Proposed SCT Readout Architecture

plus some hooks for future trigger innovation*

Francis Anghinolfi, Michelle Charriere, Joel
Dewitt, Philippe Farthouat, Daniel La Marra,
Mitch Newcomer, Elliot Lipeles, Matt Warren,

* (pbroposed)?

Objectives for High Rate SCT Readout

Minimize power and Material (# fibers...) in Readout Path

— Avoid reading out data that will very likely be rejected early in the
filtering process. ...Keep data on detector longer.. but

- Avoid Large memory associated with long fixed latency triggers.

Realization

- Fixed latency trigger (renamed to L0O.) Remains nearly as L1 is presently.

 LO data transferred to holding buffer registered with LO ID (LOID) counter.
Not sent to a readout buffer...

* Regional Readout Request (R3) triggers, addressable by module, are sent
out with an asyncronous 5-50uS. Latency. Referencing data by LOID tag.

R3 data has the highest priority for readout but should be sent to a few
percent of the modules on the detector at a time.

L1 triggers initiate readout of all modules with a lower priority for
readout than R3 triggers. The expected rate is 100KHz or lower.

HL-LHC Trigger/Readout Timeline

Event Time

I 2-6uS fixed Latency
—

Syncronous LO

—

<= ~50uS latest R3
<= ~500uS latest L1

|
N—

7

Simple Rules for Maximal Flexibility

*L0 Fixed at Initial Setup
*R3 Must precede L1
*R3 readout highest priority

Asyncronous R3 —<
Asyncronous L1 —<<

L1 initiates Off Detector Readout

Atlas Upgrad Week Oxford March 2011 3

Front End ASIC based Readout Architecture

256 Channel

AEeE Pipeline

2 - 6uUS

Front End Data | ‘ LOID data buffer

BC - Beam Crossing Clock
LO - Level 0 Beam Synchronous Trigger

LOID - LO Trigger Counter (memory Index)
R3 — Region of Interest Trigger (Asynchronous)
L1 - Second Level Trigger (Asynchronous)
Xon / Xoff Chip-to-chip Readout Control.

19z1|e149s
J134 IXSN

LOID data fetch

Fetch Arbitration

Xon / Xoff

L0 ID ' RO Control Control

, FiFo
HCC responsible for R3

List
@ recognition. IGETGIINND,

Few to 50uS after LO 50 — 250uS after LO

Atlas Upgrad Week Oxford March 2011 4

Asyncronous R3 Trigger packet (proposal)

— 12 bits, one for each module
— 9 bits LOID
— 3 bit header/separator

(\

gga(‘ R3 Module @ bits (here mod 4,5,6 are selected)

Total = 24 bit times @ 80MHz, = 300ns per R3 packet
Allows a stave to have a maximum R3 rate of 3.3MHz

Atlas Upgrad Week Oxford March 2011 5

Elink generated Stave Signals

Four Differential Pairs

e 160MHz Data Clock — HCC data readout clock.
HCC generates ABC Data Clock / BC clock
e BC_CMD - BC sync interspersed with CMD (80Mbps)
e LOL1- (80Mbps) LO Sync’d with BC @ (40MHz)
L1 utilizes other 40MHz phase™* to send LOID for L1 trig
« R3 - Dedicated line to handle rate for 12 modules on Stave.

R3 Packets (headr+Staveaddrs+LOID) described on Slide 4.

QSimpIe MCC/ABC decoding with physically separated functions
and plenty of spare bandwidth.

= Robust approach for a high radiation environment.

* far more bandwidth than necessary for L1: ~2MHz rate possible.
Atlas Upgrad Week Oxford March 2011 6

End of Stave (GBT controlled) Signals

Bussed Outputs

HCC_CLK (160MHz Data Clock)
BC _CMD @80Mbps

LO L1 @80Mbps

R3 @80Mbps

Point to point Data lines - one per Hybrid
Only possible with 80Mbps for present
GBT technology.

Optical Link
Tosa Rosa

Hybrid 1
Hybrid 2

Hybrid 24

Note that for a longer stave we would be forced to go to 2 GBT’s per Stave.
Atlas Upgrad Week Oxford March 2011 7

Service side

HCC_CIk

CMD_BC

T R e

Lo_L1

41 L

R3

Hybrid @
bits

Hybrid Controller Chip

Hybrid (ABC130) side

ABC Data Clock {\6
*‘0
CMD_ABC_BC oo\>‘
0\‘9
=\
65\()
L0_L1 ¢
%\)

Xon/off
Data Loop

Xon/off
Data Loop

Datall Datal

V(temp), V(analog)

Data 1 and Data Il are separately enabled redundantoutputs

to the same Stave bus data pair.
Atlas Upgrad Week Oxford March 2011

2 Loop Serial Data readout Path on Hybrid

Splits Readout Loop

hce) Allows Directional readout to remove Dead chip(s)

Atlas Upgrad Week Oxford March 2011

Summary

* An Architecture with a versatile two level trigger
capability has been developed for the upgraded SCT
and is being detailed with the intention to fabricate
in IBM’s 130nm process. (~18months)

e Details about the ASIC design will be presented in the
next talk by: Francis Anghinolfi.

Trigger Primitives for Commisioning & Innovation

& Challenge from Maurice to A
Event Time = provide cluster information
Syncronous LO__s, 2-6uS fixed Latency at Event Time to allow for
% trigger innovation. y,

Asyncronous R3

< ~50uS latest R3 S KNG G RGP EZER WES, |
R IUSE UL CERINE CODUMISS IS

e [aRGTOERTIEBE NG, U
HIEEDETECLOT| [@EteTd NSt BICEl

Asyncronous L1
Y — to filter request.

< ~500uS latest L1

Atlas Upgrad Week Oxford March 2011 11

Fast Readout Conceptual Block Diagram

256 Channel Pipeline
Analog
Front End Data

Pipeline Data out

* Store Data as two banks of 128 strips at BC time.
One buffer register per bank.
* Perform clustering algorithm in multiple steps @ 160Mhz
using tightly restricted acceptance rules (next page)
* Send Fixed Length Cluster information at a fixed #BC after the
event to each dedicated LVDS output.
* Due to low occupancy it is allowable to allocate several BC each

time a cluster is located.

12
Atlas Upgrad Week Oxford March 2011

Rules for Prompt Cluster

* Treat Each Bank independently.

e Cluster must have no more than 2 strips in a row.
ie 3+ = Veto prefers energetic track.

* No more than 2 Clusters in a Bank.

 New BC cluster information locked out to prevent overwrite.
— Restart processing as soon as overwrite condition is avoidable.

Data = Two 8 bit values 16 bits total =4 BC’s at 160Mbps

— Valid Data = 2, 7 bit cluster addresses + “00” trailer

— “Null” second Cluster is a repeat of first cluster.

Several approaches will be explored/compared for complexity versus execution time.
An initial attempt in development is to split the 128 bits into 8 parallel 16 bit banks
and find clusters within each in one step, examine border cases and then count all
clusters. The 16 bit cluster finder is shown in the next pages.

Summary

A fast output will allow the exploration and
development of prompt trigger information
from the inner detector with little overhead.

This block will be OFF except when enabled.

It could also turn out that these outputs prove
useful during prototyping and commissioning.

16 bit cluster finding Algorithm (in Development) 1/3

“timescale 1lns / 1lps

S/ Company:

// Engineer:

i

/{ Create Date: 159:46:15 03/28/2011

S/ Design Name:

/§ Module Name: taskCheckCluster

Jf Project Name: readout

/¢ Target Devices:

f¢ Tool wversions:

i

S/ DESCREIFTION: This module accepts clock as input. It consists of a single task.
/4 The task has 16 bits data as input and gives out the following informaticon in a 13 bit register '"netaddress'-

s 1. The locations where hits have occurred and if there are two adjacent bits high.

Iy The netaddress[3:0] and netaddress [9:6] hold 4 bit addresses. The bits 4 and 10 are '"0" if adjacent
I bits are high in netaddress[3:0] and netaddress[%:6] respectively.

i

Iy 2. If thers ars three hit clusters occuring in a 1€ kit data group, the bit 12[MSB] is '0'. This acts as a flag
Iy to the calling module to indicate that sntire 128 bits of data need to be discarded.

i

i 3. If kit 5 = 0, netaddress[3:0] has valid address and if bit 11 = 0, netaddress[Y%:&] has walid

I address.

i

Iy 4. By default, all the bits of register are high.

i

Iy 5. If there ars continucus strings of ones (> 2 consecutive bits), the entire string is not wvalid.

i

i 6. The checking for the 'l' string goes on cnly till bit 13 (bit 14 & 15 are not individually checked.
Iy They ars checked in the main module along with checking the bit 0 & 1 of next block)

i

i

i

/S Dependencies:

i

/S Bevision:

/f Bevision 0.01 - File Creatsd

S/ Bdditicnal Comments:

I

Ir

I

I

I

FPFEEFEy FELPRFIFFFFFErTY PEEPEFEFFFFFTTTY FEPPEFIFFFFF IS FY PEPPRFIFIFFFEEEy PEPPLFFFIT

Atlas Upgrad Week Oxford March 2011 15

16 bit cluster finding Algorithm (in Development) 2/3

module taskCheckCluster(clk);//,data_in,netaddress_out):
input clk;

ffinput [15:0]data_in;

i

ffoutput [lZ2:0]netaddress_out:

ffalways @ (posedge clk)
//begin
task CheckClustsr:
input [15:0] data;
cutput [12:0]netaddress;
reg [l2:0]netaddress;
reg [5:0] temp: // temporarily holds each location of a hit.
reg flag:// high when one hit has occurred
reg flagZ;// high when two hits have cccurrsd in discrete locations
integer i, J ;

ffinitial
begin
netaddress [12:0] = 13'b1111111111111;// output high by default
i=10;
=0z
flag = 1'b0;
flag2 = 1'b0;
ffend
while (i <= 15)// l& bit data
begin
temp[5:0] = 6'bl:
if (data[i])// if there is a hit in location i
begin
temp[S] = 1'b0; // valid hitc
if(i <= 13 s& data[i+l] && data[i+2])// 3 or more adjacents bits are high, cluster discarded
begin
temp[5] = 1'bl; // not a valid hic
fer (=142 jJ<1le:j=3+1)
bE=gin
if(data[j] == 1'b0)// discontinue the for locp if data at that location is low
begin
i=73:
j = 1le;//f false wvalue to j simply to discontinus the for loop
end
end
end
else
begin

Atlas Upgrad Week Oxford March 2011

16

16 bit cluster finding Algorithm (in Development) 3/3

temp[3:0] = i;
if({ i <= 14 && datal[i+l])// if Z consequtive bits are high
begin
temp[4] = 1'b0;
i=i+Z2;
f/continue;

end

bagin // only cne bit is high
tenp[4]=1"bl;

i=1i+2;

//conti

end

¥

end
end
if (flag == 1'B0 s& temp[5] == 1'bB0O) /*first hit cccursdt/
netaddress[5:0] = temp;
flag = 1'bl:
end
else if(flag == 1'blestemp[S]==1"k0)} //second hit occcured within the le bit sub-division
netaddress[11:6] = temp;
flag2=1"bl;
end
else if (flagi==1'bl && temp[3]==1'b0) // if three bits havwve cccursd within the 16 bit data group

netaddress[12] = 1'bl;
i=16;// false value given to i simply toc get out of while loop

end
i=i+l;// increment i for checking the next data bit.
end
end

endtask
endmodule

Atlas Upgrad Week Oxford March 2011

