
R

Virtex-4 Embedded
Tri-Mode Ethernet MAC
Wrapper v4.5

Getting Started Guide
UG240 August 8, 2007

www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Xilinx is disclosing this Specification to you solely for use in the development of designs to operate on Xilinx FPGAs. Except as stated herein,
none of the Specification may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or
by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of this Specification may violate copyright laws, trademark laws, the laws of privacy and publicity, and
communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Specification; nor does Xilinx convey any license under its
patents, copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of
the Specification. Xilinx reserves the right to make changes, at any time, to the Specification as deemed desirable in the sole discretion of
Xilinx. Xilinx assumes no obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not
assume any liability for the accuracy or correctness of any engineering or technical support or assistance provided to you in connection with
the Specification.

THE SPECIFICATION IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND
IMPLEMENTATION IS WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN
INFORMATION OR ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE SPECIFICATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF
THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE SPECIFICATION, EVEN IF
YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN
CONNECTION WITH YOUR USE OF THE SPECIFICATION, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT
EXCEED THE AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE SPECIFICATION. YOU ACKNOWLEDGE
THAT THE FEES, IF ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT
MAKE AVAILABLE THE SPECIFICATION TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Specification is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring
fail-safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support,
or weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Specification in such High-Risk Applications is fully at your risk.

© 2006-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

R

Date Version Revision

1/18/06 1.1 Initial Xilinx release; core version 4.1, Xilinx tools 8.1i.

7/13/06 2.0 Core version 4.2, Xilinx tools 8.2i.

9/21/06 3.0 Updated core to version 4.3.

2/15/07 4.0 Updated core to version 4.4, Xilinx tools 9.1i.

8/8/07 5.0 Updated core to version 4.5; Xilinx tools 9.2i.

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com
UG240 August 8, 2007

Preface: About This Guide
Contents . 9
Additional Resources . 10
Conventions . 10

Typographical . 10
Online Document . 11

Chapter 1: Introduction
System Requirements . 13
About the Ethernet MAC Wrapper. 13
Recommended Design Experience . 13
Additional Resources . 14
Technical Support. 14
Feedback. 14

Embedded Tri-Mode Ethernet MAC Wrapper . 14
Document . 14

Chapter 2: Quick Start Example Design
Overview . 15
Generating the Ethernet MAC Wrapper. 17
Implementing the Example Design . 18
Running the Simulation . 19

Functional Simulation . 19
Timing Simulation . 20

What’s Next? . 21

Chapter 3: Customizing the Core
Ethernet MAC Wrapper GUI Screens . 23

Core Configuration Options–Screen 1 . 24
EMAC Configuration Options–Screen 2 . 25
EMAC Configuration–Screen 3 . 28
MDIO/EMAC Configuration–Screen 4 . 30

Chapter 4: Detailed Example Design
Directory and File Contents . 32

<project directory> . 32
<project directory>/<component name> . 32
<component name>/drivers . 33
<component name>/doc . 33
<component name>/example design . 33
example_design/client . 35
client/fifo . 35
example_design/physical . 36

Table of Contents

http://www.xilinx.com

www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

R

<component name>/implement . 36
implement/results . 37
<component name>/simulation . 37
simulation/functional . 38
simulation/timing . 38

Implementation and Test Scripts . 39
Implementation Scripts for Timing Simulation . 39
Test Scripts For Timing Simulation . 39
Test Scripts For Functional Simulation . 41

Example Design . 42
HDL Example Design . 42
10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO . 43
Address Swap Module . 45
Physical Interface . 45

Demonstration Test Bench . 46
Test Bench Functionality . 46
Changing the Test Bench . 48

Appendix A: Using the Client Side FIFO
Overview of LocalLink Interface . 49
Receive FIFO Operation . 50

LocalLink Interface . 50
Transmit FIFO Operation . 51

LocalLink Interface . 51
User Interface Data Width Conversion. 52

Appendix B: Constraining the Example Design
Device, Package, and Speedgrade Selection . 53
I/O Location Constraints . 53
Timing Constraints . 53

GMII Constraints . 53
GMII with Byte PHY Constraints . 56
MII Constraints . 57
MII with Clock Enable Constraints . 58
RGMII (v1.3 and v2.0) Constraints . 59
1000Base-X PCS/PMA (8-bit Client Interface) Constraints . 62
1000Base-X PCS/PMA (16-bit Client Interface) Constraints . 62
SGMII Constraints . 62
SGMII and 1000Base-X PCS/PMA Constraints . 63
Management Clock Constraints . 63
Example Design Constraints . 63

Appendix C: SGMII / Dynamic Standards Switching
FPGA Fabric Rx Elastic Buffer Requirement . 67
The RocketIO Rx Elastic Buffer . 69
Jumbo Frame Reception . 70

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com
UG240 August 8, 2007

Chapter 2: Quick Start Example Design
Figure 2-1: Default Example Design and Test Bench . 16
Figure 2-2: Core Configuration Options . 18

Chapter 3: Customizing the Core
Figure 3-1: Core Configuration Options . 24
Figure 3-2: EMAC Configuration Options . 26
Figure 3-3: EMAC Configuration Options . 28
Figure 3-4: MDIO Configuration . 30

Chapter 4: Detailed Example Design
Figure 4-1: HDL Example Design . 42
Figure 4-2: Frame Transfer across LocalLink Interface . 44
Figure 4-3: Modification of Frame Data by Address Swap Module 45
Figure 4-4: Demonstration Test Bench . 46

Appendix A: Using the Client Side FIFO
Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation 49
Figure A-2: Frame Transfer across LocalLink Interface . 50
Figure A-3: Frame Transfer with Flow Control . 50

Appendix C: SGMII / Dynamic Standards Switching
Figure C-1: SGMII Implementation: Separate Clock Sources . 68
Figure C-2: SGMII Implementation: Shared Clock Sources . 69

Schedule of Figures

http://www.xilinx.com

www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

R

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 7
UG240 August 8, 2007

R

Preface

About This Guide

The Virtex-4™ Embedded Tri-Mode Ethernet MAC Wrapper v4.5 Getting Started Guide
provides information about generating an embedded Tri-Mode Ethernet MAC wrapper,
customizing and simulating the wrapper files utilizing the provided example design, and
running the design files through implementation using the Xilinx tools.

Contents
This guide contains the following chapters:

• Preface, “About this Guide” introduces the organization and purpose of the Getting
Started Guide, including the conventions used in the guide and a list of additional
resources.

• Chapter 1, “Introduction” describes the wrapper and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

• Chapter 2, “Quick Start Example Design,”describes how to quickly generate the
example design using the default parameters.

• Chapter 3, “Customizing the Core,”defines the Graphical User Interface options.

• Chapter 4, “Detailed Example Design,”provides detailed information about the
example design and demonstration test bench.

• Appendix A, “Using the Client Side FIFO,” describes the operation of the example
design client side FIFO.

• Appendix B, “Constraining the Example Design,” describes the timing and placement
constraints included with the example design.

• Appendix C, “SGMII / Dynamic Standards Switching” defines the SGMII capabilities
for the core.

http://www.xilinx.com

8 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Preface: About This Guide
R

Additional Resources
For additional information, visit www.xilinx.com/support. The following table lists some
of the resources you can select from this website. You can also directly access these
resources using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Resource Description/URL

Tutorials Tutorials covering Xilinx design flows, from design entry to
verification and debugging

www.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx solution records

www.xilinx.com/support/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

www.xilinx.com/support/apps/appsweb.htm

Data Sheets Device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

www.xilinx.com/support/xlnx/xweb/xil_publications_index.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

www.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx
design environment

www.xilinx.com/support/xlnx/xil_tt_home.jsp

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement

ngdbuild design_name

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support/techsup/tutorials/index.htm
http://www.xilinx.com/support/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/support/apps/appsweb.htm
http://www.xilinx.com/support/xlnx/xweb/xil_publications_index.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/support/xlnx/xil_tt_home.jsp

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 9
UG240 August 8, 2007

Conventions
R

Online Document
The following conventions are used in this document:

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

<text in brackets> User-defined variable for
directory names. <component_name>

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

Also used with pipe symbol to
indicate either one or the
other.

ngdbuild [option_name]
design_name

eth_fifo_[8 | 16].v

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

See “Title Formats” in Chapter 1
for details.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com

10 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Preface: About This Guide
R

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 11
UG240 August 8, 2007

R

Chapter 1

Introduction

The Virtex-4 Embedded Tri-Mode Ethernet MAC (MAC) wrapper supports Verilog®-HDL
and VHDL. This chapter introduces the wrapper and provides related information,
including recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

System Requirements

Windows

• Windows® 2000 Professional with Service Pack 2-4

• Windows XP Professional with Service Pack 1

Solaris/Linux

• Sun Solaris®9/10

• Red Hat® Enterprise Linux 4.0 (32-bit and 64-bit)

Software

• ISE™ 9.2i

Check the release notes for the required Service Pack; ISE Service Packs can be
downloaded from www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp.

About the Ethernet MAC Wrapper
The Virtex-4 Embedded Tri-Mode Ethernet MAC wrapper is included in the latest IP Update on
the Xilinx IP Center. For detailed information, visit:
www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=Embedded_TEM
AC_Wrapper

The Virtex-4 Embedded Tri-Mode Ethernet MAC wrapper is provided to all licensed Xilinx
ISE customers at no cost and can be generated using the Xilinx CORE Generator™ v9.2i or
higher.

Recommended Design Experience
Although the Virtex-4 Embedded Tri-Mode Ethernet MAC wrapper is fully verified, the
challenge associated with implementing a complete design varies depending on the
configuration and functionality of the application. For best results, previous experience
building high performance, pipelined FPGA designs using Xilinx implementation
software and user constraint files (UCF) is recommended.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_sw_updates_home.jsp?update=sp
www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?key=Embedded_TEMAC_Wrapper

12 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 1: Introduction
R

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Resources
For additional details and updates, see the Virtex-4 Embedded Tri-Mode Ethernet MAC User
Guide, accessible from www.xilinx.com/bvdocs/userguides/ug074.pdf.

Technical Support
The fastest method for obtaining specific technical support for the Virtex-4 Embedded
Tri-Mode Ethernet MAC is through the www.xilinx.com/support website. Questions are
routed to a team of engineers with specific expertise using the Virtex-4 Ethernet MAC
wrapper.

Xilinx will provide technical support for use of this product as described in the Virtex-4
Embedded Tri-Mode Ethernet MAC Data Sheet, Virtex-4 Embedded Tri-Mode Ethernet MAC
Getting Started Guide, and the Virtex-4 Embedded Tri-Mode Ethernet MAC User Guide. Xilinx
cannot guarantee timing, functionality, or support of this product for designs that do not
follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Embedded Tri-Mode Ethernet MAC
wrapper and the supplied documentation.

Embedded Tri-Mode Ethernet MAC Wrapper
For comments or suggestions about the Ethernet MAC wrapper, please submit a webcase
from www.xilinx.com/support. Be sure to include the following information:

• Product name

• Version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a webcase from
www.xilinx.com/support. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://www.xilinx.com/bvdocs/userguides/ug074.pdf
www.xilinx.com/support
www.xilinx.com/support
www.xilinx.com/support
http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 13
UG240 August 8, 2007

R

Chapter 2

Quick Start Example Design

This chapter provides instructions for generating the Virtex-4 Embedded Tri-Mode
Ethernet MAC wrapper using the default parameters.

Overview
The Virtex-4 Embedded Tri-Mode Embedded Ethernet MAC wrapper consists of the
following:

• A wrapper file that connects the tie-off pins of each Ethernet MAC to the values
selected in the CORE Generator Graphical User Interface (GUI). In addition, unused
inputs are tied low and unused outputs are disconnected.

• An example design that instantiates the Ethernet MAC wrapper. This design connects
the transmit and receive client interfaces of each selected Ethernet MAC to a
LocalLink FIFO. These FIFO are connected through an address swap module, which
enables loop back of the received data. The interface logic for each of the selected
physical interfaces is also instantiated along with the required IOBs. In addition, the
example design implements an optimized clocking scheme.

• A demonstration test bench to exercise the wrappers and the example design. This
injects frames into the physical interface receiver of each selected Ethernet MAC and
monitors the data that is output at the transmitter.

http://www.xilinx.com

14 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 2: Quick Start Example Design
R

Figure 2-1 shows the block diagram for the example design and the test bench provided
with the Ethernet MAC wrapper. The design has been tested with Xilinx ISE 9.2i,
Cadence™ IUS v5.8 and Mentor Graphics® ModelSim® PE/SE 6.1e.

Figure 2-1: Default Example Design and Test Bench

Embedded Ethernet
MAC Wrapper

FPGA
Fabric

Clock
Circuitry

Physical I/F

(GMII/MII,
RGMII,

 SGMII, or
1000 Base-X

PCS/PMA)

EMAC1

Host
Interface

EMAC0

Embedded
Ethernet MAC

Physical
Interface

Address
Swap

Module

Address
Swap

Module

10Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

10Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Client
Interface

Tx Client
FIFO

Rx Client
FIFO

Tx Client
FIFO

Rx Client
FIFO

Lo
ca

lL
in

k
In

te
rf

ac
e

Lo
ca

lL
in

k
In

te
rf

ac
e

Management IOBs

Management

Monitor

Stimulus

Monitor

Stimulus

Configuration Vector
Pin Tie-off

Clock Gen

Reset
Clock IOBs

and Management
component_name_example_design

Demonstration Test Bench

component_name_locallink
component_name_block

Physical I/F

(GMII/MII,
RGMII,

 SGMII, or
1000 Base-X

PCS/PMA)

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 15
UG240 August 8, 2007

Generating the Ethernet MAC Wrapper
R

Generating the Ethernet MAC Wrapper
To start using the Ethernet MAC wrapper and example design:

1. Start the CORE Generator.

For help starting and using the CORE Generator, see the documentation supplied with
ISE, including the CORE Generator Guide at
www.xilinx.com/support/software_manuals.htm.

2. Choose File > New Project.

3. Do the following to set project options:

− From Target Architecture, select Virtex-4.

Note: If an unsupported silicon family is selected (a family other than Virtex-4 FX), the
Ethernet MAC wrapper does not appear in the taxonomy tree.

− For Design Entry, select either VHDL or Verilog; for Vendor, select Other.

4. After creating the project, locate the directory containing the Ethernet MAC wrapper
in the taxonomy tree. The project appears under one of the following:

− Communications & Networking /Ethernet

− Communications & Networking /Networking

− Communications & Networking/Telecommunications

5. Double-click the Embedded Tri-Mode Ethernet MAC wrapper icon. The Configuration
Options dialog box appears.

6. In the Component Name field, enter a name for the core instance.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

16 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 2: Quick Start Example Design
R

7. Accept the remaining defaults; then click Finish to generate the core.

8. The wrapper and its supporting files, including the example design, are generated in
your project directory. For a detailed description of the design example files and
directories, see Chapter 4, “Detailed Example Design.”

Implementing the Example Design
The HDL example design can be processed through the Xilinx implementation toolset. The
generated output files include several scripts to assist the user in running the Xilinx
software.

In the following examples, <project_dir> is the CORE Generator project directory and
<component_name> is the name entered in the Component Name field on the first GUI
screen.

Note: Example design implementation is not supported when the DCR bus is used.

Figure 2-2: Core Configuration Options

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 17
UG240 August 8, 2007

Running the Simulation
R

Open a command prompt or shell in your project directory, then enter the following
commands:

UNIX

unix-shell% cd <component_name>/implement

unix-shell% ./implement.sh

Windows

ms-dos> cd <component_name>\implement

ms-dos> implement.bat

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design. The resulting files are placed in the results directory.

These commands start a script that synthesizes the HDL example design and builds the
design. The script also maps and place-and-routes the example design. It then creates
gate-level netlist HDL files in either VHDL or Verilog, along with associated timing
information (SDF) files.

Running the Simulation

Functional Simulation
To run the functional simulation you must have the Xilinx Simulation Libraries compiled
for your system. For more information on compiling libraries, see Compiling Xilinx
Simulation Libraries (COMPXLIB) in the Xilinx ISE Synthesis and Verification Design Guide,
which can be obtained from www.xilinx.com/support/software_manuals.htm.

In addition, the simulator used must provide SWIFT model support to simulate the
Ethernet MAC and the Virtex-4 RocketIO Multi-Gigabit Transceivers (MGT).

Note: In the simulation examples that follow, <project_dir> is the CORE Generator project
directory, and <component_name> is the component name as entered in the core
customization dialog box.

VHDL Simulation

To run a VHDL functional simulation:

• Launch the simulator and set the current directory to:
<project_dir>/<component_name>/simulation/functional

• For ModelSim, map the UniSim library:

ModelSim> vmap unisim <path to compiled libraries>/unisim

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

18 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 2: Quick Start Example Design
R

Verilog Simulation

To run a Verilog functional simulation:

• Launch the simulator and set the current directory to:
<project_dir>/<component_name>/simulation/functional

• For ModelSim, map the UniSim library:

ModelSim> vmap unisims_ver <path to compiled libraries>/unisims_ver

• Launch the simulation script in one of the following ways:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the example design files and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

Timing Simulation
To run the gate-level simulation, you must have the Xilinx Simulation Libraries compiled
for your system. For more information on compiling libraries, see Compiling Xilinx
Simulation Libraries (COMPXLIB) in the Xilinx ISE Synthesis and Verification Design Guide,
which can be obtained from www.xilinx.com/support/software_manuals.htm.

In the simulation examples that follow, <project_dir> is the CORE Generator project
directory; <component_name> is the component name as entered in the core customization
dialog box.

Note: Example design implementation is not supported when the DCR bus is used.

VHDL Simulation

To run a VHDL timing simulation:

• Launch the simulator and set the current directory to:
<project_dir>/<component_name>/simulation/timing

• For ModelSim, map the SimPrim library:

ModelSim> vmap simprim <path to compiled libraries>/simprim

• Launch the simulation script in one of the following ways:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the gate-level netlist and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

Verilog Simulation

To run a Verilog timing simulation:

• Launch the ModelSim simulator and set the current directory to:
<project_dir>/<component_name>/simulation/timing

• For ModelSim map the SimPrim library:

ModelSim> vmap simprims_ver <path to compiled_libraries>/simprims_ver

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 19
UG240 August 8, 2007

What’s Next?
R

• Launch the simulation script:

ModelSim> do simulate_mti.do

IUS> ./simulate_ncsim.sh

The scripts compile the gate-level netlist and the demonstration test bench, add some
relevant signals to a wave window, then run the simulation to completion. At this point,
you can review the simulation transcript and waveform to observe the operation of the
Ethernet MACs.

What’s Next?
For detailed information about the example design, including guidelines for modifying the
design and extending the test bench, see Chapter 4, “Detailed Example Design.”

http://www.xilinx.com

20 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 2: Quick Start Example Design
R

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 21
UG240 August 8, 2007

R

Chapter 3

Customizing the Core

This chapter describes the Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper
Graphical User Interface (GUI), used to customize the core.

Ethernet MAC Wrapper GUI Screens
The Ethernet MAC Wrapper GUI consists of several screens. The first screen is used to set
core parameters and enable one or both Ethernet MACs. Subsequent screens are used to
configure all enabled EMACs. Note that if both EMACs are enabled, the subsequent
screens are displayed twice—once for each enabled EMAC.

• Core Configuration Options–Screen 1 Used to name the core, select the desired
software configuration interface, and enable the number of EMACs.

• EMAC Configuration Options–Screen 2 Used to select the PHY interface, speed, data
width, global buffer usage options (for example, Byte PHY and Clock Enable),
management data (MDIO) bus enable, and flow control configuration for the
specified EMAC. If both EMACs are enabled, this screen is displayed twice—once for
each enabled EMAC.

• EMAC Configuration–Screen 3 Used to set transmitter, receiver, and address filter
configuration. If both EMACs are enabled, this screen is displayed twice—once for
each enabled EMAC.

• MDIO/EMAC Configuration–Screen 4 This screen is only displayed if the Enable
Management Data (MDIO) option is selected on the first EMAC Configuration
Options–Screen 2. For each enabled EMAC with the Enable Management Data
(MDIO) option selected, this screen is displayed.

http://www.xilinx.com

22 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 3: Customizing the Core
R

Core Configuration Options–Screen 1
Use the initial configuration screen to define the core name, select options for shared
interfaces and host type, and enable one or both EMACs.

Component Name

Enter the base name of the output files generated for the core. The name must begin with
a letter and be composed of the following characters: a to z, 0 to 9, and “_.”

Host Type

Select the core host bus interface in one of the following ways:

• Device Control Registers (DCR). Accesses the configuration registers through DCR
using the PowerPC™ processor. When the DCR bus is used to access the internal
registers of the Ethernet MAC, the DCR bus bridge in the host interface translates
commands carried over the DCR bus into Ethernet MAC host bus signals. The
resulting signals are input into one of the Ethernet MACs.

• Host. Accesses the Host Interface through the fabric. When the generic host bus is
used, the HOSTEMAC1SEL signal selects either the host access of EMAC0 or EMAC1.
When HOSTEMAC1SEL is asserted, the host accesses EMAC1. HOSTEMAC1SEL acts as

Figure 3-1: Core Configuration Options

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 23
UG240 August 8, 2007

Ethernet MAC Wrapper GUI Screens
R

the host address bit 10. If only one Ethernet MAC is used, this signal can be tied off to
use either one of the Ethernet MACs during the power-up FPGA configuration.

• None. The Ethernet MACs are configured using tie-off pins—80 tie-off pins
(TIEEMAC#CONFIGVEC[79:0]) are available to configure the Virtex-4 Ethernet MAC.
The values of these tie-off pins are loaded into the Ethernet MAC at power-up or
when the Ethernet MAC is reset. If the None option is selected, the transmit and
receive engines must be enabled to ensure proper operation of the Ethernet MAC. The
TIEEMAC#CONFIGVEC[57] and TIEEMAC#CONFIGVEC[50] tie-off pins are automatically
set to high.

Enable EMACs

Select one or both to enable one or both EMACs; at least one EMAC must be enabled to
generate a core. Note that in this chapter, the EMAC configuration screens (screens 2, 3,
and 4) define options for EMAC 0 only. Note that if EMAC 1 is also enabled, an additional
set of configuration screens appear for EMAC 1 after configuration of EMAC 0 is complete.

EMAC Configuration Options–Screen 2
This EMAC configuration screen lets you determine the Physical (PHY) interface, speed,
data width, global buffer usage, management data (MDIO) bus enable, and flow control
configuration for the specified EMAC. Some options on this screen are disabled depending
on the PHY Interface selected; not all options are available with all PHY interface types.

http://www.xilinx.com

24 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 3: Customizing the Core
R

PHY Interface

Select the PHY interface type from the drop-down menu:

• MII

• GMII

• RGMII v1.3

• RGMII v2.0

• SGMII

• 1000BASE-X PCS/PMA

Speed

Configures the core to run at a single or tri-speed rate.

• Tri-speed Configures the core to run at a tri-speed rate.

• 1000 Mbps Configures the core to run at a single rate.

• 10/100 Mbps Configures the core to run at 10 or 100 Mbps.

Figure 3-2: EMAC Configuration Options

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 25
UG240 August 8, 2007

Ethernet MAC Wrapper GUI Screens
R

Client Side Data Width

• 8-bit An 8-bit data width is available for all interface types.

• 16-bit A 16-bit client interface enables the over clocking mode for EMAC. It is
available for the 1000 Base-X PCS/PMA interface; this enables the EMAC to operate at
250 MHz while the logic in the FPGA fabric is clocked at 125 MHz. The 16-bit option
yields a 2.5 Gbps line rate.

Global Buffer Usage

Use these options to reduce the clock buffer usage.

• Clock Enable In MII mode, selecting Clock Enable reduces the number of BUFGs by
requiring the user logic to use a separate clock-enable signal. See the Virtex-4 Tri-Mode
Ethernet MAC User Guide for more information about determining the clock-enable
signal setup.

• Byte PHY In Tri-Speed GMII mode, selecting Byte PHY reduces the number of BUFGs
by adding the Byte PHY to the physical side logic.

Management Data

MDIO When selected, the MDIO option enables the MDIO ports on the core to access the
registers in the external PHY. When the MDIO option is selected for one or both EMACs,
an MDIO configuration screen appears (for each EMAC) before generating the core. When
unselected, the MDIO configuration screen is not displayed.

SGMII Capabilities

Select the SGMII Capabilities options:

• 10/100/1000 Mbps (clock tolerance compliant with Ethernet specification) Default
setting; provides the implementation using the Receiver Elastic Buffer in FPGA fabric.
This alternative Receiver Elastic Buffer utilizes a single block RAM to create a buffer
twice as large as the one present in the RocketIO, subsequently consuming extra logic
resources. However, this default mode provides reliable SGMII operation under all
conditions.

• 10/100/1000 Mbps (restricted tolerance for clocks) OR 100/1000 Mbps Uses the
receiver elastic buffer present in the RocketIOs. This is half the size and can
potentially under- or overflow during SGMII jumbo frame reception at 10 Mbps
operation. However, there are logical implementations where this can be proven
reliable; if so, it is favored because of its lower logic utilization.

For detailed information about SGMII capabilities, see Appendix C, “SGMII / Dynamic
Standards Switching.”

Flow Control Configuration

Allows both the receive and transmit flow control to be enabled or disabled. Flow control
is disabled by default.

• Tx Flow Control Enable Enable transmit flow control.

• Rx Flow Control Enable Enable receive flow control.

http://www.xilinx.com

26 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 3: Customizing the Core
R

EMAC Configuration–Screen 3
The next EMAC Configuration screen defines the configuration of each EMAC. For each
enabled EMAC, a separate screen is provided, with the selected EMAC displayed at the
top of the screen.

Transmitter Configuration

Transmitter configuration refers to the Ethernet MAC configuration registers located at
0x280. Initial values for several bits of this register can be set using the GUI. Changes to the
register bits can be written using one of the host interfaces, if enabled. For more
information, see “Configuration Registers,” in the Virtex-4 Embedded Tri-Mode Ethernet
Ethernet MAC User Guide.

• TX Reset Initial value of this bit cannot be changed unless the Host or DCR bus is
selected.

• Jumbo Frame Enable When selected, the transmitter sends frames greater than the
maximum length specified in the IEEE Std 802.3-2002. When unselected, the
transmitter sends only frames up to 1518 bytes (1522 bytes for VLAN).

• In-band FCS Enable When selected, this bit sets the Ethernet MAC transmitter to be
ready for the FCS field from the client.

Figure 3-3: EMAC Configuration Options

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 27
UG240 August 8, 2007

Ethernet MAC Wrapper GUI Screens
R

• TX Enable 0 Initial value of this bit cannot be changed unless the Host or DCR bus is
selected.

• VLAN Enable When selected, the VLAN transmitter allows transmission of the
VLAN-tagged frames.

• IFG Adjust Enable. When selected, the transmitter reads the value of
CLIENTEMAC#TXIFGDELAY at the start of frame transmission and adjusts the IFG.

Receiver Configuration

Receiver configuration refers to the Ethernet MAC configuration registers located at 0x240.
Initial values for several bits of this register can be set using the GUI. Changes to the
register bits may be written using one of the host interfaces, if enabled. For more
information, see “Configuration Registers,” in the Virtex-4 Embedded Tri-Mode Ethernet
Ethernet MAC User Guide.

• RX Reset Initial value of this bit cannot be changed unless the Host or DCR bus is
selected.

• Jumbo Frame Enable When selected, the Ethernet MAC receiver accepts frames over
the maximum length specified in the IEEE Std 802.3-2002 specification. When
unselected, the receiver accepts only frames up to the specified maximum.

• In-band FCS Enable When selected, the receiver passes the FCS field up to the client.
When unselected, the FCS field is not passed to the client. In either case, the FCS is
verified on the frame.

• RX Enable Initial value of this bit cannot be changed unless the Host or DCR bus is
selected.

• VLAN Enable When selected, the receiver accepts VLAN tagged frames. The
maximum allowed frame length increases by four bytes.

• RX Disable Length When selected, disables the length/type field check on the frame.

Duplex Settings

When Half-Duplex Enable is selected, the receiver and transmitter operate in half-duplex
mode (applicable only for 10 and 100 Mbps). When unselected, the EMAC operates in
full-duplex mode.

Address Filter Configuration

The Pause MAC Address (entered by the user) is used by the EMAC to compare the
destination address of any incoming flow control frames, and as the source address for any
outbound flow control frames.

The address is ordered for the least significant byte in the register to have the first byte
transmitted or received, for example, an EMAC address of AA-BB-CC-DD-EE-FF is entered
as FF-EE-DD-CC-BB-AA.

http://www.xilinx.com

28 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 3: Customizing the Core
R

MDIO/EMAC Configuration–Screen 4
The MDIO Configuration screen is only displayed if the 1000BASE-X PCS/PMA or SGMII PHY
interface is selected and the Enable Management Data (MDIO) option is selected in
theManagement Data section of the first EMAC configuration screen.

If both EMACs are enabled identically, the screen appears twice; if only one EMAC uses the
1000BASE-X PCS/PMA or SGMII PHY interface and MDIO option, the screen appears only
once for the enabled EMAC.

MDIO Configuration

• PHY Reset If selected, the PHY is reset.

• PHY AN Enable If selected, auto-negotiation is enabled.

• PHY Isolate If selected, the PHY is electrically isolated.

• PHY Powerdown If selected, the PHY powers down.

• PHY Loopback MSB If selected, the PHY loopback is enabled.

Figure 3-4: MDIO Configuration

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 29
UG240 August 8, 2007

R

Chapter 4

Detailed Example Design

This chapter provides detailed information about the example design, including a
description of files and the directory structure generated by the Xilinx CORE Generator,
the purpose and contents of the provided scripts, the contents of the example HDL
wrappers, and the operation of the demonstration test bench. The directory structure of the
delivered example design is shown below.

<project directory>topdirectory

Top-level project directory; name is user-defined.

 <project directory>/<component name>
Core release notes file

 <component name>/drivers
Product documentation

 <component name>/doc
Product documentation

 <component name>/example design
Verilog or VHDL design files

 example_design/client
Example client loopback logic

 client/fifo

FIFO files for the example client loopback logic

 example_design/physical
Physical interface description files

<component name>/implement
Implementation script files

 implement/results
Results directory, created after implementation scripts are run, and
contains implement script results

 <component name>/simulation
Simulation scripts

 simulation/functional
Functional simulation files

 simulation/timing
Timing simulation files

http://www.xilinx.com

30 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

Directory and File Contents
The core directories and their associated files are defined in the following sections.

<project directory>
The project directory contains all the CORE Generator project files.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
detailing the changes and enhancements to the core.

Table 4-1: Project Directory

Name Description

<project_dir>

<component_name>.xco As an output file, the XCO file is a log file
which records the settings used to
generate a particular instance of the
Ethernet MAC wrapper. An XCO file is
generated by the CORE Generator for
each core that it creates in the current
project directory. An XCO file can also be
used as an input to the CORE Generator.

<component_name>_flist.txt Text file listing all of the output files
produced when the wrapper and
example design files were generated in
the CORE Generator.

Back to Top

Table 4-2: Component Name Directory

Name Description

<project_dir>/<component_name>

v4_emac_release_notes.txt Core release notes file

Back to Top

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 31
UG240 August 8, 2007

Directory and File Contents
R

<component name>/drivers
The file in this directory is only generated when the DCR Bus is selected.

<component name>/doc
This directory contains Ethernet MAC documentation. For details on the Virtex-4
Embedded Tri-Mode Ethernet MAC, see the Virtex-4 Embedded Tri-Mode Ethernet MAC User
Guide.

<component name>/example design
This directory and sub-directories contain the support files necessary for a VHDL or
Verilog implementation of the example design. See “Example Design,” page 40 for more
information. This directory contains all the design files required for the example design.

Table 4-3: Drivers Directory

Name Description

<project_dir>/<component_name>/drivers

v4_emac_l.h Header file providing low-level driver
functions for accessing the Ethernet MAC
configuration information over the DCR
bus. This file is only generated when the
DCR Bus is selected.

Back to Top

Table 4-4: Doc Directory

Name Description

<project_dir>/<component_name>/doc

v4_emac_ds307.pdf Virtex-4 Embedded Tri-Mode Ethernet MAC
Wrapper Data Sheet

v4_emac_gsg240.pdf Virtex-4 Embedded Tri-Mode Ethernet MAC
Wrapper Getting Started Guide

Back to Top

Table 4-5: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

<component_name>.v[hd] Ethernet MAC wrapper file

http://www.xilinx.com

32 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

<component_name>_block.v[hd] This lowest level of the hierarchy
instantiates specific clock and reset
circuitry required by the core. It also
instantiates the appropriate physical
interface specified when creating the core
using the CORE Generator. This layer
provides a direct interface to the Client
Side Interface of the Ethernet MAC
primitive.

<component_name>_block.ucf User constraints file (UCF) for the core and
the example design. See Appendix B,
“Constraining the Example Design” for
additional information.

<component_name>_example_
design.v[hd]

Top-level of the example design containing
clocking and reset logic.1 In addition, the
top-level design contains an address swap
module; this module receives incoming
Ethernet packets, swaps the source and
destination address, and sends the
Ethernet packet back. All received Ethernet
packets are returned to the sending
address.

<component_name>_
locallink.v[hd]

This hierarchy level instantiates LocalLink
FIFOs that translate between the Xilinx
standard LocalLink Interface and the
Client Side Interface of the Ethernet MAC
primitive. This hierarchy level is useful for
designers who want to interface to a Xilinx
standard LocalLink interface.

1. Note that although there are numerous ways to create the clocking and reset logic, only
the implementation provided in the example has been tested and successfully verified
to work in the example design.

Back to Top

Table 4-5: Example Design Directory (Continued)

Name Description

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 33
UG240 August 8, 2007

Directory and File Contents
R

example_design/client
This directory contains the support files necessary for the example client loopback logic
connected to the Ethernet MAC client interfaces.

The 8-bit versions of the following files are only present when an 8-bit client interface has
been selected. Similarly the 16-bit versions are only present when a 16-bit client interface
has been selected.

client/fifo
This directory contains the files for the FIFO that is instanced in the client loopback
example design.

Table 4-6: Client Directory

Name Description

<project_dir>/<component_name>/example_design/client

address_swap_module_[8 | 16].v[hd] The client loopback instances this to swap
the source and destination addresses of the
incoming frames.

Back to Top

Table 4-7: FIFO Directory

Name Description

<project_dir>/<component_name>/example_design/client/fifo

eth_fifo_[8 | 16].v[hd] FIFO top level. This instantiates the
transmit and receive client FIFOs and ties
the LocalLink client interface signals
together to provide a loopback path from
the receiver to the transmitter. For more
information on the FIFO see “10 Mbps, 100
Mbps, 1 Gbps Ethernet FIFO,” page 41.

tx_client_fifo_[8 | 16].v[hd] Transmit client FIFO. The FIFO receives
packets from the client over the LocalLink
interface, stores the packet in entirety, and
forwards the packet to the MAC.

rx_client_fifo_[8 | 16].v[hd] Receive client FIFO. The receive FIFO
stores the received frame in entirety and
forwards the frame to the client after
completely verifying the frame’s integrity.

Back to Top

http://www.xilinx.com

34 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

example_design/physical
This directory contains the files that describe the physical interfaces of the Ethernet MAC.
Appropriate files, from the following list, are delivered by the CORE Generator depending
on the physical interface selected.

<component name>/implement
The implement directory contains the core implementation script files.

Table 4-8: Physical Directory

Name Description

<project_dir>/<component_name>/example_design/physical

gmii_if.v[hd] Delivered if GMII is selected on one or
both Ethernet MACs without the
Advanced Clocking option (Byte PHY).

gmii_byte_phy_if.v[hd] Delivered if GMII is selected on one or
both Ethernet MACs with the Byte PHY
Advanced Clocking option.

mii_if.v[hd] Delivered if MII is selected on one or both
of the Ethernet MACs.

rgmii_if.v[hd] Delivered if RGMII version 1.3 is selected
on one or both of the Ethernet MACs.

rgmii_v2_0_if.v[hd] Delivered if RGMII version 2.0 is selected
on one or both of the Ethernet MACs.

gt11_dual_1000X.v[hd]
gt11_to_gt_rxclkcorcnt_shim.v[hd]
cal_block_v1_4_1.v[hd]

If SGMII or 1000Base-X PCS/PMA or
SGMII interface is selected for one or both
Ethernet MACs, these files collectively
interface MGTs to the physical interface.

Back to Top

Table 4-9: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.bat Windows batch file that processes the
example design through the Xilinx tool
flow.

implement.sh UNIX shell script that processes the
example design through the Xilinx tool
flow.

xst.scr XST script file for the example design

xst.prj XST project file for the example design; it
enumerates all the HDL files that need to
be synthesised.

Back to Top

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 35
UG240 August 8, 2007

Directory and File Contents
R

implement/results
This directory is created by the implement scripts and is used to run the example design
files and the Ethernet MAC wrapper file through the Xilinx implementation tools. After
these scripts are run, the following files for timing simulation appear:

<component name>/simulation
The simulation directory and the sub-directories below it provide the files necessary to test
a VHDL or Verilog implementation of the example design.

Table 4-10: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd] Back-annotated SimPrim-based VHDL or
Verilog design. Used for timing
simulation.

routed.sdf Timing information for simulation

Back to Top

Table 4-11: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd] VHDL or Verilog demonstration test bench
for the Ethernet MAC wrapper

configuration_tb.v[hd] Configuration test bench is instantiated in
demo_tb.v[hd]. It provides stimuli to
configure the Ethernet MACs via the
selected management interface.

emac0_phy_tb.v[hd] Physical interface test bench for EMAC0.
This stimulates the receiver ports and
monitors the transmitter ports of the
EMAC0 physical interface. This is
instantiated in demo_tb.v[hd] and is only
present when EMAC0 has been selected.

emac1_phy_tb.v[hd] Physical interface test bench for EMAC1.
This stimulates the receiver ports and
monitors the transmitter ports of the
EMAC1 physical interface. This is
instantiated in demo_tb.v[hd] and is only
present when EMAC1 has been selected.

Back to Top

http://www.xilinx.com

36 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

Table 4-12: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do ModelSim macro file that compiles the
example design sources and the structural
simulation model then runs the functional
simulation to completion.

wave_mti.do ModelSim macro file that opens a wave
window and adds interesting signals to it.
It is called by the simulate_mti.do file

simulate_ncsim.sh IUS script file that compiles the example
design sources and the structural
simulation model and then runs the
functional simulation to completion.

wave_ncsim.sv IUS macro file that opens a wave window
and adds interesting signals to it.

Back to Top

Table 4-13: TIming Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do ModelSim macro file that compiles the
VHDL or Verilog timing model and demo
test bench then runs the timing simulation
to completion.

wave_mti.do ModelSim macro file that opens a wave
window and adds interesting signals to it.
It is called by the simulate_mti.do macro
file.

simulate_ncsim.sh IUS script file that compiles the VHDL or
Verilog timing model and demo test bench
and then runs the timing simulation to
completion.

wave_ncsim.sv IUS macro file that opens a wave window
and adds interesting signals to it.

Back to Top

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 37
UG240 August 8, 2007

Implementation and Test Scripts
R

Implementation and Test Scripts

Implementation Scripts for Timing Simulation
The implementation script, generated in the
<project_dir>/<component_name>/implement directory, is either a shell script or
batch file that processes the example design through the Xilinx tool flow.

Note: The implementation scripts do not support the DCR bus.

UNIX

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs the following steps:

• The HDL example design is synthesised using XST.

• Ngdbuild is run to consolidate the Ethernet MAC wrapper netlist and the HDL
example netlist into the NGD file containing the entire design. A constraints file is also
used at this stage to constrain the clocks to operate at the correct speed for Ethernet
implementations. For more information on the constraints file see Appendix B,
“Constraining the Example Design.”

• The design is place-and-routed on the target device.

• Static timing analysis is performed on the routed design using trce.

• A bitstream is generated.

• Netgen runs on the routed design to generate VHDL and Verilog netlists and timing
information in the form of SDF files.

The Xilinx tool flow generates several output and report files. These are saved in the
following directory, created by the implement script:

<project_dir>/<component_name>/implement/results

Test Scripts For Timing Simulation
The test script macro that automates the simulation of the test bench.

For ModelSim

VHDL

<project_dir>/<component_name>/simulation/timing/
simulate_mti.do

Verilog

<project_dir>/<component_name>/simulation/timing/
simulate_mti.do

http://www.xilinx.com

38 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

For IUS

VHDL

<project_dir>/<component_name>/simulation/timing/
simulate_ncsim.sh

Verilog

<project_dir>/<component_name>/simulation/timing/
simulate_ncsim.sh

The test scripts perform the following tasks:

• Compiles the gate level netlist

• Compiles the demonstration test bench

• Starts a simulation of the test bench (with timing information if a Full-system
Evaluation License or Full License is in use)

• Opens a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv)

• Runs the simulation to completion

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 39
UG240 August 8, 2007

Implementation and Test Scripts
R

Test Scripts For Functional Simulation
The test script that automates the functional simulation of the test bench.

For ModelSim

VHDL

<project_dir>/<component_name>/simulation/functional/
simulate_mti.do

Verilog

<project_dir>/<component_name>/simulation/functional/
simulate_mti.do

For IUS

VHDL

<project_dir>/<component_name>/simulation/functional/
simulate_ncsim.sh

Verilog

<project_dir>/<component_name>/simulation/functional/
simulate_ncsim.sh

The test scripts perform the following tasks:

• Compiles the Ethernet MAC wrapper

• Compiles the example design files

• Compiles the demonstration test bench

• Starts a simulation of the test bench with no timing information

• Opens a Wave window and adds some signals of interest (wave_mti.do,
wave_ncsim.sv)

• Runs the simulation to completion

http://www.xilinx.com

40 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

Example Design

HDL Example Design

The top-level example design for the Ethernet MAC wrapper is defined in the following
files:

VHDL

<project_dir>/<component_name>/example_design/
<component_name>_example_design.vhd

Figure 4-1: HDL Example Design

Embedded Ethernet
MAC Wrapper

FPGA
Fabric

Clock
Circuitry

Physical I/F

(GMII/MII,
RGMII,

or RocketIO

Physical I/F

(GMII/MII,
RGMII,

or
RocketIO)

EMAC1

Host
Interface

EMAC0

Embedded
Ethernet MAC

Physical
Interface

component_name_block

component_name_example_design

Address
Swap

Module

Address
Swap

Module

10Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

10Mbps, 100 Mbps,
1 Gbps Ethernet FIFO

Client
Interface

component_name_locallink

Tx Client
FIFO

Rx Client
FIFO

Tx Client
FIFO

Rx Client
FIFO

Lo
ca

lL
in

k
In

te
rf

ac
e

Lo
ca

lL
in

k
In

te
rf

ac
e

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 41
UG240 August 8, 2007

Example Design
R

Verilog

<project_dir>/<component_name>/example_design/
<component_name>_example_design.v

The HDL example design contains the following:

• An instance of the Ethernet MAC wrapper

• A client loopback module, includes an address swapping module and a receiver and
transmitter FIFO

• Clock management logic, including DCM and Global Clock Buffer instances, where
required

• GMII/MII, RGMII, SGMII or 1000 Base-X PCS/PMA interface logic, including MGTs,
IOB and DDR registers instances, where required

The HDL example design connects the client side of the Ethernet MAC to the LocalLink
FIFOs (which are in turn put in loop back through the address swap module) and the
selected physical interface to external IOBs. This allows the functionality of the core to be
demonstrated either using a simulation package, as discussed in this guide, or in
hardware, if placed on a suitable board.

10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO is defined in the following files:

VHDL

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].vhd

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].vhd

Verilog

<project_dir>/<component_name>/example_design/client/fifo/

eth_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

tx_client_fifo_[8|16|8,16].v

<project_dir>/<component_name>/example_design/client/fifo/

rx_client_fifo_[8|16|8,16].v

The 10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO contains an instance of tx_client_fifo to
connect to the Ethernet MAC client side transmitter interface, and an instance of the
rx_client_fifo to connect to the Ethernet MAC client receiver interface. Both transmit
and receive FIFO components implement a LocalLink user interface, through which the
frame data can be read/written.

http://www.xilinx.com

42 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

Figure 4-2 illustrates a straightforward frame transfer across the LocalLink interface. For
more information about the FIFO, see Appendix A, “Using the Client Side FIFO.”

rx_client_fifo

The rx_client_fifo is built around 2 Dual Port Block RAMs, giving a total memory
capacity of 4096 bytes of frame data. The receive FIFO will write in data received through
the Ethernet MAC. If the frame is marked as good, that frame will be presented on the
LocalLink interface for reading by the user, (in this case the tx_client_fifo module). If
the frame is marked as bad, that frame is dropped by the receive FIFO.

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be
asserted. Situations in which the memory may overflow are:

• The FIFO may overflow if the receiver clock is running at a faster rate than the
transmitter clock or if the inter-packet gap between the received frames is smaller than
the inter-packet gap between the transmitted frames. If this is the case the tx FIFO will
not be able to read data from the rx FIFO as fast as it is being received.

• The FIFO size of 4096 bytes limits the size of the frames that it can store without error. If
a frame is larger than 4000 bytes, the FIFO may overflow and data will be lost. It is
therefore recommended that the example design is not used with the Ethernet MAC in
jumbo frame mode for frames larger than 4000 bytes.

tx_client_fifo

The tx_client_fifo is built around 2 Dual Port Block RAMs, giving a total memory
capacity of 4096 bytes of frame data.

When a full frame has been written into the transmit FIFO, the FIFO will present data to the
MAC transmitter. On receiving the acknowledge signal from the Ethernet MAC the rest of
the frame shall be transmitted, providing there is no retransmit request output by the
Ethernet MAC. If a retransmission request is received, the frame will be queued for
retransmission.

If the FIFO memory fills up, the dst_rdy_out_n signal will be used to halt the LocalLink
interface writing in data, until space becomes available in the FIFO. If the FIFO memory
fills up but no full frames are available for transmission (for example, if a frame larger than
4000 bytes is written into the FIFO), the FIFO will assert the tx_overflow signal and
continue to accept the rest of the frame from the user. The overflow frame will be dropped
by the FIFO. This ensures that the LocalLink interface does not lock up.

Figure 4-2: Frame Transfer across LocalLink Interface

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 43
UG240 August 8, 2007

Example Design
R

Address Swap Module

The address swap module is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].vhd

Verilog

<project_dir>/<component_name>/example_design/client/
address_swap_module_[8|16|8,16].v

The address swap module takes frame data from the Ethernet MAC receiver client
interface. The module swaps the destination and source addresses of each frame as shown
in Figure 4-3 to ensure that the outgoing frame destination address matches the source
address of the link partner. The module transmits the frame control signals with an equal
latency to the frame data.

Physical Interface
An appropriate Physical Interface block is provided for each selected EMAC. This block
connects the physical interface of the EMAC block to the I/O of the FPGA. Depending on
the physical interface selected, the block contains the following components:

• For GMII/MII, this component will contain Input/Output block (IOB) buffers and IOB
flip-flops.

• For RGMII, this component will contain IOB buffers and IOB Double-Data Rate flip-
flops.

• For 1000BASE-X PCS/PMA or SGMII, this component will instantiate and connect
MGTs. Calibration blocks are included and are connected to the instantiated MGTs. See
the Calibration Block User Guide for detailed information; see Answer Record 22477 for
information about downloading the design files which include the Calibration Block User
Guide.

Figure 4-3: Modification of Frame Data by Address Swap Module

rx_data_in

rx_data_valid_in

rx_good_frame_in

rx_bad_frame_in

rx_data_out

rx_data_valid_out

rx_good_frame_out

rx_bad_frame_out

6 Byte DA 6 Byte SA DATAL/T FCS

6 Byte SA 6 Byte DA DATAL/T FCS

http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=22477
http://www.xilinx.com
www.xilinx.com/xlnx/xil_ans_display.jsp?PagePath=22477

44 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

Demonstration Test Bench

Test Bench Functionality

The demonstration test bench is defined in the following files:

Figure 4-4: Demonstration Test Bench

Example Design

Monitor

Management

Stimulus

Management
 and Reset

Test Bench Control

Demonstration Test Bench

emac1_phy_tb

configuration_tb

Monitor

Stimulus

emac0_phy_tb

EMAC1 RX

EMAC1 TX

EMAC0 RX

EMAC0 TX

http://www.xilinx.com

Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 45
UG240 August 8, 2007

Demonstration Test Bench
R

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

<project_dir>/<component_name>/simulation/configuration_tb.vhd

<project_dir>/<component_name>/simulation/emac0_phy_tb.vhd

<project_dir>/<component_name>/simulation/emac1_phy_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

<project_dir>/<component_name>/simulation/configuration_tb.v

<project_dir>/<component_name>/simulation/emac0_phy_tb.v

<project_dir>/<component_name>/simulation/emac1_phy_tb.v

The demonstration test bench is a simple VHDL or Verilog program to exercise the
example design and the core itself.

The top-level test bench (demo_tb.vhd, demo_tb.v) consists of

• Clock generators

• A control mechanism to manage the interaction of management, stimulus and monitor
blocks

The configuration test bench (configuration_tb.vhd,
configuration_tb.v) consists of

• A management block to exercise the host or DCR interfaces, if selected, or to configure
the Ethernet MACs via the configuration vector.

• Semaphores to indicate configuration status to the top level test bench.

The physical layer test benches (emac0/1_phy_tb.vhd, emac0/1_phy_tb.v)consist
of

• A stimulus block, which connects to the physical receiver interface of the example
design

• A monitor block to check data returned through the physical transmitter interface

Demonstration Test Bench Tasks

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The selected Ethernet MACs are configured through the management or configuration
interface, setting up the MDC clock frequency, disabling auto-negotiation in SGMII and
1000Base-X PCS/PMA modes, and disabling flow control.

• The configuration test bench then sets the speed of the selected Ethernet MACs.

http://www.xilinx.com

46 www.xilinx.com Virtex4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Chapter 4: Detailed Example Design
R

• If EMAC0 has been selected to run at 1000 Mbps or in Tri-Speed mode, the following
four frames are pushed into the EMAC0 receiver interface at 1 Gbps:

+ The first frame is a minimum length frame.

+ The second frame is a type frame.

+ The third frame is an errored frame.

+ The fourth frame is a padded frame.

• If EMAC1 has been selected to run at 1000 Mbps or in Tri-Speed mode then the same
four frames are applied to the EMAC1 receiver interface simultaneously.

• The frames received at the transmitter of each Ethernet MAC interface are checked
against the stimulus frames to ensure data is the same.

• If applicable, the selected Ethernet MACs are configured through the management
interface to run at 100 Mbps. The same four frames are then sent to the receiver interface
and checked against the stimulus frames.

• If applicable the selected Ethernet MACs are then configured through the management
interface to run at 10 Mbps. The same four frames are then sent to the receiver interface
and checked against the stimulus frames.

Changing the Test Bench

Changing Frame Data

It is possible to change the contents of the frame data passed into the Ethernet MAC
receivers. This can be done by changing the data fields for each frame defined in the test
bench. Further frames can be added by defining a new frame of data.

Changing Frame Error Status

Errors can be inserted into any of the pre-defined frames by changing the error field to ‘1’
in any column of that frame.

When an error is introduced into a frame, the bad_frame field for that frame must be set in
order to disable the monitor checking for that frame.

The error currently written into the third frame can be removed by setting all error fields
for the frame to ‘0’ and unsetting the bad_frame field.

Changing the Tri-Mode Ethernet MAC Configuration

The configuration of the Ethernet MACs used in the demonstration test bench can be
altered.

Caution! Certain Ethernet MAC configurations cause the test bench either to result in failure or
cause processes to run indefinitely. The user must determine which configurations can safely be
used with the test bench.

The Ethernet MACs can be reconfigured by adding further steps in the test bench
management process to write new configurations to the Ethernet MAC.

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 47
UG240 August 8, 2007

R

Appendix A

Using the Client Side FIFO

The example design provided with the Ethernet MAC wrapper contains a LocalLink FIFO
used to interface to the client side of the Ethernet MAC. The source code for the FIFO is
provided and can be used and adjusted for user applications.

The 10 Mbps/100 Mbps/1 Gbps Ethernet FIFO consists of independent transmit and
receive FIFOs embedded in a top-level wrapper. Figure A-1 shows how the FIFO fits into a
typical implementation. Each FIFO is built around 2 Dual Port Block RAMs giving a
memory capacity of 4096 bytes in each FIFO. This chapter describes the operation of the
FIFO.

Overview of LocalLink Interface
Data is transferred on the LocalLink interface from source to destination, with the flow
governed by the four active low control signals sof_n, eof_n, src_rdy_n and
dst_rdy_n. The flow of data is controlled by the src_rdy_n and dst_rdy_n signals.
Only when these signals are asserted simultaneously is data transferred from source to
destination. The individual packet boundaries are marked by the sof_n and eof_n
signals. Figure A-2 shows the transfer of an 8-byte frame.

Figure A-1: Typical 10M/100M/1G Ethernet FIFO Implementation

EMAC Wrapper

User Logic

EMAC PHY
Interface

GMII/MII, RGMII, SGMII,
100Base-X PCS/PMA

10Mbps/100Mbps/1Gbps
Ethernet MAC FIFO

Transmit FIFO

Receive FIFO

LocalLink Interface
Client Interface

http://www.xilinx.com

48 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix A: Using the Client Side FIFO
R

Figure A-3 illustrates frame transfer of a 5-byte frame, where both the src_rdy_n and
dst_rdy_n signals are used to control the flow of data across the interface.

Receive FIFO Operation
The receive FIFO takes data from the client interface of the Ethernet MAC core and
converts it into LocalLink format. See the Virtex-4 Embedded Tri-Mode Ethernet MAC User
Guide for a description of the Ethernet MAC receive client interface. If the frame is marked
as good by the Ethernet MAC, that frame will then be presented on the LocalLink interface
for reading by the user. If the frame is marked as bad, that frame will be dropped by the
FIFO.

LocalLink Interface
Table A-1 describes the receive FIFO LocalLink interface.

Figure A-2: Frame Transfer across LocalLink Interface

Figure A-3: Frame Transfer with Flow Control

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4 5 6 7

clock

data[7:0]

sof_n

eof_n

src_rdy_n

dst_rdy_n

0 1 2 3 4

Table A-1: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

rx_ll_clock Input N/A Read clock for LocalLink
interface

rx_ll_reset Input rx_ll_clock Synchronous reset

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 49
UG240 August 8, 2007

Transmit FIFO Operation
R

If the receive FIFO memory overflows, the frame currently being received will be dropped,
regardless of whether it is a good or bad frame, and the signal rx_overflow will be
asserted. Frames will continue to be dropped until space is made available in the FIFO, by
reading data out.

The FIFO status signal indicates the occupancy of the FIFO.

Transmit FIFO Operation
The transmit FIFO accepts frames over the LocalLink interface and stores them in block
RAM for transmission via the EMAC. When a full frame is written into the transmit FIFO,
the FIFO will present the data to the Ethernet MAC transmitter client interface. On
receiving the acknowledge signal from the Ethernet MAC the rest of the frame is
transmitted. For a description of the Ethernet MAC transmit client interface, see Virtex-4
Embedded Tri-Mode Ethernet MAC User Guide.

LocalLink Interface
Table A-2 shows the transmit FIFO LocalLink interface signals.

rx_ll_data_out[7:0] Output rx_ll_clock Data read from FIFO

rx_ll_sof_out_n Output rx_ll_clock Start of frame indicator

rx_ll_eof_out_n Output rx_ll_clock End of frame indicator

rx_ll_src_rdy_out_n Output rx_ll_clock Source ready indicator

rx_ll_dst_rdy_in_n Input rx_ll_clock Destination ready indicator

rx_fifo_status[3:0] Output rx_ll_clock FIFO memory status

FIFO occupancy indication in
units of 256 bytes (rounded
down).

A value of 1 indicates FIFO
space between 256-511 bytes.

A value of 2 indicates FIFO
space between 512-767 bytes
and so on.

Table A-1: Receive FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

tx_ll_clock Input N/A Write clock for LocalLink interface

tx_ll_reset Input tx_ll_clock Synchronous reset

tx_ll_data_in[7:0] Input tx_ll_clock Write data to be sent to transmitter

tx_ll_sof_in_n Input tx_ll_clock Start of frame indicator

http://www.xilinx.com

50 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix A: Using the Client Side FIFO
R

In half-duplex operation, if the client interface collision signal is asserted by the EMAC, the
current frame transmission will be terminated. If the retransmit signal is also asserted, the
FIFO re-queues the frame for transmission.

If the FIFO memory fills up, the dst_rdy_out_n signal will be used to halt the LocalLink
interface writing in data, until space becomes available in the FIFO. If the FIFO memory
fills up but no frames are available for transmission (for example, if a frame larger than
4000 bytes is written into the FIFO), the FIFO will assert the tx_overflow signal and
continue to accept the rest of the frame from the user. The overflow frame will be dropped
by the FIFO. This ensures that the LocalLink interface does not lock up.

User Interface Data Width Conversion
Conversion of the user interface 8 bit data path to a 16, 32, 64 or 128 bit data path can be
made by connecting the LocalLink interface directly to the Parameterizable LocalLink
FIFO (see Xilinx Application Note XAPP691, “Parameterizable LocalLink FIFO”).

tx_ll_eof_in_n Input tx_ll_clock End of frame indicator

tx_ll_src_rdy_in_n Input tx_ll_clock Source ready indicator

tx_ll_dst_rdy_out_n Output tx_ll_clock Destination ready indicator

tx_fifo_status[3:0] Output tx_ll_clock FIFO occupancy indication in units
of 256 bytes (rounded down).

A value of 1 indicates FIFO space
between 256-511 bytes.

A value of 2 indicates FIFO space
between 512-767 bytes and so on.

Table A-2: Transmit FIFO LocalLink Interface

Signal Direction
Clock

Domain
Description

http://www.xilinx.com/bvdocs/appnotes/xapp691.pdf
http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 51
UG240 August 8, 2007

R

Appendix B

Constraining the Example Design

An example UCF is provided with the HDL example design, which provides examples of
constraint requirements for the design.

Device, Package, and Speedgrade Selection
The Ethernet MAC UCF sets the part to a 4vfx60ff672-10 device. This should be changed to
the desired Virtex-4 device.

I/O Location Constraints
Example placement is provided for the GMII, RGMII v1.3 and RGMII v2.0 physical
interfaces. This should be changed to the desired pinout.

Timing Constraints
For more information on the clocking schemes used for each physical interface, see the
Virtex-4 Embedded Tri-Mode Ethernet MAC User Guide. Example constraints are given in the
UCF delivered with the HDL example design for the core. These should be studied in
conjunction with the HDL source code.

In the following examples, # refers to the Ethernet MAC number (EMAC0 or EMAC1).

GMII Constraints

IOB Constraints

The following constraints target the flip-flops that are inferred in the top-level HDL file for

the example design; constraints are set to ensure that these are placed in IOBs.

Place flip flops in IOBs
INST "*gmii#?RXD_TO_MAC*" IOB = true;
INST "*gmii#?RX_DV_TO_MAC" IOB = true;
INST "*gmii#?RX_ER_TO_MAC" IOB = true;

The GMII is a 3.3 volt signal-level interface. The following constraints set these IOs to use
the LVTTL standard.

INST "gmii_txd_#<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en_#" IOSTANDARD = LVTTL;
INST "gmii_tx_er_#" IOSTANDARD = LVTTL;

INST "gmii_rxd_#<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv_#" IOSTANDARD = LVTTL;

http://www.xilinx.com

52 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

INST "gmii_rx_er_#" IOSTANDARD = LVTTL;

INST "gmii_tx_clk_#" IOSTANDARD = LVTTL;
INST "gmii_rx_clk_#" IOSTANDARD = LVTTL;

Input Setup/Hold Timing

The following GMII I/O constraints have been derived from the IEEE GMII timing
specification. GMII requires a 2 ns setup and 0 ns hold time on the incoming data. '#' is 0 or
1 corresponding to the appropriate EMAC.

GMII spec: 2ns setup time, 0ns hold time
INST "GMII_RXD_#<?>" TNM = "gmii_rx_#";
INST "GMII_RX_DV_#" TNM = "gmii_rx_#";
INST "GMII_RX_ER_#" TNM = "gmii_rx_#";

TIMEGRP "gmii_rx_#" OFFSET = IN -6 ns VALID 2 ns BEFORE "GMII_RX_CLK_#";

The GMII design uses IDELAY components on the receiver clock. A fixed tap delay is
applied to delay the clock so the data is correctly sampled by the gmii_rx_clk clock at the
IOB flip-flop, meeting GMII setup and hold timing.

The clock tree has intrinsically greater delay than the data. By delaying the clock more with
an IDELAY, the data is aligned with the previous clock edge, causing a 1 period (8 ns) shift in
the timing window. The new setup requirement becomes 2 ns setup - 8 ns period shift = -6 ns
as the new OFFSET requirement. The timing tool compares the data to the correct clock edge.

IDELAY components are also supplied on the data and control signals. This allows
delaying either the data or the clock to meet setup and hold time. In the example design,
only the clock is delayed, and the IOBDELAY_VALUE is set to 0 on everything but the
clock.

The following constraints show an example of setting the delay value for one of these
IDELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew. The IOBDELAY_TYPE specifies this delay is constant and will not
be changed during operation.

IDELAY on clock path to align it with the data
INST "*gmii_rx_clk_?_delay" IOBDELAY_TYPE = FIXED;

INST "*gmii_rx_clk_?_delay" IOBDELAY_VALUE = 23;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example GMII pinout in the particular device. The
setup/hold timing, which is achieved after place-and-route, is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY primitives are instantiated with a fixed delay attribute, an IDELAYCTRL
component must be also instantiated to continuously calibrate the individual input delay
elements. The IDELAYCTRL module requires a reference clock, which is assumed to be an
input to the example design delivered by CORE Generator. The most efficient way to use
the IDELAYCTRL module is to lock the placement of the instance to the clock region of the
device where the IDELAY components are placed. An example LOC constraint for the
IDELAYCTRL module is shown below. See the Virtex-4 User Guide and code comments for
more information.

IDELAYCTRL location - must be same clock region as receiver IOs
See Virtex 4 Users Guide for more information
INST "*dlyctrl_#" LOC = "IDELAYCTRL_X0Y6";

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 53
UG240 August 8, 2007

Timing Constraints
R

In case of tri-speed operation, additional constraints for 10/100 Mbps are recommended.
These two constraints put a bound on the incoming and outgoing data to ensure that a
large skew between the data and clock is not present. These constraints are not in the IEEE
specification and are merely recommendations.

INST "gmii_txd_#<?>" TNM = "sig_gmii_tx_#";
INST "gmii_tx_en_#" TNM = "sig_gmii_tx_#";
INST "gmii_tx_er_#" TNM = "sig_gmii_tx_#";
INST "gmii_rxd_#<?>" TNM = "sig_gmii_rx_#";
INST "gmii_rx_dv_#" TNM = "sig_gmii_rx_#";
INST "gmii_rx_er_#" TNM = "sig_gmii_rx_#";

Put a 10ns window on receive data, and a 15ns window from clock to out on the
transmit side
TIMEGRP "sig_gmii_rx_#" OFFSET = IN 10 ns VALID 20 ns BEFORE "gmii_rx_clk_#";
TIMEGRP "sig_gmii_tx_#" OFFSET = OUT 15 ns AFTER "mii_tx_clk_#";

Clock Constraints

If an external GMII interface is implemented, the following constraint is always applied.
Additionally, other constraints that vary according to the Ethernet MAC configuration are
also required—see the appropriate following section.

PHYEMAC#GTXCLK Clock

This signal is routed to the PHYEMAC#GTXCLK port of the Ethernet MAC and is constrained
to 125 MHz for 1 Gbps and Tri-Speed operation. The clock should be supplied by the user
from a high quality source. This clock is not placed onto global clock routing. If both
EMACs use a GMII, this clock is shared between them.

NET "gtx_clk_ibufg_#_i" TNM_NET = "clk_gtx_clk";
TIMESPEC "TS_gtx_clk" = PERIOD "clk_gtx_clk" 7200 ps HIGH 50 %;

1 Gbps Operation Only - EMAC0 or EMAC1

Transmitter Clock

At 1 Gbps speed only, the transmitter clock can be shared between client and PHY. The
tx_gmii_mii_clk_in_#_i clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_#_i" TNM_NET = "clk_phy_tx_clk#";
TIMESPEC "TS_phy_tx_clk#" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

Receiver Clock

At 1 Gbps speed only, the receiver clock can be shared between client and PHY. The
gmii_rx_clk_0_i clock should be constrained to 125 MHz.

NET "gmii_rx_clk_0_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

1 Gbps Operation Only - EMAC0 and EMAC1 Clock Optimizations

Transmitter Clock

At 1 Gbps speed only, the transmitter clock can be shared between client and PHY of both
EMACs. The tx_gmii_mii_clk_in_0_i clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_0_i" TNM_NET = "clk_phy_tx_clk0";
TIMESPEC "TS_phy_tx_clk0" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

http://www.xilinx.com

54 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

Receiver Clocks

At 1 Gbps speed only, the receiver clocks can be shared between client and PHY of the
same Ethernet MAC. However, each Ethernet MAC requires a separate receiver clock
domain. The following clocks should both be constrained to 125 MHz.

NET "gmii_rx_clk_0_i" TNM_NET = "clk_phy_rx_clk0";
TIMESPEC "TS_phy_rx_clk0" = PERIOD "clk_phy_rx_clk0" 7200 ps HIGH 50 %;

NET "gmii_rx_clk_1_i" TNM_NET = "clk_phy_rx_clk1";
TIMESPEC "TS_phy_rx_clk1" = PERIOD "clk_phy_rx_clk1" 7200 ps HIGH 50 %;

Tri-Speed or 10/100 Mbps Operation

If an external GMII interface is implemented with standard clocking (no use of the Byte
PHY mode), the following constraints should be applied. There are no clock optimizations
that can be performed when both EMACs use this interface: the following constraints must
be applied to both EMACs separately.

Transmitter Client Clock

The tx_client_clk_in_#_i signal is connected to the CLIENTEMAC#TXCLIENTCLKIN
input of the Ethernet MAC and to the users client side transmitter logic. The clock should
be constrained to 125 MHz for 1 Gbps operation.

NET "tx_client_clk_in_#_i" TNM_NET = "clk_client_tx_clk#";
TIMESPEC "TS_client_tx_clk#" = PERIOD "clk_client_tx_clk#" 7200 ps HIGH 50 %;

Receiver Client Clock

The rx_client_clk_in_#_i signal is connected to the CLIENTEMAC#RXCLIENTCLKIN
input of the Ethernet MAC and to the users client receive side logic. The clock should be
constrained to 125 MHz for 1 Gbps operation.

NET "rx_client_clk_in_#_i" TNM_NET = "clk_client_rx_clk#";
TIMESPEC "TS_client_rx_clk#" = PERIOD "clk_client_rx_clk#" 7200 ps HIGH 50 %;

Transmitter PHY Clock

The tx_gmii_mii_clk_in_#_i signal is routed to the
CLIENTEMAC#TXGMIIMIICLKIN port of the Ethernet MAC along with the RGMII
transmitter interface logic. The clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_#_i" TNM_NET = "clk_phy_tx_clk#";
TIMESPEC "TS_phy_tx_clk#" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

Receiver PHY Clock

The rgmii_rxc_#_i signal is routed to the PHYEMAC#RXCLK port of the Ethernet MAC
along with the RGMII receiver interface logic. The clock should be constrained to 125 MHz.

NET "gmii_rxc_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

GMII with Byte PHY Constraints
If an external GMII interface is implemented with the Byte PHY logic (Full Duplex
operation only is supported), the following constraints should be applied. There are no
clock optimizations that can be performed when both EMACs use this interface; the
following constraints must be applied to both EMACs separately.

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 55
UG240 August 8, 2007

Timing Constraints
R

Receiver Clock

The Byte PHY option allows the receiver clock to be shared between client and PHY. The
mii_rx_clk_#_i clock should be constrained to 12.5 MHz for 10/100 Mbps operation.

NET "gmii_rx_clk_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

Transmitter Clock

The Byte PHY option allows the transmitter clock to be shared between client and PHY.
The tx_gmii_mii_clk_in_#_i clock should be constrained to 12.5 MHz for 10/100
Mbps operation.

NET "tx_gmii_mii_clk_in_0_i" TNM_NET = "clk_phy_tx_clk0";
TIMESPEC "TS_phy_tx_clk0" = PERIOD "clk_phy_tx_clk0" 7200 ps HIGH 50 %;

MII Constraints

I/O Constraints

The following MII I/O constraints are recommended in the MII specifications:

INST "mii_txd_#<?>" TNM = "sig_mii_tx_#";
INST "mii_tx_en_#" TNM = "sig_mii_tx_#";
INST "mii_tx_er_#" TNM = "sig_mii_tx_#";

INST "mii_rxd_#<?>" TNM = "sig_mii_rx_#";
INST "mii_rx_dv_#" TNM = "sig_mii_rx_#";
INST "mii_rx_er_#" TNM = "sig_mii_rx_#";

using recommended budget from the clause 22
TIMEGRP "sig_mii_rx_#" OFFSET = IN 10 ns VALID 20 ns BEFORE "mii_rx_clk_#";
TIMEGRP "sig_mii_tx_#" OFFSET = OUT 15 ns AFTER "mii_tx_clk_#";

The first constraint provides a setup/hold window of 10 ns on the receive data. The second
constraint ensures the data is present on the output pins 15 ns after the clock. These are
both only recommended specifications.

Clock Constraints

If an external MII interface is implemented with standard clocking (no use of the Clock
Enables), the following constraints should be applied. There are no clock optimizations
that can be performed when both EMACs use this interface; the following constraints must
be applied to both EMACs separately.

Receiver Client Clock

The rx_client_clk_in_#_i signal is connected to the CLIENTEMAC#RXCLIENTCLKIN
input of the Ethernet MAC and to the users client side receiver logic. The clock should be
constrained to 12.5 MHz for 10/100 Mbps operation.

NET "rx_client_clk_in_#_i" TNM_NET = "clk_client_rx_clk#";
TIMESPEC "TS_client_rx_clk#" = PERIOD "clk_client_rx_clk#" 7200 ps HIGH 50 %;

Transmitter Client Clock

The tx_client_clk_in_#_i signal is connected to the CLIENTEMAC#TXCLIENTCLKIN
input of the Ethernet MAC and to the users client side transmitter logic. The clock should
be constrained to 12.5 MHz for 10/100 Mbps operation.

NET "tx_client_clk_in_#_i" TNM_NET = "clk_client_tx_clk#";

http://www.xilinx.com

56 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

TIMESPEC "TS_client_tx_clk#" = PERIOD "clk_client_tx_clk#" 7200 ps HIGH 50 %;

Receiver PHY Clock

The mii_rx_clk_#_i signal is routed to the PHYEMAC#RXCLK port of the Ethernet MAC
along with the MII transmitter interface logic. The clock should be constrained to 25 MHz.

NET "mii_rx_clk_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

Transmitter PHY Clock

The tx_gmii_mii_clk_in_#_i signal is routed to the
CLIENTEMAC#TXGMIIMIICLKIN port of the Ethernet MAC along with the MII receiver
interface logic. The clock should be constrained to 25 MHz.

NET "tx_gmii_mii_clk_in_#_i" TNM_NET = "clk_phy_tx_clk#";
TIMESPEC "TS_phy_tx_clk#" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

MII with Clock Enable Constraints
If an external MII interface is implemented with the Clock Enables, the following
constraints should be applied. No clock optimization can be performed when both EMACs
use this interface; the following constraints must be applied to both EMACs separately.

Receiver Clock

The clock enable option allows the receiver clock to be shared between client and PHY. The
mii_rx_clk_#_i clock should be constrained to 12.5 MHz for 10/100 Mbps operation.

NET "mii_rx_clk_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

Transmitter Clock

The clock enable option allows the transmitter clock to be shared between client and PHY.
The tx_gmii_mii_clk_in_#_i clock should be constrained to 12.5 MHz for 10/100
Mbps operation.

NET "tx_gmii_mii_clk_in_0_i" TNM_NET = "clk_phy_tx_clk0";
TIMESPEC "TS_phy_tx_clk0" = PERIOD "clk_phy_tx_clk0" 7200 ps HIGH 50 %;

Additional Constraints

MII with clock enable requires the following additional constraints at the TEMAC
boundary. These ensure that the data will cross the clock domains properly.

NET "*tx_mii_to_client_clk_?_r" MAXDELAY = 4000 ps;
NET "*rx_mii_to_client_clk_?_r" MAXDELAY = 4000 ps;

NET "*v4_emac_ll*rx_bad_frame_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*rx_data_valid_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*rx_good_frame_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*rx_data_*_i*" MAXDELAY = 6000 ps;

NET "*v4_emac_ll*tx_ack_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*tx_collision_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*tx_retransmit_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*tx_data_*_i" MAXDELAY = 6000 ps;
NET "*v4_emac_ll*tx_data_valid_*_i" MAXDELAY = 6000 ps;

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 57
UG240 August 8, 2007

Timing Constraints
R

RGMII (v1.3 and v2.0) Constraints

IOB Constraints (v2.0 only)

The RGMII v2.0 is a 1.5 volt signal-level interface. The 1.5 volt HSTL Class I SelectIO
standard is used for RGMII interface pins. Use the following constraints with the device IO
Banking rules.

INST "rgmii_iob_0" IOSTANDARD = HSTL_I;
INST "rgmii_txd_0<?>" IOSTANDARD = HSTL_I;
INST "rgmii_tx_ctl_0" IOSTANDARD = HSTL_I;
INST "rgmii_rxd_0<?>" IOSTANDARD = HSTL_I;
INST "rgmii_rx_ctl_0" IOSTANDARD = HSTL_I;
INST "rgmii_txc_0" IOSTANDARD = HSTL_I;
INST "rgmii_rxc_0" IOSTANDARD = HSTL_I;

Input Setup/Hold Timing

The following RGMII I/O constraints have been derived from the Hewlett Packard RGMII
timing specifications. RGMII needs a setup time of 1 ns, and a hold time of 1 ns on the
receive data. ‘#’ is 0 or 1 corresponding to the appropriate EMAC.

INST "rgmii_rxd_#<?>" TNM = "rgmii_rx_#";
INST "rgmii_rx_ctl_#" TNM = "rgmii_rx_#";

TIMEGRP "rgmii_rx_#" OFFSET = IN -7 ns VALID 2 ns BEFORE "RGMII_RXC_#" LOW;

The RGMII design uses IDELAY components on the clock. A fixed tap delay is applied to
delay the clock so that the data is correctly sampled by the rgmii_rxc clock at the IOB IDDR
registers, meeting RGMII setup and hold timing.

The clock tree has intrinsically greater delay than the data. By delaying the clock more with
an IDELAY, the data is aligned with the previous clock edge, causing a 1 period (8 ns) shift in
the timing window. The new setup requirement becomes 1 ns setup - 8 ns period shift = -7 ns
as the new OFFSET requirement. The timing tool compares the data to the correct clock edge.

IDELAY components are also supplied on the data and control signals. This allows
delaying either the data or the clock to meet setup and hold time. In the example design,
only the clock is delayed, and the IOBDELAY_VALUE is set to 0 on everything but the
clock.

The following constraint shows an example of setting the delay value for one of these
IDELAY components. All bits can be adjusted individually, if desired, to compensate for
any PCB routing skew.

IDELAY on data to align it with receive clock
INST "*rgmii_rx_clk_?_delay" IOBDELAY_TYPE = FIXED;

INST "*rgmii_rx_clk_?_delay" IOBDELAY_VALUE = 36;

The value of IOBDELAY_VALUE is preconfigured in the example designs to meet the
setup and hold constraints for the example RGMII pinout in the particular device. The
setup/hold timing which is achieved after place-and-route is reported in the data sheet
section of the TRCE report (created by the implement script).

When IDELAY or IODELAY primitives are instantiated with a fixed delay attribute, an
IDELAYCTRL component must be also instantiated to continuously calibrate the
individual input delay elements. The IDELAYCTRL module requires a reference clock,
which is assumed to be an input to the example design delivered by CORE Generator. The
most efficient way to use the IDELAYCTRL module is to lock the placement of the instance
to the clock region of the device where the IDELAY/IODELAY components are placed. An

http://www.xilinx.com

58 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

example LOC constraint for the IDELAYCTRL module is shown below. If your pins are in
more than 1 clock region, you need an IDELAYCTRL for each region. See the Virtex-4 User
Guide and code comments for more information.

IDELAYCTRL locations - One must be in the same clock region as receiver IOs
dlyctrl_tx needs to be in same clock region as transmitter rgmii_txc_0 signal
INST "*dlyctrl_#" LOC = "IDELAYCTRL_X0Y6";
INST "*dlyctrl_tx" LOC = "IDELAYCTRL_X0Y0";

Finally, an IDELAY is used to create the 2 ns delay on the clock with respect to the data
called for in the RGMII v2.0 specification. This is one of several possible implementations
of this delay. See the Virtex-4 Embedded Tri-Mode Ethernet MAC User Guide for more
information on this mode.

Set IDELAY value for 2ns delay on transmit clock w.r.t. the data
INST "*rgmii#?rgmii_tx_clk_delay" IOBDELAY_VALUE = 8;

Clock Constraints

If an external RGMII interface is implemented, the following two constraints are always
applied. An appropriate location for the BUFG related to RGMII inputs and outputs must
be locked to meet the RGMII IO timing specifications. Additionally, other constraints that
vary according to the Ethernet MAC configuration are also required—see the appropriate
following section.

PHYEMAC#GTXCLK Clock

This signal is routed to the PHYEMAC#GTXCLK port of the Ethernet MAC and is constrained
to 125 MHz for 1 Gbps and Tri-Speed operation. The clock should be supplied by the user
from a high quality source. This clock is not placed onto global clock routing. If both
EMACs use an RGMII, this clock is shared between them.

NET "gtx_clk_ibufg_#_i" TNM_NET = "clk_gtx_clk";
TIMESPEC "TS_gtx_clk" = PERIOD "clk_gtx_clk" 7200 ps HIGH 50 %;

IDELAY Reference Clock

The ref_clk_bufg_i signal is used to control the Virtex-4 IDELAY elements. This should
be constrained to run at 200 MHz. This clock can be used globally by all IDELAY logic and
for this reason can be shared by both EMACs. See the Virtex-4 User Guide for more
information.

NET "refclk_bufg_i" TNM_NET = "clk_ref_clk";
TIMESPEC "TS_ref_clk" = PERIOD "clk_ref_clk" 5000 ps HIGH 50 %;

1 Gbps Operation Only - EMAC0 or EMAC1

Transmitter Clock

At 1 Gbps speed only, the transmitter clock can be shared between client and PHY. The
tx_gmii_mii_clk_in_#_i clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_#_i" TNM_NET = "clk_phy_tx_clk#";
TIMESPEC "TS_phy_tx_clk#" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

Receiver Clock

At 1 Gbps speed only, the receiver clock can be shared between client and PHY. The
rgmii_rxc_#_i clock should be constrained to 125 MHz.

NET "rgmii_rxc_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 59
UG240 August 8, 2007

Timing Constraints
R

1 Gbps Operation Only - EMAC0 and EMAC1 Clock Optimizations

Transmitter Clock

At 1 Gbps speed only, the transmitter clock can be shared between client and PHY of both
EMACs. The tx_gmii_mii_clk_in_0_i clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_0_i" TNM_NET = "clk_phy_tx_clk0";
TIMESPEC "TS_phy_tx_clk0" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

Receiver Clocks

At 1 Gbps speed only, the receiver clocks can be shared between client and PHY of the
same Ethernet MAC. However, each Ethernet MAC requires a separate receiver clock
domain. The following clocks should both be constrained to 125 MHz.

NET "rgmii_rxc_0_i" TNM_NET = "clk_phy_rx_clk0";
TIMESPEC "TS_phy_rx_clk0" = PERIOD "clk_phy_rx_clk0" 7200 ps HIGH 50 %;

NET "rgmii_rxc_1_i" TNM_NET = "clk_phy_rx_clk1";
TIMESPEC "TS_phy_rx_clk1" = PERIOD "clk_phy_rx_clk1" 7200 ps HIGH 50 %;

Tri-Speed or 10/100 Mbps Operation

There are no clock optimizations that can be performed when both EMACs use this
interface; the following constraints must be applied to both EMACs separately.

Transmitter Client Clock

The tx_client_clk_in_#_i signal is connected to the CLIENTEMAC#TXCLIENTCLKIN
input of the Ethernet MAC and to the users client side transmitter logic. The clock should
be constrained to 125 MHz for 1 Gbps operation.

NET "tx_client_clk_in_#_i" TNM_NET = "clk_client_tx_clk#";
TIMESPEC "TS_client_tx_clk#" = PERIOD "clk_client_tx_clk#" 7200 ps HIGH 50 %;

Receiver Client Clock

The rx_client_clk_in_#_i signal is connected to the CLIENTEMAC#RXCLIENTCLKIN
input of the Ethernet MAC and to the users client receive side logic. The clock should be
constrained to 125 MHz for 1 Gbps operation.

NET "rx_client_clk_in_#_i" TNM_NET = "clk_client_rx_clk#";
TIMESPEC "TS_client_rx_clk#" = PERIOD "clk_client_rx_clk#" 7200 ps HIGH 50 %;

Transmitter PHY Clock

The tx_gmii_mii_clk_in_#_i signal is routed to the
CLIENTEMAC#TXGMIIMIICLKIN port of the Ethernet MAC along with the RGMII
transmitter interface logic. The clock should be constrained to 125 MHz.

NET "tx_gmii_mii_clk_in_#_i" TNM_NET = "clk_phy_tx_clk#";
TIMESPEC "TS_phy_tx_clk#" = PERIOD "clk_phy_tx_clk#" 7200 ps HIGH 50 %;

Receiver PHY Clock

The rgmii_rxc_#_i signal is routed to the PHYEMAC#RXCLK port of the Ethernet MAC
along with the RGMII receiver interface logic. The clock should be constrained to 125 MHz.

NET "rgmii_rxc_#_i" TNM_NET = "clk_phy_rx_clk#";
TIMESPEC "TS_phy_rx_clk#" = PERIOD "clk_phy_rx_clk#" 7200 ps HIGH 50 %;

http://www.xilinx.com

60 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

1000Base-X PCS/PMA (8-bit Client Interface) Constraints
If an external 1000BASE-X PCS/PMA interface is implemented, the following constraints
should be applied to the MGT clock circuitry.

txoutclk1

The txoutclk1 signal is connected to the TXUSRCLK2 and RXUSRCLK2 clocks of any
connected MGT. This clock should be constrained to 125 MHz.

NET "txoutclk1" TNM_NET = "clk_pcs_clk1";
TIMESPEC "TS_pcs_clk1" = PERIOD "clk_pcs_clk1" 7200 ps HIGH 50 %;

If an external PCS/PMA interface is implemented with an 8-bit client interface,
txoutclk1 can be shared across both transmitter and receiver client interfaces.
Additionally, this clock can be shared across both EMACs.

1000Base-X PCS/PMA (16-bit Client Interface) Constraints
If an external PCS/PMA interface is implemented with a 16-bit client interface, the
following constraints should also be applied, in addition to the MGT constraints described
in “1000Base-X PCS/PMA (8-bit Client Interface) Constraints.”

EMAC0 or EMAC1

If Ethernet MAC# is used with the 1000BASE-X PCS/PMA 16-bit client interface, the
following constraint should be used to constrain the client interface clocks:

NET "tx_client_clk_in_#_i" TNM_NET = "clk_client_tx_clk#";
TIMESPEC "TS_client_tx_clk#" = PERIOD "clk_client_tx_clk#" 7200 ps HIGH 50 %;

EMAC0 and EMAC1 Clock Optimizations

If EMAC0 and EMAC1 are both used with the 1000BASE-X PCS/PMA 16-bit client
interfaces, the client clocks can be shared across both EMACs and only the following
constraints need be applied:

NET "tx_client_clk_in_0_i" TNM_NET = "clk_client_tx_clk0";
TIMESPEC "TS_client_tx_clk0" = PERIOD "clk_client_tx_clk0" 7200 ps HIGH 50 %;

SGMII Constraints
If an SGMII is implemented, the MGT constraints described in “1000Base-X PCS/PMA (8-
bit Client Interface) Constraints” should be applied. Additional constraints may be
required:

EMAC0

For an SGMII that operates at only 1 Gbps, no further constraints are necessary. For an
SGMII that operates at multiple speeds or a speed other than 1 Gpbs, the following
constraint should be used to constrain the client interface clocks:

NET "tx_client_clk_in_0_i" TNM_NET = "clk_client_tx_clk0";
TIMESPEC "TS_client_tx_clk0" = PERIOD "clk_client_tx_clk0" 7200 ps HIGH 50 %;

EMAC1

For an SGMII which operates at only 1 Gbps, no further constraints need to be applied. For
an SGMII which operates at multiple speeds or a speed other than 1 Gpbs, the following
constraint should be used to constrain the client interface clocks:

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 61
UG240 August 8, 2007

Timing Constraints
R

NET "tx_client_clk_in_1_i" TNM_NET = "clk_client_tx_clk1";
TIMESPEC "TS_client_tx_clk1" = PERIOD "clk_client_tx_clk1" 7200 ps HIGH 50 %;

Additional constraints are required for SGMII when the external fabric buffer is present,
which constrain the recovered clock and the elastic buffer.

EMAC0

NET "*RXRECCLK1_0" TNM_NET = "clk_rec_clk0";
TIMESPEC "TS_rec_clk0" = PERIOD "clk_client_rec_clk0" 7200 ps HIGH 50 %;
NET "*clock_correction_A/wr_addr_gray<?>" MAXDELAY = 7 ns;
INST "*clock_correction_A/rd_wr_addr_gray*" TNM = "rx_graycode_A";
INST "*clock_correction_A/rd_occupancy*" TNM = "rx_binary_A";
TIMESPEC "ts_rx_meta_protect_A" = FROM "rx_graycode_A" TO "rx_binary_A" 5 ns;

EMAC1

NET "*RXRECCLK1_1" TNM_NET = "clk_rec_clk1";
TIMESPEC "TS_rec_clk1" = PERIOD "clk_client_rec_clk1" 7200 ps HIGH 50 %;
NET "*clock_correction_B/wr_addr_gray<?>" MAXDELAY = 7 ns;
INST "*clock_correction_B/rd_wr_addr_gray*" TNM = "rx_graycode_B";
INST "*clock_correction_B/rd_occupancy*" TNM = "rx_binary_B";
TIMESPEC "ts_rx_meta_protect_B" = FROM "rx_graycode_B" TO "rx_binary_B" 5 ns;

SGMII and 1000Base-X PCS/PMA Constraints
See the Solution Record 21605 for information about silicon-stepping levels.

CONFIG STEPPING = "SCD1";

Management Clock Constraints

host_clk_i

The host_clk_i signal must be constrained to run at the desired frequency. This is
shared between the 2 EMACs. The clock can be connected to PHYEMACnGTXCLK and
constrained to operate at 125 MHz to improve clock resource usage.

NET "host_clk_i" TNM_NET = "host_clock";
TIMESPEC "TS_clk_host" = PERIOD "host_clk" 10000 ps HIGH 50 %;

Example Design Constraints
The following additional constraints are required for the LocalLink FIFOs provided as part
of example design.

16-bit Client Interface

Tx client FIFO:

INST "*tx_fifo_i?wr_tran_frame_tog” TNM = "tx_metastable";
INST "*tx_fifo_i?frame_in_fifo_sync" TNM = "tx_metastable";
INST "*tx_fifo_i?wr_txfer_tog" TNM = "tx_metastable";
INST "*tx_fifo_i?wr_rd_addr*" TNM = "tx_metastable";

INST "*tx_fifo_i?wr_tran_frame_sync" TNM = "tx_stable";
INST "*tx_fifo_i?frame_in_fifo" TNM = "tx_stable";
INST "*tx_fifo_i?wr_txfer_tog_sync" TNM = "tx_stable";
INST "*tx_fifo_i?wr_addr_diff*" TNM = "tx_stable";

TIMESPEC "TS_tx_meta_protect" = FROM "tx_metastable" TO "tx_stable" 5 ns;

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=21605

62 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

Rx client FIFO:

INST "*rx_fifo_i?rd_store_frame_tog" TNM = "rx_metastable";
INST "*rx_fifo_i?wr_rd_addr_gray_sync*" TNM = "rx_metastable";

INST "*rx_fifo_i?rd_store_frame_sync" TNM = "rx_stable";
INST "*rx_fifo_i?wr_rd_addr_gray*" TNM = "rx_stable";

TIMESPEC "TS_rx_meta_protect" = FROM "rx_metastable" TO "rx_stable" 5 ns;

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 63
UG240 August 8, 2007

Timing Constraints
R

8-bit Client Interface

The following constraints are added in if the 8-bit client interface is used. Instantiate these
constraints for each EMAC that you are using.

Replace '#' with EMAC number.
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_col_window_pipe_0" TNM = "tx_metastable";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_retran_frame_tog" TNM = "tx_metastable";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_col_window_pipe_1" TNM = "tx_stable";
INST "*client_side_FIFO_emac#?tx_fifo_i?wr_retran_frame_sync" TNM = "tx_stable";

http://www.xilinx.com

64 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix B: Constraining the Example Design
R

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 65
UG240 August 8, 2007

R

Appendix C

SGMII / Dynamic Standards Switching

SGMII Capabilities

The Virtex-4 Embedded Tri-Mode Ethernet MAC wrapper GUI provides two SGMII
Capabilities options:

• 10/100/1000 Mbps (clock tolerance compliant with Ethernet specification) Default
setting that provides the implementation using the Receiver Elastic Buffer in FPGA
fabric. This alternative Receiver Elastic Buffer uses a single block RAM to create a
buffer twice as large as the one present in the RocketIO, subsequently consuming
extra logic resources. However, this default mode provides reliable SGMII operation
under all conditions.

• 10/100/1000 Mbps (restricted tolerance for clocks) OR 100/1000 Mbps Uses the
receiver elastic buffer present in the RocketIOs. This is half the size and can
potentially under- or overflow during SGMII frame reception at 10 Mbps operation.
However, there are logical implementations where this can be proven reliable; if so, it
is favored because of its lower logic utilization.

FPGA Fabric Rx Elastic Buffer Requirement
Figure C-1 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Separate oscillator sources are used for the
FPGA and the external PHY. The Ethernet specification uses clock sources with a tolerance
of 100 parts per million (ppm). In Figure C-1, the clock source for the PHY is slightly faster
than the clock source to the FPGA. Therefore, during frame reception, the receiver elastic
buffer (shown here as implemented in the RocketIO) will start to fill up.

Following frame reception, in the interframe gap period, idles will be removed from the
received data stream to return the Rx Elastic Buffer to half full occupancy; this is performed
by the clock correction circuitry (see RocketIO User Guides).

http://www.xilinx.com

66 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix C: SGMII / Dynamic Standards Switching
R

Analysis

Assuming separate clock sources, each with a tolerance of 100 ppm, the maximum
frequency difference between the two devices can be 200 ppm. It can be shown that this
translates into a full clock period difference every 5000 clock periods.

Relating this to an Ethernet frame, a single byte of difference every 5000 bytes of received
frame data occurs, causing the Rx Elastic Buffer to either fill or empty by an occupancy of
one.

The maximum sized Ethernet frame (non-jumbo) is of size 1522 bytes for a VLAN frame:

• At 1 Gbps operation, this translates into 1522 clock cycles

• At 100 Mbps operation, this translates into 15220 clock cycles (because each byte is
repeated 10 times

• At 10 Mbps operation, this translates into 152200 clock cycles (because each byte is
repeated 100 times).

Considering the 10 Mbps case, we would need 152200/5000 = 31 FIFO entries in the Elastic
Buffer above and below the half way point to guarantee that the buffer will not under or
overflow during frame reception. This assumes that frame reception begins when the
buffer is exactly half full.

The size of the Rx Elastic Buffer in the RocketIOs is of size 64 entries. However, we cannot
assume that the buffer is exactly half full at the start of frame reception. Additionally, the
underflow and overflow thresholds are not exact (please refer to the RocketIO User
Guides).

So to guarantee reliable SGMII operation at 10 Mbps (non-jumbo frames), the RocketIO
Elastic Buffer must be bypassed and a larger buffer implemented in the FPGA fabric. The
fabric buffer, provided by the example design, is twice the size and so nominally provides
64 entries above and below the half full threshold. This has been proven to cope with
standard (non-jumbo) Ethernet frames at all three SGMII speeds.

Figure C-1: SGMII Implementation: Separate Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125 MHz -100 ppm 125 MHz + 100ppm

Virtex-4 Embedded
Tri-Mode Ethernet

MAC Wrapper

RocketIO

Twisted

Copper

Pair

http://www.xilinx.com

Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5 www.xilinx.com 67
UG240 August 8, 2007

R

The RocketIO Rx Elastic Buffer
The Elastic Buffer in the RocketIO can be used reliably when:

• 10 Mbps operation is not required (for example, when connecting the core to the 1-
Gigabit Ethernet MAC to provide only 1 Gbps operation). Please note that both
1 Gbps and 100 Mbps operation can be guaranteed.

• When the clocks are closely related (see the following section).

If there is any doubt, please select the FPGA fabric Rx Elastic Buffer Implementation.

Closely Related Clock Sources

Case 1

Figure C-2 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Note that a common oscillator source is
used for both the FPGA and the external PHY.

If the PHY device sources the receiver SGMII stream synchronously from the shared
oscillator (check PHY data sheet), the RocketIO will receive data at exactly the same rate as
that used by the core. The receiver elastic buffer will neither empty nor fill, having the
same frequency clock on either side.

In this situation, the receiver elastic buffer will not under or overflow, and the elastic buffer
implementation in the RocketIO should be used to save logic resources.

Case 2

Now consider again the case illustrated by Figure C-1. However, this time, assume that the
clock sources used are both 50 ppm. Now the maximum frequency difference between the
two devices will be 100 ppm. It can be shown that this translates into a full clock period
difference every 10000 clock periods, resulting in a requirement for 16 FIFO entries above
and below the half full point. It can be shown that this will provide reliable operation with
the RocketIO Rx Elastic Buffers. Again, review the PHY data sheet to ensure that the PHY
device sources the receiver SGMII stream synchronously to its reference oscillator.

Figure C-2: SGMII Implementation: Shared Clock Sources

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125MHz -100ppm

Virtex-4 Embedded
Tri-Mode Ethernet

MAC Wrapper

RocketIO

Twisted

Copper

Pair

http://www.xilinx.com

68 www.xilinx.com Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
UG240 August 8, 2007

Appendix C: SGMII / Dynamic Standards Switching
R

Jumbo Frame Reception
A jumbo frame is an Ethernet frame that is deliberately larger than the maximum-size
Ethernet frame allowed in the IEEE 802.3 specification. Jumbo frames require special
consideration to reliably receive frames. Table C-1 defines the maximum-size jumbo
frames that can be received reliably when using the Receiver Elastic Buffer.

Table C-1: Maximum Frame Sizes for Fabric Rx Elastic Buffers (100 ppm Clock Tolerance)

Standard/Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 280000

SGMII (1 Gbps) 280000

SGMII (100 Mbps) 28000

SGMII (10 Mbps) 2800

http://www.xilinx.com

	Virtex-4 Embedded Tri-Mode Ethernet MAC Wrapper v4.5
	About This Guide
	Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Introduction
	System Requirements
	About the Ethernet MAC Wrapper
	Recommended Design Experience
	Additional Resources
	Technical Support
	Feedback
	Embedded Tri-Mode Ethernet MAC Wrapper
	Document

	Quick Start Example Design
	Overview
	Generating the Ethernet MAC Wrapper
	Implementing the Example Design
	Running the Simulation
	Functional Simulation
	Timing Simulation

	What’s Next?

	Customizing the Core
	Ethernet MAC Wrapper GUI Screens
	Core Configuration Options-Screen 1
	EMAC Configuration Options-Screen 2
	EMAC Configuration-Screen 3
	MDIO/EMAC Configuration-Screen 4

	Detailed Example Design
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/drivers
	<component name>/doc
	<component name>/example design
	example_design/client
	client/fifo
	example_design/physical
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional
	simulation/timing

	Implementation and Test Scripts
	Implementation Scripts for Timing Simulation
	Test Scripts For Timing Simulation
	Test Scripts For Functional Simulation

	Example Design
	HDL Example Design
	10 Mbps, 100 Mbps, 1 Gbps Ethernet FIFO
	Address Swap Module
	Physical Interface

	Demonstration Test Bench
	Test Bench Functionality
	Changing the Test Bench

	Using the Client Side FIFO
	Overview of LocalLink Interface
	Receive FIFO Operation
	LocalLink Interface

	Transmit FIFO Operation
	LocalLink Interface

	User Interface Data Width Conversion

	Constraining the Example Design
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Timing Constraints
	GMII Constraints
	GMII with Byte PHY Constraints
	MII Constraints
	MII with Clock Enable Constraints
	RGMII (v1.3 and v2.0) Constraints
	1000Base-X PCS/PMA (8-bit Client Interface) Constraints
	1000Base-X PCS/PMA (16-bit Client Interface) Constraints
	SGMII Constraints
	SGMII and 1000Base-X PCS/PMA Constraints
	Management Clock Constraints
	Example Design Constraints

	SGMII / Dynamic Standards Switching
	FPGA Fabric Rx Elastic Buffer Requirement
	The RocketIO Rx Elastic Buffer
	Jumbo Frame Reception

