

MASTER_MGT_RX_READY 3 W MGT rx is ready (used as reset) 0x0

. . .
0x58A0 0 TCLINK_CONTROL_23

OFFSET_ERROR 63:16 W Error-offset for phase-control Recommended to freeze with an initial value read 0x000000000000

CLOSE_LOOP 15 W Close TCLink loop (enables compensation) 0x0

TX_PI_PHASE_CALIB 14:8 W UI alignment Tx PI calibrated phase 0x0

TX_UI_ALIGN_CALIB 7 W UI alignment Tx PI activate 0x0

TX_FINE_REALIGN 6 W Repeats fine alignment procedure 0x0

PS_STROBE 5 W Shifts phase of transmitter serial data 0x0

PS_INC_NDEC 4 W Shifts phase of transmitter serial data 0x0

MASTER_MGT_RX_READY 3 W MGT rx is ready (used as reset) 0x0

A
ppendix

B
:A

ppendix
B

.21

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

Link Wrapper Monitors
0x6600 0 GBT_VERSION

DATE 63:48 R Date 0x0000

GBT_VERSION 47:32 R GBT Version 0x0000

GTH_IP_VERSION 31:16 R GTH IP Version 0x0000

RESERVED 15:3 R Reserved 0x000

GTHREFCLK_SEL 2 R GTHREFCLK SEL 0x0

RX_CLK_SEL 1 R RX CLK SEL 0x0

PLL_SEL 0 R PLL SEL 0x0

0x6680 0 GBT_TXRESET_DONE 47:0 R TX Reset done [47:0] 0x000000000000

0x6690 0 GBT_RXRESET_DONE 47:0 R RX Reset done [47:0] 0x000000000000

0x66A0 0 GBT_TXFSMRESET_DONE 47:0 R TX FSM Reset done [47:0] 0x000000000000

0x66B0 0 GBT_RXFSMRESET_DONE 47:0 R RX FSM Reset done [47:0] 0x000000000000

0x66C0 0 GBT_CPLL_FBCLK_LOST 47:0 R CPLL FBCLK LOST [47:0] 0x000000000000

0x66D0 0 GBT_PLL_LOCK
QPLL_LOCK 59:48 R QPLL LOCK [11:0] 0x000

CPLL_LOCK 47:0 R CPLL LOCK [47:0] 0x000000000000

0x66E0 0 GBT_RXCDR_LOCK 47:0 R RX CDR LOCK [47:0] 0x000000000000

0x66F0 0 GBT_CLK_SAMPLED 47:0 R clk sampled [47:0] 0x000000000000

0x6700 0 GBT_RX_IS_HEADER 47:0 R RX IS HEADER [47:0] 0x000000000000

0x6710 0 GBT_RX_IS_DATA 47:0 R RX IS DATA [47:0] 0x000000000000

0x6720 0 GBT_RX_HEADER_FOUND 47:0 R RX HEADER FOUND [47:0] 0x000000000000

0x6730 0 GBT_ALIGNMENT_DONE 47:0 R RX ALIGNMENT DONE [47:0] 0x000000000000

0x6740 0 GBT_OUT_MUX_STATUS 47:0 R GBT output mux status [47:0] 0x000000000000

0x6750 0 GBT_ERROR 47:0 R Error flags [47:0] 0x000000000000

0x6760 0 GBT_GBT_TOPBOT_C 47:0 R TopBot_c [47:0] 0x000000000000

0x6800 0 GBT_FM_RX_DISP_ERROR1 47:0 R Rx disparity error [47:0] 0x000000000000

0x6810 0 GBT_FM_RX_DISP_ERROR2 47:0 R Rx disparity error [96:48] 0x000000000000

0x6820 0 GBT_FM_RX_NOTINTABLE1 47:0 R Rx not in table [47:0] 0x000000000000

0x6830 0 GBT_FM_RX_NOTINTABLE2 47:0 R Rx not in table [96:48] 0x000000000000

GT_FEC_ERR_CNT_GEN
0x6840 0 GT_FEC_ERR_CNT_00 31:0 R Counts the number of FEC errors in the given channel. 0x00000000

. . .
0x69B0 0 GT_FEC_ERR_CNT_23 31:0 R Counts the number of FEC errors in the given channel. 0x00000000

GT_AUTO_RX_RESET_CNT_GEN
0x69C0 0 GT_AUTO_RX_RESET_CNT_00

A
ppendix

B
:A

ppendix
B

.22

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

CLEAR any T Any write to this register clears the counter value 0x0

VALUE 31:0 R Counts the number of AUTO RX RESET events that happend on the FULLMODE, GBT or lpGBT link 0x00000000

. . .
0x6B30 0 GT_AUTO_RX_RESET_CNT_23

CLEAR any T Any write to this register clears the counter value 0x0

VALUE 31:0 R Counts the number of AUTO RX RESET events that happend on the FULLMODE, GBT or lpGBT link 0x00000000

TCLINK_MON_GEN
0x6B40 0 TCLINK_MONITOR_1_00

ERROR_CONTROLLER 62:15 R Error-signal for controller Signed complement 2 number. 0x000000000000

LOOP_CLOSED 14 R TCLink loop is closed (compensation is enabled) 0x0

TX_ALIGNED 13 R Transmitter alignment procedure finished Use as reset for transmitter user logic 0x0

PS_DONE 12 R Phase shift is done 0x0

TX_PI_PHASE 11:5 R Tx PI phase after alignment 0x0

0x6B50 0 TCLINK_MONITOR_2_00
PHASE_DETECTOR 63:32 R Phase detector response 0x00000000

TX_FIFO_FILL_PD 31:0 R Phase detector current value 0x00000000

0x6B60 0 TCLINK_MONITOR_3_00
LOOP_NOT_CLOSED_REASON 58:54 R Reason why the TCLink loop is not closed 0x0

PHASE_ACC 53:38 R phase accumulated output (integrated output) 0x0000

OPERATION_ERROR 37 R error output indicating that a clk_en_i pulse has arrived before the done_i signal arrived from the
previous strobe_o request

0x0

DEBUG_TESTER_ADDR_READ 36:27 W read address for reading stocked TCLink phase accumulated results 0x00

DEBUG_TESTER_DATA_READ 26:11 R data of stocked TCLink phase accumulated results 0x0000

PS_PHASE_STEP 10:7 R number of units to shift the phase of the receiver clock 0x0

. . .
0x6F90 0 TCLINK_MONITOR_1_23

ERROR_CONTROLLER 62:15 R Error-signal for controller Signed complement 2 number. 0x000000000000

LOOP_CLOSED 14 R TCLink loop is closed (compensation is enabled) 0x0

TX_ALIGNED 13 R Transmitter alignment procedure finished Use as reset for transmitter user logic 0x0

PS_DONE 12 R Phase shift is done 0x0

TX_PI_PHASE 11:5 R Tx PI phase after alignment 0x0

0x6FA0 0 TCLINK_MONITOR_2_23
PHASE_DETECTOR 63:32 R Phase detector response 0x00000000

TX_FIFO_FILL_PD 31:0 R Phase detector current value 0x00000000

0x6FB0 0 TCLINK_MONITOR_3_23
LOOP_NOT_CLOSED_REASON 58:54 R Reason why the TCLink loop is not closed 0x0

PHASE_ACC 53:38 R phase accumulated output (integrated output) 0x0000

A
ppendix

B
:A

ppendix
B

.23

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

OPERATION_ERROR 37 R error output indicating that a clk_en_i pulse has arrived before the done_i signal arrived from the
previous strobe_o request

0x0

DEBUG_TESTER_ADDR_READ 36:27 W read address for reading stocked TCLink phase accumulated results 0x00

DEBUG_TESTER_DATA_READ 26:11 R data of stocked TCLink phase accumulated results 0x0000

PS_PHASE_STEP 10:7 R number of units to shift the phase of the receiver clock 0x0

0x6FC0 0 GBT_PLL_LOL_LATCHED
CLEAR any T Any write to this bitfield clears the latched LOL bits 0x0

QPLL_LOL_LATCHED 59:48 R Asserted when CPLL lock is lost, clear by writing to CLEAR 0x000

CPLL_LOL_LATCHED 47:0 R Asserted when CPLL lock is lost, clear by writing to CLEAR 0x000000000000

0x6FD0 0 GBT_ALIGNMENT_LOST
CLEAR any T Any write to this bitfield clears the latched ALIGNMENT_LOST bits 0x0

ALIGNMENT_LOST 47:0 R Asserted when GBT_ALIGNMENT_DONE bit is 0, clear by writing to CLEAR 0x000000000000

TTCBUSY Controls And Monitors
TTC_DEC_CTRLMON

0x7000 0 TTC_DEC_CTRL
B_CHAN_DELAY 30:27 W Number of BC to delay the L1A distribution to the frontends 0x0

BCID_ONBCR 26:15 W BCID is set to this value when BCR arrives 0x000

BUSY_OUTPUT_STATUS 14 R Actual status of the BUSY LEMO output signal 0x0

ECR_BCR_SWAP 13 W ECR and BCR signals are swapped at the output of the TTC decoder (needed only for LAr TTC) 0x0

BUSY_OUTPUT_INHIBIT 12 W forces the Busy LEMO output to BUSY-OFF 0x0

TOHOST_RST 11 W reset toHost in ttc decoder 0x0

TT_BCH_EN 10 W trigger type enable / disable for TTC-ToHost 0x0

XL1ID_SW 9:2 W set XL1ID value, the value to be set by XL1ID_RST signal 0x00

XL1ID_RST 1 W giving a trigger signal to reset XL1ID value 0x0

MASTER_BUSY 0 W L1A trigger throttling 0x0

0x7010 0 TTC_DEC_MON
TH_FF_COUNT 15:5 R ToHostData Fifo counts 0x00

TH_FF_FULL 4 R ToHostData Fifo status 1:full 0:not full 0x0

TH_FF_EMPTY 3 R ToHostData Fifo status 1:empty 0:not empty 0x0

TTC_BIT_ERR 2:0 R double bit, single bit and comm error in TTC data 0x0

TTC_BUSY_ACCEPTED_G
0x7020 0,1 TTC_BUSY_ACCEPTED00 56:0 R busy has been asserted by the given ELINK. Reset by writing to TTC_BUSY_CLEAR 0x00000000000000

. . .
0x7190 0,1 TTC_BUSY_ACCEPTED23 56:0 R busy has been asserted by the given ELINK. Reset by writing to TTC_BUSY_CLEAR 0x00000000000000

0x71A0 0 TTC_EMU
FULL 2 R TTC Emulator memory full indication 0x0

SEL 1 W Select TTC data source 1 TTC Emu | 0 TTC Decoder 0x0

A
ppendix

B
:A

ppendix
B

.24

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

ENA 0 W Clear to load into the TTC emulatorâĂŹs memory the required sequence, Set to run the TTC emulator
sequence

0x0

0x71B0 0 TTC_DELAY 3:0 W Controls the TTC Fanout delay value, in 25ns (1BC) units 0x0

0x74B0 0 TTC_BUSY_TIMING_CTRL
PRESCALE 51:32 W Prescales the 40MHz clock to create an internal slow clock 0x0000F

BUSY_WIDTH 31:16 W Minimum number of 40MHz clocks that the busy is asserted 0x000F

LIMIT_TIME 15:0 W Number of prescaled clocks a given busy must be asserted before it is recognized 0x000F

0x74C0 0 TTC_BUSY_CLEAR any T clears the latching busy bits in TTC_BUSY_ACCEPTED 0x0

0x74D0 0 TTC_EMU_CONTROL
BUSY_IN_ENABLE 33 W Enable internal BUSY input to stop L1A on BUSY 0x1

BROADCAST 32:27 W Broadcast data 0x0

ECR 26 W Event counter reset 0x0

BCR 25 W Bunch counter reset 0x0

L1A 24 W Level 1 Accept 0x0

0x74E0 0 TTC_EMU_L1A_PERIOD 31:0 W L1A period in BC. 0 means manual L1A with TTC_EMU_CONTROL.L1A 0x00000000

0x74F0 0 TTC_EMU_ECR_PERIOD 31:0 W ECR period in BC. 0 means manual ECR with TTC_EMU_CONTROL.ECR 0x00000000

0x7500 0 TTC_EMU_BCR_PERIOD 31:0 W BCR period in BC. 0 means manual BCR with TTC_EMU_CONTROL.BCR 0x00000DEC

0x7510 0 TTC_EMU_LONG_CHANNEL_DATA 31:0 W Long channel data for the TTC emulator 0x00000000

0x7520 0 TTC_EMU_RESET any T Any write to this register resets the TTC Emulator to the default state. 0x0

0x7530 0 TTC_L1ID_MONITOR 31:0 R Monitor L1ID and XL1ID. 0x00000000

0x7540 0 TTC_ECR_MONITOR
CLEAR any T Counts the number of ECRs received from the TTC system, any write to this register clears the counter 0x0

VALUE 31:0 R Counts the number of ECRs received from the TTC system, any write to this register clears the counter 0x00000000

0x7550 0 TTC_TTYPE_MONITOR
CLEAR any T Counts the number of TType received from the TTC system, any write to this register clears the counter 0x0

VALUE 31:0 R Counts the number of TType received from the TTC system, any write to this register clears the counter 0x00000000

0x7560 0 TTC_BCR_PERIODICITY_MONITOR
CLEAR any T Counts the number of times the BCR period does not match 3564, any write to this register clears the

counter
0x0

VALUE 31:0 R Counts the number of times the BCR period does not match 3564, any write to this register clears the
counter

0x00000000

0x7570 0 TTC_BCR_COUNTER
CLEAR any T Counts the number of times BCR is issued, any write to this register clears the counter 0x0

VALUE 31:0 R Counts the number of times BCR is issued, any write to this register clears the counter 0x00000000

0x7580 0 TTC_EMU_TP_DELAY 31:0 W Number of BC that the testpulse should be sent before the L1A, 0 means no test pulse is sent 0x00000040

0x7590 0 TTC_L1A_DELAY 5:0 W In Phase1 the L0A bit is generated from L1A, but with a variable delay between 0 and 63 BC cycles from
L0A to L1A

0x0

0x75A0 0 TTC_CDRLOCK_MONITOR
CLEAR any T Clears the latching cdrlock, LOL and LOS bitfields 0x0

A
ppendix

B
:A

ppendix
B

.25

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

CDRLOCK_LOST 5 R asserted when CDRLOCKED has been 0, Clear by writing to CLEAR bitfield 0x0

CDRLOCKED 4 R Set to 1 if the clock can be successfully recovered from the TTC signal 0x0

ADN_LOL_LATCHED 3 R Latched Loss of lock from ADN2814, Clear by writing to CLEAR bitfield 0x0

ADN_LOS_LATCHED 2 R Latched Loss of signal from ADN2814, Clear by writing to CLEAR bitfield 0x0

ADN_LOL 1 R Loss of lock from ADN2814 0x0

ADN_LOS 0 R Loss of signal from ADN2814 0x0

0x75B0 0 TTC_ASYNCUSERDATA
WR_EN any T Any write to this registers triggers a FIFO write into AsyncUserData 0x0

DATA 63:0 W Write AsyncUserData to the LTI-FE link if legacy TTC or TTC Emulator are selected 0x0000000000000000

XOFF_BUSY Controls And Monitors
0x8000 0,

1
XOFF_FM_CH_FIFO_THRESH_LOW 3:0 W Controls the low threshold of the channel fifo in FULL mode on which

an Xon will be asserted, bitfields control 4 MSB
0xB

0x8010 0,
1

XOFF_FM_CH_FIFO_THRESH_HIGH 3:0 W Controls the high threshold of the channel fifo in FULL mode on which
an Xoff will be asserted, bitfields control 4 MSB

0xB

0x8020 0,
1

XOFF_FM_LOW_THRESH_CROSSED 23:0 R FIFO filled beyond the low threshold, 1 bit per channel 0x000000

0x8030 0,
1

XOFF_FM_HIGH_THRESH

CLEAR_LATCH any T Writing this register will clear all CROSS_LATCHED bits 0x0

CROSS_LATCHED 47:24 R FIFO filled beyond the high threshold, 1 latch bit per channel 0x000000

CROSSED 23:0 R FIFO filled beyond the high threshold, 1 bit per channel 0x000000

0x8040 0,
1

XOFF_FM_SOFT_XOFF 23:0 W Set any bit in this register to assert XOFF for the given channel, clearing bits will assert XON 0x000000

0x8050 0,
1

XOFF_ENABLE 23:0 W Enable XOFF assertion (To Frontend) in case the FULL mode CH FIFO gets beyond thresholds. One bit
per channel

0x000000

0x8060 0,
1

DMA_BUSY_STATUS

CLEAR_LATCH any T Any write to this register clears TOHOST_BUSY_LATCHED 0x0

ENABLE 4 W Enable the DMA buffer on the server as a source of busy 0x0

TOHOST_BUSY_LATCHED 3 R A tohost descriptor has passed BUSY_THRESHOLD_ASSERT in the past, busy flag was set 0x0

TOHOST_BUSY 0 R A tohost descriptor passed BUSY_THRESHOLD_ASSERT, busy flag set 0x0

0x8070 0,
1

FM_BUSY_CHANNEL_STATUS

CLEAR_LATCH any T Any write to this register will clear the BUSY_LATCHED bits 0x0

BUSY_LATCHED 47:24 R one Indicates that the given FULL mode channel has received BUSY-ON 0x000000

BUSY 23:0 R one Indicates that the given FULL mode channel is currently in BUSY state 0x000000

A
ppendix

B
:A

ppendix
B

.26

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x8080 0,
1

BUSY_MAIN_OUTPUT_FIFO_THRESH

BUSY_ENABLE 24 W Enable busy generation if thresholds are crossed 0x0

LOW 23:12 W Low, Negate threshold of busy generation from main output fifo 0x3FF

HIGH 11:0 W High, Assert threshold of busy generation from main output fifo 0x4FF

0x8090 0,
1

BUSY_MAIN_OUTPUT_FIFO_STATUS

CLEAR_LATCHED any T Any write to this register will clear the 0x0

HIGH_THRESH_CROSSED_LATCHED 2 R Main output fifo has been full beyond HIGH THRESHOLD, write to clear 0x0

HIGH_THRESH_CROSSED 1 R Main output fifo is full beyond HIGH THRESHOLD 0x0

LOW_THRESH_CROSSED 0 R Main output fifo is full beyond LOW THRESHOLD 0x0

ELINK_BUSY_ENABLE
0x80A0 0 ELINK_BUSY_ENABLE00 56:0 W Per elink (and FULL mode link) enable of the busy signal towards the LEMO output 0x00000000000000

. . .
0x8210 0 ELINK_BUSY_ENABLE23 56:0 W Per elink (and FULL mode link) enable of the busy signal towards the LEMO output 0x00000000000000

XOFF_STATISTICS
0x8220 0,1 XOFF_PEAK_DURATION00 63:0 R Maximum occurred duration of XOFF on the given channel in 25ns bins since reset 0x0000000000000000

0x8230 0,1 XOFF_TOTAL_DURATION00 63:0 R Total occurred duration of XOFF on the given channel in 25ns bins, divide by number of Xoffs to calculate
the average since reset

0x0000000000000000

0x8240 0,1 XOFF_COUNT00 63:0 R Total number of XOFF events per channel that occurred since a reset. 0x0000000000000000

. . .
0x8670 0,1 XOFF_PEAK_DURATION23 63:0 R Maximum occurred duration of XOFF on the given channel in 25ns bins since reset 0x0000000000000000

0x8680 0,1 XOFF_TOTAL_DURATION23 63:0 R Total occurred duration of XOFF on the given channel in 25ns bins, divide by number of Xoffs to calculate
the average since reset

0x0000000000000000

0x8690 0,1 XOFF_COUNT23 63:0 R Total number of XOFF events per channel that occurred since a reset. 0x0000000000000000

0x86A0 0,
1

BUSY_TOHOST_ENABLE 0 W Enable the busy ToHost Virtual Elink 0x0

LTITTCBUSY Controls And Monitors
0x8800 0 LTITTC_ALIGNMENT_DONE 0:0 R RX ALIGNMENT DONE 0x0

0x8810 0 LTITTC_CPLL_FBCLK_LOST 0:0 R CPLL FBCLK LOST 0x0

0x8820 0 LTITTC_PLL_LOCK
QPLL_LOCK 1:1 R QPLL LOCK 0x0

CPLL_LOCK 0:0 R CPLL LOCK 0x0

0x8830 0 LTITTC_RXCDR_LOCK 0:0 R RX CDR LOCK 0x0

0x8840 0 LTITTC_RXRESET_DONE 0:0 R RX Reset done 0x0

0x8850 0 LTITTC_RX_BYTEISALIGNED 0:0 R LTITTC link not aligned 0x0

0x8860 0 LTITTC_RX_DISP_ERROR 3:0 R Rx disp error in byte 3,2,1,0 of LTITTC link 0x0

A
ppendix

B
:A

ppendix
B

.27

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x8870 0 LTITTC_RX_NOTINTABLE 3:0 R Character in byte 3,2,1,0 of LTITTC link not in 8b10b table 0x0

LTITTC_CTRLMON
0x8880 0 LTITTC_CTRL

LTITTC_GTH_LOOPBACK_CONTROL 11:9 W GTH_LOOPBACK_CONTROL for LTITTC Link 0x0

LTITTC_SOFT_RESET 8 W SOFT_RESET 0x0

LTITTC_QPLL_RESET 7 W QPLL_RESET 0x0

LTITTC_CPLL_RESET 6 W CPLL_RESET 0x0

LTITTC_SOFT_TX_RESET 5 W SOFT_TX_RESET_ALL 0x0

LTITTC_SOFT_RX_RESET 4 W SOFT_RX_RESET_ALL 0x0

LTITTC_GENERAL_CTRL 3:2 W Alignment chk reset (not self clearing) 0x0

LTITTC_CHANNEL_DISABLE 1 W clear toHostData 0x0

TOHOST_RST 0 W clear toHostData 0x0

0x8890 0 LTITTC_MON
BUSY_OUTPUT_STATUS 3 R Actual status of the BUSY LEMO output signal 0x0

LTITTC_BIT_ERR 2:0 R Alignment comma not received correctly. Place holder 0x0

LTITTC_BUSY_ACCEPTED_G
0x88A0 0,1 LTITTC_BUSY_ACCEPTED00 56:0 R busy has been asserted by the given ELINK. Reset by writing to TTC_BUSY_CLEAR 0x00000000000000

. . .
0x8A10 0,1 LTITTC_BUSY_ACCEPTED23 56:0 R busy has been asserted by the given ELINK. Reset by writing to TTC_BUSY_CLEAR 0x00000000000000

0x8A20 0 LTITTC_SL0ID_MONITOR
CLEAR any T Counts Set L0ID input bits 0x0

VALUE 31:0 R Counts Set L0ID input bits 0x00000000

0x8A30 0 LTITTC_SORB_MONITOR
CLEAR any T Counts SetOrbit input bits 0x0

VALUE 31:0 R Counts SetOrbit input bits 0x00000000

0x8A40 0 LTITTC_GRST_MONITOR
CLEAR any T Counts GRST input bits 0x0

VALUE 31:0 R Counts GRST input bits 0x00000000

0x8A50 0 LTITTC_SYNC_MONITOR
CLEAR any T Counts the Sync input bits 0x0

VALUE 31:0 R Counts the Sync input bits 0x00000000

0x8A60 0 LTITTC_TTYPE_MONITOR
CLEAR any T Counts the number of TType received from the LTITTC system, any write to this register clears the

counter
0x0

VALUE 46:15 R Counts the number of TType received from the LTITTC system, any write to this register clears the
counter

0x00000000

REFVALUE 15:0 W Counts the number of TType received from the LTITTC system, any write to this register clears the
counter

0x0000

A
ppendix

B
:A

ppendix
B

.28

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0x8A70 0 LTITTC_L0ID_ERR_MONITOR
CLEAR any T Counts the number of times the internal l0id /= input L0ID 0x0

VALUE 31:0 R Counts the number of times the internal l0id /= input L0ID 0x00000000

0x8A80 0 LTITTC_BCR_ERR_MONITOR
CLEAR any T Counts the number of times the BCR period does not match 3564, any write to this register clears the

counter
0x0

VALUE 31:0 R Counts the number of times the BCR period does not match 3564, any write to this register clears the
counter

0x00000000

0x8A90 0 LTITTC_CRC_ERR_MONITOR
CLEAR any T Counts the number of time the internally computed crc /= input CRC 0x0

VALUE 31:0 R Counts the number of time the internally computed crc /= input CRC 0x00000000

House Keeping Controls And Monitors
0x9000 0 HK_CTRL_I2C

CONFIG_TRIG 1 W i2c_config_trig 0x0

CLKFREQ_SEL 0 W i2c_clkfreq_sel 0x0

0x9010 0 HK_CTRL_FMC
CLEAR any T Write to this bitfield clears the latched SI5345_LOL status, SI5345_LOL_LATCHED 0x0

SI5345_LOL_LATCHED 14 R Latched version of SI5345_LOL, clear by writing to CLEAR bitfield 0x0

SI5345_INTR_B 13:12 R Connects to SI5345_INTR_B pins 0x0

SI5345_FINC_B 11:10 W Connects to FINC_B pins of SI5345 0x1

SI5345_FDEC_B 9:8 W Connects to FDEC_B pins of SI5345 0x1

SI5345_LOL 7 R Loss of lock pin, not connected on VC709 0x0

SI5345_INSEL 6:5 W Selects the input clock source
0 : FPGA (FMC LA01)
1 : FMC OSC (40.079 MHz)
2 : FPGA (FMC LA18)

0x0

SI5345_A 4:3 W Si5345 I2C address select 2 LSB (0x0:default, dev id 0x68) 0x0

SI5345_OE 2 W Si5345 active low output enable (0:enable) 0x1

SI5345_RSTN 1 W Si5345 active low reset (0:reset) 0x1

SI5345_SEL 0 W Si5345 programming mode
1 : I2C mode (default)
0 : SPI mode

0x1

0x9300 0 MMCM_MAIN
CLEAR any T Clears the LOL_LATCHED status 0x0

LOL_LATCHED 4 R Main MMCM has lost lock, clear by writing to the CLEAR bitfield 0x0

LCLK_SEL 3 W 1: LCLK
0: TTC

0x1

A
ppendix

B
:A

ppendix
B

.29

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

MAIN_INPUT 2:1 R Main MMCM Oscillator Input
2: LCLK fixed
1: TTC fixed
0: selectable

0x0

PLL_LOCK 0 R Main MMCM PLL Lock Status 0x0

0x9310 0 LMK_LOCKED 0 R LMK Chip on BNL-711 locked 0x0

0x9320 0 FPGA_CORE_TEMP 11:0 R XADC temperature monitor for the FPGA CORE
for FLX709, FLX710
temp (C)= ((FPGA_CORE_TEMP* 503.975)/4096)-273.15
for FLX711
temp (C)= ((FPGA_CORE_TEMP* 502.9098)/4096)-273.8195

0x000

0x9330 0 FPGA_CORE_VCCINT 11:0 R XADC voltage measurement VCCINT = (FPGA_CORE_VCCINT *3.0)/4096 0x000

0x9340 0 FPGA_CORE_VCCAUX 11:0 R XADC voltage measurement VCCAUX = (FPGA_CORE_VCCAUX *3.0)/4096 0x000

0x9350 0 FPGA_CORE_VCCBRAM 11:0 R XADC voltage measurement VCCBRAM = (FPGA_CORE_VCCBRAM *3.0)/4096 0x000

0x9360 0 FPGA_DNA 63:0 R Unique identifier of the FPGA 0x0000000000000000

0x9420 0 I2C_WR
I2C_WREN any T Any write to this register triggers an I2C read or write sequence 0x0

DATA_BYTE3 34:27 W Data byte 3 used when RW16BIT is set 0x00

RW16BIT 26 W Set to 1 to Write 3 bytes (ADDR + 16 data bits) or read 16 data bits. 0x0

I2C_FULL 25 R I2C FIFO full 0x0

WRITE_2BYTES 24 W Write two bytes 0x0

DATA_BYTE2 23:16 W Data byte 2 0x00

DATA_BYTE1 15:8 W Data byte 1 0x00

SLAVE_ADDRESS 7:1 W Slave address 0x0

READ_NOT_WRITE 0 W READ/<o>WRITE</o> 0x0

0x9430 0 I2C_RD
I2C_RDEN any T Any write to this register pops the last I2C data from the FIFO 0x0

I2C_EMPTY 8 R I2C FIFO Empty 0x0

I2C_DOUT 7:0 R I2C READ Data 0x00

0x9800 0 INT_TEST
TRIGGER any T Fire a test MSIx interrupt set in IRQ 0x0

IRQ 3:0 W Set this field to a value equal to the MSIX interrupt to be fired. The write triggers the interrupt
immediately.

0x0

0x9810 0 CONFIG_FLASH_WR
FAST_WRITE 57 W Write command only. Only used for fast programming. 0x0

FAST_READ 56 W Status reading without command writing. Only used for fast programming. 0x0

PAR_CTRL 55 W Choose use FW or uC to select the Flash partition. 1 FW | 0 uC. 0x0

PAR_WR 54:53 W Choose Flash partition. Valid when PAR_CTRL is 1. 0x0

FLASH_SEL 52 W 1 takes control over flash, 0 gives JTAG control over flash 0x0

DO_INIT 51 W Untested feature, don’t use it yet. 0x0

A
ppendix

B
:A

ppendix
B

.30

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

DO_READSTATUS 50 W Reads status from flash 0x0

DO_CLEARSTATUS 49 W Clears status reading from flash, back to normal flash operation 0x0

DO_ERASEBLOCK 48 W Erased the current block of the flash, this register has to be cleared by software 0x0

DO_UNLOCK_BLOCK 47 W Unlock writes to the current block, this register has to be cleared by software 0x0

DO_READ 46 W Reads the 16 bits from current address, this register has to be cleared by software 0x0

DO_WRITE 45 W Writes the 16 bits to current address, this register has to be cleared by software 0x0

DO_READDEVICEID 44 W DIN should return 0x0089, this register has to be cleared by software 0x0

DO_RESET 43 W Can be used in the future, currently disconnected in firmware 0x0

ADDRESS 42:16 W Address for read and write operations (25 bits, upper 2 bits are controlled by uC) 0x000000

WRITE_DATA 15:0 W Value of data to write towards flash 0x0000

0x9820 0 CONFIG_FLASH_RD
PAR_RD 19:18 R Show which Flash partition is selected. 0x0

FLASH_REQ_DONE 17 R Request done 0x0

FLASH_BUSY 16 R Flash operation busy 0x0

READ_DATA 15:0 R Value of data read from flash 0x0000

0x9830 0 SI5324_STATUS
LOL 15:8 R Loss of Lock Si5324 0x00

LOS 8:0 R Loss of Signal Si5324 0x00

0x9840 0 TACH_CNT 19:0 R Readout of the Fan tachometer speed of the BNL712 board 0x00000

0x9850 0 RXUSRCLK_FREQ
VALID 38 R Indicates that the frequency measurement is valid 0x0

CHANNEL 37:32 W Select the Transceiver channel to measure the clock from. 0x0

VAL 31:0 R Frequency in Hz of the selected channel 0x00000000

Generators
0xA000 0 FELIG_L1ID_RESET any T Any write to this register clears the FELIG L1ID 0x0

FELIG_DATA_GEN_CONFIG_ARR
0xA020 0 FELIG_DATA_GEN_CONFIG_00

CHUNK_LENGTH 50:35 W FELIG data generator chunk-length in bytes. 0x0000

RESET 34:28 W FELIG data generator reset. One bit per group, 0:normal operation, 1:egroup emulation held in reset. 0x0

SW_BUSY 27:21 W FELIG elink busy state. One bit per group, 0:normal operation, 1:elink enter busy state. 0x0

DATA_FORMAT 20:7 W FELIG data generator format, 2 bits per e-group. 00 8b10b, 01 direct, 10 Aurora 0x000

PATTERN_SEL 6:0 W FELIG data payload type. One bit per group, 0:byte counter, 1:USERDATA 0x0

. . .
0xA190 0 FELIG_DATA_GEN_CONFIG_23

CHUNK_LENGTH 50:35 W FELIG data generator chunk-length in bytes. 0x0000

RESET 34:28 W FELIG data generator reset. One bit per group, 0:normal operation, 1:egroup emulation held in reset. 0x0

SW_BUSY 27:21 W FELIG elink busy state. One bit per group, 0:normal operation, 1:elink enter busy state. 0x0

A
ppendix

B
:A

ppendix
B

.31

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

DATA_FORMAT 20:7 W FELIG data generator format, 2 bits per e-group. 00 8b10b, 01 direct, 10 Aurora 0x000

PATTERN_SEL 6:0 W FELIG data payload type. One bit per group, 0:byte counter, 1:USERDATA 0x0

FELIG_ELINK_CONFIG_ARR
0xA1A0 0 FELIG_ELINK_CONFIG_00

ENDIAN_MOD 34:28 W FELIG elink data input endian control. One bit per egroup. 0:little-endian (8b10b), 1:big-endian. 0x0

INPUT_WIDTH 27:21 W FELIG elink data input width. One bit per egroup. 0:8-bit (direct), 1:10-bit (8b10b). 0x0

OUTPUT_WIDTH 20:0 W FELIG elink data output width. 3 bits per egroup. 0:2b, 1:4b, 2:8b, 3:16b, 4:32b 0x00000

. . .
0xA310 0 FELIG_ELINK_CONFIG_23

ENDIAN_MOD 34:28 W FELIG elink data input endian control. One bit per egroup. 0:little-endian (8b10b), 1:big-endian. 0x0

INPUT_WIDTH 27:21 W FELIG elink data input width. One bit per egroup. 0:8-bit (direct), 1:10-bit (8b10b). 0x0

OUTPUT_WIDTH 20:0 W FELIG elink data output width. 3 bits per egroup. 0:2b, 1:4b, 2:8b, 3:16b, 4:32b 0x00000

FELIG_ELINK_ENABLE_ARR
0xA320 0 FELIG_ELINK_ENABLE_00 39:0 W FELIG elink enable. One bit per elink. 0:disabled, 1:enabled. 0x0000000000

. . .
0xA490 0 FELIG_ELINK_ENABLE_23 39:0 W FELIG elink enable. One bit per elink. 0:disabled, 1:enabled. 0x0000000000

0xA4A0 0 FELIG_GLOBAL_CONTROL
FAKE_L1A_RATE 63:36 W Sets the internal fake L1 trigger rate. [25ns/LSB] 0x0000000

PICXO_OFFSET_PPM 35:14 W When OFFSET_EN is 1, this directly sets the output frequency, within the given adjustment range. 0x00000

TRACK_DATA 12:12 W FELIG GT core control. Must be set to enable normal operation. 0x0

RXUSERRDY 11:11 W FELIG GT core control. Must be set to enable normal operation. 0x0

TXUSERRDY 10:10 W FELIG GT core control. Must be set to enable normal operation. 0x0

AUTO_RESET 9:9 W FELIG GT core control. If set the GT core automatically resets on data error. 0x0

PICXO_RESET 8:8 W FELIG GT core control. Manual PICXO reset. 0x0

GTTX_RESET 7:7 W FELIG GT core control. Manual GT TX reset 0x0

CPLL_RESET 6:6 W FELIG GT core control. Manual CPLL reset. 0x0

X3_X4_OUTPUT_SELECT 5:0 W X3/X4 SMA output source select. 0x0

FELIG_LANE_CONFIG_ARR
0xA4B0 0 FELIG_LANE_CONFIG_00

B_CH_BIT_SEL 63:42 W When OFFSET_EN is 1. this directly sets the output frequency. within the given adjustment range. 0x00000

A_CH_BIT_SEL 41:35 W Selects the bit from the received FELIX data from which to extract the L1A. 0x0

LB_FIFO_DELAY 34:30 W When the GTH or GTB loopback is enabled, this controls the loopback latency in clock cycles. 0x0

ELINK_SYNC 7:7 W When set, synchronizes the elink word boundaries. Must be set back to 0 to resume normal operation. 0x0

PICXO_OFFEST_EN 6:6 W FELIG TX frequency override. 0:frequency tracking enabled, 1:TX frequency set by
PICXO_OFFSET_PPM.

0x0

PI_HOLD 5:5 W FELIG phase-interpolator hold. 0:frequency tracking enabled, 1:freeze TX frequency. 0x0

GBT_LB_ENABLE 4:4 W FELIG GBT direct loopback enable. 0:disabled, 1:enabled. 0x0

GBH_LB_ENABLE 3:3 W FELIG GTH direct loopback enable. 0:disabled, 1:enabled. 0x0

A
ppendix

B
:A

ppendix
B

.32

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

L1A_SOURCE 2:2 W FELIG L1A data source select. 0:from local counter, 1:from FELIX. 0x0

GBT_EMU_SOURCE 1:1 W FELIG emulation data source select. 0:state-machine emulator, 1:ram-based emulator. 0x0

FG_SOURCE 0:0 W FELIG link check data source selection control. 0:normal operation, 1:PRBS link checker (not elink
emulation data)

0x0

. . .
0xA620 0 FELIG_LANE_CONFIG_23

B_CH_BIT_SEL 63:42 W When OFFSET_EN is 1. this directly sets the output frequency. within the given adjustment range. 0x00000

A_CH_BIT_SEL 41:35 W Selects the bit from the received FELIX data from which to extract the L1A. 0x0

LB_FIFO_DELAY 34:30 W When the GTH or GTB loopback is enabled, this controls the loopback latency in clock cycles. 0x0

ELINK_SYNC 7:7 W When set, synchronizes the elink word boundaries. Must be set back to 0 to resume normal operation. 0x0

PICXO_OFFEST_EN 6:6 W FELIG TX frequency override. 0:frequency tracking enabled, 1:TX frequency set by
PICXO_OFFSET_PPM.

0x0

PI_HOLD 5:5 W FELIG phase-interpolator hold. 0:frequency tracking enabled, 1:freeze TX frequency. 0x0

GBT_LB_ENABLE 4:4 W FELIG GBT direct loopback enable. 0:disabled, 1:enabled. 0x0

GBH_LB_ENABLE 3:3 W FELIG GTH direct loopback enable. 0:disabled, 1:enabled. 0x0

L1A_SOURCE 2:2 W FELIG L1A data source select. 0:from local counter, 1:from FELIX. 0x0

GBT_EMU_SOURCE 1:1 W FELIG emulation data source select. 0:state-machine emulator, 1:ram-based emulator. 0x0

FG_SOURCE 0:0 W FELIG link check data source selection control. 0:normal operation, 1:PRBS link checker (not elink
emulation data)

0x0

FELIG_MON_TTC_0_ARR
0xA630 0 FELIG_MON_TTC_0_00

L1ID 63:40 R Live TTC data monitor. 0x000000

XL1ID 39:32 R Live TTC data monitor. 0x00

BCID 31:20 R Live TTC data monitor. 0x000

RESERVED0 19:16 R Live TTC data monitor. 0x0

LEN 15:8 R Live TTC data monitor. 0x00

FMT 7:0 R Live TTC data monitor. 0x00

. . .
0xA7A0 0 FELIG_MON_TTC_0_23

L1ID 63:40 R Live TTC data monitor. 0x000000

XL1ID 39:32 R Live TTC data monitor. 0x00

BCID 31:20 R Live TTC data monitor. 0x000

RESERVED0 19:16 R Live TTC data monitor. 0x0

LEN 15:8 R Live TTC data monitor. 0x00

FMT 7:0 R Live TTC data monitor. 0x00

FELIG_MON_TTC_1_ARR
0xA7B0 0 FELIG_MON_TTC_1_00

RESERVED1 63:48 R Live TTC data monitor. 0x0000

TRIGGER_TYPE 47:32 R Live TTC data monitor. 0x0000

A
ppendix

B
:A

ppendix
B

.33

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

ORBIT 31:0 R Live TTC data monitor. 0x00000000

. . .
0xA920 0 FELIG_MON_TTC_1_23

RESERVED1 63:48 R Live TTC data monitor. 0x0000

TRIGGER_TYPE 47:32 R Live TTC data monitor. 0x0000

ORBIT 31:0 R Live TTC data monitor. 0x00000000

FELIG_MON_COUNTERS_ARR
0xA930 0 FELIG_MON_COUNTERS_00

SLIDE_COUNT 63:32 R Counts the number of rx slides commanded by the GBT logic. Should be static once a link is established. 0x00000000

FC_ERROR_COUNT 31:0 R When FG_DATA_SELECT is 1, this counter reports the number of detected data errors. None

. . .
0xAAA0 0 FELIG_MON_COUNTERS_23

SLIDE_COUNT 63:32 R Counts the number of rx slides commanded by the GBT logic. Should be static once a link is established. 0x00000000

FC_ERROR_COUNT 31:0 R When FG_DATA_SELECT is 1, this counter reports the number of detected data errors. None

FELIG_MON_FREQ_ARR
0xAAB0 0 FELIG_MON_FREQ_00

TX 63:32 R FELIG regenerated TX clock frequency[Hz]. 0x00000000

RX 31:0 R FELIG recovered RX clock frequency[Hz]. 0x00000000

. . .
0xAC20 0 FELIG_MON_FREQ_23

TX 63:32 R FELIG regenerated TX clock frequency[Hz]. 0x00000000

RX 31:0 R FELIG recovered RX clock frequency[Hz]. 0x00000000

0xAC30 0 FELIG_MON_FREQ_GLOBAL
XTAL_100MHZ 63:32 W FELIG local oscillator frequency[Hz]. 0x00000000

CLK_41_667MHZ 31:0 W FELIG PCIE MGTREFCLK frequency[Hz]. 0x00000000

FELIG_MON_L1 A_ID_ARR
0xAC40 0 FELIG_MON_L1A_ID_00 31:0 R FELIG’s last L1 ID. 0x00000000

. . .
0xADB0 0 FELIG_MON_L1A_ID_23 31:0 R FELIG’s last L1 ID. 0x00000000

FELIG_MON_PICXO_ARR
0xADC0 0 FELIG_MON_PICXO_00

VLOT 53:32 R Value indicates TX clock (recovered RX clock) to RX reference clock frequency offset. 0x00000

ERROR 20:0 R Value indicates RX to TX frequency tracking error. 0x00000

. . .
0xAF30 0 FELIG_MON_PICXO_23

VLOT 53:32 R Value indicates TX clock (recovered RX clock) to RX reference clock frequency offset. 0x00000

ERROR 20:0 R Value indicates RX to TX frequency tracking error. 0x00000

A
ppendix

B
:A

ppendix
B

.34

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0xAF40 0 FELIG_RESET
LB_FIFO 63:48 W One bit per lane. When set to 1, resets all loopback FIFOs. 0x0000

FRAMEGEN 47:24 W One bit per lane. When set to 1, resets all FELIG link checking logic. 0x000000

LANE 23:0 W One bit per lane. When set to 1, resets all FELIG lane logic. 0x000000

0xAF50 0 FELIG_RX_SLIDE_RESET 23:0 W One bit per lane. When set to 1, resets the gbt rx slide counter. 0x000000

FELIG_ITK_STRIPS_DATA_GEN_CONFIG_ARR
0xAF60 0 FELIG_ITK_STRIPS_DATA_GEN_CONFIG_00

ITKS_FIFO_CTL 19:17 W data fifo control 2:rst 1:rd 0:wr. 0x0

ITKS_FIFO_DATA 16:0 W itks emu data 16:last word 15-0:data word 0x0000

. . .
0xB0D0 0 FELIG_ITK_STRIPS_DATA_GEN_CONFIG_23

ITKS_FIFO_CTL 19:17 W data fifo control 2:rst 1:rd 0:wr. 0x0

ITKS_FIFO_DATA 16:0 W itks emu data 16:last word 15-0:data word 0x0000

FELIG_MON_ITK_STRIPS_ARR
0xB0E0 0 FELIG_MON_ITK_STRIPS_00 2:0 R data fifo status 2:write done 1:full 0:empty. 0x0

. . .
0xB250 0 FELIG_MON_ITK_STRIPS_23 2:0 R data fifo status 2:write done 1:full 0:empty. 0x0

FELIG_DATA_GEN_CONFIG_USERDATA_ARR
0xB260 0 FELIG_DATA_GEN_CONFIG_00_USERDATA 15:0 W Sets static payload word. When FELIG_DATA_GEN_CONFIG.PATTERN_SEL=1. 0x0000

. . .
0xB3D0 0 FELIG_DATA_GEN_CONFIG_23_USERDATA 15:0 W Sets static payload word. When FELIG_DATA_GEN_CONFIG.PATTERN_SEL=1. 0x0000

0xB800 0 FMEMU_EVENT_INFO
L1ID 63:32 R 32b field to show L1ID 0x00000000

BCID 31:0 R 32b field to show BCID 0x00000000

0xB810 0 FMEMU_COUNTERS
WORD_CNT 63:48 W Number of 32b words in one chunk 0x0020

IDLE_CNT 47:32 W Minimum number of idles between chunks 0x0003

L1A_CNT 31:16 W Number of chunks to send if not in TTC mode 0x0100

BUSY_TH_HIGH 15:8 W Assert BUSY-ON above this threshold 0x14

BUSY_TH_LOW 7:0 W De-assert BUSY-ON below this threshold 0x0F

0xB820 0 FMEMU_CONTROL
L1A_BITNR 63:56 W Bitfield for L1A in TTC frame 0x30

XONXOFF_BITNR 55:48 W Bitfield for Xon/Xoff in TTC frame 0x20

EMU_START 47:47 W Start emulator functionality 0x0

TTC_MODE 46:46 W Control the emulator by TTC input or by RegMap (1/0) 0x0

XONXOFF 45:45 W Enable Xon/Xoff functionality (1/0) 0x1

A
ppendix

B
:A

ppendix
B

.35

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

INLC_CRC32 44:44 W 0: No checksum
1: Append the data with a CRC32

0x0

BCR 43:43 W Reset BCID to 0 0x0

ECR 42:42 W Reset L1ID to 0 0x0

CONSTANT_CHUNK_LENGTH 41:41 W Data source select
0: Random chunk length
1: Constant chunk length

0x0

INT_STATUS_EMU 40:32 R Read internal status emulator 0x00

FFU_FM_EMU_T 16 W For Future Use (trigger registers) 0x0

FE_BUSY_ENABLE 0 W Enable the BUSY mechanism if L1A counter passes threshold 0x1

0xB830 0 FMEMU_RANDOM_RAM_ADDR 9:0 W Controls the address of the ramblock for the random number generator 0x00

0xB840 0 FMEMU_RANDOM_RAM
WE any T Any write to this register (DATA) triggers a write to the ramblock 0x0

CHANNEL_SELECT 39:16 W Enable write enable only for the selected channel 0x000000

DATA 15:0 W DATA field to be written to FMEMU_RANDOM_RAM_ADDR 0x0000

0xB850 0 FMEMU_RANDOM_CONTROL
SELECT_RANDOM 20 W 1 enables the random chunk length, 0 uses a constant chunk length 0x0

SEED 19:10 W Seed for the random number generator, should not be 0 0x200

POLYNOMIAL 9:0 W POLYNOMIAL for the random number generator (10b LFSR) Bit9 should always be 1 0x240

0xB860 0 FMEMU_CONFIG_WRADDR 9:0 W write enable for the FMEmu ram block 0x00

0xB870 0 FMEMU_CONFIG
WE any T Any write to register WRDATA triggers a write to the ramblock 0x0

CHANNEL_SELECT 55:32 W Enable write enable only for the selected channel 0x000000

WRDATA 31:0 W DATA field to be written to FMEMU_RANDOM_RAM_ADDR 0x00000000

Wishbone
0xC000 0 WISHBONE_CONTROL

WRITE_NOT_READ 32 W wishbone write command wishbone read command 0x0

ADDRESS 31:0 W Slave address for Wishbone bus 0x00000000

0xC010 0 WISHBONE_WRITE
WRITE_ENABLE any T Any write to this register triggers a write to the Wupper to Wishbone fifo 0x0

FULL 32 R Wishbone 0x0

DATA 31:0 W Wishbone 0x00000000

0xC020 0 WISHBONE_READ
READ_ENABLE any T Any write to this register triggers a read from the Wishbone to Wupper fifo 0x0

EMPTY 32 R Indicates that the Wishbone to Wupper fifo is empty 0x0

DATA 31:0 R Wishbone read data 0x00000000

0xC030 0 WISHBONE_STATUS
INT 4 R interrupt 0x0

A
ppendix

B
:A

ppendix
B

.36

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

RETRY 3 R Interface is not ready to accept data cycle should be retried 0x0

STALL 2 R When pipelined mode slave can’t accept additional transactions in its queue 0x0

ACKNOWLEDGE 1 R Indicates the termination of a normal bus cycle 0x0

ERROR 0 R Address not mapped by the crossbar 0x0

IP Bus
0xC800 0 IPBUS_WRITE_ADDRESS 31:0 W Address of the IPBus Write RAM 0x00000000

0xC810 0 IPBUS_WRITE_DATA
WRITE_ENABLE any T Any write to this register triggers a write to the Wupper to IPBus inout RAM 0x0

DATA 63:0 W IPbus data to write to RAM 0x0000000000000000

0xC820 0 IPBUS_READ_ADDRESS 31:0 W Address of the IPBus Read RAM 0x00000000

0xC830 0 IPBUS_READ_DATA 63:0 R IPbus data from Read RAM 0x0000000000000000

0xC840 0 IPBUS_PKT_DONE 0 R IPbus packet ready to read 0x0

ITK_STRIPS_CTRL
0xD000 0,1 GLOBAL_STRIPS_CONFIG

TEST_MODULE_MASK 63:59 W (for tests only) contains R3 mask for the simulated trigger data 0x0

TEST_R3L1_TAG 58:52 W (for tests only) contains R3 or L1 tag for the simulated trigger data 0x0

TTC_GENERATE_GATING_ENABLE 51 W Global control for gating signal generation. Enables generating trickle gating signal in response to TTC
BCR. TRICKLE_TRIG_RUN must also be enabled for the trickle configuration to work. (See also
BC_START, and BC_STOP fields)

0x0

TTC_GATING_OVERRIDE 50 W Overrides and disables gating signal generation when set to ’1’ (use if the elink is deadlocked and
commands don’t reach it).

0x0

INVERT_AMAC_IN 4 W Invert the polarity of all FELIX AMAC_IN elinks 0x0

INVERT_AMAC_OUT 3 W Invert the polarity of all FELIX AMAC_OUT elinks 0x0

INVERT_DIN 2 W Invert the polarity of all FELIX 8-bit IN 8b10b elinks 0x0

INVERT_R3L1_OUT 1 W Invert the polarity of all FELIX R3L1 elinks 0x0

INVERT_LCB_OUT 0 W Invert the polarity of all FELIX LCB elinks 0x0

0xD010 0,1 GLOBAL_TRICKLE_TRIGGER any T writing to this register issues a single trickle trigger for every LCB link connected to this FELIX device 0x0

0xD020 0,1 STRIPS_R3_TRIGGER any T (for tests only) simulate R3 trigger (issues 4-5 sequential triggers) 0x0

0xD030 0,1 STRIPS_L1_TRIGGER any T (for tests only) simulate L1 trigger (issues 4-5 sequential triggers) 0x0

0xD040 0,1 STRIPS_R3L1_TRIGGER any T (for tests only) simulate simultaneous R3 and L1 trigger (issues 4-5 sequential triggers) 0x0

MRO Dregisters
0xF000 0 MROD_CTRL

OPTIONS 15:8 W Extra options for MROD 0x00

ENASPARE1 7:7 W Enable spare1 0x0

ENAMANSLIDE 6:6 W Enable Manual Slide in Rx Locking 0x0

ENAPASSALL 5:5 W Enable PassAll in EmptySuppress 0x0

ENATXCOUNT 4:4 W Enable SimpleCount in TxDriver for locking 0x0

A
ppendix

B
:A

ppendix
B

.37

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

GOLTESTMODE 3:0 W GOL Test Mode (emulate CSM):
0: Run Data Emulator when 1; 0: stop, load emulator fifo
1: Enable Circulate when 1; 0: send fifo data only once
2: Enable Triggered Mode when 1; 0: run continueously (no TTC)
3: Enable pattern generator

0x0

0xF010 0 MROD_TCVRCTRL
SLIDEMAX 23:16 W Maximum RXSLIDES before fire a TCVR reset 0xFF

SLIDEWAIT 15:8 W RXclk delay in TCVR for next RX_SLIDE operation 0x20

FRAMESIZE 7:0 W Number of 32 data words in 1 frame 0x14

0xF020 0 MROD_EP0_CSMENABLE 23:0 W EP0 CSM Data Enable channel 23-0 0x000000

0xF030 0 MROD_EP0_EMPTYSUPPR 23:0 W EP0 Set Empty Suppression channel 23-0 0x000000

0xF040 0 MROD_EP0_HPTDCMODE 23:0 W EP0 Set HPTDC Mode channel 23-0 0x000000

0xF050 0 MROD_EP0_CLRFIFOS 23:0 W EP0 Clear FIFOs channel 23-0 0x000000

0xF060 0 MROD_EP0_EMULOADENA 23:0 W EP0 Emulator Load Enable channel 23-0 0x000000

0xF070 0 MROD_EP0_TRXLOOPBACK 23:0 W EP0 Transceiver Loopback Enable channel 23-0 0x000000

0xF080 0 MROD_EP0_TXCVRRESET 23:0 W EP0 Transceiver Reset all channel 23-0 0x000000

0xF090 0 MROD_EP0_RXRESET 23:0 W EP0 Receiver Reset channel 23-0 0x000000

0xF0A0 0 MROD_EP0_TXRESET 23:0 W EP0 Transmitter Reset channel 23-0 0x000000

0xF0B0 0 MROD_EP1_CSMENABLE 23:0 W EP1 CSM Data Enable channel 23-0 0x000000

0xF0C0 0 MROD_EP1_EMPTYSUPPR 23:0 W EP1 Set Empty Suppression channel 23-0 0x000000

0xF0D0 0 MROD_EP1_HPTDCMODE 23:0 W EP1 Set HPTDC Mode channel 23-0 0x000000

0xF0E0 0 MROD_EP1_CLRFIFOS 23:0 W EP1 Clear FIFOs channel 23-0 0x000000

0xF0F0 0 MROD_EP1_EMULOADENA 23:0 W EP1 Emulator Load Enable channel 23-0 0x000000

0xF100 0 MROD_EP1_TRXLOOPBACK 23:0 W EP1 Transceiver Loopback Enable channel 23-0 0x000000

0xF110 0 MROD_EP1_TXCVRRESET 23:0 W EP1 Transceiver Reset all channel 23-0 0x000000

0xF120 0 MROD_EP1_RXRESET 23:0 W EP1 Receiver Reset channel 23-0 0x000000

0xF130 0 MROD_EP1_TXRESET 23:0 W EP1 Transmitter Reset channel 23-0 0x000000

MRO Dmonitors
0xF800 0 MROD_EP0_CSMH_EMPTY 23:0 R EP0 CSM Handler FIFO Empty 23-0 0x000000

0xF810 0 MROD_EP0_CSMH_FULL 23:0 R EP0 CSM Handler FIFO Full 23-0 0x000000

0xF820 0 MROD_EP0_RXALIGNBSY 23:0 R EP0 Receiver Aligned monitor 23-0 0x000000

0xF830 0 MROD_EP0_RXRECDATA 23:0 R EP0 Receiver Data monitor 23-0 0x000000

0xF840 0 MROD_EP0_RXRECIDLES 23:0 R EP0 Receiver Idle monitor 23-0 0x000000

0xF850 0 MROD_EP0_TXLOCKED 23:0 R EP0 Transmitter Locked monitor 23-0 0x000000

0xF860 0 MROD_EP1_CSMH_EMPTY 23:0 R EP1 CSM Handler FIFO Empty 23-0 0x000000

0xF870 0 MROD_EP1_CSMH_FULL 23:0 R EP1 CSM Handler FIFO Full 23-0 0x000000

0xF880 0 MROD_EP1_RXALIGNBSY 23:0 R EP1 Receiver Aligned monitor 23-0 0x000000

0xF890 0 MROD_EP1_RXRECDATA 23:0 R EP1 Receiver Data monitor 23-0 0x000000

A
ppendix

B
:A

ppendix
B

.38

FE
LIX

P
hase-IIfirm

w
are

specifications
June

28,2024
-Version

1.037

0xF8A0 0 MROD_EP1_RXRECIDLES 23:0 R EP1 Receiver Idle monitor 23-0 0x000000

0xF8B0 0 MROD_EP1_TXLOCKED 23:0 R EP1 Transmitter Locked monitor 23-0 0x000000

Table B.3: FELIX register map BAR2.

A
ppendix

B
:A

ppendix
B

.39

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

B.2 DATA FORMATS

B.2.1 CRTOHOST BLOCK FORMAT

In Phase I FELIX, the ToHost Block format was defined in [28]. For Phase II, the blocksize is variable, and a
multiple of 1024 bytes, and the chunk trailer is set to 32 bits. The block header format was changed to include
the block size, as well as an indication that the chunk trailer is 32 bit. The blocks are transferred by Wupper
over DMA into a contiguous memory area, reserved by the cmem_rcc driver. Event fragments or other types
of data arriving via the FrontEnd links or virtual E-Links are referred to as “chunks” and can have an arbitrary
size.

Chunk trailers will be replaced by chunk headers from firmware version 5.2. The TOHOST_DATA_FOR-
MAT register was added to be able to detect firmware that generates chunk headers, in which case the register
will be equal to 1. The constant at the start of the block header also changes based on this, as described in
Figure B.3.

N kB block N kB block N kB block N kB block

chunk chunk chunk E-Link packet = chunk (may span multiple blocks)

Block header : 32 bits
 - Start of block symbol
 - Block Size
 - AXI-Stream ID
 - Block sequence

(Sub)chunk trailer : 32 bits
 - Fragment type
 - First, Last, Complete, Middle, NULL, Timeout, OOB
 - Flags
 - Truncation, Error, CRC error, BUSY
- Reserved (9b)
- Subchunk length (16b)

Figure B.1: FELIX ToHost Block format with chunk trailers.

N kB block N kB block N kB block N kB block

chunk chunk chunk E-Link packet = chunk (may span multiple blocks)

Block header : 32 bits
 - Start of block symbol
 - Block Size
 - AXI-Stream ID
 - Block sequence

(Sub)chunk header : 32 bits
 - Fragment type
 - First, Last, Complete, Middle, NULL, Timeout, OOB
 - Flags
 - Truncation, Error, CRC error, BUSY
- Reserved (9b)
- Subchunk length (16b)

Figure B.2: FELIX ToHost Block format with chunk headers.

Appendix B: Appendix B.40

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

31 28 27 24 23 16 15 11 10 6 5 0

0xC
Block Size

- 1
0xCE / 0xCF

Block
Sequence GBT ID AXIs ID

Figure B.3: Block Header Format.

• 0xC 4b, Header identifier

• BlockSize - 1: 4b, Block size in kB-1, 0: 1kB, 3: 4kB etc.

• 0xCE / 0xCF 8b, Header identifier. 0xCE for chunk trailers, 0xCF for chunk headers.

• Block Sequence 5b, Incremental number per E-Link

• GBT ID 5b, Link index starting at 0 for every PCIe endpoint. For a 24 channel firmware with two PCIe
endpoints, Link 12 will generate a GBT ID 0 in endpoint 1.

• AXIs ID 6b, Index of the E-Link on the AXI-Stream array. For GBT this number is equal to the Egroup *
8 + the Epath ID within the E-Group. For lpGBT this number is equal to the Egroup * 4 + the EPath ID
within the E-Group. In Pixel firmware, each decoder separates DAQ and register read data. DAQ data
gets AXIs ID 0, 4, 8, etc. Register data gets AXIs ID 1, 5, 9, etc.

31 29 28 27 26 25 24 16 15 0

Type T E C B reserved (sub)chunk length in bytes

Figure B.4: Chunk trailer/header format.

• Type 3b:

– 0: NULL header, padding

– 1: First part of a chunk consisting of more than one part

– 2: Last part of a chunk consisting of more than one part

– 3: Chunk consists of one part

– 4: Middle part of a chunk, consisting of more than two parts

– 5: Timeout trailer

– 6: Reserved

– 7: Out of band (OOB)

• T Truncation flag, indicating that a decoder truncated the data to a maximum length, or because the
FIFO was full.

• E Framing error, Front-End data does not comply with the specified data format. For instance a missing
SOP, EOP, or payload data not within SOP/EOP.

• C CRC error, if implemented by the decoder.

• B E-Link BUSY indication

• reserved 9b, reserved for future use.

• Length 16b, Length in bytes of the chunk of subchunk. If the chunk spans multiple blocks, only the
sub-chunk length is given.

Appendix B: Appendix B.41

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

B.2.2 CRFROMHOST DATA FORMAT

Each 256-bit, 512-bit or 1024-bit (depending on the PCIe generation, Gen3, Gen4 or Gen5) block at the input
of the CRFromHost represents a packet. In case of Each packet consists of a 32 bit header followed by 224,
480 or 992 bits of payload. Previous versions of the data format contained a 16-bit header, Figure B.5, Figure
B.6, Figure B.7 and Figure B.8 show how the bits are assigned in that packet.

The register FROMHOST_DATA_FORMAT shows the version of the FromHost data format which is imple-
mented in a certain firmware build. From firmware version 5.1, only data format version 4 (PCIe Gen3 with a
DATA_WIDTH of 256b), version 5 (PCIe Gen4 with a DATA_WIDTH of 512b) and version 6 (PCIe Gen5 with
a DATA_WIDTH of 1024b) will be used. Data formats 0 to 3 are described here for legacy reasons.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LinkID AxisID Length End

Up to 30 bytes of data

LinkID AxisID Length

Figure B.5: Fromhost data format with 16-bit header (version 0 †End of life from version 5.0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LinkID AxisID Length

Up to 30 bytes of data

Figure B.6: Fromhost data format with 16-bit header (version 1 †End of life from version 5.0).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved LinkID AxisID Length

Up to 28 (2) or 60 (3) bytes of data

Figure B.7: Fromhost data format with 32-bit header (version 2 and 3 †End of life from version 5.1).

Appendix B: Appendix B.42

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved LinkID AxisID Length

Up to 28 (4), 60 (5) or 124 (6) bytes of data

Figure B.8: Fromhost data format with 32-bit header (version 4, 5 and 6).

The fields in Figures ?? ?? contain the following information:

• link ID: Contains the index of the link number, starting at 0 in every endpoint. If a firmware is built with
24 optical links and two PCIe endpoints, optical link 12 can be accessed through endpoint 1, link ID 0.

• AXIs ID: Corresponds with the E-link number in on the GBT or lpGBT frame, multiplied by the e-group.
For GBT frames, the maximum number is 41, for lpGBT the maximum number is 17. If no E-links are
available on the link, the AXI-Stream ID should be 0.

• packet length: The number of valid bytes in this 32, 64 or 128-byte block. After the header, 28, 60
or 124 payload byte positions are available, when the packet is longer, the header is repeated. If the
message is shorter than the available number of bytes, this field contains the length in bytes. If this
block contains the beginning of a message that will be extended in the next block, the Length field
contains the value 255 (0xFF) in version 4, 5 or 6 of the data format. (In version 2 and 3, the value for
a continuation would be determined by 0x3F, version 1 this would be 0x1F, in version 0 the end of the
message/chunk would be determined by the ”End” field and the length of the packet was not in bytes
but in 16-bit words).

B.2.3 TTC TOHOST DATA FORMAT

Figure B.9 is a table version of the chunk format produced by the TTCToHost Virtual E-Link, containing
information about each Level-1 Accept. Like any other ToHost data, the TTCToHost data format is packed as
a chunk inside a block, see section B.2.1.

Appendix B: Appendix B.43

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

31 2324 16 15 8 7 0

⇐ Byte 3⇒ ⇐ Byte 2⇒ ⇐ Byte 1⇒ ⇐ Byte 0⇒

0 reserved BCID Length (27) FMT (3)

1 XL1ID L1ID

2 Orbit

3 reserved Trigger Type

4 L0ID

5 L1A Counter[31..0]

6 Trigger TAG L1A Counter[47.32]

Figure B.9: TTC ToHost data format.

The contents of the packet can be described by a C/C++ struct type as a number of bitfields as shown
below. Such a ’TTC-to-host’ packet in memory can be cast directly to this type:

typedef struct {
unsigned i n t format : 8 ;
unsigned i n t l eng th : 8 ;
unsigned i n t bc id : 12;
unsigned i n t reserved0 : 4 ;
union {

unsigned i n t f u l l _ l 1 i d : 32;
struct {

unsigned i n t l 1 i d : 24;
unsigned i n t x l 1 i d : 8 ;

} ;
} ;
unsigned i n t o r b i t : 32;
unsigned i n t t r i g g e r _ t y p e : 16;
unsigned i n t reserved1 : 16;
unsigned i n t l 0 i d : 32;
unsigned long l1a_counter : 48;
unsigned i n t t r i g g e r _ t a g : 8 ;

} _ _ a t t r i b u t e _ _ ((packed)) TtcToHost_packet_t ;

Listing B.1: TTC ToHost Data format as C struct.

B.2.4 BUSY TOHOST DATA FORMAT

The BUSY ToHost Virtual E-Link (see 8.4.18) produces a chunk of data on any change of BUSY.

Appendix B: Appendix B.44

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

31 2324 16 15 8 7 0

⇐ Byte 3⇒ ⇐ Byte 2⇒ ⇐ Byte 1⇒ ⇐ Byte 0⇒

0 BCID Trig Link Trig AXIs_ID

Tr
ig

Va
l

reserved

E
-L

in
k

S
of

t

D
M

A

FI
FO

B
us

y

1 Orbit

Figure B.10: BUSY ToHost data format.

Explanation of the bitfields:

• BCID: The Bunch Crossing ID at which the virtual E-Link was triggered. This functions as a timestamp
(together with the Orbit counter) to match the BUSY event, to other events.

• Trig Link: Showing the physical link of the BUSY source, triggering this message.

– If BUSY was triggered by an E-Link (BUSY-ON/BUSY-OFF) the physical link is inserted here.

– If the source was different (soft, DMA or FIFO), these 5 bits will all be "11111", or decimal 31.

• Trig Axis_ID: E-link identification of the BUSY source:

– In case of an E-Link (BUSY-ON) source, this field (6-bits) identifies the E-Link in the GBT or lpGBT
frame which triggered BUSY. If BUSY was issued by a FULL mode link, this field is 0.

– In case of another source (soft, DMA or FIFO), this field identifies the source (with Trig Link is
0x1F/31):

∗ 0: DMA busy was asserted or deasserted.
∗ 1: FIFO busy was asserted or deasserted.
∗ 2: Soft busy was asserted or negated.

• Trig Val: Identify whether this message was triggered by assertion or negation of the BUSY source:

– 0: BUSY was negated

– 1: BUSY was asserted

• E-Link: Indication of any E-Link currently in BUSY state.

• Soft: Indication of SOFT busy assertion

• DMA: Indication of DMA busy assertion.

• FIFO: Indication of FIFO busy assertion.

• BUSY: Indication of the output of the BUSY signal

• Orbit: Orbit counter while this message was triggered. This functions as a timestamp (together with
BCID) to match the BUSY event to other events in the data stream.

B.2.5 DEFAULT EMULATOR CHUNK PAYLOAD

The internal RAM based emulator on the FLX card can be filled with arbitrary chunk data. The format that can
be understood by low level tools (fcheck) for data verification can be used to check the decoder, CRToHost,
Wupper and the PCIe link. The data format shown below represents the default payload as bytes, read from
the memory as uint8_t. This data format can be stored in the emulator ram by means of .COE files at build
time, or at runtime by tools like elinkconfig and feconf.

Appendix B: Appendix B.45

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

7 0

0xAA

7 0

Length (MSB)

7 0

Length (LSB)

7 0

L1ID counter

7 0

0 AXIs ID

7 0

0xBB

7 0

0xAA

7 0

E-Link width (2, 4, 8, 16
or 32)

31 0

(Counter data specified in Length)

Figure B.11: Default Emulator payload.

Appendix B: Appendix B.46

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

Appendix C
TERMS, DEFINITIONS AND GLOSSARY

LIST OF DEFINITIONS

LIST OF REQUIREMENTS

5.1 . 26
9.1 UVVM Testbenches . 160
9.2 CI Simulation . 161
9.3 CI Build . 161

LIST OF RECOMMENDATIONS

LIST OF REMARKS

8.1 ToDo . 52
8.2 Direct mode . 68
8.3 Adjusting LCB frame phase . 93
8.4 Time-critical command sequences read out from trickle memory 95
8.5 BC gating and stuck elinks . 98
8.6 BC gating and the guard interval . 98
8.7 Adjusting LCB frame delay . 98
8.8 Direct mode . 109
8.9 TTC for phase II . 110

LIST OF TABLES

2.1 Firmware Flavours and their configurations . 3
2.2 E-Link configurations and AXIs IDs for the Firmware Flavours 4

Appendix C: Terms, Definitions and Glossary C.1

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

3.1 K-characters used for 8B/10B coded links. BUSY-ON/OFF arrive from the front-end in both
FULL mode and GBT mode cases. 11

3.2 Bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX card) for
control and monitoring of the generation of XON and XOFF signals. 13

3.3 Bit fields in the configuration registers for control of assertion and de-assertion of the BUSY
signal. 14

3.4 Common bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX
card) for control and monitoring of the generation of BUSY conditions for both GBT and FULL
mode firmware. Each firmware flavour adds extra fields on top of this common base, as shown
in Tables 3.5 and 3.6. 18

3.5 Extra bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX
card) for control and monitoring of the generation of BUSY conditions for FULL mode firmware. 18

3.6 Extra bit fields in the configuration registers of a single Wupper engine (i.e. two per FELIX
card) for control and monitoring of the generation of BUSY conditions for GBT mode firmware. 18

3.7 “Virtual E-link” message format. 19

4.1 Protocols supported by FELIX . 24

5.1 Available resources on the different development platforms for FELIX Phase II 25
5.2 Resource utilization for all firmware flavours estimated for the different hardware platforms.

The numbers for FM1802 and VP1552, and also for KU115 for the LPGBT, PIXEL and STRIP
flavours are estimations based on the build for VU37P . 26

6.2 Power Requirements . 27
6.4 Power Requirements . 27

7.1 IO pins . 31

8.1 Ports to/from CRToHost. 39
8.2 Ports to/from Link Wrapper. 39
8.3 Ports to/from Wupper. 39
8.4 Resource consumption in GBT mode, fully configurable . 40
8.5 Estimated resource consumption for Decoding Gearbox. 43
8.6 Estimated resource consumption for Decoding Gearbox in GBT mode. 44
8.7 Estimated resource consumption for Decoding Gearbox in lpGBT mode (8b10b). 44
8.8 Estimated resource consumption for Decoding Gearbox in lpGBT mode (Aurora). 44
8.9 Resource consumption of Endeavour Decoder module . 47
8.10 FPGA resource consumption of 64b/66b Aurora decoders for ITkPix. There is one decoder per

an lpGBT link . 50
8.11 Comma characters with a special meaning in different firmware flavours 57
8.12 32 bit axi stream interface . 63
8.13 K-characters used in FULL Mode . 64
8.14 Resource consumption for the FullToAxis entity . 66
8.15 Description of the stream controller input and output signals 67
8.16 TTC ToHost Virtual E-Link Resource utilization . 71
8.17 Busy Virtual E-Link Resource utilization . 74
8.18 Interlaken receiver user interface . 76
8.19 Interlaken receiver AXI-Stream signals . 76
8.20 Interlaken receiver clock signals . 76
8.21 64b67b interpretation (Interlaken) . 78
8.22 Interlaken receiver configurations . 79
8.23 Interlaken RX lane latencies . 79
8.24 Interlaken receiver status signals . 79
8.25 Interlaken m_axis.tuser status signals . 80
8.26 Interlaken core error signals . 80
8.27 Interlaken resource utilization RX logic . 80

Appendix C: Terms, Definitions and Glossary C.2

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.28 Estimated resource consumption for Encoding Gearbox, depending on different build-time con-
figurations . 85

8.29 Endeavour protocol . 87
8.30 Resource consumption of Endeavour Encoder module . 87
8.31 Strips ToHost elilnk mapping. In this table, elink mapping of lpGBT optical link 0 is listed. To

find elink IDs for encoders of another optical link, add 0x40 * (lpGBT link ID) to the elink IDs
listed in the table. 91

8.32 LCB link configuration registers . 94
8.33 Resource consumption of LCB encoder module for XKCU115 100
8.34 R3L1 link configuration registers . 103
8.35 Resource consumption of R3L1 encoder module . 104
8.36 Comma characters with a special meaning in different firmware flavours 106
8.37 Below is the list of bits decoded from the TTC system that can be chosen to be sent on an

E-link defined as a TTC E-link. 110
8.38 Below is a copy of the bits found in 8.37 but extended with the external testpulse (TP), and with

an adjustable delay (0-15 BC) . 111
8.39 Possible TTC options (Brc_d4[3:0] and Brc_t2[1:0] are the TTC user defined broadcast com-

mand bits. Bit 0 is the first bit transmitted out. 111
8.40 Line 1: Format of the 8-bit TTC word sent to the NSW Readout Controller on every bunch

crossing. “OCR” is the Orbit Count Reset, “EC0R” is the reset for the Level-0 ID and “reset”
is a Readout Controller soft reset. Note that bits 7 and 6 are delivered by the GBTx to the E-
link in the bunch crossing following the other six bits. See Figure 11 of [12]. EC0R and L0A,
are reserved for Phase 2; for Phase 1, FELIX sends ECR and L1A for EC0R and L0A. Line 2:
Format sent to the NSW ART trigger ASIC. 112

8.41 Configuration registers associated with the GBT, lpGBT and FULL Mode data emulators . . . 121
8.42 GBT Emulator resources . 122
8.43 lpGBT ToHost Emulator resources . 122
8.44 lpGBT ToFrontEnd Emulator resources . 122
8.45 FULL Mode Emulator resources . 122
8.46 Post-synthesis TTC emulator resources for FLX712. 125
8.47 The TTC resources are post-implementation (place and rout) for FLX712. We expect similar

resouce utilization in Versal FPGAs. 127
8.48 CRToHost Resource utilization . 137
8.49 CRFromHost Resource utilization . 140
8.50 Wupper Generics . 143
8.51 DMA descriptors types . 147
8.52 PCIe interrupts . 151
8.54 AXI4-Stream streams . 152
8.55 Wupper Resource utilization . 153

11.1 Institutes contributing to FELIX Firmware . 166

B.1 FELIX register map BAR0 . B.3
B.2 FELIX register map BAR1 . B.4
B.3 FELIX register map BAR2 . B.39

LIST OF FIGURES

2.1 The FELIX firmware top level block diagram using PCIe Gen4. On Gen5 capable hardware,
the diagram will have 4 endpoints, each with a PCIe Gen5x4 link 5

Appendix C: Terms, Definitions and Glossary C.3

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

3.1 Connections of 24 FULL mode links from the front-end and E-link assignment for GBT links to
the front-end, using two fibre assemblies that each connect one row in a MTP48 feedthrough
to a single miniPOD. The upper GBT link can be used for XON-XOFF signalling for all 24 links.
With the optional E-links implemented the lower GBT link can also be used for this purpose,
but with the E-link assignment adapted to use the lower set of links. It is also possible to use
the two GBT links in conjunction with two independent sets of 12 FULL mode links. The E-links
specified are 80Mb/s (2-bit) wide. The numbers in the rectangular blocks are GBT bank numbers. 12

3.2 Bandwidths of internal data paths for FULL mode firmware. 15
3.3 Bandwidths of internal data paths for GBT mode firmware configured for NSW MicroMegas

detectors. 16
3.4 Bandwidths of internal data paths for GBT mode firmware configured for NSW sTGC detectors. 16
3.5 FelixCore buffer schematic in from-front-end direction. In reality DCS will also have a to-front-

end path, but this has no bearing on the BUSY logic. 21

4.1 The timing mezzanine for FLX-712, with different configuration 23

6.1 . 28

8.1 Clocking scheme for the FELIX Phase II firmware. 33
8.2 The FELIX firmware top level detailed schematic. 34
8.3 The decoding block in the toplevel diagram . 35
8.4 The decoding block, instantiating all decoder entities based on FIRMWARE_MODE [6] 35
8.5 Block diagram of a single E-Path decoder in GBT mode . 36
8.6 Block diagram of an E-Group decoder in GBT mode . 37
8.7 Block diagram of an E-Group decoder in lpGBT/8b10b mode 38
8.8 Block diagram of a single E-Path decoder in lpGBT / Pixel (RD53b) mode 38
8.9 Example waveform of a typical AXI stream 32b transfer. [7] 38
8.10 The Decoding GearBox entity . 41
8.11 DecodingGearBox running with 8 bit input, 10 bit output. The data is constant 0x305 (k28.5+).

[7] . 41
8.12 The Endeavour deglitcher entity . 46
8.13 The Endeavour decoder entity . 46
8.14 ITkPix output data consists of data or idle blocks interrupted by periodic service blocks. The

content of each block is shown before scrambling. NS stands for New Stream bit and ID is the
two least significant bits of chip ID . 48

8.15 Dataflow in the 64b/66b decoder . 49
8.16 The RD53b Dataprocessor entity . 51
8.17 RD53B Decoder latency for different number of events per stream (Nevent) with a binary-tree

encoded hitmap . 54
8.18 RD53B Decoder latency for different number of events per stream (Nevent) with uncompressed

hitmap. 55
8.19 The 8b10b Decoder entity . 56
8.20 The HDLC decoder entity . 59
8.21 The HDLC decoder waveform . 60
8.22 Block diagram of both the FrontEnd and FELIX ends of a Full mode link in the ToHost direction 62
8.23 The FULL mode decoder entity . 63
8.24 The format of the data transmitted between the serializer and deserializer of the Full mode

wrapper . 64
8.25 block diagram with the user’s data source and to-FELIX Full mode stream controller 66
8.26 The TTC ToHost Virtual E-Link entity . 69
8.27 The Busy Virtual E-Link entity . 72
8.28 The Interlaken receiver entity . 75
8.29 Interlaken Burst . 77
8.30 Interlaken Metaframe . 77
8.31 Encoding overview . 78

Appendix C: Terms, Definitions and Glossary C.4

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.32 The encoding block in the toplevel diagram . 81
8.33 The encoding block, instantiating all encoder entities based on FIRMWARE_MODE 81
8.34 The Encoding GearBox entity . 83
8.35 EncodingGearBox running with 8 bit output, 10 bit input. The data is alternating 0x305/0x0FA

(k28.5+). [7] . 83
8.36 The Endeavour encoder entity . 86
8.37 example of waveform . 87
8.38 Dataflow in the ITkPix encoder . 88
8.39 The RD53A/B encoder entity . 89
8.40 Functional diagram of ITk Strips LCB Encoder module . 92
8.41 LCB link configuration command format . 93
8.42 No operation command format . 95
8.43 IDLE command format . 96
8.44 L0A command format . 96
8.45 Fast command format . 96
8.46 Register read command format . 97
8.47 Register write command format . 97
8.48 Block write command format . 97
8.49 Functional diagram of ITk Strips R3L1 Encoder module . 102
8.50 R3L1 link configuration command format . 103
8.51 The 8b10b Encoder entity . 105
8.52 The HDLC encoder entity . 107
8.53 The HDLC encoder waveform . 108
8.54 The TTC Encoder entity . 110
8.55 The TTC message sent from the FELIX to Frontend (32 bytes) presented as six 32-bit words . 114
8.56 The link wrapper in the toplevel diagram . 115
8.57 Block diagram for the GBT module in the link wrapper . 116
8.58 Integration test between FLX-712 and ATLAS Phase-II Strip Stave 117
8.59 Simplified block diagram of TCLink . 117
8.60 Block diagram for the serializer and deserializer modules for Full mode 118
8.61 The Front End data emulator in the toplevel diagram . 120
8.62 The GBT and lpGBT data emulator[6] . 120
8.63 The FULL Mode and Interlaken data emulator[6] . 121
8.64 Transmission Frame Format . 123
8.65 The TTC message sent to the Back end software (20 bytes) presented as five 32-bit words . . 126
8.66 The LTI-TTC interface in the toplevel diagram . 128
8.67 The TTC message sent from the LTI to FELIX (32 bytes) presented as six 32-bit words 129
8.68 The TTC message sent from FELIX to the LTI (12 bytes) presented as six 16-bit words 129
8.69 The ToHost Central Router (CRToHost) in the toplevel diagram 130
8.70 CRToHost interface symbol . 131
8.71 CRToHost Block Schematic . 132
8.72 The process of writing data into the HIFIFO . 133
8.73 The process of reading data from the HIFIFO that was written in fig. 8.72 134
8.74 A slightly simplified version of the writing logic of the HIFIFO 134
8.75 The state machine diagram for the state machine used by the HIFIFO 134
8.76 An explanation of every state of the state machine at the output of the HIFIFO 134
8.77 The signals the state machine controls . 135
8.78 The FromHost Central Router (CRFromHost) in the toplevel diagram 138
8.79 The FromHost or Downstream Central Router entity . 138
8.80 Example waveform of a typical FromHost Central Router transfer with its FIFO interface. [7] . . 139
8.81 Example waveform of a typical AXI stream 8b transfer. [7] . 139
8.82 Wupper in the toplevel diagram . 141
8.83 Wupper interface symbol . 142
8.84 Structure of the Felix PCIe Engine . 146
8.85 Endless DMA buffer and pointers representation diagram in ToHost mode 149

Appendix C: Terms, Definitions and Glossary C.5

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

8.86 Endless DMA buffer and pointers representation diagram in FromHost mode 150
8.87 The housekeeping interface in the toplevel diagram . 154
8.88 Housekeeping interface symbol . 155
8.89 Clock and reset block diagram . 157

9.1 Results summary of a UVVM successful simulation . 160
9.2 Continuous Integration Pipelines as seen in the Gitlab interface 161

B.1 FELIX ToHost Block format with chunk trailers . B.40
B.2 FELIX ToHost Block format with chunk headers . B.40
B.3 Block Header Format . B.41
B.4 Chunk trailer/header format . B.41
B.5 Fromhost data format with 16-bit header (version 0 †End of life from version 5.0) B.42
B.6 Fromhost data format with 16-bit header (version 1 †End of life from version 5.0) B.42
B.7 Fromhost data format with 32-bit header (version 2 and 3 †End of life from version 5.1) B.42
B.8 Fromhost data format with 32-bit header (version 4, 5 and 6) B.43
B.9 TTC ToHost data format . B.44
B.10 BUSY ToHost data format . B.45
B.11 Default Emulator payload . B.46

C.1 GLOSSARY

ATLAS A Toroidal LHC Apparatus. i

AXI Advanced eXtensible Interface, widely used on Xilinx IP. AXI4-Stream is widely used in the FELIX project
first. 36

BC Bunch Crossing, The CERN LHC bunch crossing clock frequency is 40.07897 MHz first. 46, 47, 86, 87,
90

Block Fixed section of memory with a specific formatting, headers and trailers first. B.40

BUSY A condition that can be raised from the FELIX system towards the central trigger processor in case
buffers fill up and data aquisition must be halted first. 127

DMA Direct Memory Access first. 141

FELIX Front End LInk eXchange. i

FIFO First In First Out, a type of memory to store data, also used to cross clock domains first. 36, 82

FLX128 Xilinx VCU128 / VU37P Development kit with FELIX firmware. 25

FLX712 FELIX Phase I PCIe card (BNL712) with FELIX firmware. 25

FromHost Direction of data communication, in ATLAS also referred to as Downlink. Data flows from the Host
PC towards the FPGA first. 138

GBT VersatileLink GigaBitTransceiver, a protocol and chip (GBTx) with 4.8Gb/s communication and logical
links (E-Links) first. 32

lpGBT low power GigaBitTransceiver, a successor of GBT with 9.6Gb/s Uplink, 2.56Gb/s Downlink and logi-
cal links (E-Links) first. 32

Appendix C: Terms, Definitions and Glossary C.6

FELIX Phase-II firmware specifications June 28, 2024 - Version 1.037

ToHost Direction of data communication, in ATLAS also referred to as Uplink. Data flows from the FPGA
towards the Host PC first. 130

Wupper An implementation of a PCIe DMA controller for Xilinx FPGAs first. 141

Appendix C: Terms, Definitions and Glossary C.7

	Revision History
	Table of Contents
	1 Related Documents
	2 Global Description and Specification
	2.1 Firmware Flavours
	2.1.1 E-Path IDs/ AXIs IDs

	2.2 Top level
	2.2.1 Transceiver and link wrapper
	2.2.2 Encoding
	2.2.3 Decoding
	2.2.4 AXIs MUX (ToHost Fanout Selector)
	2.2.5 CRFromHost: CentralRouter in FromHost direction
	2.2.6 CRToHost: CentralRouter in ToHost direction
	2.2.7 ToHost Emulator
	2.2.8 Wupper
	2.2.9 Number instances per FPGA

	3 Busy Xon/Xoff specification
	3.1 Overview
	3.2 Reference Note: K-Characters in 8B/10B encoded links
	3.3 Flow control (XOFF/XON) for FULL mode links
	3.3.1 Conditions leading to the assertion of flow control
	3.3.2 Control and monitoring of XON and XOFF signal generation
	3.3.2.1 Busy information in the datastream

	3.4 Propagation and management of BUSY conditions in GBT and FULL mode firmware
	3.4.1 Generation of BUSY at the request of a front-end data source
	3.4.1.1 Inclusion of BUSY-ON/BUSY-OFF symbols in FULL mode packets

	3.4.2 Generation of a BUSY condition on the basis of the state of the FELIX firmware
	3.4.2.1 BUSY due to host memory saturation
	3.4.2.2 BUSY PCIe FIFO saturation
	3.4.2.2.1 NSW MicroMegas
	3.4.2.2.2 NSW sTGC

	3.4.3 Control and monitoring of the generation of BUSY conditions and the BUSY signal
	3.4.3.1 FULL mode specific monitoring and control
	3.4.3.2 GBT mode specific monitoring and control
	3.4.3.3 Interrupt-based BUSY reporting
	3.4.3.4 Virtual E-links for BUSY monitoring
	3.4.3.4.1 FULL mode virtual E-link configuration
	3.4.3.4.2 GBT mode virtual E-link configuration

	3.5 Propagation and management of BUSY and flow control (XOFF) in FELIX software
	3.5.1 GBT Mode
	3.5.2 FULL mode
	3.5.3 Software BUSY and XOFF Monitoring
	3.5.4 Flow control from SW ROD to FELIX
	3.5.5 BUSY handling and DCS

	4 External Interfaces (I/O)
	4.1 FrontEnd links
	4.2 PCIe
	4.3 TTC Interface
	4.4 BUSY
	4.5 100Gb/s Ethernet

	5 Target FPGA
	6 Power and Cooling
	7 Input/Output
	8 Detailed Functional Description and Specification
	8.1 Introduction
	8.2 Compatibility
	8.3 Clocking scheme
	8.4 Decoding
	8.4.1 Introduction
	8.4.2 Interfaces
	8.4.2.1 Overview

	8.4.2.1.1 GBT mode, 8b10b, HDLC
	8.4.2.1.2 lpGBT mode, 8b10b
	8.4.2.1.3 lpGBT mode, Pixel
	8.4.2.2 Interface to CRToHost
	8.4.2.3 Interface to Link Wrapper
	8.4.2.4 Interface to Wupper
	8.4.3 Functional Description
	8.4.4 Configuration
	8.4.5 Status Indicators
	8.4.6 Latency
	8.4.7 Estimated Resource Usage
	8.4.8 Decoding Gearbox
	8.4.8.1 Introduction
	8.4.8.2 Interfaces

	8.4.8.2.1 Overview
	8.4.8.2.2 Interface to GBT or lpGBT wrapper
	8.4.8.2.3 Interface to Decoders
	8.4.8.3 Functional Description
	8.4.8.4 Configuration
	8.4.8.5 Status Indicators
	8.4.8.6 Latency
	8.4.8.7 Error Handling
	8.4.8.8 Estimated Resource Usage
	8.4.9 StripDecoder
	8.4.10 Endeavour Decoder
	8.4.10.1 Introduction
	8.4.10.2 Interfaces
	8.4.10.3 Functional Description
	8.4.10.4 Error handling
	8.4.10.5 Estimated Resource Usage

	8.4.11 Aurora 64b/66b Decoder for ITkPix
	8.4.12 RD53B Decoder
	8.4.12.1 Introduction
	8.4.12.2 Interfaces

	8.4.12.2.1 Overview
	8.4.12.2.2 Interface to the Aurora Decoder
	8.4.12.2.3 Interface to the ToHost Central Router
	8.4.12.3 Functional Description

	8.4.12.3.1 Input stage
	8.4.12.3.2 Stream decoder
	8.4.12.3.3 Output multiplexer
	8.4.12.4 Configuration
	8.4.12.5 Status Indicators
	8.4.12.6 Latency
	8.4.12.7 Estimated Resource Usage
	8.4.13 8b10b E-Link decoder
	8.4.13.1 Introduction
	8.4.13.2 Interfaces

	8.4.13.2.1 Interface to DecodingGearBox
	8.4.13.2.2 Interface to ByteToAxiStream
	8.4.13.3 Functional Description

	8.4.13.3.1 Alignment
	8.4.13.3.2 8b10b decoding
	8.4.13.3.3 Framing error detection
	8.4.13.3.4 E-link busy assertion
	8.4.13.3.5 Deframing
	8.4.13.4 Configuration
	8.4.13.5 Status Indicators
	8.4.13.6 Latency
	8.4.13.7 Error Handling
	8.4.13.8 Estimated Resource Usage
	8.4.14 HDLC E-Link decoder
	8.4.14.1 Introduction
	8.4.14.2 Interfaces

	8.4.14.2.1 Generics
	8.4.14.2.2 Elink interface
	8.4.14.2.3 Interface to ByteToAxiStream
	8.4.14.3 Functional Description
	8.4.14.4 Configuration
	8.4.14.5 Status Indicators
	8.4.14.6 Latency
	8.4.14.7 Error Handling
	8.4.14.8 Estimated Resource Usage
	8.4.15 FULLModeDecoder
	8.4.15.1 Introduction
	8.4.15.2 Interfaces

	8.4.15.2.1 Interface from LinkWrapper
	8.4.15.2.2 Interface to CRToHost
	8.4.15.3 Functional Description

	8.4.15.3.1 Flow control
	8.4.15.3.2 CRC
	8.4.15.4 Configuration
	8.4.15.5 Status Indicators
	8.4.15.6 Error Handling
	8.4.15.7 Estimated Resource Usage
	8.4.15.8 User Example design
	8.4.16 Direct mode E-Link Decoder
	8.4.16.1 Introduction

	8.4.17 TTCToHost virtual E-Link
	8.4.17.1 Introduction
	8.4.17.2 Interfaces

	8.4.17.2.1 Generics
	8.4.17.2.2 Interface from TTC Wrapper
	8.4.17.2.3 clock, reset and enable
	8.4.17.2.4 Interface to Central Router ToHost
	8.4.17.3 Functional Description
	8.4.17.4 Configuration
	8.4.17.5 Status Indicators
	8.4.17.6 Latency
	8.4.17.7 Error Handling
	8.4.17.8 Estimated Resource Usage
	8.4.18 BUSY virtual E-Link
	8.4.18.1 Introduction
	8.4.18.2 Interfaces

	8.4.18.2.1 Generics
	8.4.18.2.2 Interface from various BUSY sources
	8.4.18.2.3 Timestamp inputs
	8.4.18.2.4 clock, reset and enable
	8.4.18.2.5 Interface to Central Router ToHost
	8.4.18.3 Functional Description
	8.4.18.4 Configuration
	8.4.18.5 Status Indicators
	8.4.18.6 Latency
	8.4.18.7 Error Handling
	8.4.18.8 Estimated Resource Usage
	8.4.19 25 Gb/s Interlaken 0.6
	8.4.19.1 Interfaces

	8.4.19.1.1 User Interface
	8.4.19.1.2 Clock signals
	8.4.19.2 Functionality

	8.4.19.2.1 Burst frames
	8.4.19.2.2 Meta frames
	8.4.19.2.3 Encoder/Decoder
	8.4.19.2.4 (De)Scrambler
	8.4.19.3 Configuration
	8.4.19.4 Latency
	8.4.19.5 Status Indicators
	8.4.19.6 Error Handling
	8.4.19.7 Estimated Resource Usage
	8.5 Encoding
	8.5.1 Introduction
	8.5.2 Interfaces
	8.5.2.1 Overview
	8.5.2.2 Interface from CRFromHost
	8.5.2.3 Interface to LinkWrapper

	8.5.3 Functional Description
	8.5.4 Configuration
	8.5.5 Status Indicators
	8.5.6 Encoding Gearbox
	8.5.6.1 Introduction
	8.5.6.2 Interfaces

	8.5.6.2.1 Overview
	8.5.6.2.2 Interface to GBT or lpGBT wrapper
	8.5.6.2.3 Interface from Encoders
	8.5.6.3 Functional Description
	8.5.6.4 Configuration
	8.5.6.5 Status Indicators
	8.5.6.6 Latency
	8.5.6.7 Error Handling
	8.5.6.8 Estimated Resource Usage
	8.5.7 Endeavour Encoder
	8.5.7.1 Introduction
	8.5.7.2 Interfaces
	8.5.7.3 Functional Description
	8.5.7.4 Estimated Resource Usage

	8.5.8 ITkPix Encoder
	8.5.9 ITk Strips LCB Encoder
	8.5.9.1 Introduction
	8.5.9.2 Configuration storage submodule
	8.5.9.2.1 Configuration command.

	8.5.9.3 LCB frame generator submodule
	8.5.9.4 Bypass frame aggregator submodule
	8.5.9.5 Trickle configuration memory
	8.5.9.6 Command decoder
	8.5.9.6.1 No operation.
	8.5.9.6.2 IDLE command.
	8.5.9.6.3 L0A command.
	8.5.9.6.4 Fast command.
	8.5.9.6.5 Register commands.
	8.5.9.6.6 Block commands.

	8.5.9.7 LCB sequence encoder
	8.5.9.8 LCB frame FIFO
	8.5.9.9 Trickle trigger generator
	8.5.9.10 LCB scheduler
	8.5.9.11 Examples

	8.5.9.11.1 Sending basic LCB commands via LCB Command elink and Command Decoder (ENCODING_ENABLE=1)
	8.5.9.11.2 Sending basic LCB commands via LCB Command elink and Bypass Frame Aggregator (ENCODING_ENABLE=0)
	8.5.9.11.3 Writing trickle configuration
	8.5.9.11.4 Issuing software-generated trickle trigger
	8.5.9.11.1 Single LCB elink.
	8.5.9.11.2 Continuous trickle configuration.
	8.5.9.11.3 All LCB elinks simultaneously.
	8.5.9.11.4 All LCB elinks simultaneously with pre-buffering.
	8.5.9.11.5 Trickle trigger during specified BC interval
	8.5.9.12 Latency
	8.5.9.13 Estimated Resource Usage
	8.5.10 ITk Strips R3L1 Encoder
	8.5.10.1 Introduction
	8.5.10.2 Configuration storage submodule
	8.5.10.2.1 Configuration command.

	8.5.10.3 Frame synchronizer
	8.5.10.4 R3 and L1 Frame generators
	8.5.10.5 R3 and L1 Frame FIFOs
	8.5.10.6 Bypass frame aggregator
	8.5.10.7 R3L1 Scheduler
	8.5.10.8 Latency
	8.5.10.9 Estimated Resource Usage

	8.5.11 8b10b Encoder
	8.5.11.1 Introduction
	8.5.11.2 Interfaces

	8.5.11.2.1 Interface to AxiStreamToByte
	8.5.11.2.2 Interface to EncodingGearBox
	8.5.11.3 Functional Description

	8.5.11.3.1 Overview
	8.5.11.3.2 8b10b encoding
	8.5.11.4 Configuration
	8.5.11.5 Latency
	8.5.11.6 Error Handling
	8.5.11.7 Estimated Resource Usage
	8.5.12 HDLC Encoder
	8.5.12.1 Introduction
	8.5.12.2 Interfaces

	8.5.12.2.1 Generics
	8.5.12.2.2 Interface from AxiStreamToByte
	8.5.12.2.3 Interface to GBT/lpGBT E-Link
	8.5.12.3 Functional Description
	8.5.12.4 Configuration
	8.5.12.5 Status Indicators
	8.5.12.6 Latency
	8.5.12.7 Error Handling
	8.5.12.8 Estimated Resource Usage
	8.5.13 Direct mode E-Link Encoder
	8.5.13.1 Introduction

	8.5.14 TTC Encoder
	8.5.14.1 Introduction
	8.5.14.2 Interfaces
	8.5.14.3 Functional Description

	8.5.14.3.1 TTC Delay and Extended testpulse
	8.5.14.3.2 TTC Options
	8.5.14.4 Configuration
	8.5.14.5 Status Indicators
	8.5.14.6 Latency
	8.5.14.7 Error Handling
	8.6 LTI Encoder0.75
	8.7 Link Wrapper 0.95
	8.7.1 Introduction
	8.7.2 Functional Description
	8.7.2.1 GBT mode wrapper
	8.7.2.2 lpGBT mode wrapper

	8.7.2.2.1 TC Link and TX Phase alignment
	8.7.2.3 Full mode wrapper
	8.7.2.4 64b67b Link wrapper for 25G Interlaken
	8.7.3 Configuration
	8.7.4 Status Indicators
	8.7.5 Latency
	8.8 GBT, lpGBT and AXI4 Stream Data Emulator
	8.8.0.1 Introduction
	8.8.0.2 Interfaces
	8.8.0.3 Functional Description
	8.8.0.4 Configuration
	8.8.0.5 Estimated Resource Usage

	8.9 TTC Emulator
	8.9.1 Introduction
	8.9.2 Interfaces
	8.9.3 Functional Description
	8.9.4 Configuration
	8.9.5 Status Indicators
	8.9.6 Error Handling
	8.9.7 Estimated Resource Usage

	8.10 Legacy TTC decoder
	8.11 LTI/TTC Interface0.75
	8.12 CRToHost: ToHost or Upstream Central Router
	8.12.1 Introduction
	8.12.2 Interfaces
	8.12.2.1 Overview
	8.12.2.2 Interface from decoding
	8.12.2.3 Interface to Wupper

	8.12.3 Functional Description
	8.12.3.1 CRToHostdm

	8.12.3.1.1 ToHostAxiStreamController
	8.12.3.1.2 Channel FIFO
	8.12.3.2 CRToHost PCIeManager

	8.12.3.2.1 PCIe DMA channel selection
	8.12.3.3 CRToHost MUX
	8.12.3.4 CRResetManager
	8.12.4 Configuration
	8.12.5 Status Indicators
	8.12.6 Latency
	8.12.7 Error Handling
	8.12.8 Estimated Resource Usage
	8.13 CRFromHost: FromHost or Downstream Central Router
	8.13.1 Introduction
	8.13.2 Interfaces
	8.13.2.1 Interface to Wupper
	8.13.2.2 Interface to the encoders

	8.13.3 Functional Description
	8.13.3.1 CRFromHost top-level
	8.13.3.2 CRFromHost data manager
	8.13.3.3 CRFromHost transfer manager

	8.13.4 Configuration
	8.13.4.1 Generics
	8.13.4.2 Run-time configuration

	8.13.5 Status Indicators
	8.13.6 Latency
	8.13.7 Estimated Resource Usage

	8.14 Wupper: PCIe DMA core and register map
	8.14.1 Introduction
	8.14.2 Interfaces
	8.14.2.1 Generics
	8.14.2.2 fromHostFifo
	8.14.2.3 toHostFifo
	8.14.2.4 interrupt_call
	8.14.2.5 Clocks and Resets
	8.14.2.6 BUSY
	8.14.2.7 PCIe
	8.14.2.8 Register Map

	8.14.3 Functional Description
	8.14.4 DMA descriptors
	8.14.5 Endless DMA with a circular buffer and wrap around
	8.14.6 Trickle descriptor
	8.14.7 Interrupt controller
	8.14.8 Xilinx PCIe EndPoint Core
	8.14.8.1 Xilinx AXI4-Stream interface
	8.14.8.2 Configuration of the core

	8.14.9 Status Indicators
	8.14.10 Latency
	8.14.11 Error Handling
	8.14.12 Estimated Resource Usage
	8.14.13 Simulation

	8.15 HouseKeeping
	8.15.1 Introduction
	8.15.2 Interfaces
	8.15.3 Functional Description
	8.15.3.1 I2C interface
	8.15.3.2 GenericConstantsToRegs
	8.15.3.3 xadc_drp
	8.15.3.4 dna
	8.15.3.5 flash_wrapper
	8.15.3.6 LMK03200_wrapper
	8.15.3.7 pex_init
	8.15.3.8 gc_multichannel_frequency_meter
	8.15.3.9 Tachometer

	8.16 Clock And Reset
	8.16.1 Introduction
	8.16.2 Interfaces
	8.16.3 Functional Description

	9 Testing, Validation and Commissioning
	9.1 Simulation
	9.1.1 UVVM

	9.2 Gitlab CI
	9.3 Nightly firmware test on hardware

	10 Firmware Management and Reliability Matters
	10.1 Firmware Source Management and Release Plan
	10.1.1 Version numbers and releases
	10.1.2 File name of a firmware build

	10.2 Consequences of Failures
	10.3 Reliability measures in the FELIX firmware
	10.3.1 Redundant DMA channels and separation of DCS data
	10.3.2 BUSY and XOFF mechanism
	10.3.3 (E-)Link realignment and truncation

	11 Organization of Firmware Development
	11.0.1 Institutes contributing to FELIX firmware
	11.0.2 Developers and their roles in the FELIX firmware

	References
	A Code Management
	B Appendix
	B.1 FELIX register map, version 5.1
	B.2 Data Formats
	B.2.1 CRToHost Block format
	B.2.2 CRFromHost Data format
	B.2.3 TTC ToHost Data format
	B.2.4 BUSY ToHost Data format
	B.2.5 Default emulator chunk payload

	C Terms, Definitions and Glossary
	C.1 Glossary

